Chemical Crystallography and Structural Chemistry

VO 270063-1

$$
\text { Lecture № } 4 \text { - } 30^{\text {th }} \text { March } 2023
$$

Dr. Tim Grüne
Centre for X-ray Structure Analysis
Faculty of Chemistry
University of Vienna
tim.gruene@univie.ac.at

Course Schedule

$2^{\text {rd }}$	March	Lecture № 1	$9^{\text {th }}$	March	Lecture № 2
$16^{\text {th }}$	March	Lecture № 3	$23^{\text {th }}$	March	Exercise № 1
$30^{\text {st }}$	March	Lecture № 4	$20^{\text {th }}$	April	Lecture № 5
$27^{\text {th }}$	April	Exercise № 2	$4^{\text {th }}$	May	Lecture № 6
$11^{\text {th }}$	May	Exercise № 3	$25^{\text {th }}$	May	Lecture № 7
$1^{\text {st }}$	June	no lecture	$15^{\text {th }}$	June	Lecture № 8
$22^{\text {nd }}$	June	Exercise № 4	$29^{\text {th }}$	June	Lecture № 9

Previous Lecture

- Crystallographic symmetry oparations
- Crystallographic point groups and space groups
- Unit cell conventions
- Crystal systems and Bravais lattices

Contents

1 Crystal Systems 5
2 Axis settings and Re-indexing 12
3 Symmetry and X-ray data 16
4 Experimental procedure: from data collection to structure 31

1 Crystal Systems [1]

The 7 crystal systems [1]

Indepently from the content of the unit cell, the unit cell parameters $a, b, c, \alpha, \beta, \gamma$, can be classified according to regularity. These classifications result in the seven crystal systems

System		Conditions lengths	Conditions angles
triclinic	a	none	none
monoclinic	m	none	$\alpha=\gamma=90^{\circ}$
trigonal	h	$a=b=c$	$\alpha=\beta=90^{\circ}$
			$\gamma=120^{\circ}$ hexagonal
	h	$a=b$	$\alpha=\beta=90^{\circ}$ $\gamma=120^{\circ}$
orthorhombic tetragonal cubic	o	t	$a=b$
	c	$a=b=c$	$\alpha=\beta=\gamma=90^{\circ}$ $\alpha=\beta=\gamma=90^{\circ}$

The 7 crystal systems [1]

Indepently from the content of the unit cell, the unit cell parameters $a, b, c, \alpha, \beta, \gamma$, can be classified according to regularity. These classifications result in the seven crystal systems

14 Bravais lattices [1]

7 crystal systems plus the requirement that the unit cell reflects the symmetry results in 14 Bravais lattices:

14 Bravais lattice - naming conventions

- lower case letters (a, m, h, o, t, c): crystal system (shape of cell).
- upper case letters (P, C, F, I, R): Symmetry. They present positions of symmetry elements within the unit cell in addition to the unit cell corners.

P primitiv, symmetry elements only at corners
C C-centred: Symmetry element at centre of C-faces (spanned by \vec{a} and \vec{b}); (correspondingly: A- and B)
F face centred (centred at each face)
I body centred: at the centre of the cell (German: innenzentriert)
R rhombohedral

- the (P, C, F, I, R) are the same as in the Hermann-Mauguin names for space groups $\left(P 2_{1} 2_{1} 2, C 2 / c, \ldots\right)$

Crystal system \neq Space group

Do not draw conclusions on the space group from the shape of the unit cell: the space group also depends on the cell content.

orthorhombic box, non-symmetric space group

Positions and naming of unit cell axes: Conventions

- The origin $(0,0,0)$ is placed at a position of high symmetry. If present, it is placed at a centre of inversion
- There are $6 \times 4 \times 2=48$ possibilities to name the axes as \vec{a}, \vec{b}, und \vec{c}
- Conventions:

1. right-handed coordinate system
2. highest possible symmetry
3. small as possible volume of unit cell
4. $a \leq b \leq c$

2 Axis settings and Re-indexing

Axis settings and Re-indexing

- Despite these conventions, some space groups still have several possible axis settings
- For a single data set, the choice is arbitrary
- when two data sets or more are collected, care must be taken to index both consistently
- Modern programs automatically take care of consistent indexing.

Axis settings and Re-indexing

Example: trigonal space group P3
!!! WARNING !!! SOLUTION MAY NOT BE UNIQUE.

