

Chemical Crystallography and Structural Chemistry

VO 270063-1

Lecture N° 8 — 15^{th} June 2023

Dr. Tim Grüne Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna

tim.gruene@univie.ac.at

Course Schedule

2 nd	March	Lecture Nº 1	9^{th}	March	Lecture Nº 2
16^{th}	March	Lecture № 3	23^{th}	March	Exercise Nº 1
30^{st}	March	Lecture Nº 4	20^{th}	April	Lecture Nº 5
27 th	April	Exercise Nº 2	4^{th}	May	Lecture Nº 6
11^{th}	May	Lecture № 7	25^{th}	May	Exercise Nº 3
1^{st}	June	no lecture	15^{th}	June	Lecture Nº 8
22 nd	June	Lecture № 9	29 th	June	Exercise Nº 4

Exercise Nº 4: Hands-on at the X-ray Centre, Room 2E45/2E46.

Previous Lecture

- Refinement and Model Building
- Restraints and Constraints
- Absolute Configuration

Ouriversität

Contents

1	From X-ray Diffraction to Electron Diffraction	5
2	Theory of Electron Diffraction	11
3	ED Instrumentation	18
4	ED Sample Preparation	29
5	ED Data Collection	44
6	ED Refinement	50
7	ED Examples	54
8	Differentiation between AI and Si with JUNGFRAU	64

1 From X-ray Diffraction to Electron Diffraction

Typical (inhouse) X-ray Diffractometer: STOE Stadivari

- X-ray source(s) and detector
- three-axis goniometer for crystal orientation
- Monitor for crystal alignment
- liquid nitrogen stream for cooling to 100 K

Data collection in a nutshell

- Monochromatic radiation
- Single crystal
- Crystal rotates during data collection
- Area detector
- Diffraction pattern composed of reflections ("spots")

Diffraction pattern

- Data collected in "frames"
- Per frame: several reflections
- positions of reflections described by the Laue conditions via scattering vector \vec{S} , the unit cell vectors, and the Miller indices

$$\vec{S} \cdot \vec{a} = h$$
$$\vec{S} \cdot \vec{b} = k$$
$$\vec{S} \cdot \vec{c} = l$$

• The intensities of the reflections differ with the radiation type. This is relevant for data scaling and model refinement. Data integration is less affected.

From X-ray to electron diffraction

```
In 3D electron diffraction, monochromatic, planar X-ray radiation (wavelength \lambda\approx 1 Å) is replaced with monochromatic, planar electron radiation (wavelength \lambda\approx 0.025 Å). That's all.
```


Differences between X-ray and Electron Diffraction

Everything so far is the same between X-ray and Electron Diffraction

crystal size (thickness) 5–200 μ m 100–1,000 nm wavelength 1 Å 0.025 Å= 1/40 Å pressure ambient vacuum

2 Theory of Electron Diffraction

Structure factor

The structure factor F(hkl) is *defined* as the Fourier transform of content of the unit cell. "Content" refers to the type of interaction of the radiation:

X-ray $F(hkl)=\int\rho(x,y,z)e^{2\pi i(hx+ky+lz)}$

- $\rho(x,y,z)$: local density of electrons, $[e/\text{\AA}^3]$
- High density at atoms, low density away from atoms
- contribution of nuclei irrelevant
- **ED** $F(hkl) = \int \Phi(x, y, z) e^{2\pi i (hx+ky+lz)}$
 - $\Phi(x,y,z)$: local electrostratic potential, [V]
 - Combination of nucleic charge and electron cloud

Structure factor: Crystal and Diffraction experiment

The definition of the structure factor leaves two open questions

- 1. What is the connection between F(hkl) and the chemical compound inside the crystal?
- 2. What is the connection between F(hkl) and the diffraction pattern?

