Complexity of Semi-Stable and Stage Semantics in Argumentation Frameworks

Wolfgang Dvořák, Stefan Woltran

Database and Artificial Intelligence Group
Institut für Informationssysteme
Technische Universität Wien

December 10, 2009

◊ This work was supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028
Outline

1. Argumentation in AI
2. Abstract Argumentation
3. Complexity of Stage / Semi-Stable Semantics
4. Fixed-Parameter-Tractability
5. Conclusion
Argumentation in AI

- Very general idea: representation of an argument
- Different views: modeling the process, verifying the correctness, analyzing the conflicts, etc.
- Thus, representation of arguments came in many different flavors
Argumentation in AI

- Very general idea: representation of an argument
- Different views: modeling the process, verifying the correctness, analyzing the conflicts, ... etc.
- Thus, representation of arguments came in many different flavors

Abstract Argumentation

- Arguments are “atomic”
- Argumentation frameworks (AFs) formalize relations (rebuttals) between arguments
- Semantics gives an abstract handle to solve the inherent conflicts between statements by selecting acceptable subsets
An argumentation framework (AF) is a pair (A, R) where
- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing “attacks” (“defeats”)
Argumentation Frameworks

An argumentation framework (AF) is a pair \((A, R)\) where
- \(A\) is a set of arguments
- \(R \subseteq A \times A\) is a relation representing “attacks” (“defeats”)

Example

\[AF=\{(a,b,c,d,e),\{(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)\}\}\]
Conflict-free Extension

Given an AF \((A, R)\).
A set \(S \subseteq A\) is conflict-free in \(F\), if, for each \(a, b \in S\), \((a, b) \notin R\).
Conflict-free Extension

Conflict-Free Extension

Given an AF \((A, R)\).
A set \(S \subseteq A\) is conflict-free in \(F\), if, for each \(a, b \in S\), \((a, b) \notin R\).

Example

\[
\begin{align*}
\text{cf} (F) &= \{ \{a, c\}, \}
\end{align*}
\]
2. Abstract Argumentation

Conflict-free Extension

Given an AF \((A, R)\).
A set \(S \subseteq A\) is conflict-free in \(F\), if, for each \(a, b \in S\), \((a, b) \notin R\).

Example

\[cf(F) = \{\{a, c\}, \{a, d\}, \} \]
Conflict-free Extension

Conflict-Free Extension

Given an AF \((A, R)\).
A set \(S \subseteq A\) is **conflict-free** in \(F\), if, for each \(a, b \in S\), \((a, b) \notin R\).

Example

\[cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\} \]
2. Abstract Argumentation

Admissible Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is admissible in \(F\), if

- \(S\) is conflict-free in \(F\)
- each \(a \in S\) is defended by \(S\) in \(F\),
 - \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).
Admissible Extension

Given an AF (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\}\},$$
Admissible Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is **admissible** in \(F\), if

- \(S\) is conflict-free in \(F\)
- each \(a \in S\) is defended by \(S\) in \(F\),
 - \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).

Example

\[
adm(F) = \{\{a, c\}, \{a, d\}\},
\]

[Diagram showing the relationships between elements a, b, c, d, and e with arrows indicating dependencies.]
Admissible Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is admissible in \(F\), if

- \(S\) is conflict-free in \(F\)
- each \(a \in S\) is defended by \(S\) in \(F\),
 - \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).

Example

\[
\text{adm}(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\},
\]
Admissible Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is admissible in \(F\), if
- \(S\) is conflict-free in \(F\)
- each \(a \in S\) is defended by \(S\) in \(F\),
 - \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).

Example

\[\text{adm}(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset \} \]
Stable Extensions

Stable Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is \textit{stable} in \(F\), if

- \(S\) is conflict-free in \(F\)
- for each \(a \in A \setminus S\), there exists a \(b \in S\), such that \((b, a) \in R\).
Stable Extensions

Stable Extension
Given an AF \((A, R)\). A set \(S \subseteq A\) is stable in \(F\), if
- \(S\) is conflict-free in \(F\)
- for each \(a \in A \setminus S\), there exists a \(b \in S\), such that \((b, a) \in R\).

