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Previous Lecture
1. Absolute structure / Chirality

• anomalous signal: breakdown of Friedel’s law

• Flack-Parameter, Parsons’ Q-value

• heavy atom method

2. Charge density refinement

• limits of the independent atom model

• multipole expansion

• chemical features of electron density
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Today’s Lecture
1. Structure Determination with Crystallography

2. Electron and X–rays

3. Applications for Electron Crystallography

4. Practical Aspects

5. Radiation Damage

6. Dynamic Scattering
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Structure Determination by Single Crystal
Diffraction
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Data Collection for Single Crystal Structure Analysis
Detector

Crystal

SoRadiation 

source

Planar

wave

S i

Rotation Axis of Crystal

(D
if
fr

a
c
ti
o
n
)

2θ

Data Noise (ignored)

monochromatic

wavelength λ

• Rotation (>1966): Contiguous recording of reciprocal space

• hybrid pixel detectors (>2002): shutterless, i.e. continuous data collec-
tion

• Spot position: wave type independent

• Intensity: wave type dependent

• Radiation source (wave): X-rays, electrons, or neutrons
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3D Electron Crystallography
• > late 1990s, as opposed to 2D electron crystallography

• confusingly many terms (ADT , RED, EDT, PEDT, MicroED, …)

• Historical “dispute”, Ute Kolb, Mainz University, ≈ 2007 (ADT), Xiaodong
Zou & Sven Hovmøller, Stockholm University ≈ 2011 (RED)

• technical term: “3D Electron Diffraction”, Enrico Mugnaioli (PSI 2017;
IUCrJ (2019), 6, 178–188)

• “3D”:

1. Collection of 3D reciprocal space

2. 3D crystals: ≥ 10−15 unit cell in each direction; typically 200–1000nm
per dimension
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Spot Position
• Spots positions according to Laue Conditions and orientation of Unit

Cell:

(~So − ~Si).~a = h

and (~So − ~Si).~b = k

and (~So − ~Si).~c = l

• Monochhromatic wave: ~S = (~So − ~Si) depends on wavelength λ and
experimental geometry

• Spot position ⇔ Crystal lattice, independent from radiation type

• Resolution dhkl of a spot from position on detector via Bragg’s law,
λ = 2dhkl sin(θ)
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Spot Intensity
• Spots intensity depends on physics of interaction

X–rays interact with electrons, crystallographic map corresponds to
electron density (number of electron per Volum, e−/A3).

Electrons interact with electrostatic potential from electrons + nucleus
(ϕ(~r))

Neutrons interact with nucleus via weak interaction, and magnetic
moment.

• Spot intensity ⇔ Unit cell content: where are the atoms, what type of
atoms are they
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Dominance of X-ray Crystallography
• most advanced (pipelines from data collection to structure refinement)

• typical wavelength: λ =0.8–1.9Å

• standard structure determination

PDB CSD
(MX) (SX)

X-ray >140,000 >1,000,000
neutron 161 1,500
electron 111 10’ish

Annual Growth of the CSD
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Neutron crystallography
X-ray scattering f(2θ = 0) = Z/Å Neutron scattering length bc

H D C N O P Ag H D C N O P Ag

1. visualisation of hydrogen atoms

2. adjacent elements (e.g. K+ vs. Cl−, Zn2+ vs. Cu+)

3. (virtually) no radiation damage

4. requires large crystals (≥ 1mm3)

Tim Grüne

10/ 49VO 27028725th June 2020, Lecture 11

Chemical Crystallography II



Tim Grüne

11/ 49VO 27028725th June 2020, Lecture 11

Chemical Crystallography II

3D Electron Crystallography (3D ED)
• Electrons interact with electrostatic potential

• Electrons interact much,much stronger with matter than X-rays

⇒ Much smaller crystals

⇒ problematic: dynamic diffraction, |F | 6=
√
I

• Electron optics enable some special applications and tiny beam (5 nm
diameter)
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3D Electron Crystallography
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3D ED: small crystals

organic compound Silicalite–1 / ZSM–5 (Teng Li)

sucrose
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Small Crystals
Main advantage for electron crystallography:
Diffraction from very small crystal (< 1µm)

