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Reminder: Start the recording!
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1 Diffraction Theory — Atoms and X-rays
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Physicists’ description of light
planar wave spherical wave
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A(~x, t) = A0 sin(~k~x− ωt) A(~x, t) = A0

|~x| sin(|k||~x| − ωt)

• Intensity I ∝ A0
2 and I ∝ (A0/|x|)

2, respectively

• Oscillation (ωt) is not observed on the detector, intensity I constant
does not “flicker” on the detector

• Direction of propagation: ~k; |~k| = 2π/λ = ω/c

Important features of waves: the sum of two waves result in a wave
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Crystal as amplifier

X−ray
source waves

X−ray

What intensity is
observed here?
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Crystal as amplifier

X−ray
source waves

X−ray

What intensity is
observed here?

Far field approx-
imation: Detector
very far away, all
rays are parallel.
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Crystal as amplifier

X−ray
source waves

X−ray

A1

A2

A3

What intensity is
observed here?

Path difference
∆ (red - blue) de-
pends on the direc-
tion
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Path difference ∆ (red - blue)
• Each point on the detector results in a specific path difference

• The signal at such point depends on the path difference

• The path difference can be
1. an arbitrary multiple of the wavelength λ

2. an integer multiple of the wavelength λ

3. an integer multiple + one half of the wavelength λ
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Path difference ∆ (red - blue) — arbitrary path difference
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Summed wave

10 waves, random path difference

Total amplitude is a of same order as individual waves. With many atoms:
signal buried in the noise
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Path difference ∆ (red - blue) — multiple of wavelength λ
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Summed wave

10 waves, path difference n*λ

Total amplitude = 10 * individual amplitude: regular order amplifies signal
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Path difference ∆ (red - blue) = (n+ 1/2) ∗ λ
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Summed wave

10 waves, path difference (n+1/2)*λ

In certain circumstances there can be complete extinction of the signal. This
is important for space group determination.
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Crystal as wave amplifier
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With constructive interference (right), the amplitude of the signal grows
with the number of waves (unit cells), much faster than for random

interference (left).
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Regularity of the crystal

X−ray
source waves

X−ray

A1

A2

A3

Constructive interference between neigh-
bouring unit cells means constructuve in-
terference for all unit cells.
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Diffraction spots

X−ray
source waves

X−ray

A1

A2

A3

• Spot on the detector surface = con-
structive interference from all unit
cells of the crystal

• noise: everywhere else

• Path difference ∆ (red - blue) de-
pends on:
1. direction of incoming ray
2. direction of outgoing ray
3. wavelength
4. periodicity of the crystal = unit

cell parameters
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2 The Laue equations
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Laue equations
• A reflection occurs at the detector, where the path difference is an

integer multiple of the wave length.

• The locations lie on rays coming from the crystal

• The directions depend on unit cell parameters and crystal orientation

• The directions are described by the Laue equations (Max von Laue,
1879 - 1960) .
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Laue equations

~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l
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Laue equations

~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l

X-ray source
|~Sin| = 1/λ ~Sin

|~Sout| = 1/λ
~S = ~Sout − ~Sin
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Laue equations

~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l

The Laue equations describe the geometry of the diffraction experiment:

~a,~b,~c: Orientation of the crystal

|~Sin| = 1/λ: wavelength of the experiment

|~Sout|: direction, alias position at the detector (is there a spot or not?)

h, k, l integer: integer multiple of path differences ∆ = n · λ
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Laue equations
• Each scattering vector ~S describes exactly one position on the detector

• Only those positions, that fulfil all three Laue equations at once, will
show a reflection

• Each reflection is uniquely described by the triplet of integers (hkl)

• The triplet (h, k, l) is called the Miller index of the corresponding
reflection (W. H. Miller, 1801–1880)

• The direct beam ~Sin coincides with the reflection (0, 0, 0), ~Sin = ~Sout

• The reflection (0, 0, 0) cannot be measured!
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Indexing
• the term indexing describes the assignment of the Miller indices to and

the reflections recorded on the detector.

• Indexing is equivalent to determining the unit cell parameters a, b, c,
α, β, γ and the crystal orientation.

• Indexing is an essential step for data processing

↔
~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l
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Indexing
In most cases, indexing algorithms work very easily and fast Reasons for dif-
ficulties with indexing:

• More than one crystal lattice (twinning)

• Very large unit cell leads to overlapping reflections

• Wrong values for the experimental parameters (detector distance, wavelength,
rotation axis)

↔
~a · ~S = |~a||~S| cos(~a, ~S) = h

~b · ~S = |~b||~S| cos(~b, ~S) = k

~c · ~S = |~c||~S| cos(~c, ~S) = l
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3 The Ewald Sphere Construction
Tim Grüne
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The Ewald Sphere
Laue equations: mathematically handy, but difficult to imagine

Ewald sphere: Construction to help understand the diffraction pattern
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Prelude: The reciprocal lattice and the Miller Indices
• The corners of the unit cell span the crystal lattice

• The unit cell vectors ~a, ~b, ~c build the basis for the crystal lattice

• Many aspects of diffraction can be described more easily with the help
of the reciprocal lattice.

