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From Data Collection to Structure
Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several 昀椀les, 100’s MB 1 “hkl”-昀椀le, 50MB

Phasing Re昀椀nement

Starting model Chemically sensible
model
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The phase problem
The structure factor F (hkl) is a complex number. Therefore, it has

an amplitude |F (hkl)| =
√

I(hkl)/c

a phase φ(hkl) =???

F (hkl) =
√

I(hkl)/c× e−iφ(hkl)

We can measure the amplitude, but we cannot measure the phase. This is
known as the phase problem of crystallography.
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (430)

Im(F(430))

Re(F(430))

I(430) = |F (430)|2

Measurement I(430) = |F (430)|2: loss of phase information
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (840)

Im(F(840))

Re(F(840))

I(840) = |F (840)|2

Same coordinates, di昀昀erent contributions per atom to F (840)
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Solving the structure = Solving the phase problem
• The phase problem prevents us from calculating the electron density

map directly from our data

• Phases can be calculated from a chemical model (its coordinates)

• “Phasing” means to 昀椀nd a model close enough to the proper model

• Once a good enough molecule has been found, it needs to be improved:
“model building” and “re昀椀nement”
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Solving the structure = Solving the phase problem
In the beginning, crystallographers worked on the structures

of simple molecules and they could often make a good guess of
the conformation of a molecule and even how it might pack in
the crystal lattice. The guesses could be tested by calculating
a di昀昀raction pattern and comparing it to the observed one. If a
guess places the atoms in about the right place, then the calcu-
lated phases will be approximately correct and a useful electron
density map can be computed by combining the observed am-
plitudes with the calculated phases. If the model is reasonably
accurate, such a map will show features missing from the model
so that the model can be improved. You can remind yourself how
this works by looking at Kevin Cowtan’s cats.

Randy Read, [1]
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Phasing and then?
• “phasing” estimates the phase φ(hkl) for each re昀氀ection of the dataset

• the estimates are often quite poor

• the initial average phase errors can be several 10s of degrees (10, 20, 30, . . .◦)

• initial phases means
1. 昀椀nding some atom positions
2. some correct, some incorrect element types
3. often 昀椀xed, isotropic ADP values

• model building and re昀椀nement improves these phases by correcting these
approximations
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Phasing methods [2, 3, 4]
There are several methods to solve the phase problem. This lecture will cover
to most popular ones

1. Patterson map

2. Direct methods

Patterson maps are common for small molecules, which contain a mixture of
heavy and light atoms.
Direct methods are particularly useful for structure with similar elements, e.g.
organic compounds.
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2 The Patterson map
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The Patterson map
• since 1934, Arthur Lindo Patterson (1902–1966)

• good for very small structures with some heavy elements

• direct determination of atom positions
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Calculation of the Patterson map
The Patterson map ignores phases and calculates the Fourier transformation
from the intensities:

P (uvw) =
∑

(hkl)

I(hkl)e−2πi(hu+kv+lw)

This can be calculated without knowing the phases φ(hkl), only from the
measured intensities.
It turns out this map is the “auto-convolution” of the electron density with
itself ((uvw) = ~u):

P (uvw) = ρ(~x) ? ρ(~x− ~u)

=

∫

unit cell
ρ(~x)ρ(~x− ~u)d3x
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Meaning of the Patterson map
It can be shown that the Patterson map

P (uvw) = ρ(~x) ? ρ(~x− ~u)

=

∫

unit cell
ρ(~x)ρ(~x− ~u)d3x

has its peaks at vector (positions) ~u that corresponds to the connecting vector
between two atoms in the molecule in the unit cell.
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map
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Illustration of the Patterson map in 2D

3 4

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

Patterson Map: Peaks at all vectors
between two atoms.
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Illustration of the Patterson map in 2D

3 4

4 3

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

“3” connects to “4” and “4” connects
to “3”
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

``3 ↔ 5′′ = ``1 ↔ 3′′: double strength
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

In total: 10 connections, 20 peaks
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

Strong origin: each atom connects
with itself
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Patterson map observations
• heavy elements have stronger peaks (high density ρ(x, y, z))

