

Chemical Crystallography and Structural Chemistry

VO 270063-1

Lecture N° 9 — 22^{th} June 2023

Dr. Tim Grüne Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna

tim.gruene@univie.ac.at

Course Schedule

2 nd	March	Lecture Nº 1	9^{th}	March	Lecture Nº 2
16^{th}	March	Lecture № 3	23^{th}	March	Exercise Nº 1
30 st	March	Lecture Nº 4	20^{th}	April	Lecture Nº 5
27 th	April	Exercise № 2	4^{th}	May	Lecture Nº 6
11^{th}	May	Lecture № 7	25^{th}	May	Exercise Nº 3
1^{st}	June	no lecture	15^{th}	June	Lecture Nº 8
22 nd	June	Lecture № 9	29 th	June	Exercise Nº 4

Exercise Nº 4: Hands-on at the X-ray Centre, Lab 2E45/2E46, at 10:15am.

Previous Lecture

- Electron crystallography
- Applications of electron crystallography
- Examples

1 Ultra-high resolution: limits of the IAM and charge density refinement

Tim Grüne

Data better than model

- X-rays interact with electron (cloud)
- Independent atom model (IAM) centres electron cloud about the nucleus
- Particularly strong deviation in hydrogen (single electron)

Unspherical valence electrons

The IAM assumes spherical atoms. Sufficient up to ≈ 0.7 Å resolution. Provides 3D-structure: atom positions, chirality

Structure of Ciprofloxacin, *J. Holstein et al.*, *Cryst. Eng. Comm. 2012 (14)*, *pp. 2520–2531* (0.43 Å)

Ciprofloxacin at 0.43 Å: data "better" than model:

- IAM: does not model valence electrons
- dipole moments at terminal atoms *O*, *F*

X-ray crystallography beyond the IAM

- Ultra-high resolution provides insight into the chemical bond
- Residual density with "Independent Atom Model"
- necessary: different model to describe chemistry
- This will provide more information than "just" the structure

Starting point

The equation

$$\begin{split} F(hkl) &= \int \rho(x,y,z) e^{2\pi i (\vec{h}\cdot\vec{x})} d^3x \\ &= FT(\rho(x,y,z)) \end{split}$$

remains valid — definition of the structure factor

- Context with experiment: $I(hkl) = |F(hkl)|^2$
- So far with IAM: $\rho(x,y,z)$ calculated from form factors $f_i(\theta,\lambda)$ and ADPs $U_{ij}.$
- Extending the IAM description of $\rho(x,y,z)$ of the unit cell at better precision.

Requirements to the extended model

- Fourier transformation should be computable (fast)
- should make chemical sense
- limited number of parameters

Models for the description of $\rho(x, y, z)$

- 1. spherical atoms with κ -Formalism (predecessor of the multipole model; Coulson 1961)
- 2. Hirshfeld-Formalism (1976): \cos^n summation
- 3. multipole model (MPM) with spherical harmonics (Hansen & Coppens 1978)
- 4. Invariom model (B. Dittrich et al., 2004)

The κ -Formalism - Coulson 1961

- Idea: exchange of valence electrons
- still spherically symmetric like IAM

$$\rho_{\rm atom}(r) = \rho_{\rm core}(r) + P_{\nu} \kappa^3 \rho_{\rm valence}(\kappa r)$$

cf. Brown & Spackman, "A Model Study of the κ-Refinement Procedure for Fitting Valence Electron Densities", Acta Cryst. A47 (1991), S. 21–29

Hirshfeld refinement

describes the deformation of electron density for every atom with cosine functions with dependence on bond direction

$$\Delta \rho_i(n,\vec{k}) = \sum_{n,\vec{k}} N_n r_i^n e^{-\alpha_i r_i} \cos^n \theta_{i,\vec{k}}$$

- *n*: 0,..., 4
- α_i : shape parameter per atom
- N_n : normalisation constant
- $\theta_{i,\vec{k}}$: angle between $\vec{r_i}$ and \vec{k} , bond direction
- up to 35 parameters per atom

(Hirshfeld, Hope, "An X-ray Determination of the Charge Deformation Density of 2-Cyanoguanidine", Acta Cryst **B**36 (1980), 406–415)

Multipole model — Hansen & Coppens, 1978

$$\rho_{\text{atom}}(x, y, z) = p_c \rho_{\text{core}}(r) + p_\nu \kappa^3 \rho_{\text{valence}}(\kappa r) + \sum_{l=0}^{l_{\text{max}}} \kappa'^3 R_l(\kappa' r) \sum_{m=-l}^{l} p_{lm} d_{lm}(\theta, \phi)$$
$$d_{lm} = \int N'_{lm} P_l^m(\cos \theta) \cos(m\phi) \quad m \ge 0$$

$$\sum_{lm} \sum_{lm} N_{lm}' P_l^m(\cos\theta) \sin(m\phi) \quad m < 0$$

$$P_l^m(x) = \left(\sqrt{1-x^2}\right)^m \left(\frac{d}{dx}\right)^{l+m} \frac{1}{2^l l!} (x^2 - 1)^l$$

- p_c, p_{ν}, p_{lm} : populations
- $R_l(\kappa' r)$ description of *s*-shell electron in transition metals.
- *P*^m_l(x): "associated Legendre polynomials"
- closely related to spherical harmonics

