Solve A
x=b exactly:
a11 a21
a12 a22
a1N aNN

x1
xN
=
b1
bN
Convert this to triangular form:
a
11 0
0 a
12 a
22
0
a
NN

x1
xN
=
b
1
b
N
Then solve the system by Back Substitution.
2.2.2 Householder Transformation
Task: Strip column and/or row vectors of some of their rear elements.
Given A
–
A'
triangular, tridiagonal, or otherwise simple.
Let
a be a vector (such as a matrix column vector),
and
e_{1} a unit vector. Define an auxiliary vector
b \equiv a \pm |a| e_{1}
and normalize it.
Householder matrix:
P \equiv 1-2 b_{0} \cdot b_{0}^{T}
See for yourself that in the transformed vector
a' \equiv P \cdot a
all elements but the first are equal to zero.
Apply this transformation successively to simplify a matrix.
EXAMPLE:
Let
A=\left( \begin{array}{ccc}1&2&3\\ \\4&5&6 \\ \\7&8&9\end{array} \right)
From
a \equiv (1,4,7)^{T}
construct the auxiliary vector
b=(-7.124, 4, 7)^{T}, normalize to b_{0}=(-0.662, 0.372, 0.651)^{T}.
The Householder matrix is
P_{1}=\left( \begin{array}{ccc}0.123&0.492&0.862\\ \\0.492&0.724&-0.484
\\ \\0.862&-0.484&0.153\end{array} \right)
Check: Multiplying A by P_{1} we have
P_{1} \cdot A=
\left( \begin{array}{ccc}8.124&2.708&11.078\\
\\0&4.602&1.464 \\ \\0&-0.696&1.062\end{array} \right)
Next step: treat the lower right
2 \times 2 submatrix of P_{1} \cdot A. From a = (4.602, -0.696)^{T}
construct a
2 \times 2 Householder matrix which is promoted to a
3 \times 3 matrix by
adding a trivial first line and column:
P_{2} = \left( \begin{array}{ccc}1&0&0\\ \\0&0.989&-0.149 \\
\\0&-0.149&-0.989\end{array} \right)
Result:
P_{2} \cdot P_{1} \cdot A=
\left( \begin{array}{ccc}8.124&2.708&11.078\\ \\0&4.655&1.289 \\
\\0&0&-1.269\end{array} \right)
2.2.3 LU Decomposition
Task: Solve a linear system A \cdot x=b
Method (Banachiewicz, Cholesky and Crout):
Factorize a matrix into two triangular matrices
L(ower) and U(pper):
A= L \cdot U
with
L=
\left(
\begin{array}{cccc}
l_{11} & 0 & . & 0 \\
l_{21} & l_{22} & . & . \\
. & & . & 0 \\
l_{N1} & . & . & l_{NN}
\end{array}
\right)
; \; U=
\left(
\begin{array}{cccc}
u_{11} & u_{12} & . & u_{1N} \\
0 & u_{22} & . & . \\
. & . & . & . \\
0 & . & 0 & u_{NN}
\end{array}
\right)
When this is done, write
A \cdot x=b
as
L \cdot \left( U \cdot x \right) = b
such that we have the two simpler systems of equations
L \cdot y = b
and
U \cdot x = y
Since L and U are triangular
these equations are easy to solve.
Forward substitution:
\begin{eqnarray}
y_{1} &=& \frac{1}{l_{11}} b_{1} \\
y_{i} &=& \frac{1}{l_{ii}} \left( b_{i} - \sum_{j=1}^{i-1} l_{ij}
y_{j} \right) ; \;\;\; i=2, \dots ,N
\end{eqnarray}
Back substitution:
\begin{eqnarray}
x_{N} &=& \frac{1}{u_{NN}} y_{N} \\
x_{i} &=& \frac{1}{u_{ii}} \left( y_{i} - \sum_{j=i+1}^{N} u_{ij}
x_{j} \right) ; \;\;\; i=N\!-\!1, \dots ,1
\end{eqnarray}
But first: find the matrices L and U!
Write L \cdot U= A
as
\sum_{k=1}^{N} l_{ik} u_{kj} = a_{ij} ; \; i=1, \dots N;
\; j=1, \dots N
These are N^{2} equations but N^{2}+N unknowns l_{ij}, u_{ij}.
\Longrightarrow
Choose l_{ii}=1 (i=1, \dots N).
Also, due to the triangular structure of L and U
we may write
\begin{eqnarray}
{\rm for} \;\;\; i \leq j &:& \; \sum_{k=1}^{i} l_{ik} u_{kj} = a_{ij} \;
\\
{\rm for} \;\;\; i > j &:& \; \sum_{k=1}^{j} l_{ik} u_{kj} = a_{ij}
\end{eqnarray}
\Longrightarrow
Crout's procedure:
LU decomposition:
For j=1,2, \dots N compute
\begin{eqnarray}
u_{1j} &=& a_{1j} \\
u_{ij} &=& a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} ; \;\;\;
i=2, \dots ,j \\
l_{ij} &=& \frac{1}{u_{jj}} \left( a_{ij} - \sum_{k=1}^{j-1} l_{ik}
u_{kj} \right) ; \;\;\; i=j+1, \dots ,N
\end{eqnarray}
Side result: Determinant
\left| A \right| = \left| L \right| \cdot \left| U \right|
= u_{11} u_{22} \dots u_{NN}
EXAMPLE:
Let
A=\left( \begin{array}{cc}1&2\\ \\3&4\end{array} \right)
\Longrightarrow
(Crout)
\begin{eqnarray}
j=1, \; i=1: \;\;\; u_{11}&=&a_{11}=1 \\
j=1, \; i=2: \;\;\; l_{21}&=&\frac{1}{u_{11}} a_{21}=3 \\
&& \\
j=2, \; i=1: \;\;\; u_{12}&=&a_{12}=2 \\
j=2, \; i=2: \;\;\; u_{22}&=&a_{22}-l_{21} u_{12}=-2
\end{eqnarray}
and thus
\begin{eqnarray}
\left( \begin{array}{cc}1&2\\ \\3&4\end{array} \right)&=&\underbrace{\left(
\begin{array}{cc}1&0\\ \\3&1\end{array} \right)} \cdot
\underbrace{\left( \begin{array}{cc}1&2\\ \\0&-2\end{array} \right)} \\
&& \;\;\;L \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; U
\end{eqnarray}
At each step (j,i) the required elements l_{ik}, u_{kj}
are already available.