Axis settings and Re-indexing

- Single data set: choice of axis settings is irrelevant, each one is equally good
- Several data sets: with "wrong" settings, intensities do not match weil unterschiedlich indiziert
- either from the same crystal or different crystal
- re-indexing of second data set required in order to match intensities of the first one \rightarrow Reindexing of the coordinate system required
- Worst case: testing of all possibilities
- automated in modern software

3 Symmetry and X-ray data

Symmetry and X-ray data

Overview

- Effect of symmetry on X-ray data
- Friedel's law
- Laue groups: point groups in reciprocal space

Note: Calculation of reflex intensities

Once the chemical composition i.e. atom types and their positions, of the asymmetric unit is know, one can calculate the electron density $\rho(x, y, z)$.
The intensity of every reflection can be calculated from the electron density $\rho(x, y, z)^{1}$

$$
I(h k l)=\left|\int_{V(\text { u.c. })} \rho(x, y, z) e^{2 \pi i(h x+k y+l z)} d^{3} x\right|^{2}
$$

[^0]
Symmetry in reciprocal space

Reminder: A symmetry operation (R, \vec{t}) leaves the entire crystal, and in particular the unit cell, unchanged, i.e. for every point in the unit cell:

$$
\rho(R \vec{x}+\vec{t})=\rho(\vec{x}){ }^{\text {"u.c." }}=R \cdot " \text { u.c." }+\vec{t}
$$

This translates towards the intensities:

$$
\begin{aligned}
\Rightarrow I(h k l) & =\left|\int_{V(\text { u.c. })} \rho(x, y, z) e^{2 \pi i(h x+k y+l z)} d^{3} x\right|^{2} \\
& =\left|\int_{V(\text { u.c. })} \rho(R \vec{x}+\vec{t}) e^{2 \pi i\left(\vec{h}^{T}(R \vec{x}+\vec{t})\right)} d^{3}(R \vec{x}+\vec{t})\right|^{2} \\
& =I\left(R^{T} \vec{h}\right)
\end{aligned}
$$

(The last step include quite some calculations)
This means: The intensities of the two reflections (h, k, l) and $R(h, k, l)$ are identical.

Symmetry in reciprocal space

For every symmetry operation (R, \vec{t}) of the space group of a crystal:

$$
I(\vec{h})=I\left(R^{T} \vec{h}\right)=I\left(R^{T} R^{T} \vec{h}\right)=\ldots
$$

- Crystal symmetry also means symmetry for the reflections
- Translational symmetry is "dropped" in reciprocal space
- Translational symmetry results in a phase shift, that cannot be measured.

Friedel's Law

Even without any symmetry, i.e. in all space groups including $P 1$:

$$
I(h, k, l)=I(\bar{h}, \bar{k}, \bar{l})
$$

Reciprocal space always has a centre of inversion. This is called Friedel's law ${ }^{2}$

[^1]
Excursus: Mathematics for Friedel's Law

$$
\begin{aligned}
I(\bar{h} \bar{k} \bar{l}) & =\left|\int_{V(\text { E.Z. })} \rho(x, y, z) e^{2 \pi i(\bar{h} x+\bar{k} y+\bar{l} z)} d^{3} x\right|^{2} \\
& =\left|\int_{V(\text { E.Z. })} \rho(x, y, z) e^{-2 \pi i(h x+k y+l z)} d^{3} x\right|^{2} \\
& =\int_{V(\text { E.Z. })} \rho(x, y, z) e^{-2 \pi i(h x+k y+l z)} d^{3} x *\left(\int_{V(\text { E.Z. })} \rho(x, y, z) e^{-2 \pi i(h x+k y+l z)} d^{3} x\right)^{*} \\
& =\int_{V(\text { E.Z. })} \rho(x, y, z) e^{-2 \pi i(h x+k y+l z)} d^{3} x * \int_{V(\text { E.Z. })} \rho(x, y, z) e^{2 \pi i(h x+k y+l z)} d^{3} x \\
& =\left|\int_{V(\text { E.Z. })} \rho(x, y, z) e^{2 \pi i(h x+k y+l z)} d^{3} x\right|^{2} \\
& =I(h k l)
\end{aligned}
$$

Measurement of Friedel pairs

Two reflections $I(h k l)$ and $I(\bar{h} \bar{k} \bar{l})$ form a Friedel pair. They can be measured e.g. by rotation the crystal by 180°

Phase difference of Friedel pairs

negative phase, same path difference:

$$
I(h k l)=I(\bar{h} \bar{k} \bar{l}) \text { and } \Phi(h k l)=-\Phi(\bar{h} \bar{k} \bar{l})
$$

Laue groups

- Crystals belong to one of 230 space groups
- The diffraction pattern contains the symmetry of the space group, but:

1. no translational component
2. always centre of inversion (Friedel's law)

- This results in a subset of groups: the 11 Laue groups.