Example
\[
\text{stable}(F) = \{\{a, c\}\}
\]
Stable Extensions

Stable Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is **stable** in \(F\), if

- \(S\) is conflict-free in \(F\)
- for each \(a \in A \setminus S\), there exists a \(b \in S\), such that \((b, a) \in R\).

Example

\[\text{stable}(F) = \{\{a, c\}, \{a, d\}\},\]

\[\text{stable}(F) = \{\{a, c\}, \{a, d\}\},\]
Stable Extensions

Stable Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is stable in \(F\), if

- \(S\) is conflict-free in \(F\)
- for each \(a \in A \setminus S\), there exists a \(b \in S\), such that \((b, a) \in R\).

Example

\[
\text{stable}(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\},
\]

Complexity of Semi-Stable and Stage Semantics
Stable Extensions

Stable Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is **stable** in \(F\), if
- \(S\) is conflict-free in \(F\)
- for each \(a \in A \setminus S\), there exists a \(b \in S\), such that \((b, a) \in R\).

Example

\[
\begin{align*}
\text{stable}(F) &= \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset, \}\n\end{align*}
\]
Some AFs have no stable extension:

- The argumentation framework (AF) shows a cycle among arguments a, b, and c, with directed links indicating the attack relations.

For $S \subseteq A$, we define $S^+ = S \cup \{a : \exists b \in S : (b, a) \in R\}$ minimizing $A \setminus S^+ \iff$ maximizing S^+.

If S is a stable extension then $S^+ = A$.

Complexity of Semi-Stable and Stage Semantics
Stable Extensions

Some AFs have no stable extension:

![Diagram of AFs](attachment:af_diagram.png)

Idea: Using extensions minimizing the unattacked arguments in $A \setminus S$.
Stable Extensions

Some AFs have no stable extension:

Idea: Using extensions minimizing the unattacked arguments in \(A \setminus S \).

- For \(S \subseteq A \) we define \(S^+ = S \cup \{a : \exists b \in S : (b, a) \in R\} \)
- minimizing \(A \setminus S^+ \) ⇔ maximizing \(S^+ \)
- If \(S \) is a stable extension then \(S^+ = A \)
Stage/Semi-Stable Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is **stage** (resp. **semi-stable**) in \(F\), if

- \(S\) is conflict-free (resp admissible) in \(F\)
- for each \(S' \subseteq A\), if \(S'\) conflict-free (admissible) then \(S^+ \not\subset S'^+\)
Stage/Semi-Stable Extension

Given an AF \((A, R)\). A set \(S \subseteq A\) is \textit{stage} (resp. \textit{semi-stable}) in \(F\), if

- \(S\) is conflict-free (resp admissible) in \(F\)
- for each \(S' \subseteq A\), if \(S'\) conflict-free (admissible) then \(S^+ \not\subset S'^+\)

Example

\[
\begin{align*}
\text{cf}(F) &= \{\emptyset, \{a\}, \{b\}, \{c\}\} \\
\text{adm}(F) &= \{\emptyset\} \\
\text{stage}(F) &= \{\{a\}, \{b\}, \{c\}\} \\
\text{semi}(F) &= \{\emptyset\}
\end{align*}
\]
Decision Problems on AFs

Let be σ a semantic for AFs then we are interested in the following problems:

- **Credulous Acceptance** (Cred_σ): Given AF $F = (A, R)$ and $a \in A$; is a contained in at least one σ-extension of F?

- **Skeptical Acceptance** (Skept_σ): Given AF $F = (A, R)$ and $a \in A$; is a contained in every σ-extension of F?

Theorem ([Dunne and Caminada(2008)])

Cred_σ and Skept_σ are P-NP-hard.

Cred_σ is Σ_p^p-easy.

Skept_σ is Π_p^p-easy.
Decision Problems on AFs

Let be σ a semantic for AFs then we are interested in the following problems:

- **Credulous Acceptance** (Cred_σ): Given AF $F = (A, R)$ and $a \in A$; is a contained in at least one σ-extension of F?

- **Skeptical Acceptance** (Skept_σ): Given AF $F = (A, R)$ and $a \in A$; is a contained in every σ-extension of F?

