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Reminder: Start the recording!
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Data Integration

Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several files, 100’s MB 1 “hkl”-file, 50MB

Phasing Refinement

Starting model Chemically sensible
model
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1 Spot Intensity
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Ideal diffraction image

Data produced with SIM_MX, courtesy Kay
Diederichs (Uni Konstanz)

• no lattice disorder

• no background noise

• perfect beam
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Realistic diffraction image

courtesy Dr. Kevin Pröpper

• strong background noise

• smeary spots (lattice disorder)

• spot overlap

• saturated detector pixels

• finite resolution
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Signal extraction
1. Calculate reflex positions

2. Determine local background

3. Differentiate background from signal (spot volume, shape)

4. Different approach for strong spots and weak spots
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Signal extraction: strong spots

• High intensity ⇒ Small error from noise

• Spot covers large detector area: noise approximated by average

• Good spot separation

• Good spot profile (shape)
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Signal extraction: weak spots
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Detector cross section

• Low intensity: ⇒ high error from noise

• Spot covers small detector area: large effect from noise

• Background difficult to determine
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Cross section of a spot on the detector
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Reflection profile
Most integration programs create a set of reflection profiles from strong and
reliable reflections, e.g. a 3D Gauss function.
The profiles depend on the region on the detector and on the crystal orien-
ation.
Advantages:

1. Measurement of weak reflections (fitting data for profile)

2. takes non-isotropic crystal shape into accoung

3. takes regions of varying detector sensitivity into account

4. produces a standard deviation of the reflection intensity: (h, k, l, I, σI)
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Summary Data Integration
• Starts with indexing: crystal orientation, unit cell

• Look at all images per run

• Look only at calculated spot positions on detector

• Strong spots: sum pixel values, substract background

• Strong spots: determine average reflection profile

• Weak spots: extract data based on profiles
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2 Scaling
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Scaling

Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several files, 100’s MB 1 “hkl”-file, 50MB

Phasing Refinement

Starting model Chemically sensible
model
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Objective of the diffraction experiment
Structure elucidation of a chemical compounds

• chemical composition (e.g. purity after chromatography)

• Connectivity, distances between (non-) bonded atoms

• Configuration of stereochemical centres (R,S)

The values should be independent from the experimental setup.
Scaling makes the raw intensities (from data integration) independent from
the experimental setup
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Calculation of Intensities
Under consideration of the experimental, non-idealised setup, intensities are
calculated as [1, Ch. Diffraction Intensities]

Iexp(hkl) = e4

me
2c4

λ3Vcrystal

V 2
u.c.

I0LPTE|Ftheor.(hkl)|
2 (1)

• I0 incoming intensity (may vary with time)
• L Lorentz factor describes trajectory through the Eqwald sphere
• P Polarisation correction; P = (1 + cos2 2θ)/2 for unpolarised source
• T Absorption correction (esp. heavy elements)
• E extinction correction (crystal defects, mosaicity)

Real

Ideal

• Ftheor.(hkl) structure factor (calculated from structure)
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Scaling = Idealisation and correction
In order to make data as independent from the experiment as possible, data are
“standardised”. Some corrections are of numerical nature (polarisation), oth-
ers are sample dependent (extinction: depends on elements in compounds).
Two examples: absorption and angle of incidence

X−ray

source

D
e

te
c
to

r

X−ray

source

Absorption in the crystal depends
on the path

Higher angle of incidence w.r.t. de-
tector surface leads longer path
through detector phosphor and
thus to stronger signal
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Basis for Scaling: Symmetry and multiple measurements
• Some corrections depend on the instrument and can be calibrated (po-

larisation, angle of incidence, Lorentz factor)

• Some corrections (e.g. absorption, extinction) are (also) sample depen-
dent

Idea: symmetry equivalent reflections, or multiply measured reflections, should
have the same intensity

Scaling means

1. Determination of the measured intensity Iobs of a set of equivalent
reflections

2. Determination of their standard uncertainties

3. Result: idealised data set
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Examples for corrections

Detector “gain”: dark regions of the detector are more sensitive (factor be-
tween 0.97 and 1.3). Direct beam (left): indicates non-linear response at high
intensity
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Scaling details
Options to find the mean intensity < I > of a group of equivalent reflections

1. Statistical average: exaggerates outliers

2. Scaling of each group of equivalents in-
dependently from other groups: neglects
systematic errors.

3. Instead: One scale factor for several
groups of equivalent reflections (e.g. 100
groups) which are close together on the
detector

I
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Scaling plots (program SADABS)
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Idealised intensities
Before Scaling After Scaling

I(hkl) = e4

me
2c4

λ3Vcrystal
V 2

u.c.
I0LPTE|F (hkl)|2 I(hkl) = c|F (hkl)|2 (2)

0 -1 5 1.379E+03 2.516E+02
0 -1 -5 1.367E+03 2.726E+02
0 1 5 1.184E+03 2.610E+02
0 1 -5 1.347E+03 2.674E+02
0 -1 6 1.090E+04 -1.229E+03
0 -1 -6 4.677E+03 5.733E+02
0 1 6 4.286E+03 5.488E+02
0 1 -6 9.065E+03 -1.034E+03
0 -1 7 0.204E+02 0.571E+01