11 Laue groups

Crystal system	Laue group	point group
Triclinic	$\overline{1}$	$1, \overline{1}$
Monoclinic	$2 / m$	$2, \mathrm{~m}, 2 / \mathrm{m}$
Orthorhombic	$m m m$	$222, \mathrm{~mm} 2, \mathrm{mmm}$
Tetragonal	$4 / m$	$4, \overline{4}, 4 / \mathrm{m}$
	$4 / m m m$	$422,4 \mathrm{~mm}, \overline{4} 2 m, 4 / \mathrm{mmm}$
Trigonal	$\overline{3}$	$3, \overline{3}$
	$\overline{3} m$	$32,3 \mathrm{~m}, \overline{3} m$
Hexagonal	$6 / m$	$6, \overline{6}, 6 / \mathrm{m}$
	$6 / m m m$	$622,6 \mathrm{~mm}, \overline{6} m 2,6 / \mathrm{mmm}$
Cubic	$m \overline{3}$	$23, m \overline{3}$
	$m \overline{3} m$	$432, \overline{4} 3 m, m \overline{3} m$

http://de.wikipedia.org/wiki/Lauegruppe

Extinctions

- Extinctions are reflections with systematically zero intensity.
- Extinctions occur in non-primitive Bravais lattices or in the presence of symmetry elements with translational part, i.e. glide planes and screw axes.
- Extinctions are important for space group determination, e.g. to differentiate between $P 4$ and $P 4_{3}$.
- The "Int. Tabl. Vol. A" list the "general reflection conditions", i.e. those reflections with non-zero intensity:
$P 3_{1}$ (No. \#144) $00 l: l=3 n$
- only if $(h k l)=\ldots(00-6),(00-3),(003), \ldots$: Intensities $\neq 0$;
- reflections (001), (002), (004), (005), ..., should have zero intensity

Example: Extinctions in $P 4_{3} 2_{1} 2$

- Reflection condition: $h 00: h=2 n$ and $00 l: l=4 n$
- Only reflections with $k=0, l=0$ and h even should have non-zero intensity
- All reflections with $k=0, l=0$ and h odd should have zero intensity
- Example: Lysozyme data set

Example: Extinctions in $P 4_{3} 2_{1} 2$

Output from the program xprep for Lysozyme data:

Systematic absence exceptions:									
41/43	42	n--	-b-	-c-	-n-	-21-	--c		
N	5	3	3490	2365	2359	2358	89	1549	
N I $>3 \mathrm{~s}$	0	0	2188	1256	1361	1275	0	931	
<I>	0.9	0.9	97.0	64.6	80.7	65.4	0.8	85.0	
<I/s>	0.2	0.2	8.2	6.7	7.3	6.6	0.4	7.5	
Option	Space	Group	No.	Type	Axes	CSD	R(sym)	N (eq)	Syst.
Abs. CFOM									
[A] P4(1)2(1)2 \# 92 chiral 1									
6.61 .99									
[B] P4(3)2(1)2			\# 96	chiral	1	245	0.067	140065	$0.4 /$
6.61	. 99								

Based on the data alone, we cannot distinguish between $P 4_{1} 2_{1} 2$ and $P 4_{3} 2_{1} 2$ (due to Friedel's law). One has to solve the structure and see which one makes sense. For protein structures: the right space group will consist of L-amino acids, the wrong one of D-amino acids.

Summary: Space group determination

- Crystal symmetry is present in reflection data intensities
- No translational symmetry in reciprocal space
- Only one of the 11 Laue groups can be determined from symmetry in intensities
- Systematic absences are important to distinguish between space groups within a Laue group

4 Experimental procedure: from data collection to structure

From Data Collection to Structure

several GB

0	0	-1	2.7	0.9
0	0	1	4.0	1.0
0	0	-2	$1^{\prime} 257.0$	35.5
0	0	-2	$1^{\prime} 600.0$	42.7

several files, 100's MB

Data Scaling

0	0	-1	2.8	0.55
0	0	1	3.8	0.63
0	0	-2	$1^{\prime} 432.0$	95.7
0	0	-2	$1^{\prime} 282.0$	85.9

1 "hkl"-file, 50MB

Data Collection

Data collection

0	0	-1	2.7	0.9
0	0	1	4.0	1.0
0	0	-2	$1^{\prime} 257.0$	35.5
0	0	-2	$1^{\prime} 600.0$	42.7