Advantage of LU decomposition:
The vector b has not been touched.
Therefore we may use the factors L and U of a given matrix A
with different vectors b.
To find the Inverse A^{-1}:
Solve A \cdot x_{j} = e_{j} with the
N unit vectors e_{j}\;; combine the column vectors
x_{j} to find A^{-1}.
Find solution x if A is tri-diagonal
(maybe after application of Householder).
With
\begin{eqnarray}
A &\equiv&
\left(
\begin{array}{cccccc}
\beta_{1}& \gamma_{1} & 0 & . & . & 0 \\
\alpha_{2} & \beta_{2} & \gamma_{2} & 0 & . & 0 \\
0 & \alpha_{3} & \beta_{3} & \gamma_{3} & 0 & . \\
. & . & . & . & . & . \\
. & . & . & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\
. & . & . & 0 & \alpha_{N} & \beta_{N}
\end{array}
\right)
\end{eqnarray}
the system of equations reads
\begin{eqnarray}
\beta_{1}x_{1} + \gamma_{1}x_{2}&=&b_{1} \\
\alpha_{i}x_{i-1}+\beta_{i}x_{i} + \gamma_{i}x_{i+1}&=&b_{i}
; \;\; i=2,\dots,N\!-\!1
\\
\alpha_{N}x_{N\!-\!1} + \beta_{N}x_{N}&=&b_{N}
\end{eqnarray}
Introducing auxiliary variables g_{i}
and h_{i} by the recursive ansatz
\begin{eqnarray}
x_{i+1}&=&g_{i} x_{i} + h_{i} ; \; i=1, \dots , N\!-\!1
\end{eqnarray}
we find the "downward recursion formulae"
\textstyle
\begin{eqnarray}
g_{N-1}=\frac{-\alpha_{N}}{\beta_{N}}
\; & ; & \;
h_{N-1}=\frac{b_{N}}{\beta_{N}} \\
g_{i-1}=\frac{-\alpha_{i}}{\beta_{i}+\gamma_{i} g_{i}}
\; & ; & \;
h_{i-1}=\frac{b_{i}-\gamma_{i} h_{i}}{\beta_{i}+\gamma_{i} g_{i}}
; \;\; i=N-1, \dots,2
\end{eqnarray}
Having arrived at g_{1} and h_{1} we insert the known values of
g_{i}, h_{i} in the "upward recursion formulae"
\begin{eqnarray}
x_{1}&=&\frac{b_{1}-\gamma_{1} h_{1}}{\beta_{1}+\gamma_{1} g_{1}}
\\
x_{i+1}&=&g_{i}x_{i}+h_{i} ; \;\; i=1, \dots,N\!-\!1
\end{eqnarray}
(The equation for the starting value x_{1}
follows from \beta_{1} x_{1} + \gamma_{1}x_{2}=b_{1}
and
x_{2}=g_{1}x_{1}+h_{1}.)
EXAMPLE:
In A \cdot x = b, let
A \equiv
\left( \begin{array}{cccc}
\beta_{1}& \gamma_{1} & 0 & 0 \\
\alpha_{2} & \beta_{2} & \gamma_{2} & 0 \\
0 & \alpha_{3} & \beta_{3} & \gamma_{3} \\
0 & 0 & \alpha_{4} & \beta_{4}
\end{array} \right) =
\left( \begin{array}{cccc}
2 & 1 & 0 & 0 \\
2 & 3 & 1 & 0 \\
0 & 1 & 4 & 2 \\
0 & 0 & 1 & 3
\end{array} \right)
\;\; \;\; {\rm and} \;\;\; b =
\left( \begin{array}{c} 1 \\2 \\3 \\4 \end{array} \right)
Downward recursion:
g_{3}=-\alpha_{4}/\beta_{4}=-1/3,
h_{3}= b_{4}/\beta_{4}=4/3, and
\begin{eqnarray}
i=3: \;\; g_{2}= -3/10 \; &,& \;\; h_{2}= 1/10
\\
i=2: \;\; g_{1}= -20/27 \; &,& \;\; h_{1}= 19/27
\end{eqnarray}
Upward recursion:
x_{1} = 8/34, and
\begin{eqnarray}
i=1: \;\; x_{2} &=& 9/17 \\
i=2: \;\; x_{3} &=& -1/17 \\
i=3: \;\; x_{4} &=& 23/17
\end{eqnarray}
vesely
2005-10-10