• with too many atoms: origin peak overwhelms: non-interpretable

• with too many atoms: too many peaks, overlap

• Patterson map always centro-symmetric (peak at (x, y, z) ⇔ peak at
(−x,−y,−z))

• the Patterson map does not directly reveal the molecule shape
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Patterson map for La[Au(CN)2]3 · 3H2O
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z = 0.5

y = 0.0

x = 0.0

• La(III): 54e−, Au(I): 78e−, O2−:
10e−

• 54*78 = 4’212� 78*10=780: 1
dominating peak

• Patterson maps: typically “origin
peak removed”
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Summary Patterson map
• Patterson map calculated from intensities, without phases

• Patterson map corresponds to convolution of density ρ(x, y, z)

• Peaks correspond to connecting vectors between atoms

• Peak height corresponds to product of number of electrons

• Atom coordinates can be deduced from map in case of few atoms, or
few heavy atoms

• The more atoms (of similar weight), the harder to interpret
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3 Direct methods
Tim Grüne

27/ 84VO 270287 Lecture No 79th June 2022

Chemical Crystallography



Tim Grüne

28/ 84VO 270287 Lecture No 79th June 2022

Chemical Crystallography

Direct methods
• Well suited with molecules of similar atom types (organic compounds

with C,N,O, . . .)

• Can work with thousands of atoms

• Requires atomic resolution, better than 1.2 Å (Sheldrick’s rule, [5])
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Concept of direct methods
1. Generate roughly the number of expected atoms at arbitrary positions

2. Calculate phases of this pseudo-molecule

3. Improve phases based on tangent formula

4. Improved phases produce an improved electron density map

5. Peak picking from improved map

6. Repeat

7. Best solution: assign atom types
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Direct methods: the tangent formula
Tangent formula1 was derived by H. A. Hauptman and J. Karle — chemistry
Nobel prize 1985

tan(φh) ≈

∑

h′ |Eh′Eh−h′ | sin(φh′ + φh−h′)
∑

h′ |Eh′Eh−h′ | cos(φh′ + φh−h′)

creates a network of phase relationships between (hkl) and (h−h′, k−k′, l−

l′). Historically based on Sayre-Equation (1952)

F (hkl) = q(sin θ/λ)
∑

(h′k′l′)

F (h′k′l′) ∗ F (h− h′, k − k′, l − l′)

Sayre equation is exact for cases of only one atom type in crystal (diamond,
silicon, etc). That is why the tangent formula works best for similar-atoms-
compounds.

1
E(hkl): normalised structure factors, derived from measured F (hkl)
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Direct methods: dual space recycling
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Amazingly, it works
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Example: Sucrose

Sucrose, solved with automated
atom assignment (SHELXT)

Final structure

Tim Grüne

32/ 84VO 270287 Lecture No 79th June 2022

Chemical Crystallography



Tim Grüne

33/ 84VO 270287 Lecture No 79th June 2022

Chemical Crystallography

4 Structure Re昀椀nement
Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several 昀椀les,
100’s MB

1 “hkl”-昀椀le, 50MB

Phasing Re昀椀nement

Starting model Chemically sensible model
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Model Building & Re昀椀nement
• Re昀椀nement optimises computationally the parameters of the structure

with respect to the data

• Model building make modi昀椀cations that are too large for computer op-
timisation, e.g.
1. Addition or removal of atoms
2. correction of atom types
3. modelling of disorder and multiple conformations

Tim Grüne
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Structure parameters
A “structure” consists of a set of parameters, i.e. numbers. Re昀椀nement
improves these numbers for make the structure better correspond to the data.

X Y Z occ.
N2A 2 0.8142 0.9066 0.8201 11.00000 =

0.0497 0.0413 0.0363 -0.0136 -0.0041 -0.0063
U11 U22 U33 U23 U13 U12

1. 3 atom coordinates x, y, z

2. 6 atomic displacement parameters ADP







U11 U12 U13

U22 U23

U33







3. possibly 1 occupancy parameter for disorder

9 Parameters per atom of the asymmetric unit are being re昀椀ned, plus extra
parameters in case of disorder or other special circumstances
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Example for parameters [6]