Crystal and the Structure Factor — both X-ray and ED

The Independent Atom Model (IAM) is a powerful method to calculate the atomic structure factor F(hkl). Each atom contributes independently from the others to F(hkl).

$$F(hkl) = \sum_{\text{in u.c.}}^{\text{atoms } j} f_j(\theta) e^{-8\pi^2 U_j(\theta,\lambda)} e^{2\pi i (hx_j + ky_j + lz_j)}$$
(1)

- f_j atomic form factor. Dependent on atom element, decreases with decreasing scattering angle $\theta=\theta(hkl)$
- $U_j(\theta,\lambda)$ atomic displacement parameter (ADP, alias Debye-Waller factor): models thermal vibration of atoms

 $e^{2\pi i (h x_j + k y_j + l z_j)}$ phase shift of the atom relative to the origin of the unit cell

Form factor in ED and X-rays

Structure Factor and observed intensities

In the kinematic theory of diffraction for X-rays [1],

$$I_{obs}(hkl) = \frac{e^4}{m_e^2 c^4} \frac{\lambda^3 V_{crystal}}{V_{u.c.}^2} I_0 LPTE |F(hkl)|^2$$
$$I_{obs}(hkl) \propto |F(hkl)|^2$$

In electron diffraction, the assumption $I_{obs}(hkl) \propto |F(hkl)|^2$ is less accurate, but still works for many purposes.

Dynamic diffraction [2, 3, 4, 5]

- kinematic diffraction theory: $I_{obs}(hkl) \propto |F(hkl)|^2$ is the "normal" theory
- A better detailed description for $I_{obs}(hkl)$ is based on the *dynamic theory* of diffraction.
- Dynamic calculations are computationally much more demanding than kinematic calculations and for protein structures not very practical.
- Implemented in the refinement program JANA2006
- SHELXL, OLEX2: based on the kinematic diffraction theory
- kinematic theory sufficient for macromolecular structures
- dynamic theory results in better fine details (positions of hydrogen atoms ...)

3 ED Instrumentation

Transmission Electron Microscope as Radiation Source[4, 6, 7]

VO 270063-1 Lecture Nº 8

Electron diffractometers

- most groups have been using transmission electron microscopes (TEMs)
- major manufacturers: Hitachi, JEOL, Thermofisher
- JEOL and Thermofisher offer "microED" packages for data collection
- two dedicated electron diffractometers available: Rigaku's SynergyLab-ED and ELDICO's ED-1

ELDICO Scientific: ED-1⁸

- Horizontal beam: goniometer stability \pm 70° (cf. Heidler et al. [9])
- STEM mode for crystal search: no hysteresis from switching between imaging and diffraction; 20 nm resolution
- Dectris hybrid pixel detector, 512x512

RIGAKU XtaLAB Synergy-ED¹⁰

- based on JEM2100Plus
- RIGAKU CrysAlis^{Pro} software: indicates during data collection, when structure has been solved
- HyPix hybrid pixel detector, 512x512

Our Instrumentation in Vienna

- JEOL JEM2100Plus and Philips CM200 (*LaB*₆,200 keV)
- PSI JUNGFRAU 1024x512px and DECTRIS QUADRO 512x512 (courtesy University of Basel)
- Current loan: 1024×1024 SINGLA (DECTRIS)

The Lens System [4, 6, 7]

- Lenses C1–C3 shape beam
- Crystallography: Parallel beam
- Objective lens: sets effective detector distance to backfocal plane = diffraction mode
- C3 not present in all microscopes

Imaging and Diffraction in the TEM

Imaging: Rays of **equal origin** focus on detector

cryo-EM: Imaging Mode

Detector noise and radiation senstivity require low contrast images

Martinez-Rucobo et al Molecular Cell (2015) 58, 1079-1089

Electron Microscope: Diffraction Mode

Electron Microscope: Diffraction Mode

Diffraction: Rays of **equal direction** focus on detector at the backfocal plane

With X-ray diffraction, we can move the detector distance freely to match the resolution limit of the crystal. In a TEM, the detector distance is fixed. We must set the lens system to project the backfocal plane onto the detector plane.