0	0	-1	2.8	0.55
0	0	1	3.8	0.63
0	0	-2	$1^{\prime} 432.0$	95.7
0	0	-2	$1^{\prime} 282.0$	85.9

several files, 100 's MB

How to collect good data

Data resolution

Data completeness
Data multiplicity
Data quality

Data resolution

- highest possible resolution: $d_{\text {min }}>\lambda / 2$
- good crystals diffract better than this limit (instrumentation limited resolution)
- bad crystals may not reach this resolution (sample limited resolution)
- NB: low resolution are also important

Data completeness

- Only reflections with resolution sphere can be collected (radius in reciprocal space: $r=2 . / \lambda$)
- Laue equations permit to compute their location, and how to rotate the crystal into an appropriate position.
- Single rotation axis: torus shape of reflections.

Data multiplicity

- Intensity $(I(h k l)$ of the identical reflection $(h k l)$ can be measured multiple times
- Intensities $I(h k l)$ and $I^{\prime}(R(h k l))$ symmetry equivalent reflections increase multiplicity
- Measuring on different positions on detector: reduction of systematic errors
- increasing multiplicity reduces uncertaintig $\sigma(I)$

Data quality

- "Diffraction data acquisition is the final experimental stage of the crystal structure analysis." (Z. Dauter, [2])
- Ensure proper data collection strategy (desired resolution, multiplicity; adjust detector distance to unit cell parameters, etc.)
- Crystal quality can be the limiting factor

Steps of data integration: initial diffraction images

- typically four short runs:
- $2 \times 10^{\circ}-15^{\circ}: 0^{\circ}-10^{\circ}$ and $90^{\circ}-100^{\circ}$
- two detector settings each (low to mid resolution and mid to high resolution)

Steps of data integration: peak finding

- simple (non-crystallographic) pattern recognition algorithm: peak above background
- main parameter: desired peak strength (I/sigma)

Steps of data integration: finding unit cell

- known instrument geometry: project peaks into reciprocal space
- find a lattice basis

Steps of data integration: finding unit cell

Data Integration

Data Integration

Data integration comprises

1. Indexing: Determination of unit cell dimensions, orientation of the crystal, point group
2. Extraction of spot intensities from detector images.
3. Optimisation of experimental parameters

Programs for data integration (incomplete)

Saint Licensed by Bruker AXS. Specific to Bruker programs. Good for data from twinned crystals. Derived from XDS.

X-Area Software suite distributed with Stoe X-ray diffractometers. Free to use. Very good interactive indexing routine, good for twinned data.

XDS Free for non-commercial users (http://xds.mpimf-heidelberg.mpg. de). Supports nearly all detector formats, very well documented. Very fast.

DIALS Free for non-commercial users. Very active development. (https: //dials.diamond.ac.uk/)

EVAL Suite Free for non-commercial users (http://www.crystal.chem. uu.nl/distr/eval). Can integrate e.g. incommensurate crystals

Crysalis Pro Licensed by Rigaku (https://www.rigaku.com/products/ smc/crysalis)
iMosflm Free for non-commercial users, distributed with CCP4 (http:// www.ccp4.ac.uk)

HKL3000 Very good visualisation GUI for fine-tuning of parameters. very popular in the US (https://hkl-xray.com/)

Indexing

"Ewald sphere backwards:"

- find 200-1000 strong spots
- backtransform into reciprocal space (Laue equations)
- find a lattice and a suitable basis
- basis for reciprocal lattice corresponds to reduced unit cell constants

Indexing

Unfocused synchrotron beam, courtesy N. Sanishvili, APS, Chicago, USA
Possible reasons for indexing problems:

- Incorrect parameters: detector distance, direction of rotation, wavelength, especially at synchrotrons
- Too few reflections
- Distorted spots (lattice defects, unfocused beam)
- Alien spots (ice, metal, contaminant)
- multiple lattices twins

References

[1] W. Massa. Crystal Structure Determination. Springer Verlag Berlin, Heidelberg, 2002.
[2] Zbigniew Dauter. 'Collection of X-Ray Diffraction Data from Macromolecular Crystals'. In: Protein Crystallography: Methods and Protocols. Ed. by Alexander Wlodawer, Zbigniew Dauter and Mariusz Jaskolski. New York, NY: Springer New York, 2017, pp. 165-184. Doi: 10.1007/978-1-4939-7000-1_7.

[^0]: ${ }^{1}$ International Tables Volume B, Ch. 1.2

[^1]: ${ }^{2}$ Georges Friedel, 1865-1933

