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Course Details
3rd March Lecture No 1 10th March Lecture No 2

17th March no lecture 24th March Exercise No 1
31st March Lecture No 3

7th April Lecture No 4 14th April Easter break
21st April Easter break 28th April Exercise No 2

5th May Lecture No 5 12th May no lecture
19th May Lecture No 6 26th May Exercise No 3

2nd June Lecture No 7 8th June Lecture No 8
16th June Exercise No 4 23th June Lecture No 9
30th June no lecture
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Previous Lecture
• Literature on crystallography

• online resources, journals, databases

• X-rays as electromagnetic radiation

• concept of the unit cell as repeating unit

• fractional coordinates x, y, z describe the positions inside the unit cell
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1 Diffraction Theory — Atoms and X-rays
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Physicists’ description of light
planar wave spherical wave
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A(~x, t) = A0 sin(~k~x− ωt) A(~x, t) = A0

|~x| sin(|k||~x| − ωt)

• Intensity I ∝ A0
2 and I ∝ (A0/|x|)

2, respectively

• Oscillation (ωt) is not observed on the detector, intensity I constant
does not “flicker” on the detector

• Direction of propagation: ~k; |~k| = 2π/λ = ω/c

Important features of waves: the sum of two waves result in a wave
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Crystal as amplifier

X−ray
source waves

X−ray

What intensity is
observed here?
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Crystal as amplifier

X−ray
source waves

X−ray

What intensity is
observed here?

Far field approxi-
mation: Detector
very far away, all
rays are parallel.
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Crystal as amplifier

X−ray
source waves

X−ray

A1

A2

A3

What intensity is
observed here?

Path difference
∆ (red - blue) de-
pends on the direc-
tion
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Path difference ∆ (red - blue)
• Each point on the detector results in a specific path difference

• The signal at such point depends on the path difference

• The path difference can be
1. an arbitrary multiple of the wavelength λ

2. an integer multiple of the wavelength λ

3. an integer multiple + one half of the wavelength λ
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Path difference ∆ (red - blue) — arbitrary path difference
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Summed wave

10 waves, random path difference

Total amplitude is a of same order as individual waves. With many atoms:
signal buried in the noise
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Path difference ∆ (red - blue) — multiple of wavelength λ
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Summed wave

10 waves, path difference n*λ

Total amplitude = 10 * individual amplitude: regular order amplifies signal
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Path difference ∆ (red - blue) = (n+ 1/2) ∗ λ
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Summed wave

10 waves, path difference (n+1/2)*λ

In certain circumstances there can be complete extinction of the signal. This
is important for space group determination.
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Crystal as wave amplifier
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With constructive interference (right), the amplitude of the signal grows
with the number of waves (unit cells), much faster than for random

interference (left).
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Regularity of the crystal

X−ray
source waves

X−ray

A1

A2

A3

Constructive interference between neigh-
bouring unit cells means constructuve in-
terference for all unit cells.
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Diffraction spots

X−ray
source waves

X−ray

A1

A2

A3

• Spot on the detector surface = con-
structive interference from all unit
cells of the crystal

• noise: everywhere else

• Path difference ∆ (red - blue) de-
pends on:
1. direction of incoming ray
2. direction of outgoing ray
3. wavelength
4. periodicity of the crystal = unit

cell parameters
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2 The Laue equations
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Laue equations
• A reflection occurs at the detector, where the path difference is an

integer multiple of the wave length.

• The locations lie on rays coming from the crystal

• The directions depend on unit cell parameters and crystal orientation

• The directions are described by the Laue equations (Max von Laue,
1879 - 1960) .
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Laue equations

~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l

Tim Grüne

19/ 58VO 270287 Lecture No 210th March 2022

Chemical Crystallography



Tim Grüne

20/ 58VO 270287 Lecture No 210th March 2022

Chemical Crystallography

Laue equations

~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l

X-ray source
|~Sin| = 1/λ ~Sin

|~Sout| = 1/λ
~S = ~Sout − ~Sin
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Laue equations

~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l

The Laue equations describe the geometry of the diffraction experiment:

~a,~b,~c: Orientation of the crystal

|~Sin| = 1/λ: wavelength of the experiment

|~Sout|: direction, alias position at the detector (is there a spot or not?)

h, k, l integer: integer multiple of path differences ∆ = n · λ

Tim Grüne
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Laue equations
• Each scattering vector ~S describes exactly one position on the detector

• Only those positions, that fulfil all three Laue equations at once, will
show a reflection

• Each reflection is uniquely described by the triplet of integers (hkl)

• The triplet (h, k, l) is called the Miller index of the corresponding
reflection (W. H. Miller, 1801–1880)

• The direct beam ~Sin coincides with the reflection (0, 0, 0), ~Sin = ~Sout

• The reflection (0, 0, 0) cannot be measured!
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Indexing
• the term indexing describes the assignment of the Miller indices to and

the reflections recorded on the detector.