4 ED Sample Preparation

Data collection is your last experiment

(Zbigniew Dauter, National Cancer Institute[11])

Conditions inside the TEM

Two conditions or requirements inside the TEM affect sample preparation for ED:

- 1. ultra high vacuum, $\leq 10^{-6}~{\rm mbar}$
- 2. ultra thin sample thickness, $\leq 1~\mu\text{m}$

Ultra high vacuum $\leq 10^{-6}$ mbar

- Sample must be protected from desiccation
- Most common: cool to -180 $^{\circ}$ C
- note: water sublimes at $-90^{\circ}C -100^{\circ}C$ at this pressure
- alternative: suspension in ionic liquid

Tim Grüne

Ultra thin sample thickness, $\leq 1 \ \mu m$

- Sample too small for light microscopes
- "blind" sample preparation until inside TEM
- complicates sample preparation

Thin and vacuum: Consequences for sample preparation

Steps from grid until sample can be screened

- 1. insert grid into holder (≤ 1 min)
- 2. insert holder into TEM (≤ 1 min)
- 3. pre-vaccuum holder chamber (2-5min)
- 4. start electron beam (2-5min)
- 5. start screening
- 6. remove holder (2-3min)

Typically, 5–10 grids are prepared with varying conditions and screened for proper sample size and thickness

TEM grids

- TEM grid diameter 3 mm
- Metal grid (Cu, Au, Ni) for stability
- sample on mesh between grid-bars

VO 270063-1 Lecture Nº 8

Tim Grüne

TEM grids film types¹

Lacey carbon

Continuous, phous carbon

Good orientation while scanning the grid

2-4nm amorphous carbon available: minimum background

amor-

- Quantifoil: regular holes with 1-2 µm diameter
- Often used in single particle cryoEM

¹Nicole Bolehradski

Sub-micrometer sized crystals

Sample ChWi629 (Christopher Wittmann, University of Vienna, group V. Arion)

- crystals thickness should be $<1~\mu m$
- crystals invisible with light microscope
- crystals should be sufficiently isolated to avoid multiple lattices
- crystals should be sufficiently dense to avoid excessive search duration

Sample preparation for powders¹²

Powders can be dispersed from suspension, with a fine-haired brush, and grounded between cover slides. Often, crystals are still too big for ED.

Tiny mortar: Vortex vial with grid

Compatible with dry samples and with suspensions

Classical cryo plunging

- 1. add drop to grid
- 2. blot excess liquid with tissue
- 3. shock-cool in liquid ethane bath

Preassis

"A simple pressure-assisted method for MicroED specimen preparation" [13]

Fig. 1 from Zhao et al. [13]

Desiccation

- Dip sample into suspension or
- Drop suspension onto grid
- watch evaporation with light microscope

15th June2023

Tim Grüne

Manual side-blotting

- Dip sample into suspension or
- Drop suspension onto grid
- Hold tissue to side of grid
- Watch grid with light microscope

Candidate crystals for ED [14]

- Crystals for ED have to be small smaller than visible with a light microscope
- Shabby looking crystals might be composed of well-ordered single crystals
- Needles are good candidates for ED

sea urchins (2x right) courtesy Terese Bergfors [14]

5 ED Data Collection

Steps of data collection

- 1. find crystal
- 2. centre (align) crystal
- 3. rotate crystal and collect data

Steps of data collection — finding crystal

- Isolated, single crystal
- Diffraction quality, beam sensitivity
- Crystal size
 - 1. adapt beam diameter / magnification to match crystal size
 - 2. large crystal: easier to centre
- Crystal thickness
 - 1. too thick: no diffraction
 - 2. too thin: too much radiation damage

Steps of data collection — centring crystal

1.3 μm \times 390 nm

- Beam diameter $\leq 1 \mu m$
- Much higher precision required than for X-ray diffractometers
- Cannot rotate by $90^\circ\colon$ iterative centring required
 - rotate by $\approx 5^\circ$
 - correct crystal drift by shifting height
 - goto step 1