Theorem ([Dunne and Caminada(2008)])

$\text{Cred}_{\text{semi}}$ and $\text{Skept}_{\text{semi}}$ are $\text{P}^\text{NP}_{\|}$-hard.
$\text{Cred}_{\text{semi}}$ is Σ^p_2-easy.
$\text{Skept}_{\text{semi}}$ is Π^p_2-easy.
Complexity of stage / semi-stable semantics

Theorem ([Dvořák and Woltran(2009)])

Cred for stage / semi-stable semantics is Σ^p_2-complete.
Skept for stage / semi-stable semantics is Π^p_2-complete.
Complexity of stage / semi-stable semantics

Theorem ([Dvořák and Woltran(2009)])

Cred for stage / semi-stable semantics is Σ^p_2-complete.
Skept for stage / semi-stable semantics is Π^p_2-complete.

Proof membership.

Credulous Acceptance of $a \in A$
- Guess a set S such that $a \in S$.
- Verify that S is conflict-free (admissible)
- Verify that S is \subseteq^+-maximal (in co-NP)
 - Guess a set S' such that $S^+ \subset S'^+$
 - Test if S' is conflict-free (admissible)
3. Complexity of Stage / Semi-Stable Semantics

Complexity of stage / semi-stable semantics

Theorem ([Dvořák and Woltran(2009)])

Cred for stage / semi-stable semantics is Σ^p_2-complete.
Skept for stage / semi-stable semantics is Π^p_2-complete.

Proof membership.

co-Skeptical Acceptance of $a \in A$

- Guess a set S such that $a \notin S$.
- Verify that S is conflict-free (admissible)
- Verify that S is \subseteq^+-maximal (in co-NP)
 - Guess a set S' such that $S^+ \subset S'^+$
 - Test if S' is conflict-free (admissible)
To prove the hardness we reduce the Π^p_2-hard problem QSAT^{\forall}_2 to Skept.

Definition (QSAT$^{\forall}_2$)

Given: A quantified boolean formula in CNF: $\Phi = \forall Y \exists Z \Psi(Y, Z)$.
Question: Is Φ true?

Example:

$$\forall y_1, y_2 \exists z_3, z_4 (y_1 \lor y_2 \lor z_3) \land (\neg y_2 \lor \neg z_3 \lor \neg z_4) \land (\neg y_1 \lor \neg y_2 \lor z_4)$$
To prove the hardness we reduce the \(\Pi_2^p \)-hard problem \(\text{QSAT}^{\forall}_2 \) to Skept.

Definition (\(\text{QSAT}^{\forall}_2 \))

Given: A quantified boolean formula in CNF: \(\Phi = \forall Y \exists Z \, \Psi(Y, Z) \).

Question: Is \(\Phi \) true?

Example:

\[
\forall y_1, y_2 \, \exists z_3, z_4 \, (y_1 \lor y_2 \lor z_3) \land (\neg y_2 \lor \neg z_3 \lor \neg z_4) \land (\neg y_1 \lor \neg y_2 \lor z_4)
\]

In our reduction

- we map each formula to \(\Phi \) to an AF \(F_\Phi \) and an argument \(t \in F_\Phi \)
- such that \(\Phi \) is true iff \(t \) is skeptically accepted in \(F_\Phi \).
3. Complexity of Stage / Semi-Stable Semantics

Reduction (informal)

We first demonstrate our reduction on an example QBF:

$$\forall y_1, y_2 \exists z_3, z_4 \ (y_1 \lor y_2 \lor z_3) \land (\neg y_2 \lor \neg z_3 \lor \neg z_4) \land (\neg y_1 \lor \neg y_2 \lor z_4)$$

The resulting framework F_Φ:
Reduction (formal)

Given a QBF^2_\forall formula $\Phi = \forall Y \exists Z \bigwedge_{c \in C} c$, we define $F_\Phi = (A, R)$, where

$$A = \{t, \bar{t}, b\} \cup C \cup Y \cup \bar{Y} \cup Y' \cup \bar{Y}' \cup Z \cup \bar{Z}$$

$$R = \{\langle c, t \rangle \mid c \in C\} \cup \{\langle x, \bar{x} \rangle, \langle \bar{x}, x \rangle \mid x \in Y \cup Z\} \cup \{\langle y, y' \rangle, \langle \bar{y}, \bar{y}' \rangle, \langle y', y' \rangle, \langle \bar{y}', \bar{y}' \rangle \mid y \in Y\} \cup \{\langle l, c \rangle \mid \text{literal } l \text{ occurs in } c \in C\} \cup \{\langle t, \bar{t} \rangle, \langle \bar{t}, t \rangle, \langle t, b \rangle, \langle b, b \rangle\}.$$
Lemma

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

1. $b \notin S$, as well as $y' \notin S$ and $\bar{y}' \notin S$ for each $y \in Y$.
2. $x \notin S \iff \bar{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free).

Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$.

If $x = t$ then $T = S \cup \{\bar{t}\}$ is conflict-free and we have $S^+ \subseteq T^+$.

Further T is admissible if S is.

If $x \in Y \cup Z$ then we define $T = (S \setminus \{c \in C | \langle \bar{x}, c \rangle \in R\}) \cup \{\bar{x}\}$.

Once more we have that T is conflict-free and that T is admissible if S is.

For the removed arguments $c \in C$, we have $c \in T^+$.

The only argument attacked by such c is t, but $t \in T^+$, since we can already assume $\{t, \bar{t}\} \cap S \neq \emptyset$.

Therefore we have $S^+ \subseteq T^+$.

Lemma

For every stage (resp. semi-stable) extension \(S \) of an AF \(F_\Phi = (A, R) \):

1. \(b \not\in S \), as well as \(y' \not\in S \) and \(\bar{y}' \not\in S \) for each \(y \in Y \).
2. \(x \not\in S \iff \bar{x} \in S \) for each \(x \in \{t\} \cup Y \cup Z \).

Proof.

ad 1) clear, since all this arguments attack themselves
Lemma

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

1. $b \notin S$, as well as $y' \notin S$ and $\bar{y}' \notin S$ for each $y \in Y$.
2. $x \notin S \iff \bar{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves.

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free).
Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$.

Lemma

For every stage (resp. semi-stable) extension S of an AF $F_\Phi = (A, R)$:

1. $b \notin S$, as well as $y' \notin S$ and $\bar{y}' \notin S$ for each $y \in Y$.
2. $x \notin S \iff \bar{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free).
Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$.
If $x = t$ then $T = S \cup \{\bar{t}\}$ is conflict-free and we have $S^+ \subset T^+$. Further T is admissible if S is.
Lemma

For every stage (resp. semi-stable) extension S of an AF $F_\Phi = (A, R)$:

1. $b \notin S$, as well as $y' \notin S$ and $\bar{y}' \notin S$ for each $y \in Y$.
2. $x \notin S \iff \bar{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free).
Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$.
If $x = t$ then $T = S \cup \{\bar{t}\}$ is conflict-free and we have $S^+ \subset T^+$. Further T is admissible if S is. \\If $x \in Y \cup Z$ then we define $T = (S \setminus \{c \in C \mid \langle \bar{x}, c \rangle \in R\}) \cup \{\bar{x}\}$. Once more we have that T is conflict-free and that T is admissible if S is. For the removed arguments $c \in C$, we have $c \in T^+$. The only argument attacked by such c is t, but $t \in T^+$, since we can already assume $\{t, \bar{t}\} \cap S \neq \emptyset$. Therefore we have $S^+ \subset T^+$. \\
Lemma

Let \(Y^* = Y \cup \bar{Y} \cup Y' \cup \bar{Y}' \) and \(S, T \) be conflict-free sets then:

1. \(S \cap Y^* \subseteq T \cap Y^* \iff (S \cap Y^*)^+ \subseteq (T \cap Y^*)^+ \)
2. \(S \cap Y^* = T \cap Y^* \iff (S \cap Y^*)^+ = (T \cap Y^*)^+ \)
3. Complexity of Stage / Semi-Stable Semantics

Lemma

Let $Y^* = Y \cup \bar{Y} \cup Y' \cup \bar{Y}'$ and S, T be conflict-free sets then:

1. $S \cap Y^* \subseteq T \cap Y^*$ iff $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$
2. $S \cap Y^* = T \cap Y^*$ iff $(S \cap Y^*)^+ = (T \cap Y^*)^+$

Proof.

We first prove (1):

\Rightarrow: First, assume $S \cap Y^* \subseteq T \cap Y^*$.

