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1 Where we are
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Solving the Structure —Phasing

Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several files, 100’s MB 1 “hkl”-file, 50MB

Phasing Refinement

Starting model Chemically sensible
model
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Phasing alias Solving the structure
• Ideally, we would measure data, run a single calculation, and get the

molecular structure as result.

• our data: thousands of measured intensities I(hkl).

• Previous lecture:

I(hkl) = c|F (hkl)|2

= c

∣

∣

∣

∣

∫

unit cell
ρ(x, y, z)e2πi(hx+ky+lz)d3x

∣

∣

∣

∣

2

• If we could invert this equation, we could calculate the coordinates
x, y, z in one go. But we cannot …
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The phase problem
The inverse of the Fourier transformation

F (hkl) =

∫

unit cell
ρ(x, y, z)e2πi(hx+ky+lz)d3x

reads

ρ(x, y, z) =
∑

(h,k,l)

F (hkl)e−2πi(hx+ky+lz)
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The phase problem
The structure factor F (hkl) is a complex number. Therefore, it has

an amplitude |F (hkl)| =
√

I(hkl)/c

a phase φ(hkl) =???

F (hkl) =
√

I(hkl)/c× e−iφ(hkl)

We can measure the amplitudes |F (hkl)| =
√

I(hkl)/c.
The values φ(hkl) cannot be directly measured.
This is known as the phase problem of crystallography.
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2 Relation between Phases and Molecule
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The phases are related to the chemical structure

1

2 3

x

y

4

Unit cell with four atoms inside.
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (430)

Example reflection F (430) =
∑4

j=1 fj(θ)e
−8π2Uj(θ,λ)e2πi(4xj+3yj+0zj)
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (430)

f1f2

f3

f4

Im(F(430))

Re(F(430))

φj = 2π(4xi + 3yi + 0zi)

= rel. distance to origin

= rel. distance to lattice plane

F (430) =
∑4

j=1 fj(θ)e
−8π2Uj(θ,λ)e2πi(4xj+3yj+0zj)
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (430)

Im(F(430))

Re(F(430))

F (430) = f1(430)

+f2(430)

+f3(430)

+f4(430)

Total F (430) = sum of individual vectors
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (430)

Im(F(430))

Re(F(430))

I(430) = |F (430)|2

Measurement I(430) = |F (430)|2: loss of phase information
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The phases are related to the chemical structure

1

2 3
4

x

y (x, y, z)

(hkl) = (840)

Im(F(840))

Re(F(840))

I(840) = |F (840)|2

Same coordinates, different contributions per atom to F (840)
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Phases φ(hkl)

• The phase problem arises, because F (hkl) is a complex number.

• F (hkl) =
∑

all atoms fj(θ)e
−8π2Uj(θ,λ)e2πi(hxj+kyj+lzj)

• The length fj for each atom is independent of (hkl).

• The phase contribution e2πi(hxj+kyj+lzj) varies for each reflection.

• the phases φ(hkl) is an angle between 0◦ and 360◦

• The total phase φ(hkl) contains convoluted information from each
atom. Each contribution depends on the position of the atom rela-
tive to the lattice planes for the reflection (hkl), i.e., there are as many
phases as there are reflection spots.
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3 Solving the structure = Solving the phase
problem
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Solving the structure = Solving the phase problem
• The phase problem prevents us from calculating the electron density

map directly from our data

• Phases can be calculated from a chemical model (its coordinates)

• “Phasing” means to find a model close enough to the proper model

• Once a good enough molecule has been found, it needs to be improved:
“model building” and “refinement”
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Phasing methods [1, 2, 3]
There are several methods to solve the phase problem. This lecture will cover
to most popular ones

1. Patterson map

2. Direct methods

Patterson maps are common for small molecules, which contain a mixture of
heavy and light atoms.
Direct methods are particularly useful for structure with similar elements, e.g.
organic compounds.
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4 The Patterson map
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The Patterson map
• since 1934, Arthur Lindo Patterson (1902–1966)

• good for very small structures with some heavy elements

• direct determination of atom positions
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Calculation of the Patterson map
The Patterson map ignores phases and calculates the Fourier transformation
from the intensities:

P (uvw) =
∑

(hkl)

I(hkl)e−2πi(hu+kv+lw)

This can be calculated without knowing the phases φ(hkl), only from the
measured intensities.
It turns out this map is the “auto-convolution” of the electron density with
itself ((uvw) = ~u):

P (uvw) = ρ(~x) ⋆ ρ(~x− ~u)

=

∫

unit cell
ρ(~x)ρ(~x− ~u)d3x
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Meaning of the Patterson map
It can be shown that the Patterson map