Some instruments provide 5–10 nm beam diameter
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How small is “nano”?

typical protein crystal size for X-rays typical protein crystal size for elec-
trons, 100x140x1,700 nm3

volumes compare like 1m3 or 6 bath tubs of water vs. 10µl
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Effects of Crystal Volume on Diffraction Data
Reducing crystal volume reduces the resolution by (at least) two effects:

1. I(hkl) ∝ Vcrystal: 1/10 volume = 1/10 intensity

2. Henderson / Garman limit: maximum dose per volume before resolution
is halved: 1/10 volume = 1/10 dose before radiation damage destroys
crystal

From (1): In order to record the same quality diffraction pattern from a 10
times smaller crystal requires 10 times more intense beam.
From (1)+(2): This makes the crystal die 100 times faster
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Instrumentation for Electron Diffraction
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Electron Microscopes

(Wikipedia)
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The Lens System

C3

C2

C1

Gun / Source

Objective lens

Sample

Diffraction Plane

Imaging Plane

• Lenses C1–C3 shape beam

• Crystallography: Parallel beam

• Objective lens: sets effective detector dis-
tance to backfocal plane = diffraction
mode

• C3 not present in all microscopes

Lenses cause distortions.

see e.g. Zuo & Spence, “Advanced Transmission Electron Microscopy”, Springer
Carter & Williams, “Transmission Electron Microscopy”, Springer
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Electron Microscope: Imaging Mode

Plane Wave Object Lens Image Plane (Detector)
Rays of equal origin focus on detector
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Electron Microscope: Imaging Mode

Plane Wave Object Lens Image Plane (Detector)
Detector noise and radiation senstivity
require low contrast images

Martinez-Rucobo et al. Molecular Cell
(2015) 58, 1079–1089
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Electron Microscope: Diffraction Mode

Plane Wave Object Lens
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Electron Microscope: Diffraction Mode

Plane Wave Object Lens

Backfocal Plane
Rays of equal direction focus on detector
“Image” = Fourier transform of object

Image at Backfocal Plane =
‖Fouriertransform of object‖

when object is a crystal:

diffraction spots according to Laue
conditions

Tim Grüne

23/ 49VO 27028725th June 2020, Lecture 11

Chemical Crystallography II



Tim Grüne

24/ 49VO 27028725th June 2020, Lecture 11

Chemical Crystallography II

Dynamic Scattering
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Dynamic Scattering
• Kinematic Theory of Diffraction: Every photon / electron / neutron

scatters once in the crystal

• |Fideal(hkl)| ∝
√
Iexp(hkl)

• Dynamic Scattering: Multiple Scattering events occur

• Electron Diffraction: Multiple Scattering occurs even with nanocrystals
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Dynamic Scattering
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Multiple (Dual) Scattering

~Si

~S1
o

~S′
o

~S2
o

• First reflection ~S1
o acts as

source of second reflection
~S′
o.

• Second reflection ~S′
o overlaps

with another reflection ~S2
o
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Multiple (Dual) Scattering

~Si

~S1
o

~S′
o

~S2
o

Laue Conditions (accordingly ~b and
~c):

(~S1
o − ~Si) · ~a = h1

(~S′
o − ~S1

o) · ~a = h′

(~S′
o − ~Si) · ~a = h1 + h′ = h2

~S′
o − ~Si fulfills the Laue condi-

tions, hence the secondary reflec-
tion ~S′

o− ~S1
o overlaps with the “or-

dinary” reflection ~S′
o − ~Si.
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Experimental Treatment of Dynamic Scattering for
Organic Crystals

• Exact calculation very complicated

• Not feasible for complex molecules (more than a few atoms)

• Ignorance of dynamic scattering, i.e. assumption of kinematic scattering
(as in X-rays) provides reliable structures

• Data statistics and model statistics poor, despite reliable structures
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Data Collection for Single Crystal Structure Analysis
• Rotation (>1966): Contiguous recording of reciprocal space

• hybrid pixel detectors (>2002): shutterless, i.e. continuous data collec-
tion

• Radiation source: X-ray, electron, or neutron crystallography

• Spot position: wave type independent

• Intensity: wave type dependent
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3D Electron Crystallography
• > late 1990s, as opposed to 2D electron crystallography

