Chemical Crystallography and Structural Chemistry

VO 270063-1

Lecture № $2-9^{\text {th }}$ March 2023

Dr. Tim Grüne
Centre for X-ray Structure Analysis
Faculty of Chemistry
University of Vienna
tim.gruene@univie.ac.at

Course Schedule

$2^{\text {rd }}$	March	Lecture № 1	$9^{\text {th }}$	March	Lecture № 2
$16^{\text {th }}$	March	Lecture № 3	$23^{\text {th }}$	March	Exercise № 1
$30^{\text {st }}$	March	Lecture № 4	$20^{\text {th }}$	April	Lecture № 5
$27^{\text {th }}$	April	Exercise № 2	$4^{\text {th }}$	May	Lecture № 6
$11^{\text {th }}$	May	Exercise № 3	$25^{\text {th }}$	May	Lecture № 7
$1^{\text {st }}$	June	no lecture	$15^{\text {th }}$	June	Lecture № 8
$22^{\text {nd }}$	June	Exercise № 4	$29^{\text {th }}$	June	Lecture № 9

Previous Lecture

- Literature on crystallography
- online resources, journals, databases
- X-rays as electromagnetic radiation
- examples of diffraction patterns (spots as data)
- introduction to unit cell, fractional coordinates x, y, z

Contents

1 Diffraction Theory - Atoms and X-rays 5
2 The Laue equations 19
3 The Ewald Sphere Construction 27
4 Bragg's Law 37
5 Symmetry and Space Groups 49
6 Symmetry in molecules 55

1 Diffraction Theory - Atoms and X-rays

Atoms' reaction to incoming wave

Crystal structure determination is based on the independent atom model (IAM):

- the molecule consists of spherical atoms
- upon irradiation, each atom re-emits a small spherical wave independently from the others
- the strength depends on the atom type
- the detector records the overlap of all (tiny) waves

Planar waves

$$
A(\vec{x}, t)=A_{0} \sin (\vec{k} \vec{x}-\omega t)
$$

$$
A(\vec{x}, 0 s)=A_{0} \sin (1.2 x-2 \pi \cdot 0)
$$

$$
A(\vec{x}, 0.5 s)=A_{0} \sin (1.2 x-2 \pi \cdot 0.5)
$$

- Intensity $I \propto A_{0}{ }^{2}$ (light does not "flicker")
- Direction of propagation: $\vec{k} ;|\vec{k}|=2 \pi / \lambda=\omega / c$
- X-ray source is a planar wave

Important features of waves: the sum of two waves result in a wave

Spherical waves

$$
A(\vec{x}, t)=\frac{A_{0}}{|\vec{x}|} \sin (|k||\vec{x}|-\omega t)
$$

$\mathrm{t}=0.0$

$A(\vec{x}, 0 s)=\frac{A_{0}}{\mid \overrightarrow{x \mid}} \sin (1.2|\vec{x}|-2 \pi \cdot 0)$
$\mathrm{t}=0.5$

$$
A(\vec{x}, 0.5 s)=\frac{A_{0}}{|\vec{x}|} \sin (1.2|\vec{x}|-2 \pi \cdot 0.5)
$$

- Intensity $I \propto\left(A_{0} /|x|\right)^{2}$, gets weaker with distance
- Uniform spread
- Atoms react with (tiny) spherical wave

Important features of waves: the sum of two waves result in a wave

Crystal as amplifier

Crystal as amplifier

Crystal as amplifier

Path difference Δ (red - blue)

- Each point on the detector results in a specific path difference
- The signal at such point depends on the path difference
- The path difference can be

1. an arbitrary multiple of the wavelength λ
2. an integer multiple of the wavelength λ
3. an integer multiple + one half of the wavelength λ

Path difference Δ (red - blue) - arbitrary path difference

Summed wave -_
10 waves, random path difference

Total amplitude similar to individual amplitudes: no amplification

Path difference Δ (red - blue) - multiple of wavelength λ

Summed wave —_
10 waves, path difference $\mathrm{n}^{\star} \lambda$

Total amplitude $=10$ * individual amplitude: regular order amplifies signal

Path difference $\Delta($ red - blue $)=(n+1 / 2) * \lambda$

Summed wave -_
10 waves, path difference $(n+1 / 2)^{*} \lambda$

In certain circumstances there can be complete extinction of the signal. This is important for space group determination.