• Indexing is equivalent to determining the unit cell parameters a, b, c,
α, β, γ and the crystal orientation.

• Indexing is an essential step for data processing

↔
~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l
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Indexing
In most cases, indexing algorithms work very easily and fast Reasons for dif-
ficulties with indexing:

• More than one crystal lattice (twinning)

• Very large unit cell leads to overlapping reflections

• Wrong values for the experimental parameters (detector distance, wave-
length, rotation axis)

↔
~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l
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3 The Ewald Sphere Construction
Tim Grüne
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The Ewald Sphere
Laue equations: mathematically handy, but difficult to imagine

Ewald sphere: Construction to help understand the diffraction pattern
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Prelude: The reciprocal lattice and the Miller Indices
• The corners of the unit cell span the crystal lattice

• The unit cell vectors ~a, ~b, ~c build the basis for the crystal lattice

• Many aspects of diffraction can be described more easily with the help
of the reciprocal lattice.

• ~a∗ =
~b×~c
V

: ~a∗ ⊥ plane(~b,~c)

• ~b∗ = ~c×~a
V

: ~b∗ ⊥ plane(~c,~a)

• ~c∗ = ~a×~b
V

: ~c∗ ⊥ plane(~a,~b)

V : unit cell volume (Å3), V = (~a×~b)·c

Tim Grüne
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Prelude: The reciprocal lattice and the Miller Indices
• ~a∗ =

~b×~c
V

: ~a∗ ⊥ plane(~b,~c)

• ~b∗ = ~c×~a
V

: ~b∗ ⊥ plane(~c,~a)

• ~c∗ = ~a×~b
V

: ~c∗ ⊥ plane(~a,~b)

V : unit cell volume (Å3), V = (~a×~b)·c

The Miller indices (hkl) span the reciprocal lattice:

h~a∗ + k~b∗ + l~c∗ h, k, l ∈ Z

• Each reflection corresponds to one point of the reciprocal lattice.

• When α = β = γ = 90◦ (orthorhombic unit cell): |~a∗| = 1/a, |~b∗| =
1/b, |~c∗| = 1/c
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The Ewald Sphere Construction
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The Ewald Sphere Construction
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Reciprocal Lattice:

~a
∗
=

~b×~c

(~a×~b)·~c

~b
∗
=

~c×~a

(~a×~b)·~c

~c
∗
=

~a×~b

(~a×~b)·~c

Lattice points at:

h~a∗ + k~b∗(+l~c∗)

(hollow circles)
The crystal marks the origin (0,0,0).
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The Ewald Sphere Construction

1/λ|S  | =in
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Draw a sphere with radius
1/λ that touches the lat-
tice origin. The sphere cen-
tre lies aligned with the X-ray
source.

This sphere is the Ewald Sphere.

Tim Grüne

31/ 58VO 270287 Lecture No 210th March 2022

Chemical Crystallography



Tim Grüne

32/ 58VO 270287 Lecture No 210th March 2022

Chemical Crystallography

The Ewald Sphere Construction

S
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The scattering vector ~S

points from the origin to the
lattice point.

Some lattice points touch
the surface of the Ewald
sphere (red circles). These
fulfil the Laue conditions.

They are the recordable reflections.
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The Ewald Sphere Construction
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Some of these spots hit the
detector.
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The Ewald Sphere Construction
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Crystal rotation = Lattice
rotation = new spots

(Rot. axis perpen-
dicular to slide)
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4 Bragg’s Law
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Bragg’s Law
Idea:

• X-rays are reflected on lattice planes (German: “Gitterebenen” or “Net-
zebenen”)

• Reflections occur when the path difference is a multiple integer of the
wave length
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Bragg’s Law

source
X−rays

X−ray

1. Lattice: Corners of
the unit cells.
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Bragg’s Law

X−ray
source

X−rays

1. Lattice: Corners of
the unit cells.
2. Three corner points
make a plane.
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Bragg’s Law

X−ray
source

X−rays

1. Lattice: Corners of
the unit cells.
2. Three corner points
make a plane.

3. Parallel shifting of
plane through all lattice
corners creates a set of
planes.
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Bragg’s Law

X−ray
source

X−rays

2θθ

θ

1. Lattice: Corners of
the unit cells.
2. Three corner points
make a plane.

3. Parallel shifting of
plane through all lattice
corners creates a set of
planes.

4. Constructive interferences
leads to Bragg’s Law:

nλ = 2d sin θ

d : distance between planes.

Tim Grüne
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Bragg’s Law

X−raysX−ray
source

nλ = 2d sin θ

Context with Laue equations and Miller indices:
When Bragg’s law holds, the set of planes divides the
three unit cell constants a, b, and c into a integer
number of segments.
Here: (2, 3, 0)
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Bragg’s Law and Resolution of a Reflection

nλ = 2d sin θ

• The value d is called the resolution of the reflection (hkl)

• d is measured in Å.

