

Chemical Crystallography and Structural Chemistry

VO 270287

Lecture Nº 8 — 27^{th} May 2021

Dr. Tim Grüne Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna

tim.gruene@univie.ac.at

Reminder: Start the recording!

Tim Gri	üne Chemical Crystallography	Explored Explored Ex
С	ontents	
1	Where we are	4
2	Relation between Phases and Molecule	9
3	Solving the structure = Solving the phase problem	17
4	The Patterson map	20
5	Direct methods	33

Tim Grüne

1 Where we are

Tim Grüne

Chemical Crystallography

Solving the Structure — Phasing

Tim Grüne

Phasing *alias* Solving the structure

- Ideally, we would measure data, run a single calculation, and get the molecular structure as result.
- our data: thousands of measured intensities I(hkl).
- Previous lecture:

$$\begin{split} I(hkl) &= c |F(hkl)|^2 \\ &= c \left| \int_{\text{unit cell}} \rho(x,y,z) e^{2\pi i (hx+ky+lz)} d^3x \right|^2 \end{split}$$

- If we could invert this equation, we could calculate the coordinates x, y, z in one go. But we cannot ...

The phase problem

The inverse of the Fourier transformation

$$F(hkl) = \int_{\text{unit cell}} \rho(x,y,z) e^{2\pi i (hx+ky+lz)} d^3x$$

reads

$$\rho(x, y, z) = \sum_{(h,k,l)} F(hkl) e^{-2\pi i (hx+ky+lz)}$$

The phase problem

The structure factor F(hkl) is a complex number. Therefore, it has

an amplitude $|F(hkl)| = \sqrt{I(hkl)/c}$

a phase $\phi(hkl) =???$

$$\begin{split} F(hkl) &= \sqrt{I(hkl)/c} \times e^{-i\phi(hkl)} \\ \text{We can measure the amplitudes } |F(hkl)| &= \sqrt{I(hkl)/c}. \\ \text{The values } \phi(hkl) \text{ cannot be directly measured.} \\ \text{This is known as the$$
phase problem of crystallography $. \end{split}$

2 Relation between Phases and Molecule

Unit cell with four atoms inside.

Example reflection $F(430) = \sum_{j=1}^{4} f_j(\theta) e^{-8\pi^2 U_j(\theta,\lambda)} e^{2\pi i (4x_j + 3y_j + 0z_j)}$

27th May 2021

$$F(430) = \sum_{j=1}^{4} f_j(\theta) e^{-8\pi^2 U_j(\theta,\lambda)} e^{2\pi i (4x_j + 3y_j + 0z_j)}$$

27th May 2021

Total F(430) =sum of individual vectors

27th May 2021

Measurement $I(430) = |F(430)|^2$: loss of phase information

27th May 2021

Same coordinates, *different* contributions per atom to F(840)

27th May 2021

Phases $\phi(hkl)$

- The phase problem arises, because F(hkl) is a complex number.
- $F(hkl) = \sum_{\text{all atoms}} f_j(\theta) e^{-8\pi^2 U_j(\theta,\lambda)} e^{2\pi i (hx_j + ky_j + lz_j)}$
- The length f_j for each atom is independent of (hkl).
- The phase contribution $e^{2\pi i(hx_j+ky_j+lz_j)}$ varies for each reflection.
- the phases $\phi(hkl)$ is an angle between 0° and 360°
- The total phase $\phi(hkl)$ contains convoluted information from each atom. Each contribution depends on the position of the atom **relative** to the lattice planes for the reflection (hkl), *i.e.*, there are as many phases as there are reflection spots.

3 Solving the structure = Solving the phase problem

Solving the structure = Solving the phase problem

- The phase problem prevents us from calculating the electron density map directly from our data
- Phases can be calculated from a chemical model (its coordinates)
- "Phasing" means to find a model close enough to the proper model
- Once a good enough molecule has been found, it needs to be improved: "model building" and "refinement"

Phasing methods [1, 2, 3]

There are several methods to solve the phase problem. This lecture will cover to most popular ones

- 1. Patterson map
- 2. Direct methods

Patterson maps are common for small molecules, which contain a mixture of heavy and light atoms.

Direct methods are particularly useful for structure with similar elements, *e.g.* organic compounds.

4 The Patterson map

The Patterson map

- since 1934, Arthur Lindo Patterson (1902–1966)
- good for very small structures with some heavy elements
- direct determination of atom positions

Calculation of the Patterson map

The Patterson map ignores phases and calculates the Fourier transformation from the intensities:

$$P(uvw) = \sum_{(hkl)} I(hkl)e^{-2\pi i(hu+kv+lw)}$$

This can be calculated without knowing the phases $\phi(hkl),$ only from the measured intensities.