Crystal as wave amplifier

With constructive interference (right, 1000 atoms), the amplitude of the signal grows with the number of waves (unit cells), much faster than for random interference (left, 1000 atoms).

Regularity of the crystal

Constructive interference between next neighbours $=$ constructuve interference for all unit cells.

Diffraction spots

- Spot on the detector surface = constructive interference from all unit cells of the crystal
- noise: everywhere else
- Path difference Δ (red - blue) depends on:

1. direction of incoming ray
2. direction of outgoing ray
3. wavelength
4. periodicity of the crystal $=$ unit cell parameters

2 The Laue equations

Laue equations

- A reflection occurs at the detector, where the path difference is an integer multiple of the wave length.
- The directions depend on unit cell parameters and crystal orientation
- The directions are described by the Laue equations (Max von Laue, 1879-1960).

Laue equations

$$
\begin{aligned}
\vec{a} \cdot \vec{S} & =|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
\vec{b} \cdot \vec{S} & =|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
\vec{c} \cdot \vec{S} & =|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

Laue equations

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

Laue equations

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

The Laue equations describe the geometry of the diffraction experiment:

$$
\begin{gathered}
\vec{a}, \vec{b}, \vec{c} \text { : Orientation of the crystal } \\
\left|\vec{S}_{\mathbf{i n}}\right|=1 / \lambda: \text { wavelength of the experiment }
\end{gathered}
$$

$\left|\vec{S}_{\text {out }}\right|:$ direction, alias position at the detector (is there a spot or not?)
h, k, l integer: integer multiple of path differences $\Delta=n \cdot \lambda$

Laue equations

- Each scattering vector \vec{S} describes exactly one position on the detector
- Only those positions, that fulfil all three Laue equations at once, will show a reflection
- Each reflection is uniquely described by the triplet of integers ($h k l$)
- The triplet (h, k, l) is called the Miller index of the corresponding reflection (W. H. Miller, 1801-1880)
- The direct beam $\vec{S}_{\text {in }}$ coincides with the reflection $(0,0,0), \vec{S}_{\text {in }}=\vec{S}_{\text {out }}$
- The reflection $(0,0,0)$ cannot be measured!

Indexing

- the term indexing describes the assignment of the Miller indices to and the reflections recorded on the detector.
- Indexing is equivalent to determining the unit cell parameters a, b, c, α, β, γ and the crystal orientation.
- Indexing is an essential step for data processing

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

Indexing

In most cases, indexing algorithms work very easily and fast Reasons for difficulties with indexing:

- More than one crystal lattice (twinning)
- Very large unit cell leads to overlapping reflections
- Wrong values for the experimental parameters (detector distance, wavelength, rotation axis)

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

3 The Ewald Sphere Construction

The Ewald Sphere

Laue equations: mathematically handy, but difficult to imagine
Ewald sphere: Construction to help understand the diffraction pattern

Prelude: The reciprocal lattice and the Miller Indices

- The corners of the unit cell span the crystal lattice
- The unit cell vectors $\vec{a}, \vec{b}, \vec{c}$ build the basis for the crystal lattice
- Many aspects of diffraction can be described more easily with the help of the reciprocal lattice.
- $\vec{a}^{*}=\frac{\vec{b} \times \vec{c}}{V}: \vec{a}^{*} \perp$ plane (\vec{b}, \vec{c})
- $\vec{b}^{*}=\frac{\vec{c} \times \vec{a}}{V}: \vec{b}^{*} \perp$ plane $(\vec{c}, \vec{a}) \quad V$: unit cell volume $\left(\AA^{3}\right), V=(\vec{a} \times \vec{b}) \cdot c$
- $\vec{c}^{*}=\frac{\vec{a} \times \vec{b}}{V}: \vec{c}^{*} \perp$ plane (\vec{a}, \vec{b})

