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ABSTRACT

The angular dependence of magnetic-field commensurability effects in thin films of the cuprate high-critical-temperature superconductor
YBa2Cu3O7−δ (YBCO) with an artificial pinning landscape is investigated. Columns of point defects are fabricated by two different methods
of ion irradiation — scanning the focused 30 keV ion beam in a helium ion microscope or employing the wide-field 75 keV He+ beam of an
ion implanter through a stencil mask. Simulations of the ion-target interactions and the resulting collision cascades reveal that with both
methods square arrays of defect columns with sub-μm spacings can be created. They consist of dense point-defect clusters, which act as
pinning centers for Abrikosov vortices. This is verified by the measurement of commensurable peaks of the critical current and related
minima of the flux-flow resistance vs magnetic field at the matching fields. In oblique magnetic fields, the matching features are exclusively
governed by the component of the magnetic field parallel to the axes of the columnar defects, which confirms that the magnetic flux is pen-
etrated along the defect columns. We demonstrate that the latter dominate the pinning landscape despite of the strong intrinsic pinning in
thin YBCO films.

Published under license by AIP Publishing. https://doi.org/10.1063/10.0000863

1. INTRODUCTION

Most of the superconducting materials belong to the type II
class, into which a magnetic field can penetrate as flux quanta
Φ0 = h/(2e), where h is Planck’s constant and e the elementary
charge. These flux quanta are known as Abrikosov vortices, whirls
of the supercurrent that confine the magnetic flux into the cylindri-
cal vortex core, a region with vanishing density of superconducting
charge carrier pairs. In clean and isotropic bulk superconductors
these vortices arrange themselves in a two-dimensional hexagonal
lattice with the axes of the vortex cores oriented parallel to the
external magnetic field.

In the cuprate high-temperature superconductors (HTSCs) the
situation is more complex and vortices can exist in a large range of
magnetic fields between a tiny lower critical field Bc1(85 K) ∼ 2mT
and a high upper critical field Bc2(85 K) ∼ 20 T at temperatures rele-
vant for the present study and for magnetic fields orthogonal to the
CuO2 atomic layers.1 The high anisotropy of the HTSCs favors a
decomposition of the cylindrical vortices into a stack of coupled
“pancake” vortices,2 which can be visualized, e.g., in Bi2Sr2CaCu2O8.

3

The arrangement of vortices in type-II superconductors can
be tailored by the introduction of artificial defects as pinning sites
for vortices. Those defects can be classified by their dimensionality
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and can severely disturb the native hexagonal vortex arrangement.
Zero-dimensional (0D) point defects can be introduced as tiny
non-superconducting impurities in situ during fabrication4 or by
postprocessing with electron5 or light-ion irradiation of HTSCs.6

One-dimensional (1D) defects are commonly created by irradiation
with swift heavy ions that produce amorphous channels with diam-
eters of several nm, i.e., a few times the in-plane coherence length.
They have been extensively investigated as a tool to enhance the
critical current density.7 Finally, grain boundaries and, in the pro-
totypical HTSC YBa2Cu3O7−δ (YBCO) also twin planes, can form
two-dimensional (2D) defects that can pin vortices.

The dimensionality of the artificial defects is revealed by dif-
ferent angle-dependent behavior in tilted magnetic fields of super-
conducting properties like the critical current Ic, the vortex-flow
resistance R, and Bc2. While point defects lead to a marginal
angular dependence, randomly distributed yet parallel oriented 1D
columnar defects cause narrow features in Ic, R, and magnetization
vs field direction, centered around the magnetic field direction par-
allel to their symmetry axes.8–10 Similar observations hold for 2D
defect planes in YBCO when the magnetic field is rotated through
a direction that is oriented parallel to these planes.11

In this work, we investigate artificial pinning lattices that are
different in two aspects. First, they are neither strictly 0D or 1D,
since they consist of dense point defects that form columnar defect
clusters (CDs) with diameters at least one order of magnitude larger
than the in-plane coherence length ξab(0) = 1.2 nm in YBCO.12

Second, these CDs are arranged in a periodic pattern that gives rise
to commensurability effects at matching vortex and defect densities.
Such commensurability effects have been primarily studied in metal-
lic superconductors using arrays of holes (antidots)13–19 or magnetic
dots20 in the material, nanogrooves,21–23 and superlattices24 but are
also found in YBCO perforated with holes.25

The fabrication techniques of pinning arrays in our samples are
based on the observation that irradiation of YBCO thin films with
He+ ions of moderate energy introduces point defects by displacing
mainly oxygen atoms. This leads to a reduction of the transition tem-
perature Tc,

26 which can be well controlled by the ion fluence.6,27–29

By ion irradiation through a shadow mask30–38 or using the focused
ion beam of a He ion microscope (HIM)39 an array of CDs can be
created that acts as a pinning landscape for vortices.