By the monotonicity of $(.)^+$ we get $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$. ✓

\Leftarrow: Assume now $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$ and let $l \in S \cap Y^*$. (l is either of form y or \bar{y})

As $l \in S \cap Y^*$ we have $l, \bar{l}, l' \in (S \cap Y^*)^+$ and thus $l, \bar{l}, l' \in (T \cap Y^*)^+$.

But then, $l \in T \cap Y^*$ follows from $l' \in (T \cap Y^*)^+$. ✓
Lemma

Let \(Y^* = Y \cup \bar{Y} \cup Y' \cup \bar{Y}' \) and \(S, T \) be conflict-free sets then:

1. \(S \cap Y^* \subseteq T \cap Y^* \) iff \((S \cap Y^*)^+ \subseteq (T \cap Y^*)^+\)
2. \(S \cap Y^* = T \cap Y^* \) iff \((S \cap Y^*)^+ = (T \cap Y^*)^+\)

Proof.

We first prove (1):

\(\Rightarrow\): First, assume \(S \cap Y^* \subseteq T \cap Y^* \).

By the monotonicity of \((.)^+\) we get \((S \cap Y^*)^+ \subseteq (T \cap Y^*)^+\). ✓

\(\Leftarrow\): Assume now \((S \cap Y^*)^+ \subseteq (T \cap Y^*)^+\) and let \(l \in S \cap Y^* \). (\(l \) is either of form \(y \) or \(\bar{y} \))

As \(l \in S \cap Y^* \) we have \(l, \bar{l}, l' \in (S \cap Y^*)^+ \) and thus \(l, \bar{l}, l' \in (T \cap Y^*)^+ \).

But then, \(l \in T \cap Y^* \) follows from \(l' \in (T \cap Y^*)^+ \). ✓

By symmetry (2) follows.
Lemma

If Φ is true, then t is contained in every stage and in every semi-stable extension of F_Φ.
Lemma

If Φ is true, then t is contained in every stage and in every semi-stable extension of F_Φ.

Proof.
Suppose $\Phi = \forall Y \exists Z C$ is true and let S be a stage or a semi-stable extension of such that $t \notin S$. Let $I_Y = Y \cap S$. Since Φ is true we know there exists an $I_Z \subseteq Z$, such that for each $c \in C$ holds:

$$
(I_Y \cup I_Z \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z)\}) \cap c \neq \emptyset.
$$
Lemma

If Φ is true, then t is contained in every stage and in every semi-stable extension of F_Φ.

Proof.

Suppose $\Phi = \forall Y \exists Z C$ is true and let S be a stage or a semi-stable extension of such that $t \notin S$. Let $I_Y = Y \cap S$. Since Φ is true we know there exists an $I_Z \subseteq Z$, such that for each $c \in C$ holds:

$$(I_Y \cup I_Z \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z)} \} \cap c \neq \emptyset.$$

Consider now the set

$$T = I_Y \cup I_Z \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z)} \} \cup \{t\}.$$

T is admissible and $T^+ = A \setminus I_Y'$. As $S \cap I_Y' = \emptyset$ and $b \notin S^+$ this implies $S^+ \subseteq T^+ \notin$.

Hardness - Skeptical Acceptance Semi-Stable

Theorem

\[\text{Skept}_{\text{semi}} \text{ is } \Pi^p_2 \text{-hard.} \]
Hardness - Skeptical Acceptance Semi-Stable

Theorem

Skept_{semi} is Π_2^p-hard.

We have to show that t is contained in all semi-stable extensions of $F\Phi$ iff Φ is true. (The if direction is already captured by the last lemma)
Hardness - Skeptical Acceptance Semi-Stable

Theorem

\(\text{Skept}_{\text{semi}} \) is \(\Pi^p_2 \)-hard.

We have to show that \(t \) is contained in all semi-stable extensions of \(F_\Phi \) iff \(\Phi \) is true. (The if direction is already captured by the last lemma)

Proof.

We prove the only-if direction by showing that if \(\Phi \) is false, then there exists a semi-stable extension \(S \) of \(F_\Phi \) such that \(t \not\in S \).