• C34H63Cu2F6N8NaO9.5S2

• 62.5 non-hydrogen atoms

• 724 parameters

• hydrogen atoms are “special”
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Atom occupancy — symmetry
• Asymmetric unit: average of all asymmetric units of the crystal

• Molecules do not always strictly follow symmetry

• Some atoms sit on “special position”, i.e. 昀椀x points of symmetry ele-
ments. Their occupancy is divided by the multiplicity of the symmetry
element

• e.g. atom on three-fold axis: occupancy 33 %
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Atom occupancy — alternative elements
Example: La[Ag0.39Au0.61(CN)2]3 · H2O [7] 39% of all unit cells contain
Ag, 61% contain Au at the same position

occ(Au1) + occ(Ag1) = 0.154 + 0.096 = 1/4 with 4-fold multiplicity
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Atom occupancy
Example: Disordered BF4- and one H-atom on special position [8]
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Re昀椀nement = improvement of parameters
Computationally, re昀椀nement minimises the discrepancy between the observed
data Iobs and the calculated data Icalc. Icalc is calculated from the model
parameters, mainly atom coordinates x, y, z and atomic dispersion parameters
ADPs

T (~xi, Ui, (occupancies, . . .)) =
∑

(hkl)

w(hkl)|Iobs(hkl)− Icalc(hkl)|
2

w(hkl) downweights untrusted re昀氀ections, typically w(hkl) = 1/σI(hkl).
Note: di昀昀erent re昀椀nement programs use di昀昀erent target functions.
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Least-square-minimisation
The shape of the target function T =

∑

(hkl) w(hkl)|Iobs(hkl)− Icalc(hkl)|2

enables optimisation based on least-squares method (L.S. command in SHELXL).

y

x

ta
rg

e
t 

T
(x

,y
)

The algorithm 昀椀nds the next minimum, but cannot jump across humps.
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Advantages and limitations of re昀椀nement
• Re昀椀nement 昀椀nds the “next” local minimum

• only small changes in the structure

• does not add or remove atoms

• no change of element types

• one never knows whether the optimum is reached. However, for small
molecules, the starting model usually converges to a good model.
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The “next” local minimum

YES NO
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Model building
• manual modi昀椀cations “help” re昀椀nement cross local humps

– large movements of individual atoms (out of local traps)
– delete wrong atoms
– add missing atoms
– correct atom type

• model building = add chemical understanding to the model

• graphic programs (Olex2, shelXle, Crystals, JANA2020 …[9, 10, 11, 12])

• guided by the electron density map

Iterative process: improve model -> re昀椀ne -> improve model -> re昀椀ne -> …
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Electron density map and di昀昀erence map

ρ(x, y, z) = FT (|Fobs(hkl)|, φcalc model(hkl))

Fourier transformation from measured structure factor amplitudes |Fobs(hkl)|

and calculated phases φcalc model(hkl)

This model should follow this map.
The map

∆ρ(x, y, z) = FT (|Fobs(hkl)| − |Fcalc(hkl)|, φcalc(hkl))

is called di昀昀erence map. It reveals discrepancies between the model and the
data.
Model building and re昀椀nement aim at reducing these discrepancies.
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Example map: Cipro昀氀oxacin
Structure of Cipro昀氀oxacin, [13], ultra high resolution 0.43 Å

ρ(x, y, z) (usually blue mesh) ∆ρ(x, y, z) (usually green / red mesh)

positive ∆ρ: Model misses something. SHELXL places Q-peaks

negative ∆ρ: model contains too much

Tim Grüne
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Example map: Cipro昀氀oxacin
Structure of Cipro昀氀oxacin, [13], ultra high resolution 0.43 Å

• data resolution truncated to 0.9 Å

• Fluorine atom F removed from model

ρ(x, y, z) (blue mesh) ∆ρ(x, y, z) (red / green mesh)
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Re昀椀nement without restraints

T (~xi,Ui) =
∑

(hkl)

w(hkl)(Idata(hkl)− Imodel(hkl))
2

This formula carries out unrestrained re昀椀nement, purely taking experimen-
tal data into account. With poor data, this can cause

• unrealistic bond distances and bond an-
gles

• negative ADPs (cubes) are physically
meaningless

• re昀椀nement can produce non-sense re-
sults
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Unrestrained re昀椀nement, example

