Chemical Crystallography and Structural Chemistry

VO 270287
Lecture № 3 - $18^{\text {th }}$ March 2021

Dr. Tim Grüne
Centre for X-ray Structure Analysis
Faculty of Chemistry
University of Vienna
tim.gruene@univie.ac.at

Announcement: Fridays for Future Austria

https://fridaysforfuture.at

Announcement: Fridays for Future Austria

https://fridaysforfuture.at

Reminder: Start the recording!

Contents

1 Diffraction Theory - Atoms and X-rays 6

2 The Laue equations	18

3 The Ewald Sphere Construction 26
4 Bragg's Law 36

1 Diffraction Theory - Atoms and X-rays

Physicists' description of light

planar wave

$$
A(\vec{x}, t)=A_{0} \sin (\vec{k} \vec{x}-\omega t) \quad A(\vec{x}, t)=\frac{A_{0}}{|\vec{x}|} \sin (|k||\vec{x}|-\omega t)
$$

spherical wave

- Intensity $I \propto A_{0}^{2}$ and $I \propto\left(A_{0} /|x|\right)^{2}$, respectively
- Oscillation (ωt) is not observed on the detector, intensity I constant does not "flicker" on the detector
- Direction of propagation: $\vec{k} ;|\vec{k}|=2 \pi / \lambda=\omega / c$

Important features of waves: the sum of two waves result in a wave

Crystal as amplifier

Crystal as amplifier

Crystal as amplifier

Path difference Δ (red - blue)

- Each point on the detector results in a specific path difference
- The signal at such point depends on the path difference
- The path difference can be

1. an arbitrary multiple of the wavelength λ
2. an integer multiple of the wavelength λ
3. an integer multiple + one half of the wavelength λ

Path difference Δ (red - blue) - arbitrary path difference

Summed wave -_
10 waves, random path difference

Total amplitude is a of same order as individual waves. With many atoms:
signal buried in the noise

Path difference Δ (red - blue) - multiple of wavelength λ

Summed wave -_
10 waves, path difference $\mathrm{n}^{\star} \lambda$

Total amplitude $=10$ * individual amplitude: regular order amplifies signal

Path difference $\Delta($ red - blue $)=(n+1 / 2) * \lambda$

Summed wave -_
10 waves, path difference $(n+1 / 2)^{*} \lambda$

In certain circumstances there can be complete extinction of the signal. This is important for space group determination.

Crystal as wave amplifier

With constructive interference (right), the amplitude of the signal grows with the number of waves (unit cells), much faster than for random interference (left).

Regularity of the crystal

Constructive interference between neighbouring unit cells means constructuve in-

Diffraction spots

- Spot on the detector surface = constructive interference from all unit cells of the crystal
- noise: everywhere else
- Path difference Δ (red - blue) depends on:

1. direction of incoming ray
2. direction of outgoing ray
3. wavelength
4. periodicity of the crystal $=$ unit cell parameters

2 The Laue equations

Laue equations

- A reflection occurs at the detector, where the path difference is an integer multiple of the wave length.
- The locations lie on rays coming from the crystal
- The directions depend on unit cell parameters and crystal orientation
- The directions are described by the Laue equations (Max von Laue, 1879-1960).

Laue equations

$$
\begin{aligned}
\vec{a} \cdot \vec{S} & =|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
\vec{b} \cdot \vec{S} & =|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
\vec{c} \cdot \vec{S} & =|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

Laue equations

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

Laue equations

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

The Laue equations describe the geometry of the diffraction experiment:

$$
\begin{gathered}
\vec{a}, \vec{b}, \vec{c} \text { : Orientation of the crystal } \\
\left|\vec{S}_{\mathbf{i n}}\right|=1 / \lambda: \text { wavelength of the experiment }
\end{gathered}
$$

$\left|\vec{S}_{\text {out }}\right|:$ direction, alias position at the detector (is there a spot or not?)
h, k, l integer: integer multiple of path differences $\Delta=n \cdot \lambda$

Laue equations

- Each scattering vector \vec{S} describes exactly one position on the detector
- Only those positions, that fulfil all three Laue equations at once, will show a reflection
- Each reflection is uniquely described by the triplet of integers ($h k l$)
- The triplet (h, k, l) is called the Miller index of the corresponding reflection (W. H. Miller, 1801-1880)
- The direct beam $\vec{S}_{\text {in }}$ coincides with the reflection $(0,0,0), \vec{S}_{\text {in }}=\vec{S}_{\text {out }}$
- The reflection $(0,0,0)$ cannot be measured!

Indexing

- the term indexing describes the assignment of the Miller indices to and the reflections recorded on the detector.
- Indexing is equivalent to determining the unit cell parameters a, b, c, α, β, γ and the crystal orientation.
- Indexing is an essential step for data processing

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

Indexing

In most cases, indexing algorithms work very easily and fast Reasons for difficulties with indexing:

- More than one crystal lattice (twinning)
- Very large unit cell leads to overlapping reflections
- Wrong values for the experimental parameters (detector distance, wavelength, rotation axis)

$$
\begin{aligned}
& \vec{a} \cdot \vec{S}=|\vec{a}||\vec{S}| \cos (\vec{a}, \vec{S})=h \\
& \vec{b} \cdot \vec{S}=|\vec{b}||\vec{S}| \cos (\vec{b}, \vec{S})=k \\
& \vec{c} \cdot \vec{S}=|\vec{c}||\vec{S}| \cos (\vec{c}, \vec{S})=l
\end{aligned}
$$