Only few investigations have addressed the angular depen-
dence of vortex commensurability effects in metallic superconduc-
tors with antidots16,40 and in YBCO thin films patterned with
periodic CDs by ion irradiation.34,37

The purpose of this study is to explore whether the pinning
landscapes created in YBCO by focused He+ ion irradiation in a
HIM act as 1D line-like pinning centers despite of consisting of 0D
point defect clusters with inhomogeneous density.

2. EXPERIMENTAL METHODS

Epitaxial thin films of YBa2Cu3O7−δ are grown on (100) MgO
single-crystal substrates by pulsed-laser deposition using 248 nm
KrF-excimer-laser radiation at a fluence of 3.2 J/cm2. The thick-
nesses of the films used in this work are tz = (80 ± 5) nm (sample
SQ200) and tz = (210 ± 10) nm (sample SQ500). The critical tem-
peratures of the as-prepared films are Tc∼ 90 K with transition

widths ΔTc ∼ 1 K. The films are patterned by photolithography and
wet chemical etching to form bridges with a length of 240 μm and
a width of w = 60 μm. Electrical contacts in a four-probe geometry
are established on side arms of the bridges using sputtered Au pads
with a voltage probe distance of 100 μm.

In both samples, a tailored vortex pinning landscape was
created by different methods of He+ ion irradiation. Sample SQ200
was irradiated with an intentionally defocused ion beam in a HIM.
The setup starts with adjusting the HIM settings to the highest res-
olution and then changing the working distance (beam focus
plane) so that the beam hits the sample surface with a nearly
Gaussian fluence profile41 with a full width at half maximum
(FWHM) of about 50 nm. Since the aperture angle of the ion beam
is very small the ion beam hits the sample surface almost orthogo-
nally. The method is described in detail elsewhere.39

By sequentially scanning the ion beam over the sample
surface, a square lattice of columnar defects with d = 200 nm spac-
ings is created in the thin YBCO film in an overall area of approxi-
mately 200 μm× 100 μm. Every point is irradiated with 30 keV He+

ions with a dwell time of 2.7 ms and a beam current of 3 pA, corre-
sponding to ∼51000 He+ ions/point. The method is sketched in
Fig. 1(a).

Sample SQ500 is patterned by masked ion beam structuring
(MIBS)30 as sketched in Fig. 1(b). A 2 μm-thick Si stencil mask is
placed on top of the YBCO film and adjusted in an optical micro-
scope with the help of marker holes. The mask is separated from
the surface of the YBCO film by a circumferential spacer layer
made of 1.5 μm-thick photoresist. The stencil mask is perforated
with holes with diameters D = (180 ± 5) nm, arranged in a square
array of d = (500 ± 2) nm pitch, which covers the entire bridge. The
stencil pattern is shadow projected onto the YBCO surface by irra-
diating the arrangement with a collinear 75 keV He+ ion beam, ori-
ented orthogonal to the sample surface, in a commercial ion
implanter (High Voltage Engineering Europa B. V.).

Electrical transport measurements are performed in a closed-
cycle cryocooler with temperature control by a Cernox resistor,
which has a negligible temperature reading error in moderate mag-
netic fields.42 The applied magnetic field Ba is supplied by a revolv-
able electromagnet with ±1° angular resolution and Ba = |Ba| is
measured by a calibrated Hall probe mounted between the
magnet’s pole pieces. The Hall probe is connected to a LakeShore
475 gaussmeter, allowing for measurements of Ba with a zero offset
<10 μΤ, and a reading accuracy <0.1%. The tilt angle α is defined
as the angle between the surface normal of the YBCO film and the
direction of Ba. The angle-dependent magneto-resistance measure-
ments are performed in constant Lorentz force geometry, i. e., the
magnetic field is always perpendicular to the current direction. For
all measurements, the current I through the sample is generated by
a constant-current source in both polarities to eliminate thermo-
electric signals and the voltage V is measured by a Keithley 2182A
nano-voltmeter. The critical current Ic(Ba) is determined from iso-
thermal current-voltage (I–V) measurements with a voltage crite-
rion of 100 nV, corresponding to 10 μV/cm. Since the I–V
characteristics of a superconductor are nonlinear the resistance
curves presented below are defined as R(Ba) =V(Ba)/I at a fixed I.
Note that the absolute value of R(Ba) is not important for our
analyses.
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3. RESULTS AND DISCUSSION