Unrestrained re昀椀nement of
protein structure with 1.4 Å
resolution

Tim Grüne
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Data to parameter ratio
Example Cipro昀氀oxacin, (a = 9.5Å, b = 9.9Å, c = 11.0Å, α = 94.2◦, β =

100.2◦, γ = 91.3◦)

• FC17N3O9H30: 60× 9 = 540 parameters

0.43 Å resolution 26’308 re昀氀ections. 26′308 : 540 = 48.7 data points per
parameter: very high data to parameter ratio, data su昀케cient to produce
chemically sensible structure

0.8 Å resolution 2’926 re昀氀ections. 2′926 : 540 = 5.4 data points per pa-
rameter: low data to parameter ratio, data insu昀케cient to produce chem-
ically sensible structure

Chemically sensible part needs to be restrained -> restrained re昀椀nement
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Restrained re昀椀nement
Except for at very high resolution, the re昀椀nement program has to be told some
chemistry to make sure the model remains chemically meaningful. There are
two di昀昀erent types how this can be accomplished:

Constraints Express an equality and permit no deviation from 昀椀xed value

Restraints Express similarity and provide some 昀氀exibility from target value.

Restraints are much more common than constraints
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Constraints
• The structure of La[Ag0.39Au0.61(CN)2]3·H2O has either gold or silver

at one location.

• In every unit cell there is always one atom at this location

occ(Au) + occ(Ag) = 1

occ(Au) = 1− occ(Ag)

• Only the occupancy of silver has to be determined. The occupancy of
gold can be calculated (or vice versa)

• remark: the program SHELXL uses the command FVAR (“free vari-
ables”) to realise constraints.

Each constraint reduces the number of parameters by 1
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Important constraints
negative ADP value, mainly for hydrogen atoms: U(HA)= 1.2*U(CA)

CA 1 0.673087 0.878303 0.111632 11.00000 0.31129
HA 6 0.679625 0.855075 0.095775 11.00000 -1.20000

hydrogen positions: AFIX

N 3 0.611916 1.012005 0.052456 11.00000 0.18165
AFIX 43
H 6 0.628491 1.011598 0.033498 11.00000 -1.20000
AFIX 0
CB 1 0.622779 1.076653 0.067974 11.00000 0.18216
AFIX 23
HB1 6 0.608063 1.103479 0.072220 11.00000 -1.20000
HB2 6 0.641195 1.080130 0.047994 11.00000 -1.20000
AFIX 0
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AFIX: riding atom model
• Except for at very high resolution (d � 0.8 Å), hydrogen atoms are

invisible to X-rays

• the positions of most hydrogen atoms can be calculated: bond dis-
tances are known from spectroscopy, positions are determined by re-
ducing steric clashes

• Advantages: hydrogen atoms do not add parameters, the contribute
to VdW repulsion (BUMP command), they have a small, but non-zero
contribution to the scattering.
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Restraints: Geometry
• restraints can be expressed as inequality “≤”

• best known restraints: R. A. Engh, R. Huber, Accurate Bond and Angle
Parameters for X-ray Protein Structure Re昀椀nement, Acta Crystallogr.
(1991), A47, pp. 392–400; e.g.

|d(N,Cα)− 1.458Å| ≤ 0.02 |d(Cα, Cβ)− 1.521Å| ≤ 0.02
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Restraints: ADP values [14]
• restraints for ADPs: chemical bond a昀昀ects thermal vibrations

DELU, SIMU, ISOR (Thomas R. Schnei-
der)
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Restraints resemble data
Restraints are treated with additional terms to the target function:

T (~xi,Ui) =
∑

hkl

whkl(Idata(hkl)− Imodel(hkl))
2 +W

∑

N.B. i
wi(T

data
i − 〈Ti〉)

2

Restraints act like additional data points

• W weights restraints and observed data

• the higher the resolution, the lower weight W

• the expected mean values 〈Ti〉 can be derived statistically from high
resolution structures, or sometimes can be computed quantum chemi-
cally
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Summary re昀椀nement & model building
• model building improves the model in large steps