In case \(\Phi \) is false, there exists an \(I_Y \subseteq Y \), such that for each \(I_Z \subseteq Z \), there exists a \(c \in C \), such that

\[
(I_Y \cup I_Z \cup \{ \bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z) \}) \cap c = \emptyset. \tag{1}
\]

Consider now a maximal (wrt. \(\leq^+ \)) admissible (in \(F_\Phi \)) set \(S \), such that \(I_Y \subseteq S \). \(S \) then has to be a semi-stable extension.
proof (ctd).

Consider now a maximal (wrt. \(\leq^+ \)) admissible (in \(F_\Phi \)) set \(S \), such that \(I_Y \subseteq S \). \(S \) then has to be a semi-stable extension.

It remains to show \(t \not\in S \). We prove this by contradiction and assume \(t \in S \).

As \(S \) is admissible, \(S \) defends \(t \) and therefore it defeats all \(c \in C \).

Further as all attacks against \(C \) come from \(Y \cup \tilde{Y} \cup Z \cup \tilde{Z} \), the set

\[
U = (I_Y \cup (S \cap (Z \cup \tilde{Z}))) \cup \{ \tilde{y} \mid y \in Y \setminus I_Y \}
\]

defeats all \(c \in C \).

As we know that for each \(z \in Z \), either \(z \) or \(\tilde{z} \) is contained in \(S \). We get an equivalent characterization for \(U \) by

\[
U = (I_Y \cup I_Z \cup \{ \tilde{x} \mid x \in (Y \cup Z) \setminus (I_Y \cap I_Z) \}) \text{ with } I_Z = S \cap Z.
\]

Thus, for all \(c \in C \),

\[
(I_Y \cup I_Z \cup \{ \tilde{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z) \}) \cap c \neq \emptyset,
\]

which contradicts assumption (1). \(\square \)
Hardness - Skeptical Acceptance under Stage Semantics

Theorem

$\text{Skept}_{\text{stage}}$ is Π^p_2-hard.
Hardness - Skeptical Acceptance under Stage Semantics

Theorem

\[\text{Skept}_{\text{stage}} \text{ is } \Pi^p_2\text{-hard.}\]

Proof.

Similar to the proof of the previous theorem. For details see [Dvořák and Woltran(2009)].
Hardness - Credulous Acceptance

Theorem

Credulous acceptance for stage or semi-stable semantics is Σ^p_2-hard.
Hardness - Credulous Acceptance

Theorem

Credulous acceptance for stage or semi-stable semantics is Σ_2^P-hard.

Proof.

We have shown that a QBF_\forall^2 formula Φ is true iff t is contained in each semi-stable extension of F_Φ. This is equivalent to \bar{t} is not contained in any semi-stable extension of F_Φ. Thus the co-credulous acceptance is also Π_2^P-hard.
Fixed-Parameter-tractability

Stage and Semi-stable Extensions can be specified in MSOL:

\[
U \subseteq^+_R V = \forall x \left((x \in U \lor \exists y (y \in U \land \langle y, x \rangle \in R)) \rightarrow \right.
\]
\[
\left(x \in V \lor \exists y (y \in V \land \langle y, x \rangle \in R) \right)
\]

\[
U \subseteq^+_R V = U \subseteq^+_R V \land \neg (V \subseteq^+_R U)
\]

\[
cf_R(U) = \forall x, y \left(\langle x, y \rangle \in R \rightarrow (\neg x \in U \lor \neg y \in U) \right)
\]

\[
adm_R(U) = cf_R(U) \land \forall x, y \left(\langle x, y \rangle \in R \land y \in U \rightarrow \right.
\]
\[
\exists z (z \in U \land \langle z, x \rangle \in R) \right)
\]

\[
semi_{(A,R)}(U) = adm_R(U) \land \neg \exists V (V \subseteq A \land adm_R(V) \land U \subseteq^+_R V)
\]

\[
stage_{(A,R)}(U) = cf_R(U) \land \neg \exists V (V \subseteq A \land cf_R(V) \land U \subseteq^+_R V)
\]
Fixed-Parameter-Tractability