It turns out this map is the "auto-convolution" of the electron density with itself ($(uvw) = \vec{u}$):

$$\begin{split} P(uvw) &= \rho(\vec{x}) \star \rho(\vec{x} - \vec{u}) \\ &= \int_{\text{unit cell}} \rho(\vec{x}) \rho(\vec{x} - \vec{u}) d^3x \end{split}$$

Meaning of the Patterson map

It can be shown that the Patterson map

$$\begin{split} P(uvw) &= \rho(\vec{x}) \star \rho(\vec{x} - \vec{u}) \\ &= \int_{\text{unit cell}} \rho(\vec{x}) \rho(\vec{x} - \vec{u}) d^3x \end{split}$$

has its peaks at vector (positions) \vec{u} that corresponds to the connecting vector between two atoms in the molecule in the unit cell.

"2D molecule, 5 atoms"

peaks of Patterson map

"2D molecule, 5 atoms"

peaks of Patterson map

Chemical Crystallography

Illustration of the Patterson map in 2D

27th May 2021

Patterson map observations

- heavy elements have stronger peaks (high density $\rho(x, y, z)$)
- with too many atoms: origin peak overwhelms: non-interpretable
- with too many atoms: too many peaks, overlap
- Patterson map always centro-symmetric (peak at $(x,y,z)\Leftrightarrow$ peak at (-x,-y,-z))
- the Patterson map does not **directly** reveal the molecule shape

Patterson map for $La[Au(CN)_2]_3 \cdot 3H_2O$

27th May 2021

Summary Patterson map

- Patterson map calculated from intensities, without phases
- Patterson map corresponds to convolution of density $\rho(x, y, z)$
- Peaks correspond to connecting vectors between atoms
- Peak height corresponds to product of number of electrons
- Atom coordinates can be deduced from map in case of few atoms, or few heavy atoms
- The more atoms (of similar weight), the harder to interpret

5 Direct methods

Direct methods

- Well suited with molecules of similar atom types (organic compounds with C, N, O, \ldots)
- Can work with thousands of atoms
- Requires atomic resolution, better than 1.2 Å (Sheldrick's rule, [4])

Concept of direct methods

- 1. Generate roughly the number of expected atoms at arbitrary positions
- 2. Calculate phases of this pseudo-molecule
- 3. Improve phases based on tangent formula
- 4. Improved phases produce an improved electron density map
- 5. Peak picking from improved map
- 6. Repeat
- 7. Best solution: assign atom types

Direct methods: the tangent formula

Tangent formula¹ was derived by H. A. Hauptman and J. Karle — chemistry Nobel prize 1985

$$\tan(\phi_{\mathbf{h}}) \approx \frac{\sum_{\mathbf{h}'} |E_{\mathbf{h}'} E_{\mathbf{h}-\mathbf{h}'}| \sin(\phi_{\mathbf{h}'} + \phi_{\mathbf{h}-\mathbf{h}'})}{\sum_{\mathbf{h}'} |E_{\mathbf{h}'} E_{\mathbf{h}-\mathbf{h}'}| \cos(\phi_{\mathbf{h}'} + \phi_{\mathbf{h}-\mathbf{h}'})}$$

creates a network of phase relationships between (hkl) and (h-h',k-k',l-l'). Historically based on Sayre-Equation (1952)

$$F(hkl) = q(\sin\theta/\lambda) \sum_{(h'k'l')} F(h'k'l') * F(h-h', k-k', l-l')$$

Sayre equation is exact for cases of only one atom type in crystal (diamond, silicon, *etc*). That is why the tangent formula works best for similar-atoms-compounds.

 $^{^{1}}E(hkl):$ normalised structure factors, derived from measured F(hkl)

Direct methods: dual space recycling

Amazingly, it works

Example: Sucrose

Sucrose, solved with automated Final structure atom assignment (SHELXT)

Structure Refinement

Data collection 🔿	Data integr	ation 🗕	Data Scaling
	0 0 -1 2. 0 0 1 4. 0 0 -2 1'257. 0 0 -2 1'600.	7 0.9 0 1.0 0 35.5 0 42.7	0 0 -1 2.8 0.55 0 0 1 3.8 0.63 0 0 -2 1'432.0 95.7 0 0 -2 1'282.0 85.9
several GB	several 100's MB	files,	1 "hkl"-file, 50MB
Phasing A starting mode		Refine	ement

27th May 2021

References

- C. Giacovazzo. *Phasing in Crystallography. A Modern Perspective*. Oxford University Press, 1998.
- [2] Lukáš Palatinus and Gervais Chapuis. 'SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions'. In: J. Appl. Crystallogr. 40 (2007), pp. 786–790. DOI: 10.1107/S0021889807029238.
- [3] George M. Sheldrick. 'SHELXT Integrated space-group and crystal-structure determination'. In: Acta Crystallogr A71 (2015), pp. 3–8. DOI: 10.1107/ S2053273314026370.
- [4] Richard J. Morris and Gérard Bricogne. 'Sheldrick's 1.2Å rule and beyond'. In: Acta Crystallogr D59 (2003), pp. 615–617. DOI: 10.1107/S090744490300163X.