Tim Grüne

Steps of data collection — collecting data

- 1. Rotate the holder to the starting position, limited by
 - the instrument, typically -70° or
 - shading by the grid bar (crystal at edge)
 - overlap of other crystals (multiple lattices)

Wennmacher et al. [15, Fig. 1]

Steps of data collection — collecting data

- 2. Switch to diffraction mode
- 3. Start rotation
- 4. Start recording data
- 5. Process data

6 ED Refinement

Structure Factors

- Experimental data after processing: observed intensities $I_{obs}(hkl)$
- Structural **model** composed of atoms with element type, coordinates (x, y, z), temperature factor B (Debye-Waller factor, ADP)
- Refinement programs (SHELXL, OLEX2) improve the model with respect to the data
- They must compute calculated intensities $I_{calc}(hkl)$

Computation of intensities $I_{calc}(hkl)$

- There are several ways to compute $I_{calc}(hkl)$ from the model
- some are more accurate and more complex
- some are less accurate and fast
- the IAM independent atom model assumes scattering from isolated atoms
- atomic scattering factors can be calculated
- the total $I_{\rm calc}(hkl)$ results from the sum of the individual atoms

Comparison of scattering factors

Tim Grüne

7 ED Examples

Protein crystallisation[16, 17]

Electron diffraction provides access to many more compounds that seemingly (!) failed crystallisation.

Small Crystals: Jewels in the mud[18]

Sample courtesy Jia-Min Chin & Michael Reithofer, photographs courtesy A. Roller

15th June2023

Powerful electron diffraction[18]

Sample preparation: A. Roller & N. Gajic At DESY, the strongest X-ray source in the world, this crystal would probably not show any diffraction.

Nd-MOF structure from 5 crystals[18]

Room temperature measurement, under vacuum

Sub-micrometer sized crystals[19]

Sample ChWi629 (Christopher Wittmann, University of Vienna, group V. Arion)

Strong diffraction (ChWi629)[19]

Structure ChWi629[19]

Missing wedge and data quality for ChWi629[19]

RESOLUTION	NUMBE	R OF REF	LECTIONS	COMPLETENES	S I/SIGM	A R-meas	s CC(1/2)
LIMIT	OBS'D	UNIQUE	POSSIBLE	OF DATA			
3.14	385	101	183	55.2%	7.08	15.4%	97.1*
1.40	4496	1105	1904	58.0%	6.75	16.2%	98.1*
1.11	4963	1205	2095	57.5%	5.69	19.0%	96.8*
0.91	7986	1966	3410	57.7%	4.38	26.5%	96.3*
0.78	7431	2390	4446	53.8%	2.45	45.3%	67.5*
0.70	3910	1614	4663	34.6%	1.70	66.7%	68.2*
total	29171	8381	16701	50.2%	3.85	18.5%	98.2*

Details in Structure ChWi629[19]

R1 (all) = 23.91 % R1 (strong) = 18.91 % wR2 = 48.23 %

OMIT \$H: R1 (all) = 25.50 % R1 (strong) = 20.84 % wR2 = 51.70 %

8 Differentiation between AI and Si with JUNGFRAU

E. Fröjdh et al. 'Discrimination of Aluminum from Silicon by Electron Crystallography with the JUNGFRAU Detector'. In: *Crystals* 10 (2020), p. 1148. DOI: 10.3390/cryst10121148

Hybrid Pixel Detectors²

- Hybrid pixel detectors introduced for X-ray crystallography $\approx 2006~(\text{Pilatus}^{21})$
- Soon after recognised as suitable for electron detection²²
- Medipix consortium (CERN) -> Amsterdam Scientific²³
- EIGER (both PSI and DECTRIS)^{24,25}
- JUNGFRAU as charge integrating detector²⁰

²slides courtesy Erik Frojdh, PSI detector group

Jungfrau: Photon Counting vs. Charge Integrating³

🖊 = incoming photon

³slides courtesy Erik Frojdh, PSI detector group

X-ray diffraction: Differentiate element types

X-ray structure of sucrose (ordinary sugar)

swapping C for N or O increases R1-value ($\Delta R1/R1 = 0.60$ and 0.18)