Stage and Semi-stable Extensions can be specified in MSOL:

\[
\begin{align*}
U \subseteq^+ R V &= \forall x \left((x \in U \lor \exists y (y \in U \land \langle y, x \rangle \in R)) \rightarrow (x \in V \lor \exists y (y \in V \land \langle y, x \rangle \in R)) \right) \\
U \subset^+ R V &= U \subseteq^+ R V \land \neg (V \subseteq^+ R U) \\
\text{cf}_R(U) &= \forall x, y (\langle x, y \rangle \in R \rightarrow (\neg x \in U \lor \neg y \in U)) \\
\text{adm}_R(U) &= \text{cf}_R(U) \land \forall x, y (\langle x, y \rangle \in R \land y \in U) \rightarrow \exists z (z \in U \land \langle z, x \rangle \in R) \\
\text{semi}_{(A,R)}(U) &= \text{adm}_R(U) \land \neg \exists V (V \subseteq A \land \text{adm}_R(V) \land U \subset^+ R V) \\
\text{stage}_{(A,R)}(U) &= \text{cf}_R(U) \land \neg \exists V (V \subseteq A \land \text{cf}_R(V) \land U \subset^+ R V)
\end{align*}
\]

By Courcelles theorem the problems $\text{Cred}_{\text{semi}}$, $\text{Skept}_{\text{semi}}$, $\text{Cred}_{\text{stage}}$, $\text{Skept}_{\text{stage}}$ are fixed parameter tractable wrt tree-width of AF.
Definition (cycle rank)

An acyclic graph has \(cr(G) = 0 \).
If \(G \) is strongly connected then \(cr(G) = 1 + \min_{v \in V_G} cr(G \setminus v) \).
Otherwise, \(cr(G) \) is the maximum cycle rank among all strongly connected components of \(G \).
Definition (cycle rank)

An acyclic graph has $cr(G) = 0$.
If G is strongly connected then $cr(G) = 1 + \min_{v \in V_G} cr(G \setminus v)$.
Otherwise, $cr(G)$ is the maximum cycle rank among all strongly connected components of G.

Theorem

The problems Skept$_{semi}$, Skept$_{stage}$ (resp. Cred$_{semi}$, Cred$_{stage}$) remain Π^p_2-hard (resp. Σ^p_2-hard), even if restricted to AFs which have a cycle-rank of 1.
Fixed-Parameter-tractability

Definition (cycle rank)

An acyclic graph has $cr(G) = 0$.
If G is strongly connected then $cr(G) = 1 + \min_{v \in V_G} cr(G \setminus v)$. Otherwise, $cr(G)$ is the maximum cycle rank among all strongly connected components of G.

Theorem

The problems $\text{Skept}_{\text{semi}}, \text{Skept}_{\text{stage}}$ (resp. $\text{Cred}_{\text{semi}}, \text{Cred}_{\text{stage}}$) remain Π^p_2-hard (resp. Σ^p_2-hard), even if restricted to AFs which have a cycle-rank of 1.

Proof.

Every framework of the form F_Φ has cycle-rank 1 and therefore we have an reduction from QBF^2_\forall formulas to an AF with cycle-rank 1.
Main Results:

- We answered two questions about the complexity of semi-stable semantics raised by Dunne and Caminada (2008).
 - Cred_{semi} is Σ_2^p-complete / Skept_{semi} is Π_2^p-complete
- We extended this results to stage semantics:
 - Cred_{stage} is Σ_2^p-complete / Skept_{stage} is Π_2^p-complete
- But these problems are tractable on AFs of bounded tree-width.
Main Results:

- We answered two questions about the complexity of semi-stable semantics raised by Dunne and Caminada (2008).
 - \(\text{Cred}_{\text{semi}} \) is \(\Sigma_2^p \)-complete / \(\text{Skept}_{\text{semi}} \) is \(\Pi_2^p \)-complete
- We extended this results to stage semantics:
 - \(\text{Cred}_{\text{stage}} \) is \(\Sigma_2^p \)-complete / \(\text{Skept}_{\text{stage}} \) is \(\Pi_2^p \)-complete
- But these problems are tractable on AFs of bounded tree-width.

Future Work:

- Finding tractable algorithms for AFs of bounded tree-width.
- Identify further tractable fragments.
Paul E. Dunne and Martin Caminada.
Computational complexity of semi-stable semantics in abstract argumentation frameworks.

Wolfgang Dvořák and Stefan Woltran.
Technical note: Complexity of stage semantics in argumentation frameworks.