To compare the shapes of the artificial CD lattices, prepared
by the two different irradiation methods, simulations of the defect
distributions with the program package SRIM/TRIM43,44 are per-
formed. It computes the impact of ions on solids using a binary
collision approximation of ion-atom and atom-atom collisions, and
delivers the full collision cascades. However, ion channeling,
thermal effects, diffusion, and recrystallization are not considered.

Details of the crystallographic structure are not considered in
SRIM/TRIM as it uses a Monte Carlo method and assumes amor-
phous targets. For the spatial modulation of superconductivity, the
Ginzburg–Landau coherence length is the relevant length parame-
ter and therefore we have determined the average defect density
within calculation cells of 2 × 2 × 2 nm3—a length scale of the order
of the in-plane coherence length of YBCO. Note that the investi-
gated point defect densities are below the amorphization limit and
a comparison to an experimental visualization is hardly possible.
Only by using a larger ion fluence, amorphous channels can be
created and detected in cross-section scanning transmission elec-
tron microscopy images.45

The pinning potential for vortices is provided by a local sup-
pression of Tc, which can be calculated from the defect density on
the grounds of the pair-breaking theory of Abrikosov and
Gor’kov.46 Since annealing effects are not considered in SRIM/
TRIM and various other effects may lead to substantial uncertainty,
a “calibration” curve relating the experimentally observed Tc to the
defect density from the simulations is established, using previous
experimental Tc values from full-area irradiation of thin YBCO
films.28 Details of this procedure are described elsewhere.47

The resulting simulated cross-sectional Tc profiles for the two
samples SQ200 and SQ500 are presented in Fig. 2 at the same scale
for comparison. Note that sample SQ200 (top panel) was irradiated
with a slightly defocused He+ ion beam with approximately
Gaussian normal distributed fluence of FWHM= 50 nm, whereas

the fluence was homogeneous in the irradiated parts of sample
SQ500. Another important difference is the ion energy of 30 keV
for sample SQ200 and 75 keV for sample SQ500.

In thin films with tz � 80 nm, 30 keV He+ ion irradiation
creates columns, within which Tc is suppressed, that are clearly sep-
arated from each other at 200 nm lattice spacing (Fig. 2, top panel).
The suppression of Tc at the fringes of the CDs decays more gradu-
ally than for sample SQ500, which was irradiated by MIBS (Fig. 2,
bottom panel). Still, the cylindrical envelope of clusters with sup-
pressed Tc provides an efficient pinning landscape as will be dis-
cussed below.

Due to the larger penetration depth of the 75 keV He+ ions,
CDs can be patterned into thicker YBCO films with MIBS, as dem-
onstrated in Fig. 2, bottom panel. However, the achievable lateral
resolution for CD diameters degrades with increasing thickness of
the film, as it can be noticed by the increasing diameter of the CD
for film thicknesses larger than 120 nm. We note that increasing
the ion energy would improve the resolution on the cost of a lower
ion scattering cross-section, which would demand a higher ion
fluence.

Although a few dispersed defects are created also outside the
CDs by lateral straggling of the incident ions and the secondary
collision cascades, their impact on the zero-field electrical transport
properties is marginal as demonstrated by the experimentally deter-
mined small reduction of the critical temperature ΔTc = 2.6 K
(ΔTc = 4 K) in sample SQ200 (SQ500) after irradiation.

In electric transport measurements, the commensurability
effects evoked by regular pinning lattices are demonstrated in Fig. 3
as peaks in the critical current Ic and corresponding minima of the
resistance vs applied field Ba (at α = 0°) that appear exactly at the
matching fields

Bn ¼ n
Φ0

d2
, (1)

FIG. 1. Two different methods for patterning a YBCO film by He+ ion irradiation: (a) Irradiation with a slightly defocused beam of a helium-ion microscope produces tailored
columnar defect patterns by scanning the beam over the sample surface. The dark regions indicate the defect-rich, nonsuperconducting nanocylinders. (b) Ion beam direct
patterning by irradiating through a stencil mask creates a large number of columnar defects in a single step.
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where n is a rational number. We use n = 0 to denote the absence
of vortices and n < 0 for the reversed vortex orientation. When the
diameters of the CDs are larger than the Ginzburg-Landau coher-
ence length, an integer number n > 1 of fluxons can be accommo-
dated per CD.48 Note the tiny humps of Ic around ±26mT that
indicate a fractional matching pattern with n = ±(1/2).