• re昀椀nement optimises the model against the data

• constraints and restraints are used to ensure a chemically reasonable
model

• constraints reduce the number of parameters, restraints act like data:
both increase the data to parameter ratio
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5 Model quality and data quality: structure
validation
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Atom coordinates 6= model accuracy

Guanine model in ribosome, data
resolution 3.1Å

Guanine model in Z-DNA, at reso-
lution 1.0 Å

The coordinates of the model do no reveal the data quality, nor the model
quality.
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Model coordinates = interpretation of data

Guanine model with map in ribo-
some, data resolution 3.1Å

Guanine model with map in Z-
DNA, at resolution 1.0 Å

Only in combination with the data can we judge the model quality
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Once more: data to parameter ratio
Example Cipro昀氀oxacin (a = 9.5Å, b = 9.9Å, c = 11.0Å, α = 94.2◦, β =

100.2◦, γ = 91.3◦)

• FC17N3O9H30: 60× 9 = 540 Parameter

data resolution 0.43 Å: 26’308 re昀氀ections =̂ 48.7 data points per parame-
ter: very high, reliable re昀椀nement

data resolution 0.8 Å: 2’926 re昀氀ections =̂ 5.4 data points per parameter:
medium, re昀椀nement needs checking
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Once more: data to parameter ratio
Example Ribosome (a = 401.4Å, b = 401.4Å, c = 175.9Å, α = β = γ = 90◦,
P41212)

• PDB ID 1J5E: 51’atoms atoms = 207’768 parameters

• data resolution 3.05 Å 238’205 re昀氀ections

238′205

207′768
= 1.15

Even at such low data to parameter ratio can a reasonable model be built and
re昀椀ned. It is important to be aware of di昀昀erences in the interpretation of the
data
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6 Indicators for data quality
Tim Grüne

64/ 84VO 270287 Lecture No 79th June 2022

Chemical Crystallography



Tim Grüne

65/ 84VO 270287 Lecture No 79th June 2022

Chemical Crystallography

Example data quality
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Important quality indicators
Rmeas relative di昀昀erence between symmetry equivalent re昀氀ections and their

mean value

data completeness : fraction of measured data w.r.t. theoretically possible
data

multiplicity (alias: redundancy): how often every unique re昀氀ection was mea-
sured (on average)

signal strength I(hkl)/σI(hkl) < 1: noise

CC1/2 1. split data set into two random halves
2. calculated correlation coe昀케cient between symmetry equivalent re-

昀氀ections
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R-values for data
The classic data quality indicator is Rint, alias Rmerge or Rsym:

Rint =
∑

h

∑

j

|Ihj − 〈Ih〉 |

〈Ih〉

Rint mathematically increases with multiplicity, although data quality improves
with multiplicity
Rint is typically shown in publications. It is, however, obsolete and should not
be published. Rmeas alias Rr.i.m. should be published instead:

Rmeas =
∑

h

nh

nh − 1

∑

j

|Ihj − 〈Ih〉 |

〈Ih〉
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Example data statistics (XPREP)
Resolution #Data #Theory %Complete Redundancy Mean I Mean I/s Rmerge
Inf - 2.46 196 197 99.5 39.27 215.01 110.27 0.0300
2.46 - 1.13 1762 1825 96.5 14.86 75.32 42.01 0.0453
1.13 - 0.89 1972 2123 92.9 8.71 25.52 19.00 0.0895
0.89 - 0.77 2007 2258 88.9 6.81 10.84 10.39 0.1425
0.77 - 0.69 1864 2499 74.6 3.37 5.66 5.76 0.1885
0.69 - 0.62 2108 3360 62.7 2.24 2.88 3.29 0.2890
0.62 - 0.57 1929 3542 54.5 1.44 1.51 1.79 0.4191
0.57 - 0.54 1123 2367 47.4 1.10 0.90 1.14 0.5593
----------------------------------------------------------------------
0.64 - 0.54 3720 7014 53.0 1.43 1.47 1.76 0.4170
Inf - 0.54 12961 18171 71.3 5.08 20.64 13.61 0.0514

Merged [A], lowest resolution = 11.49 Angstroms
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CC1/2, and resolution cut-o昀昀
A good quality crystal di昀昀racts beyond the theoretical limit dmin = λ/2.
Resolution cut-o昀昀 is not an issue, one can use all data. Large complexes,
supramolecular structures, low quality crystals reach the di昀昀raction limit be-
fore the theoretical limit. One has to decide where to cut the di昀昀raction
data.