• N.B.: High resolution corresponds to a small value of d

• n ≥ 2 higher order reflections, which usually do not occur. We only
need to consider the case n = 1, i.e.

λ = 2d sin θ

Tim Grüne
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Bragg’s Law and Resolution of a Reflection

λ = 2d sin θ

• Sometimes, the inverted value

d∗ ≡ 1/d =
2 sin θ

λ

is called resolution, measured in 1/Å

• High values of d∗ correspond to high resolution and vice versa

• d∗ has the length of the reciprocal lattice vector

d∗ = 1/d = ‖h~a∗ + k~b∗ + l~c∗‖

Tim Grüne
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Example image with resolution rings

• All reflections on a circle about the direct beam have the same resolution

• When the detector if offset (2θ 6= 0◦), the circles become ellipses (in-
tersection of a cone and a plane)
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Reflection Intensity
• The Laue equations, the Bragg equation, and the Ewald sphere con-

struction all refer to the spot positions.

• They contain no information about spot intensity

• The molecule inside the unit cell determines the intensity of every re-
flections:

I(hkl) ∝ |
∑

atom j

fj cos 2π(hxj + kyj + lzj)|
2

∝ |
∑

atom j

fje
2πi(hxj+kyj+lzj)|2

1. every atom emits a small spherical wave (cos-term)
2. the amplitude fj is proportional to the atom number Z
3. fj is called atomic scattering factor
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Summary Laue equations
• Reflex positions (“patterns”) depend on the unit cell parameters a, b, c, α, β, γ

and the orientiation of the crystal.

• Reflex positions do not depend on the chemical content of the unit cell.

• Reflex intensities depend on the chemical content of the unit cell

• Ewald sphere visualises the Laue equation

• Every reflex has a resolution d, via Bragg’s law.

• High resolution = small d, low resolution = large d

Tim Grüne
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5 Symmetry and Space Groups
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Shape and Appearance of Crystals

Steve Lower [1]

Historically, the science of crystallography
describes the appearance and (visual) reg-
ularity of crystals.
Nicolaus Steno (1638–1686) states the
“law of constant angles” or the “first law
of crystallography” (1669)

Angles between correspond-
ing faces on crystals are the
same for all specimens of the
same mineral
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Steno: Law of Constant Angles

lattice plane (120) lattice plane (37̄0)

low order Miller index high order Miller index
=̂ large lattice distance d =̂ smalle lattice distance d

(low resolution reflection) (high resolution reflection)
high atom density along plane: sta-
ble

low atom density along plane: un-
stable

Crystal breaks between stable planes with low Miller indices
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Example Crystals

Ruby [2]
(Al2O3 + Cr)

Pyrite [3] (FeS2)

(100)-direction (210)-direction

b=4.75Å

a=4.75Å

c=12.98Å, α=β=90°

γ=120° γ=90°

c=5.42Å, α=β=90°

b=5.42Å

a=5.42Å
γ=90°

hexagonal cell cubic cell

Tim Grüne
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History of Symmetry of Crystals
1801 René-Just Haüy describes crystal symmetries using group the-

ory.
1850 Auguste Bravais describes the 14 Bravais lattices.

1890/1891 Arthur Moritz Schönflies und Jewgraf Stepanowitsch Fjodorow
derive all 230 space groups.

1912 Max von Laue, Walter Friedrich und Paul Knipping carry out
the first X-ray diffraction experiment. They prove:

• X-rays are waves

• crystals consists of a lattice

Tim Grüne
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Meaning of Symmetry for Structure Determination
The symmetry of a crystal is important because it affects

• data acquisition and scaling

• structure solution

• refinement
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6 Symmetry in molecules
Tim Grüne

53/ 58VO 270287 Lecture No 210th March 2022

Chemical Crystallography



Tim Grüne

54/ 58VO 270287 Lecture No 210th March 2022

Chemical Crystallography

Symmetry in molecules
1. What is symmetry?

2. elementary symmetry operations: rotation, mirror plan, inversion centre

3. Combination of symmetry operations: point groups
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The Term “Symmetry”
Symmetry is part of our daily lives:

Butterfly with a mirror plane Flower with 5-fold rotational symmetry
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Example: 12-fold Rotational Symmetry

60◦

y
60◦

y
60◦

y
60◦

y
60◦

y

Wikipedia, [4]

Symmetry (in real life) is never ideal.
Ideally, all six images would be identical.
The symmetry of crystals and of individual molecules is much closer to the
mathematical meaning of symmetry than macroscopic symmetry.
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Symmetric molecules

Benzene: 6-fold rotational symmetry α-D-Glucose: no proper symmetry
+ mirror planes

non-symmetric molecules can still crystallise
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