Prelude: The reciprocal lattice and the Miller Indices

- $\vec{a}^{*}=\frac{\vec{b} \times \vec{c}}{V}: \vec{a}^{*} \perp$ plane (\vec{b}, \vec{c})
- $\vec{b}^{*}=\frac{\vec{c} \times \vec{a}}{V}: \vec{b}^{*} \perp$ plane $(\vec{c}, \vec{a}) \quad V$: unit cell volume $\left(\AA^{3}\right), V=(\vec{a} \times \vec{b}) \cdot c$
- $\vec{c}^{*}=\frac{\vec{a} \times \vec{b}}{V}: \vec{c}^{*} \perp$ plane (\vec{a}, \vec{b})

The Miller indices ($h k l$) span the reciprocal lattice:

$$
h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*} \quad h, k, l \in \mathbb{Z}
$$

- Each reflection corresponds to one point of the reciprocal lattice.
- When $\alpha=\beta=\gamma=90^{\circ}$ (orthorhombic unit cell): $\left|\vec{a}^{*}\right|=1 / a,|\vec{b} *|=$ $1 / b,\left|\vec{c}^{*}\right|=1 / c$

The Ewald Sphere Construction

The scattering vector \vec{S} points from the origin to the lattice point.

Some lattice points touch the surface of the Ewald sphere (red circles). These fulfil the Laue conditions.

They are the recordable reflections.

The Ewald Sphere Construction

The Ewald Sphere Construction

4 Bragg's Law

Bragg's Law

Idea:

- X-rays are reflected on lattice planes (German: "Gitterebenen" or "Netzebenen")
- Reflections occur when the path difference is a multiple integer of the wave length

Bragg's Law

1. Lattice: Corners of the unit cells.

Bragg's Law

1. Lattice: Corners of the unit cells.
2. Three corner points make a plane.

Bragg's Law

1. Lattice: Corners of the unit cells.
2. Three corner points make a plane.
3. Parallel shifting of plane through all lattice corners creates a set of planes.

Bragg's Law

1. Lattice: Corners of the unit cells.
2. Three corner points make a plane.
3. Parallel shifting of plane through all lattice corners creates a set of planes.
4. Constructive interferences leads to Bragg's Law:

$$
n \lambda=2 d \sin \theta
$$

d : distance between planes.

Bragg's Law
$\xrightarrow[333\}]{33\}}$

$$
n \lambda=2 d \sin \theta
$$

Context with Laue equations and Miller indices: When Bragg's law holds, the set of planes divides the three unit cell constants a, b, and c into a integer number of segments.
Here: $(2,3,0)$

Bragg's Law and Resolution of a Reflection

$$
n \lambda=2 d \sin \theta
$$

- The value d is called the resolution of the reflection $(h k l)$
- d is measured in \AA.
- N.B.: High resolution corresponds to a small value of d
- $n \geq 2$ higher order reflections, which usually do not occur. We only need to consider the case $n=1$, i.e.

$$
\lambda=2 d \sin \theta
$$

Bragg's Law and Resolution of a Reflection

$$
\lambda=2 d \sin \theta
$$

- Sometimes, the inverted value

$$
d^{*} \equiv 1 / d=\frac{2 \sin \theta}{\lambda}
$$

is called resolution, measured in $1 / \AA$

- High values of d^{*} correspond to high resolution and vice versa
- d^{*} has the length of the reciprocal lattice vector

$$
d^{*}=1 / d=\left\|h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*}\right\|
$$

Example image with resolution rings

- All reflections on a circle about the direct beam have the same resolution
- When the detector if offset $\left(2 \theta \neq 0^{\circ}\right)$, the circles become ellipses (intersection of a cone and a plane)

Reflection Intensity

- The Laue equations, the Bragg equation, and the Ewald sphere construction all refer to the spot positions.
- They contain no information about spot intensity
- The molecule inside the unit cell determines the intensity of every reflections:

$$
\begin{aligned}
I(h k l) & \propto\left|\sum_{\text {atom } j} f_{j} \cos 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)\right|^{2} \\
& \propto\left|\sum_{\text {atom } j} f_{j} e^{2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)}\right|^{2}
\end{aligned}
$$

1. every atom emits a small spherical wave (cos-term)
2. the amplitude f_{j} is proportional to the atom number Z
3. f_{j} is called atomic scattering factor

Summary Laue equations

- Reflex positions ("patterns") depend on the unit cell parameters $a, b, c, \alpha, \beta, \gamma$ and the orientiation of the crystal.
- Reflex positions do not depend on the chemical content of the unit cell.
- Reflex intensities depend on the chemical content of the unit cell
- Ewald sphere visualises the Laue equation
- Every reflex has a resolution d, via Bragg's law.
- High resolution $=$ small d, low resolution $=$ large d