 $C1 \rightarrow O$: R1= 5.12 %

proper: R1=3.21 %

 $C1 \to N$: R1 = 3.79

15th June2023

Benchmarking JUNGFRAU: zeolite A and albite[20]

Aluminosilicates, building unit: $Si - O_4$ (T-sites) tetrahedron

Both zeolite A and albite have one known T-site as Al, rest is Si;

Sodium feldspar mineral albite NaAlSi₃O₈

- 4 T sites: 3x Si^{IV}, 1x Al^{III}
- counter ion Na^+
- spacegroup P1, 7.13Å, 7.38Å, 7.64Å, ,115.17°, 107.2°, 100.6°
- resolution 6.36Å-0.64Å, 96 % complete
- $R_{\text{complete}} = 23.05\%$
- known Al-position at T4, T1–T3 = Si
- 16 possible assignments of Tsites to Al or Si

Sodium feldspar mineral albite NaAlSi₃O₈

- The correct assignment T1 = T2 = T3 = Si and T4 = Al results in the lowest $R_{\rm complete}$
- increasing incorrectly assigned sites result in increase of $R_{\rm complete}$
- Fröjdh et al. [20]

Zeolite A $NaAlSiO_4$

- 2 T sites: $1 \times Si^{IV}$, $1 \times Al^{III}$
- counter ion Na
- spacegroup $Fm\bar{3}c$, $a=24.5{\rm \AA}$
- resolution 12Å-0.75Å, > 99 % complete per crystal
- 5 individual crystals

Zeolite A $NaAlSiO_4$

- The correct assignment T1=Si and T2=Al results in the lowest $R_{\rm complete}$ in all cases
- increasing incorrectly assigned sites result in increase of $R_{\rm complete}$ in all cases
- Fröjdh et al. [20]

Acknowledgements

- Soheil Mahmoudi, Julian Maisriml, Maria Schmetterer, Nicole Bolehradski, (Chemistry, Uni Vienna)
- R. Miletich-Pawliczek, Chr. Lengauer (Mineralogie, Uni Vienna)
- Julian T. C. Wennmacher, Jeroen A. v. Bokhoven, et al. (ETH Zurich)
- Erik Frojdh, Bernd Schmitt, et al. (PSI Detector Group)
- Julian Holstein (TU Dortmund)
- Swiss Nanoscience Institute
- Sacha DeCarlo, Clemens Schulze-Briese (Dectris Ltd)

Julian Wennmacher, Soheil Mahmoudi

References

- C. Giacovazzo, ed. *Fundamentals of Crystallography*. Oxford University Press, 1985.
- [2] J. Jansen et al. 'MSLS, a Least-Squares Procedure for Accurate Crystal Structure Refinement from Dynamical Electron Diffraction Patterns'. In: Acta Crystallogr. A54 (1998), pp. 91–101.
- [3] A. Authier. *Dynamical Theory of X-Ray Diffraction*. IUCr Monographs on Crystallography. Oxford University Press Inc., New York, 2001.
- [4] L. Reimer and H. Kohl. *Transmission Electron Microscopy*. Physics of Image Formation. Springer-Verlag New York, 2008. ISBN: 978-0-387-34758-5.
- [5] Lukáš Palatinus, Václav Petříček and Cinthia Antunes Corrêa. 'Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation'. In: Acta Crystallogr A71 (2015), pp. 235–244.
- [6] C. B. Carter and D. B. Williams. Transmission Electron Microscopy. Diffraction, Imaging, and Spectrometry. Springer International Publishing Switzerland, 2016. ISBN: 978-3-319-26651-0.