• confusingly many terms (ADT , RED, EDT, PEDT, MicroED, …)

• Historical “dispute”, Ute Kolb, Mainz University, ≈ 2007 (ADT), Xiaodong
Zou & Sven Hovmøller, Stockholm University ≈ 2011 (RED)

• technical term: “3D Electron Diffraction”, Enrico Mugnaioli (PSI 2017;
IUCrJ (2019), 6, 178–188)

• “3D”:

1. Collection of 3D reciprocal space

2. 3D crystals: ≥ 10−15 unit cell in each direction; typically 200–1000nm
per dimension
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Example Structures
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Single Crystal Structure from a Pharmacy
Powder

Gruene et al., Angew. Chemie. Int. Ed. (2018), 57, 16313–16317
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Grippostad®, STADA

active compounds non-active compounds
paracetamol gelatine

ascorbic acid glycerol tristearate
caffeine lactose monohydrate

chlorphenamine maleate quinoline yellow (E104)
erythrosine (E127)

titanium dioxide (E171)

• powder from capsule deposited on sample grid

• Crystal dimensions 2µm× 12µm× ≈ 300nm

• dmin < 0.8Å
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Single Crystal Structure from a Pharmacy Powder
1. Data from single crystal: Completeness < 40%
2. Cell parameters: a = 6.9, b = 9.4, c = 11.6, α = 90.6, β = 98.4, γ = 89.8

CSD search a = 7.1, b = 9.3, c = 11.7, α = 90.0, β = 97.7, γ = 90.0

CCDC HXACAN04, P21/n, Paracetamol,
3. SHELXT solves structure
4. Difference map reveals hydrogen atoms: data sensitivity

Future: Complete crystallographic analysis from powder blends
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Drug Design: Structure of a New Methylene
Blue Derivative MBBF4

Collaboration Dr. J. Holstein & Prof. G. Clever, TU Dortmund
Gruene et al., Angew. Chemie. Int. Ed. (2018), 57, 16313–16317
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MBBF4-nanoCrystal (Holstein/Clever, TU Dortmund)

Tip of thin MBBF4 needle on a TEM sample grid
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MBBF4 — EIGER and a TEM make a Synchrotron

• 60 − 120◦ @ 3◦/s = 40 s /
data set

• 45 min for 16 data sets on
both grids

• manual processing ≈ 4h to
structure solution
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Structure of MBBF4 (Refinement J. Holstein, TU
Dortmund)

• R1 = 22.7%(2941Fo > 4σF )

• R1 = 27.2%(4832Fo)

• GooF = 1.5
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Nd-MOF
Prof. Jia Min Chin & Prof. Michael Reithofer, University of Vienna
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Jewels in the mud

photographs courtesy Dipl.-WIng. A. Roller
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Powerful electron diffraction

Sample preparation: A. Roller & N. Gajic
At DESY, the strongest X-ray source in the world, this crystal would probably
not show any diffraction.
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Nd-MOF structure from 5 crystals

Courtesy Jia Min Chin & Michael Reithofer, unpublished data
Room temperature measurement, under vacuum
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Preferred Crystal orientation & the Missing
Wedge Problem
Wennmacher et al., Nat. Comm. (2019), 10, 3316; (Patent EP 18 202 868)
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Missing Wedge in Electron Diffraction

• Crystals very often have a flat shape: always the same orientation

• Sample support stabilised by Cu-grid

• Copper grid too thick: intransparent for electrons

• Limited rotation range

• Crystals typically have low symmetry space group
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Effect of Systematically Missing Data

(e) (f)

10°

(g)

30°

(h)

50°

• as little as 10◦ degree of missing data lead to shearing of the experi-
mental map

• Shearing of experimental map results in unreliable coordinates for struc-
ture
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Solution 1 — Coiled carbon grids

• Brush Stroke causes carbon layer to coil

• Visual selection of orientation from carbon curvature

• Complete data from 5’ish crystals
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Solution 2 — Nylon Fibres

• Nylon fibres (≈ 100nm diameter) disturb preferred orientation

• Orientation less obvious from visual inspection — possibly more screen-
ing required

• Complete data from 5’ish crystals

• Nylon grids adaptable to sample size and shape
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