5 Symmetry and Space Groups

Shape and Appearance of Crystals

Historically, the science of crystallography

Steve Lower 1
describes the appearance and (visual) regularity of crystals.
Nicolaus Steno (1638-1686) states the "law of constant angles" or the "first law of crystallography" (1669)

Angles between corresponding faces on crystals are the same for all specimens of the same mineral

Steno: Law of Constant Angles

lattice plane (120)
low order Miller index
$\hat{=}$ large lattice distance d
(low resolution reflection)
high atom density along plane:
stable

lattice plane (3̄̄0)
high order Miller index
$\hat{=}$ smalle lattice distance d
(high resolution reflection)
low atom density along plane: unstable

Crystal breaks between stable planes with low Miller indices

Example Crystals

hexagonal cell

History of Symmetry of Crystals

1801 René-Just Haüy describes crystal symmetries using group theory.
1850 Auguste Bravais describes the 14 Bravais lattices.

1890/1891 Arthur Moritz Schönflies und Jewgraf Stepanowitsch Fjodorow derive all 230 space groups.
1912 Max von Laue, Walter Friedrich und Paul Knipping carry out the first X-ray diffraction experiment. They prove:

- X-rays are waves
- crystals consists of a lattice

Meaning of Symmetry for Structure Determination

The symmetry of a crystal is important because it affects

- data acquisition and scaling
- structure solution
- refinement

6 Symmetry in molecules

Symmetry in molecules

1. What is symmetry?
2. elementary symmetry operations: rotation, mirror plan, inversion centre
3. Combination of symmetry operations: point groups

The Term "Symmetry"

Symmetry is part of our daily lives:

Butterfly with a mirror plane

Flower with 5-fold rotational symmetry

Example: 12-fold Rotational Symmetry

Wikipedia, 4]

Symmetry (in real life) is never ideal. Ideally, all six images would be identical.
The symmetry of crystals and of individual molecules is much closer to the mathematical meaning of symmetry than macroscopic symmetry.

Symmetric molecules

Benzene: 6-fold rotational symmetry α-D-Glucose: no proper symmetry + mirror planes
non-symmetric molecules can still crystallise

Symmetry by arrangement: towards a crystal

Crystals without proper symmetry can still be arranged symmetrically.

Symmetric arrangement

Sometimes, the arrangement in a crystal may have a chemical meaning.

Hemoglobin in blood cells forms a dimer (dark/light) of two hetero dimers (α / β-globin green and blue) with a 2 -fold rotation axis.
Hemoglobin crystallises with the same arrangement (PDB-ID 3ONZ)

Microscopic and macroscopic properties

- the relationship between microscopic interactions and macroscopic relations is not just an academic discipline
- material properties related to crystal structure (electro-optical elements, piezo-elements ...)
- 2021: Wolf prize awarded to Les Leiserowitz and Meir Lahav "for collaboratively established the fundamental reciprocal influences of threedimensional molecular structure upon structures of organic crystals." 5 6]

Microscopic and macroscopic properties

"Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite" [5

S. Kapishnikov

E. Hempelmann

M. Elbaum

J. Nielsen

Als-
L. Leiserowitz

References

[1] S. Lower. URL: https://chem1.com/acad/webtext/states/crystalsext.html (visited on 23/03/2021).
[2] M. Minge. The natural gem shop. URL: http://www.diamant-edelstein.de (visited on 23/03/2021).
[3] Pyrit. URL:https://de.wikipedia.org/wiki/Pyrit (visited on 23/03/2021).
[4] Parliament Clock Westminster. URL: https://commons.wikimedia.org/ wiki/File:Parliament_Clock_Westminster.jpg (visited on 23/03/2021).
[5] Sergey Kapishnikov et al. 'Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite'. In: ChemMedChem 16 (2021), pp. 1515-1532. Doi: 10. 1002/cmdc. 202000895
[6] Wolf Foundation - Laureates 2021. 2021. URL: https://wolffund.org.il/ 2021/02/09/leslie-leiserowitz/ (visited on 29/03/2022).