• ~a∗ =
~b×~c
V

: ~a∗ ⊥ plane(~b,~c)

• ~b∗ = ~c×~a
V

: ~b∗ ⊥ plane(~c,~a)

• ~c∗ = ~a×~b
V

: ~c∗ ⊥ plane(~a,~b)

V : unit cell volume (Å3), V = (~a×~b)·c
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Prelude: The reciprocal lattice and the Miller Indices
• ~a∗ =

~b×~c
V

: ~a∗ ⊥ plane(~b,~c)

• ~b∗ = ~c×~a
V

: ~b∗ ⊥ plane(~c,~a)

• ~c∗ = ~a×~b
V

: ~c∗ ⊥ plane(~a,~b)

V : unit cell volume (Å3), V = (~a×~b)·c

The Miller indices (hkl) span the reciprocal lattice:

h~a∗ + k~b∗ + l~c∗ h, k, l ∈ Z

• Each reflection corresponds to one point of the reciprocal lattice.

• When α = β = γ = 90◦ (orthorhombic unit cell): |~a∗| = 1/a, |~b∗| =
1/b, |~c∗| = 1/c
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The Ewald Sphere Construction
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The Ewald Sphere Construction
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Reciprocal Lattice:

~a
∗
=

~b×~c

(~a×~b)·~c

~b
∗
=

~c×~a

(~a×~b)·~c

~c
∗
=

~a×~b

(~a×~b)·~c

Lattice points at:

h~a∗ + k~b∗(+l~c∗)

(hollow circles)
The crystal marks the origin (0,0,0).
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The Ewald Sphere Construction

1/λ|S  | =in
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Draw a sphere with radius
1/λ that touches the lat-
tice origin. The sphere centre
lies aligned with the X-ray
source.

This sphere is the Ewald Sphere.
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The Ewald Sphere Construction

S
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The scattering vector ~S

points from the origin to the
lattice point.

Some lattice points touch
the surface of the Ewald
sphere (red circles). These
fulfil the Laue conditions.

They are the recordable reflections.
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The Ewald Sphere Construction
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Some of these spots hit the
detector.
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The Ewald Sphere Construction
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Crystal rotation = Lattice
rotation = new spots

(Rot. axis perpen-
dicular to slide)
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4 Bragg’s Law
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Bragg’s Law
Idea:

• X-rays are reflected on lattice planes (German: “Gitterebenen” or “Net-
zebenen”)

• Reflections occur when the path difference is a multiple integer of the
wave length
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Bragg’s Law

source
X−rays

X−ray

1. Lattice: Corners of
the unit cells.
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Bragg’s Law

X−ray
source

X−rays

1. Lattice: Corners of
the unit cells.
2. Three corner points
make a plane.
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Bragg’s Law

X−ray
source

X−rays

1. Lattice: Corners of
the unit cells.
2. Three corner points
make a plane.

3. Parallel shifting of
plane through all lattice
corners creates a set of
planes.
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Bragg’s Law

X−ray
source

X−rays

2θθ

θ

1. Lattice: Corners of
the unit cells.
2. Three corner points
make a plane.

3. Parallel shifting of
plane through all lattice
corners creates a set of
planes.

4. Constructive interferences
leads to Bragg’s Law:

nλ = 2d sin θ

d : distance between planes.
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Bragg’s Law

X−raysX−ray
source

nλ = 2d sin θ

Context with Laue equations and Miller indices:
When Bragg’s law holds, the set of planes divides the
three unit cell constants a, b, and c into a integer
number of segments.
Here: (2, 3, 0)
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Bragg’s Law and Resolution of a Reflection

nλ = 2d sin θ

• The value d is called the resolution of the reflection (hkl)

• d is measured in Å.

• N.B.: High resolution corresponds to a small value of d

• n ≥ 2 higher order reflections, which usually do not occur. We only
need to consider the case n = 1, i.e.

λ = 2d sin θ
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Bragg’s Law and Resolution of a Reflection

λ = 2d sin θ

• Sometimes, the inverted value

d∗ ≡ 1/d =
2 sin θ

λ

is called resolution, measured in 1/Å

• High values of d∗ correspond to high resolution and vice versa

• d∗ has the length of the reciprocal lattice vector

d∗ = 1/d = ‖h~a∗ + k~b∗ + l~c∗‖
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Example image with resolution rings

• All reflections on a circle about the direct beam have the same resolution

• When the detector if offset (2θ 6= 0◦), the circles become ellipses (in-
tersection of a cone and a plane)
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Reflection Intensity
• The Laue equations, the Bragg equation, and the Ewald sphere con-

struction all refer to the spot positions.

• They contain no information about spot intensity

• The molecule inside the unit cell determines the intensity of every re-
flections:

I(hkl) ∝ |
∑

atom j

fj cos(hxj + kyj + lzj)|
2

∝ |
∑

atom j

fje
2πi(hxj+kyj+lzj)|2

1. every atom emits a small spherical wave (cos-term)
2. the amplitude fj is proportional to the atom number Z
3. fj is called atomic scattering factor
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Summary Laue equations
• Reflex positions (“patterns”) depend on the unit cell parameters a, b, c, α, β, γ

and the orientiation of the crystal.

• Reflex positions do not depend on the chemical content of the unit cell.

• Reflex intensities depend on the chemical content of the unit cell

• Ewald sphere visualises the Laue equation

• Every reflex has a resolution d, via Bragg’s law.

• High resolution = small d, low resolution = large d
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