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

Visualisation of spherical harmonics

- electrostatic potential of 2^l point charges with total charge = 0e.
- arbitrarily complex charge distribution
- $\rightarrow\,$ deformation of $\rho_{\rm atom}$
- favourable properties for certain differential equations like Maxwell equations, Schroedinger equation

http://en.wikipedia.org/wiki/Spherical_harmonics

VO 270063-1 Lecture Nº 9

Number of parameters in MPM

- parameter = number to match model with data
- chemical interpretation depends on refined parameter values
- too many parameters: overfitting, uncertainty of correctness of the model

 $http://de.wikipedia.org/wiki/Geozentrisches_Weltbild,\ according\ to\ Ptolemy$

VO 270063-1 Lecture Nº 9

Number of parameters in MPM

$$\rho_{\text{atom}}(x, y, z) = p_c \rho_{\text{core}}(r) + p_\nu \kappa^3 \rho_{\text{valence}}(\kappa r) + \sum_{l=0}^{l_{\text{max}}} \kappa'^3 R_l(\kappa' r) \sum_{m=-l}^{l} p_{lm} d_{lm}(\theta, \phi)$$

- 1. $\rho_{\rm core}:~x,y,z,U_{ij},p_c:~\geq$ 10 parameters
- 2. ρ_{valence} : κ, p_{ν}
- 3. MPM parameters increase quickly with $l_{\max}:~(l_{\max}+1)\times\kappa'+\sum_{l=1}^{l_{\max}}2(l+1)\times N'_{lm}$, p_{lm}

multipole model in crystallography usually uses $l_{\rm max}=3$ or $l_{\rm max}=4$

up to 35 parameters per atom, compared with 9 for the IAM ultra-high resolution required

MPM: electrostatic potential of molecules

Combination of the electron distribution with positively charged nuclei directly results in the Coulomb potential of the unit cell

ESP of Roxithromycin

J. Holstein *et al.*, Acta Cryst. **B**66 (2010) 568ff

ESP of $(C_6F_5)_2BNC_4H_4$ and $(C_6F_5)_2BNC_4H_8$ U. Flierler *et al.*, Chem. – Eur. J. (2009), Vol. 15, 4595–4601

QTAIM – "Quantum Theory of Atoms in Molecules"

- Richard Bader (≈ 1960)
- Definition of **atom** and **bond** in solid state materials
- Atom: peak of electron density
- Bond: connecting line (vertex)

Chemical interpretation: QTAIM

http://commons.wikimedia.org/wiki/File:Fuscherkarkopf-_Sinwelleck.
JPG

bond critical points — *bcp*

field lines between two charges

- electron cloud = negative charge
- attracted by nuclei
- between two atoms: cancellation

bond critical points — bcp

According to "quantum theory of atoms in molecules" (QTAIM): two atoms are chemically bound if there is a (3,-1)-critical point ("bind critical point") on their common (charge) surface **bond critical point position** (x_c, y_c, z_c) :

1. $\nabla \rho(x_c, y_c, z_c) = 0$ — cancellation of field lines

- 2. Hesse matrix $H(\rho(x_c, y_c, z_c)) = \left(\frac{\partial^2 \rho(x_c, y_c, z_c)}{\partial x_i \partial x_j}\right)$ with
 - two negative eigenvalues: decreasing ρ perpendicular to bond
 - one positive eigenvalue: increasing ρ along bond

http://en.wikipedia.org/wiki/Hyperboloid

Tim Grüne

The Laplace surface

• Surface presentation of

$$\begin{split} \nabla^2 \rho(x,y,z) &= \frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} + \frac{\partial^2 \rho}{\partial z^2} \\ &= \mathrm{trace}(H(\rho(x,y,z))) \end{split}$$

- $\nabla^2 \rho(x,y,z) < 0 e {\rm \AA}^{-5}$ electron concentration, characteristic for covalent bond
- $\nabla^2 \rho(x,y,z) > 0 e {\rm \AA}^{-5}$ electron sink, indicates an ionic bond

Tim Grüne

The Laplace surface

U. Flierler *et al.*, Chem.–Eur. J. (2009), Vol. 15, 4595–4601

- $\nabla^2\rho(x,y,z)$ for
 - $(C_6F_5)_2BNC_4H_4$ and
 - $(C_6 F_5)_2 BNC_4 H_8$
- Plotting of

$$\nabla^2 \rho(x, y, z) = 0 e \text{\AA}^{-5}$$

 reactive surface (of the Boron): Location of change of sign of the "Laplacian"

VO 270063-1 Lecture Nº 9

(PhD thesis Dr Daniel Kratzert, Prof. Stalke (Uni Göttingen))

VO 270063-1 Lecture Nº 9

(PhD thesis Dr Daniel Kratzert, Prof. Stalke (Uni Göttingen))

(PhD thesis Dr Daniel Kratzert, Prof. Stalke (Uni Göttingen))

(PhD thesis Dr Daniel Kratzert, Prof. Stalke (Uni Göttingen))

- No interaction for the through-space interaction between Si3 and Si3'
- Si1-Si2-Si3 triangle typical example of strained ring systems with bent bonds

(PhD thesis Dr Daniel Kratzert, Prof. Stalke (Uni Göttingen))

VO 270063-1 Lecture Nº 9

- actual bonds and connectivity for hexasilabenzene
- bonds are not straight lines

References

 Daniel Kratzert et al. 'An Experimental Charge Density Study of Two Isomers of Hexasilabenzene'. In: Angew. Chem., Int. Ed. 52 (2013), pp. 4478–4482. DOI: 10.1002/anie.201209906.