The commensurability effects result from two different vortex
pinning mechanisms in our samples. On the one hand, n flux
quanta can be trapped in the normal-conducting core of a CD,
which we will call fluxons to discriminate them from the regular
Abrikosov vortices in a plain superconductor. These fluxons
remain pinned at the CDs even if a moderate current is applied
to the sample. However, by changing the applied magnetic field,
the Lorentz force due to increased shielding current exceeds
the pinning potential and the fluxons can hop between
neighboring CDs.49

On the other hand, vortices at interstitial positions between
the CDs are pinned mainly by twin boundaries and growth defects
in the YBCO films, most of them oriented parallel to the c axis.50

Their pinning potentials are usually weaker than those of the
fluxons trapped in the CDs. At a certain applied magnetic field Ba
the critical current shows a peak when the magnetic flux through
the sample is penetrating the sample via single fluxons trapped in
each CD, which happens exactly at the matching field B1 of Eq. (1).
In this situation, the number of weakly-pinned interstitial vorti-
ces is minimized. An equivalent consideration leads to the expla-
nation of the resistance minima observed at the same Bn.
Typically, our samples patterned by masked or focused He ion
irradiation show clear matching effects in a temperature range
from ∼0.7Tc up to ∼0.9Tc.

36,39 For our further considerations, it
is important that the matching fields can be equally well deter-
mined from either Ic peaks or resistance minima, the latter
allowing for much faster measurements.

An investigation of the angular dependence of the magnetore-
sistance can shed light on the nature and relative strength of the
pinning of fluxons at the CDs and the pinning of interstitial vorti-
ces, respectively.

For dominant pinning at CDs, the magnetic flux should be
preferentially trapped within the CDs irrespectively of the angle α

FIG. 3. Resistance R(I = 50 μΑ) and critical current Ic vs applied magnetic field
at α = 0° of an 80-nm thick YBCO film (sample SQ200), irradiated with a slightly
defocused He+ ion beam of 50 nm FWHM to form a square pattern of defect
cylinders with a lattice constant of 200 nm. Data were taken after zero-field
cooling and then sweeping the field through a full cycle, revealing no hysteresis.
The matching field determined from the geometric parameters is B1 = 52 mT
and leads to a minimum of the resistance and a peak in the critical current.

FIG. 2. Cross-sectional view of calculated local Tc profiles within and around the defect columns produced by 50900 ions per dot with 30 keV energy and a Gaussian
normal distribution with 50 nm FWHM (sample SQ200, top panel) and 75 keV He+ ion irradiation of YBCO with a fluence of 3⋅1015 cm−2 (sample SQ500, bottom panel).
Both panels are displayed at the same scale for a comparison between the two samples.
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by which the applied magnetic field Ba is tilted off the axes of the
CDs. Then, the commensurability peaks in Ic (Ba) and dips in
R(Ba) should appear if the component of Ba that is parallel to the
axes of the CDs,

Bk ¼ Ba cosα, (2)

fulfills the matching condition of Eq. (1).
Figure 4 shows the magnetoresistance of sample SQ200 for

various tilt angles α at a temperature near the onset of dissipation.
When the magnetic field Ba is oriented orthogonal to the sample
surface and parallel to the axes of the CDs (α = 0°) a distinct
minimum at B1 = 52 mT and a marginal one at B2 = 104 mT con-
firms the commensurability effects. With increasing tilt angle α the
magnetoresistance curves exhibit very similar matching resistance
minima and change their shapes only slightly if data are plotted
with the abscissa scaled to Bk. Even at α = 70° the commensurabil-
ity effect can be detected.

In sample SQ500 the situation is more complicated due to a
hysteresis observed in the magnetic field sweeps. It originates from
an unconventional terraced critical state51 with domains in the
sample52 inside which the pinning centers are occupied by the
same number n of fluxons and neighboring domains by n ± 1.
Such a hysteretic behavior has been investigated previously36 and is
beyond the scope of this work. Still, the considerations leading to
Eq. (2) should hold. Indeed, Fig. 5 demonstrates that all the features
observed in the α = 0° orientation of Ba appear at the same posi-
tions when the magnetic field is tilted and scaling to Bk is used.
This not only applies to the first matching fields in upsweep (B"

�1)
and downsweep (B#

1) conditions, but also to the hysteretic displace-
ment of the minima with zero fluxon occupation of the relevant

CDs (B"
0 and B#

0). Despite of the more complex fluxon arrange-
ments in this sample, all commensurability effects are governed by
Bk, which confirms that only the component of the magnetic field
is relevant that is parallel to the axes of the CDs.