3 The Ewald Sphere Construction

The Ewald Sphere

Laue equations: mathematically handy, but difficult to imagine
Ewald sphere: Construction to help understand the diffraction pattern

Prelude: The reciprocal lattice and the Miller Indices

- The corners of the unit cell span the crystal lattice
- The unit cell vectors $\vec{a}, \vec{b}, \vec{c}$ build the basis for the crystal lattice
- Many aspects of diffraction can be described more easily with the help of the reciprocal lattice.
- $\vec{a}^{*}=\frac{\vec{b} \times \vec{c}}{V}: \vec{a}^{*} \perp$ plane (\vec{b}, \vec{c})
- $\vec{b}^{*}=\frac{\vec{c} \times \vec{a}}{V}: \vec{b}^{*} \perp$ plane $(\vec{c}, \vec{a}) \quad V$: unit cell volume $\left(\AA^{3}\right), V=(\vec{a} \times \vec{b}) \cdot c$
- $\vec{c}^{*}=\frac{\vec{a} \times \vec{b}}{V}: \vec{c}^{*} \perp$ plane (\vec{a}, \vec{b})

Prelude: The reciprocal lattice and the Miller Indices

- $\vec{a}^{*}=\frac{\vec{b} \times \vec{c}}{V}: \vec{a}^{*} \perp$ plane (\vec{b}, \vec{c})
- $\vec{b}^{*}=\frac{\vec{c} \times \vec{a}}{V}: \vec{b}^{*} \perp$ plane $(\vec{c}, \vec{a}) \quad V$: unit cell volume $\left(\AA^{3}\right), V=(\vec{a} \times \vec{b}) \cdot c$
- $\vec{c}^{*}=\frac{\vec{a} \times \vec{b}}{V}: \vec{c}^{*} \perp$ plane (\vec{a}, \vec{b})

The Miller indices ($h k l$) span the reciprocal lattice:

$$
h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*} \quad h, k, l \in \mathbb{Z}
$$

- Each reflection corresponds to one point of the reciprocal lattice.
- When $\alpha=\beta=\gamma=90^{\circ}$ (orthorhombic unit cell): $\left|\vec{a}^{*}\right|=1 / a,|\vec{b} *|=$ $1 / b,\left|\vec{c}^{*}\right|=1 / c$

The Ewald Sphere Construction

The scattering vector \vec{S} points from the origin to the lattice point.

Some lattice points touch the surface of the Ewald sphere (red circles). These fulfil the Laue conditions.

They are the recordable reflections.

The Ewald Sphere Construction

The Ewald Sphere Construction

4 Bragg's Law

Bragg's Law

Idea:

- X-rays are reflected on lattice planes (German: "Gitterebenen" or "Netzebenen")
- Reflections occur when the path difference is a multiple integer of the wave length

Bragg's Law

1. Lattice: Corners of the unit cells.

Bragg's Law

1. Lattice: Corners of the unit cells.
2. Three corner points make a plane.

Bragg's Law

1. Lattice: Corners of the unit cells.
2. Three corner points make a plane.
3. Parallel shifting of plane through all lattice corners creates a set of planes.

Bragg's Law

Bragg's Law

Context with Laue equations and Miller indices: When Bragg's law holds, the set of planes divides the three unit cell constants a, b, and c into a integer number of segments.
Here: $(2,3,0)$

Bragg's Law and Resolution of a Reflection

$$
n \lambda=2 d \sin \theta
$$

- The value d is called the resolution of the reflection $(h k l)$
- d is measured in \AA.
- N.B.: High resolution corresponds to a small value of d
- $n \geq 2$ higher order reflections, which usually do not occur. We only need to consider the case $n=1$, i.e.

$$
\lambda=2 d \sin \theta
$$

Bragg's Law and Resolution of a Reflection

$$
\lambda=2 d \sin \theta
$$

- Sometimes, the inverted value

$$
d^{*} \equiv 1 / d=\frac{2 \sin \theta}{\lambda}
$$

is called resolution, measured in $1 / \AA$

- High values of d^{*} correspond to high resolution and vice versa
- d^{*} has the length of the reciprocal lattice vector

$$
d^{*}=1 / d=\left\|h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*}\right\|
$$

Example image with resolution rings

- All reflections on a circle about the direct beam have the same resolution
- When the detector if offset $\left(2 \theta \neq 0^{\circ}\right)$, the circles become ellipses (intersection of a cone and a plane)

Reflection Intensity

- The Laue equations, the Bragg equation, and the Ewald sphere construction all refer to the spot positions.
- They contain no information about spot intensity
- The molecule inside the unit cell determines the intensity of every reflections:

$$
\begin{aligned}
I(h k l) & \propto\left|\sum_{\text {atom } j} f_{j} \cos \left(h x_{j}+k y_{j}+l z_{j}\right)\right|^{2} \\
& \propto\left|\sum_{\text {atom } j} f_{j} e^{2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)}\right|^{2}
\end{aligned}
$$

1. every atom emits a small spherical wave (cos-term)
2. the amplitude f_{j} is proportional to the atom number Z
3. f_{j} is called atomic scattering factor

Summary Laue equations

- Reflex positions ("patterns") depend on the unit cell parameters $a, b, c, \alpha, \beta, \gamma$ and the orientiation of the crystal.
- Reflex positions do not depend on the chemical content of the unit cell.
- Reflex intensities depend on the chemical content of the unit cell
- Ewald sphere visualises the Laue equation
- Every reflex has a resolution d, via Bragg's law.
- High resolution $=$ small d, low resolution $=$ large d