• CC1/2 should be close to 100% throughout resolution range

• where CC1/2 drops below 70%, noise becomes signi昀椀cant, and data at
higher resolution can be excluded from re昀椀nement

• I/σ(I) should be about 2, where CC1/2 about 70%

• I/σ(I) should be about 1, where CC1/2 about 40% (in cases very
resolution cut-o昀昀 is critical)
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Example CC1/2, and resolution cut-o昀昀
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Self−CC against resolution (Å)
IrKu079.HKL

CC1/2 vs. data resolution; plot generated with XPREP
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7 Indicators for model quality
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Model quality [15]
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R-values for the model

R = R1 =
∑

h

||Fh(data)| − |Fh(model)||

|Fh(data)|

weighted intensity based R-value:

wR2 = RB =

√

∑

h

|wh(Ih(data)− Ih(model))2|

w|Ih(data)|2

small molecules R1 of the re昀椀ned model 2-5 %.

supramolecules compounds, MOFs, … R1 of the re昀椀ned model can be
highter, 2-15 %

macromolecular compounds R1 of the re昀椀ned model 15-25 %

To a great extent, this discrepancy is due to the unmodelled solvent region in
the latter two types of compounds
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Goodness of Fit — GooF

GooF =

√

∑

h wh (Fh
2(data)− Fh

2(model))
2

n− p

• Takes number of parameters (p) and number of data (n) into account

• Ideally ≈ 1, increases with worse model
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model: residual density
SHELXL calculates the “highest peak” and “deepest hole” in the electron
density map. Units are electrons, e.g. at the beginning of model building:

Electron density synthesis with coefficients Fo-Fc

Highest peak 4.95 at 0.5434 0.9981 0.3231 [ 0.04 A from RU01
]
Deepest hole -3.34 at 0.0057 0.4976 0.3299 [ 0.99 A from RU02
]
^^^^^^
Mean = 0.00, Rms deviation from mean = 0.34 e/A^3
^^^^^^^^^^^^
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model: residual density
SHELXL calculates the “highest peak” and “deepest hole” in the electron
density map. Units are electrons, e.g. for the re昀椀ned model:

Electron density synthesis with coefficients Fo-Fc

Highest peak 0.50 at 0.6610 0.1969 0.4278 [ 0.69 A from C006
]
Deepest hole -1.22 at 0.2635 0.6156 0.2132 [ 0.04 A from P003
]
^^^^^^
Mean = 0.00, Rms deviation from mean = 0.06 e/A^3
^^^^^^^^^^^^
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checkCIF https://checkcif.iucr.org/

Every published structure should have a checkCIF report. There are di昀昀erent
alert levels of decreasing severity. Reviewers typically require that a structure
should not contain A- or B-alerts.
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Summary Validation
• A model without data does not re昀氀ect data quality

• Data quality: data resolution, multiplicity, R-values, I/σI , CC1/2

• Model quality: R1-values, GooF, residual density

• available for everyone: checkCIF http://checkcif.iucr.org (with
or without data)

• ALERT levels A, B, …

• (Analogously for macromolecular structures: http://molprobity.biochem.
duke.edu/)
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8 Overview of additional topics in
crystallography

Anomalous dispersion and chirality Ariëns [16] and Spek [17]
Twinning Sevvana et al. [18] and Nespolo,

Ferraris and Souvignier [19]
Polymorphism, crystal engineering Bernstein [20], Desiraju [21] and

Hil昀椀ker and Raumer [22]
Incommensurate crystals and qua-
sicrystals

Janssen, Chapuis and Boissieu [23]
and Steurer and Deloudi [24]

High-pressure crystallography Katrusiak [25]
Quantum crystallography (charge
density re昀椀nement)

Grabowsky, Genoni and Bürgi [26]

Neutron Crystallography Blakeley [27]
Electron Crystallography Gemmi et al. [28] and Gruene et al.

[29]
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