In Fig. 6 the magnetic field components Bk at which the resis-
tance dips for single fluxon matching are observed in sample

FIG. 4. Resistance (I = 400 μΑ) vs applied field component along the normal of
the film surface Bk of sample SQ200 for different values of α. Since no hystere-
sis is observed, only the down sweep branches of the cycle after zero-field
cooling are displayed. For α > 0° the curves are shifted by multiples of 0.1 mΩ
to enhance visibility. The inset shows a sketch of the experimental situation.

FIG. 5. Resistance (I = 200 μΑ) vs applied field component along the normal of
the film surface Bk of sample SQ500 for different values of α. Data were taken
after zero-field cooling and comprise the virgin curves starting from B = 0 and
the up and down sweeps as representatively indicated by arrows in the bottom
curve. Data for α > 0° are shifted by multiples of 0.02Ω.

FIG. 6. Angular dependencies of the magnetic field components Bk at which
the resistance dips for single fluxon matching (sample SQ200) and B#1 (sample
SQ500) are observed. The horizontal lines indicate that Bk determines the
matching effect, irrespective of the tilt angle α.
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SQ200 (B1) and SQ500 (B#
1) are shown as a function of the tilt

angle α. In remarkable agreement with Eq. (2) the experimental
values are independent of α as indicated by the horizontal lines.
This confirms that at all angles shown in the graph the magnetic
flux is penetrated along the CDs. In addition, the adherence to
Eq. (2) up to large tilt angles indicates that pinning at the CDs is
much stronger than the intrinsic pinning of interstitial vortices in
the intermediate regions between the CDs.

Some deviations from the behavior presented in Fig. 6 have
been reported in denser pinning lattices. Due to lateral straggling of
the collision cascades, a significant number of irradiation defects
are created in the spaces between the CDs. This is indicated by
ΔTc = 43 K after MIBS irradiation. In this case the scaling according
to Eq. (2) gradually breaks down for α > 45°.37 In thin YBCO films
patterned via 110 keV O+ ion irradiation (ΔTc≃ 40 K) a strong
modification of the vortex-glass transition and a weakening of the
vortex correlations along the c axis has been observed.34

Finally, in unirradiated YBCO, due to its anisotropy, the cylin-
drical vortices change to an elliptical cross-section in oblique mag-
netic fields α≠ 0° and decompose into a tilted stack of pancake
vortices at tilt angles α & 54�.53 This is reflected by a broad
maximum in the critical current extending over a range α & 60�.11

The feature evolves at temperatures closer to Tc and in moderate
magnetic fields. In contrast to the observations in those unirradi-
ated YBCO films, the matching fields B1 in our samples strictly
scale with Eq. (2) up to α = 72° (α = 80°) for sample SQ200
(SQ500). Naturally, no pinning of fluxons by the CDs is expected
when the CDs and Ba are oriented orthogonally, i.e., near α = 90°.

4. CONCLUSIONS

Vortex pinning landscapes in YBCO thin films can be conve-
niently fabricated by employing He+ ion irradiation, either by a
focused beam in a HIM or by shadow-masking of a wide-field ion
beam. As demonstrated by simulations of the defect distributions
created in YBCO by the ion impact, the methods are complemen-
tary. HIM irradiation is a sequential method and allows for mask-
less operation and higher resolution of at least 10 nm,45 but the
penetration depth is limited to about 80 nm due to the maximum
ion energy of 30 keV. With MIBS the entire pattern can be pre-
pared at the same time and also in thicker films when using higher
ion energies, but the lateral resolution is currently limited by a hole
diameter of ∼180 nm of the available stencil masks.

Both methods, despite of their different length scales, produce
well-defined CDs that provide strong pinning of fluxons, which is
supported by the observation that at arbitrary angles of an applied
magnetic field only the component parallel to the CDs governs the
commensurability effects. Both irradiation methods appear suitable
for the creation of well-defined tailored pinning landscapes in
cuprate superconductors, which are an important prerequisite for
proposed concepts of fluxon manipulation leading to fast and low-
dissipation devices.54–56
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