next up previous

A1. Spherical caps

Among the excluded volumes discussed in the text are bodies - cylinders, truncates spheres or ellipsoids - that are capped by sphere segments. Let such a cap have its center at $z_{0}$, its rim at $z_{1}$, and a radius $r_{c}$. The cosine integral over one such end cap is then given by
$\displaystyle I_{cap}(k)$ $\textstyle \equiv$ $\displaystyle \int_{z_{1}}^{z_{0}+r_{c}}
dz \, \left[r_{c}^{2}-\left(z-z_{0} \right)^{2} \right] \, \cos kz$ (27)
  $\textstyle =$ $\displaystyle \pi \, \cos kz_{0} \left\{
\frac{}{} \right. \left. \!\!
\frac{r_{c}^{2}}{k}\, \left[
\sin k(z_{1}-z_{0}+r_{c})-\sin k(z_{1}-z_{0}\right]
\right.$  
    $\displaystyle \hspace{9em} \left.
-\left[ f(z_{1}-z_{0}+r_{c};k) - f(z_{1}-z_{0};k) \right]
\frac{}{}
\right\}$ (28)
       
    $\displaystyle -\pi \, \sin kz_{0} \left\{
\frac{}{} \right. \left. \!\!
- \frac...
...c}^{2}}{k}\, \left[
\cos k(z_{1}-z_{0}+r_{c})-\cos k(z_{1}-z_{0}\right]
\right.$  
    $\displaystyle \hspace{9em} \left.
-\left[ g(z_{1}-z_{0}+r_{c};k) - g(z_{1}-z_{0};k) \right]
\right\}$ (29)

where
$\displaystyle f(x;k)$ $\textstyle \equiv$ $\displaystyle \int_{0}^{x}dz \, z^{2} \, \cos kz
= \frac{1}{k^{3}}\left[ 2kx \cos kx + \left( (kx)^{2}-2\right) \sin kx\right]$ (30)
$\displaystyle g(x;k)$ $\textstyle \equiv$ $\displaystyle \int_{0}^{x}dz \, z^{2} \, \sin kz
= \frac{1}{k^{3}}\left[ 2kx \sin kx - \left( (kx)^{2}-2\right) \cos kx
-2 \right]$ (31)


next up previous
F. J. Vesely / University of Vienna