Tim Grüne

- [7] J. M. Zuo and J. C. H. Spence. Advanced Transmission Electron Microscopy. Imaging and Diffraction in Nanoscience. Springer Science+Business Media New York 2017, 2016. ISBN: 978-1-4939-6607-3.
- [8] ELDICO Scientific. ED-1. URL: https://www.eldico-scientific.com (visited on 08/05/2022).
- Jonas Heidler et al. 'Design guidelines for an electron diffractometer for structural chemistry and structural biology'. In: Acta Crystallogr D75 (2019), pp. 458–466. DOI: 10.1107/S2059798319003942.
- [10] RIGAKU. XtaLAB Synergy-ED. URL: https://www.rigaku.com/products/ crystallography/synergy-ed (visited on 08/05/2022).
- Zbigniew Dauter. 'Data-collection strategies'. In: Acta Crystallogr. D55 (1999), pp. 1703–1717. DOI: 10.1107/S0907444999008367.
- [12] Tim Gruene et al. 'Establishing electron diffraction in chemical crystallography'. In: *Nat. Rev. Chem.* (2021), pp. 660–668. DOI: 10.1038/s41570-021– 00302-4.
- [13] Jingjing Zhao et al. 'A simple pressure-assisted method for MicroED specimen preparation'. In: *Nat. Commun.* 12 (2021), p. 5036. DOI: 10.1038/s41467-021-25335-7.

Tim Grüne

- [14] T. Bergfors. Terese Bergfors Protein Crystallization. URL: https://xray. teresebergfors.com/ (visited on 26/02/2021).
- [15] Julian T. C. Wennmacher et al. '3D-structured supports create complete data sets for electron crystallography'. In: *Nat. Commun.* 10 (2019), p. 3316.
- [16] Hilary P. Stevenson et al. 'Use of transmission electron microscopy to identify nanocrystals of challenging protein targets'. In: *Proc. Natl. Acad. Sci. U. S.* A. 111 (2014), p. 8470. DOI: 10.1073/pnas.1400240111.
- [17] Guillermo Calero et al. 'Identifying, studying and making good use of macromolecular crystals'. In: Acta Crystallogr F70 (2014), pp. 993–1008. DOI: 10. 1107/S2053230X14016574.
- [18] Tim Gruene et al. 'CELLOPT: improved unit-cell parameters for electron diffraction data of small-molecule crystals'. In: J. Appl. Crystallogr. 55 (2022), pp. 647–655. DOI: 10.1107/S160057672200276X.
- [19] Christopher Wittmann et al. 'Latonduine-1-Amino-Hydantoin Hybrid, Triazole-Fused Latonduine Schiff Bases and Their Metal Complexes: Synthesis, Xray and Electron Diffraction, Molecular Docking Studies and Antiproliferative Activity'. In: *Inorganics* 11 (2023). URL: https://doi.org/10.3390/ inorganics11010030.

Tim Grüne

- [20] E. Fröjdh et al. 'Discrimination of Aluminum from Silicon by Electron Crystallography with the JUNGFRAU Detector'. In: *Crystals* 10 (2020), p. 1148. DOI: 10.3390/cryst10121148.
- [21] Ch. Broennimann et al. 'The PILATUS 1M detector'. In: J. Synchrotron Radiat. 13 (2006), pp. 120–130.
- [22] G. McMullan et al. 'Detective quantum efficiency of electron area detectors in electron microscopy'. In: Ultramicroscopy 109 (2009), pp. 1126–1143. DOI: https://doi.org/10.1016/j.ultramic.2009.04.002.
- [23] M. T. B. Clabbers et al. 'Protein structure determination by electron diffraction using a single three-dimensional nanocrystal'. In: Acta Crystallogr. D73 (2017), pp. 738–748. DOI: 10.1107/S2059798317010348.
- [24] G. Tinti et al. 'Electron Crystallography with the EIGER detector'. In: *IUCrJ* 5 (2018), pp. 190–199. DOI: 10.1107/S2052252518000945.
- [25] Tim Gruene et al. 'Rapid structure determination of microcrystalline molecular compounds using electron diffraction'. In: Angew. Chem., Int. Ed. 57 (2018), pp. 16313–16317. DOI: 10.1002/anie.201811318.