P (uvw) = ρ(~x) ⋆ ρ(~x− ~u)

=

∫

unit cell
ρ(~x)ρ(~x− ~u)d3x

has its peaks at vector (positions) ~u that corresponds to the connecting vector
between two atoms in the molecule in the unit cell.
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

Tim Grüne

24/ 40VO 270287 Lecture No 827th May 2021

Chemical Crystallography



Tim Grüne

25/ 40VO 270287 Lecture No 827th May 2021

Chemical Crystallography

Illustration of the Patterson map in 2D

3 4

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

Patterson Map: Peaks at all vectors
between two atoms.
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Illustration of the Patterson map in 2D

3 4

4 3

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

“3” connects to “4” and “4” connects
to “3”
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26/ 40VO 270287 Lecture No 827th May 2021

Chemical Crystallography



Tim Grüne

27/ 40VO 270287 Lecture No 827th May 2021

Chemical Crystallography

Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

``3 ↔ 5′′ = ``1 ↔ 3′′: double peak
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

In total: 10 connections, 20 peaks
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Illustration of the Patterson map in 2D

5

3

1

42

“2D molecule, 5 atoms” peaks of Patterson map

Strong origin: each atom connects
with itself
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Patterson map observations
• heavy elements have stronger peaks (high density ρ(x, y, z))

• with too many atoms: origin peak overwhelms: non-interpretable

• with too many atoms: too many peaks, overlap

• Patterson map always centro-symmetric (peak at (x, y, z) ⇔ peak at
(−x,−y,−z))

• the Patterson map does not directly reveal the molecule shape
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Patterson map for La[Au(CN)2]3 · 3H2O

0.0

0.5

1.0

0.5 1.0

a

b

0.0

0.5

1.0

0.5 1.0

c

a

0.0

0.5

1.0

0.5 1.0

b

c

z = 0.5

y = 0.0

x = 0.0

• La(III): 54e−, Au(I): 78e−, O2−:
10e−

• 54*78 = 4’212≫ 78*10=780: 1
dominating peak

• Patterson maps: typically “origin
peak removed”
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Summary Patterson map
• Patterson map calculated from intensities, without phases

• Patterson map corresponds to convolution of density ρ(x, y, z)

• Peaks correspond to connecting vectors between atoms

• Peak height corresponds to product of number of electrons

• Atom coordinates can be deduced from map in case of few atoms, or
few heavy atoms

• The more atoms (of similar weight), the harder to interpret
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5 Direct methods
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Direct methods
• Well suited with molecules of similar atom types (organic compounds

with C,N,O, . . .)

• Can work with thousands of atoms

• Requires atomic resolution, better than 1.2 Å (Sheldrick’s rule, [4])
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Concept of direct methods
1. Generate roughly the number of expected atoms at arbitrary positions

2. Calculate phases of this pseudo-molecule

3. Improve phases based on tangent formula

4. Improved phases produce an improved electron density map

5. Peak picking from improved map

6. Repeat

7. Best solution: assign atom types

Tim Grüne
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Direct methods: the tangent formula
Tangent formula1 was derived by H. A. Hauptman and J. Karle — chemistry
Nobel prize 1985

tan(φh) ≈

∑

h′ |Eh′Eh−h′ | sin(φh′ + φh−h′)
∑

h′ |Eh′Eh−h′ | cos(φh′ + φh−h′)

creates a network of phase relationships between (hkl) and (h−h′, k−k′, l−

l′). Historically based on Sayre-Equation (1952)

F (hkl) = q(sin θ/λ)
∑

(h′k′l′)

F (h′k′l′) ∗ F (h− h′, k − k′, l − l′)

Sayre equation is exact for cases of only one atom type in crystal (diamond,
silicon, etc). That is why the tangent formula works best for similar-atoms-
compounds.

1
E(hkl): normalised structure factors, derived from measured F (hkl)
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Direct methods: dual space recycling

dual s
pace

recyclin
g

random atoms

based on Patterson

between E obsand E calc

best

solution

or

(better)

FT and

No

from map: reciprocal space

find maxima

best CC?

random atoms

atom selection tangent formula

phases (ED−map)

from atom positions

Yes

Selection criterium:

correlation coeffizient

1
0

0
0

’s
 o

f 
it
e

ra
ti
o

n
s

Amazingly, it works
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Example: Sucrose

Sucrose, solved with automated
atom assignment (SHELXT)

Final structure
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Structure Refinement
Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several files,
100’s MB

1 “hkl”-file, 50MB

Phasing Refinement

Starting model Chemically sensible model
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