0 -1 5 7.014E+01 1.208E+01
0 -1 -5 6.812E+01 1.274E+01
0 1 5 5.987E+01 1.231E+01
0 1 -5 6.753E+01 1.258E+01

outlier removed
0 -1 -6 2.365E+02 2.856E+01
0 1 6 2.145E+02 2.689E+01

outlier removed
0 -1 7 1.404E+02 2.271E+01
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Summary Scaling
• Scaling finds the mean intensity < I > of symmetry equivalent reflec-

tions

• Scaling puts one or more data sets on a common scale

• Scaling removes outliers

• The result of scaling is a single (hkl)-file, which is used for all subsequent
steps:

1. Phasing, i.e. structure solution
2. Model refinement
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3 Phasing
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Phasing

Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several files, 100’s MB 1 “hkl”-file, 50MB

Phasing Refinement

Starting model Chemically sensible
model
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The Structure Factor F (hkl)

• Context between atoms and diffraction intensities

• Describing the electron density with the independent atom model (“IAM”)

• Formfactor and the “fudge factor” ADP
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The Structure Factor
The structure factor F (hkl) is related to the electron density ρ(x, y, z), i.e.
the distribution of electrons inside the unit cell:

F (hkl) =

∫

unit cell
ρ(x, y, z)e2πi(hx+ky+lz)d3x (3)

This equation is the Fourier transformation of the electron density.
Note: The term “Fourier transformation” is important mainly because com-
puters are very fast in calculating Fourier transformations.
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The Structure Factor
The Independent Atom Model (IAM, alias isolated atom model) is a powerful
method to calculate the atomic structure factor F (hkl)

F (hkl) =

atoms j
∑

in u.c.
fj(θ)e

−8π2Uj(θ,λ)e2πi(hxj+kyj+lzj) (4)

fj atomic form factor. Dependent on atom element, decreases with de-
creasins scattering angle θ = θ(hkl)

Uj(θ, λ) atomic displacement parameter (ADP, alias Debye-Waller factor):
models thermal vibration of atoms

e2πi(hxj+kyj+lzj) phase shift of the atom relative to the origin of the unit cell
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The form factor fj(θ)

Intensity of the scattered X-rays decreases with increasing scattering angle θ.
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resolution sinθ/λ =(2d)-1 [Å-1]

resolution d = 1/2 sinθ/λ [Å]

H, Z=1
C, Z=6
O, Z=8

X-ray form factors (Intl. Tables of Cryst., Vol. C, Tab. 6.1.1.1)

The wavelength λ is of the same order of magnitude as the size of the atoms:
photons “see” the shape of atoms.
Note: hydrogen atoms do not contribute to data higher than 1 Å
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The atomic displacement parameter Uj(θ, λ)

• Atoms vibrate at T > 0K

• Vibration leads to reduction of spot intensities, but not to change in
spot shape

• At medium resolution: 1 parameter

• At high resolution: anisotropic description with 6 parameters as ellip-
soids

Isotropic Anisotropic

Uj(θ, λ) = 4Uiso
sin2 θ
λ2 Uj(θ, λ) = (hkl)







U11 U12 U13

U12 U22 U23

U13 U23 U33













a∗

b∗

c∗







1 parameter per atom 6 parameters per atom

• Name : ADP = isotropic or anisotropic atomic displacement parameter
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Example images for ADP

Refinement with isotropic ADPs Refinement with anisotropic ADPs
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The ADP U : a fudge factor
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Resolution sinθ/λ  =(2d)-1 [Å-1]

e-8π2 Uiso sin2θ/Å2

fj(θ) carbon, Z=6

• Sharp drop-off with resolution: can make wrongly placed atoms disap-
pear.

• Similarity with form factor: confusion of atom types

• Risk of overfitting
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Phasing: First look at the chemical structure

Data collection Data integration Data Scaling

0 0 -1 2.7 0.9
0 0 1 4.0 1.0
0 0 -2 1'257.0 35.5
0 0 -2 1'600.0 42.7

0 0 -1 2.8 0.55
0 0 1 3.8 0.63
0 0 -2 1'432.0 95.7
0 0 -2 1'282.0 85.9

several GB several files, 100’s MB 1 “hkl”-file, 50MB

Phasing Refinement

Starting model Chemically sensible
model
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Phasing alias Solving the structure
• Ideally, we would measure data, run a single calculation, and get the

molecular structure as result.

• our data: thousands of measured intensities I(hkl).

• From Eq. 2 (p. 23) and Eq. 4 (page 29):

I(hkl) = c|F (hkl)|2

= c

∣

∣

∣

∣

∫

unit cell
ρ(x, y, z)e2πi(hx+ky+lz)d3x

∣

∣

∣

∣

2

• If we could invert this equation, we could calculate the coordinates
x, y, z in one go. But we cannot …
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The phase problem
The inverse of the Fourier transformation

F (hkl) =

∫

unit cell
ρ(x, y, z)e2πi(hx+ky+lz)d3x

reads

ρ(x, y, z) =
∑

(h,k,l)

F (hkl)e−2πi(hx+ky+lz)
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The phase problem
The structure factor F (hkl) is a complex number. Therefore, it has

an amplitude |F (hkl)| =
√

I(hkl)/c

a phase φ(hkl) =???

F (hkl) =
√

I(hkl)/c× e−iφ(hkl)

We can measure the amplitude, but we cannot measure the phase. This is
known as the phase problem of crystallography.
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