

Chemical Crystallography and Structural Chemistry (VO 270287) Lecture 11 25th June 2020

Dr. Tim Grüne Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna

tim.gruene@univie.ac.at

Previous Lecture

- 1. Absolute structure / Chirality
 - anomalous signal: breakdown of Friedel's law
 - Flack-Parameter, Parsons' Q-value
 - heavy atom method
- 2. Charge density refinement
 - limits of the independent atom model
 - multipole expansion
 - chemical features of electron density

Today's Lecture

- 1. Structure Determination with Crystallography
- 2. Electron and X-rays
- 3. Applications for Electron Crystallography
- 4. Practical Aspects
- 5. Radiation Damage
- 6. Dynamic Scattering

Structure Determination by Single Crystal Diffraction

Data Collection for Single Crystal Structure Analysis

- Rotation (>1966): Contiguous recording of reciprocal space
- hybrid pixel detectors (>2002): shutterless, *i.e.* continuous data collection
- Spot position: wave type independent
- Intensity: wave type dependent
- Radiation source (wave): X-rays, electrons, or neutrons

3D Electron Crystallography

- > late 1990s, as opposed to 2D electron crystallography
- confusingly many terms (ADT , RED, EDT, PEDT, MicroED, ...)
- Historical "dispute", Ute Kolb, Mainz University, \approx 2007 (ADT), Xiaodong Zou & Sven Hovmøller, Stockholm University \approx 2011 (RED)
- technical term: "3D Electron Diffraction", Enrico Mugnaioli (PSI 2017; IUCrJ (2019), 6, 178–188)
- "3D":
 - 1. Collection of 3D reciprocal space
 - 2. 3D crystals: $\geq 10{-}15$ unit cell in each direction; typically 200–1000nm per dimension

Spot Position

 Spots positions according to Laue Conditions and orientation of Unit Cell:

$$\begin{split} (\vec{S}_o-\vec{S}_i).\vec{a} &= h \\ \text{and} \ (\vec{S}_o-\vec{S}_i).\vec{b} &= k \\ \text{and} \ (\vec{S}_o-\vec{S}_i).\vec{c} &= l \end{split}$$

- Monochhromatic wave: $\vec{S}=(\vec{S}_o-\vec{S}_i)$ depends on wavelength λ and experimental geometry
- Spot $\textbf{position} \Leftrightarrow \mathsf{Crystal}$ lattice, independent from radiation type
- Resolution d_{hkl} of a spot from position on detector via Bragg's law, $\lambda=2d_{hkl}\sin(\theta)$

Spot Intensity

- Spots intensity depends on physics of interaction
 - **X-rays** interact with electrons, crystallographic map corresponds to electron density (number of electron per Volum, e^-/A^3).
 - **Electrons** interact with electrostatic potential from electrons + nucleus $(\varphi(\vec{r}))$
 - **Neutrons** interact with nucleus *via* weak interaction, and magnetic moment.
- Spot intensity ⇔ Unit cell content: where are the atoms, what type of atoms are they

Dominance of X-ray Crystallography

- most advanced (pipelines from data collection to structure refinement)
- typical wavelength: $\lambda = 0.8 1.9 \text{\AA}$
- standard structure determination

PDB	CSD
(MX)	(SX)
>140,000	>1,000,000
161	1,500
111	10'ish
	PDB (MX) >140,000 161 111

Neutron crystallography

- 1. visualisation of hydrogen atoms
- 2. adjacent elements (e.g. K^+ vs. Cl^- , Zn^{2+} vs. Cu^+)
- 3. (virtually) no radiation damage
- 4. requires large crystals (≥ 1 mm³)

3D Electron Crystallography (3D ED)

- Electrons interact with electrostatic potential
- Electrons interact much,much stronger with matter than X-rays
- $\Rightarrow \ \mathsf{Much} \ \mathsf{smaller} \ \mathsf{crystals}$
- \Rightarrow problematic: dynamic diffraction, $|F| \neq \sqrt{I}$
- Electron optics enable some special applications and tiny beam (5 nm diameter)

3D Electron Crystallography

Tim Grüne

3D ED: small crystals

organic compound

sucrose

Silicalite–1 / ZSM–5 (Teng Li)

Small Crystals

Main advantage for electron crystallography: Diffraction from very small crystal ($< 1\mu m$) Some instruments provide 5–10 nm beam diameter

How small is "nano"?

typical protein crystal size for X-rays typical protein crystal size for electrons, 100x140x1,700 $\rm nm^3$

volumes compare like $1m^3$ or 6 bath tubs of water vs. $10\mu l$

Effects of Crystal Volume on Diffraction Data

Reducing crystal volume reduces the resolution by (at least) two effects:

- 1. $I(hkl) \propto V_{\text{crystal}}$: 1/10 volume = 1/10 intensity
- 2. Henderson / Garman limit: maximum dose per volume before resolution is halved: 1/10 volume =1/10 dose before radiation damage destroys crystal

From (1): In order to record the same quality diffraction pattern from a 10 times smaller crystal requires 10 times more intense beam. From (1)+(2): This makes the crystal die 100 times faster

Instrumentation for Electron Diffraction

Electron Microscopes

The Lens System

- Lenses C1–C3 shape beam
- Crystallography: Parallel beam
- Objective lens: sets effective detector distance to backfocal plane = diffraction mode
- C3 not present in all microscopes

Lenses cause distortions.

see e.g. Zuo & Spence, "Advanced Transmission Electron Microscopy", Springer Carter & Williams, "Transmission Electron Microscopy", Springer

Electron Microscope: Imaging Mode

25th June 2020, Lecture 11

Electron Microscope: Imaging Mode

Electron Microscope: Diffraction Mode

Plane Wave Object Lens

Electron Microscope: Diffraction Mode

Image at Backfocal Plane = ||Fouriertransform of object||

when object is a crystal:

diffraction spots according to Laue conditions

Plane Wave Object

Lens

Backfocal Plane Rays of **equal direction** focus on detector "Image" = Fourier transform of object

Dynamic Scattering

Dynamic Scattering

- Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal
- $|F_{\text{ideal}}(hkl)| \propto \sqrt{I_{\exp}(hkl)}$
- Dynamic Scattering: Multiple Scattering events occur
- Electron Diffraction: Multiple Scattering occurs even with nanocrystals

Dynamic Scattering

Multiple (Dual) Scattering

- First reflection \vec{S}_o^1 acts as source of second reflection \vec{S}_o' .
- Second reflection \vec{S}'_o overlaps with another reflection \vec{S}^2_o

Multiple (Dual) Scattering

Laue Conditions (accordingly \vec{b} and \vec{c}):

$$\begin{split} (\vec{S}_{o}^{1} - \vec{S}_{i}) \cdot \vec{a} &= h_{1} \\ (\vec{S}_{o}' - \vec{S}_{o}^{1}) \cdot \vec{a} &= h' \\ \hline (\vec{S}_{o}' - \vec{S}_{i}) \cdot \vec{a} &= h_{1} + h' = h_{2} \end{split}$$

 $\vec{S}'_o - \vec{S}_i$ fulfills the Laue conditions, hence the secondary reflection $\vec{S}'_o - \vec{S}^1_o$ overlaps with the "ordinary" reflection $\vec{S}'_o - \vec{S}_i$.

Experimental Treatment of Dynamic Scattering for Organic Crystals

- Exact calculation very complicated
- Not feasible for complex molecules (more than a few atoms)
- Ignorance of dynamic scattering, i.e. assumption of kinematic scattering (as in X-rays) provides reliable structures
- Data statistics and model statistics poor, despite reliable structures

Tim Grüne

Data Collection for Single Crystal Structure Analysis

- Rotation (>1966): Contiguous recording of reciprocal space
- hybrid pixel detectors (>2002): shutterless, *i.e.* continuous data collection
- Radiation source: X-ray, electron, or neutron crystallography
- Spot position: wave type independent
- Intensity: wave type dependent

3D Electron Crystallography

- > late 1990s, as opposed to 2D electron crystallography
- confusingly many terms (ADT , RED, EDT, PEDT, MicroED, ...)
- Historical "dispute", Ute Kolb, Mainz University, \approx 2007 (ADT), Xiaodong Zou & Sven Hovmøller, Stockholm University \approx 2011 (RED)
- technical term: "3D Electron Diffraction", Enrico Mugnaioli (PSI 2017; IUCrJ (2019), 6, 178–188)
- "3D":
 - 1. Collection of 3D reciprocal space
 - 2. 3D crystals: $\geq 10{-}15$ unit cell in each direction; typically 200–1000nm per dimension

Example Structures

Single Crystal Structure from a Pharmacy Powder

Gruene et al., Angew. Chemie. Int. Ed. (2018), 57, 16313-16317

Grippostad[®], STADA

- powder from capsule deposited on sample grid
- Crystal dimensions $2\mu m \times 12\mu m \times \approx 300 nm$
- $d_{min} < 0.8 \text{\AA}$

Single Crystal Structure from a Pharmacy Powder

- 1. Data from single crystal: Completeness <40%
- 2. Cell parameters: a = 6.9, b = 9.4, c = 11.6, $\alpha = 90.6$, $\beta = 98.4$, $\gamma = 89.8$ CSD search a = 7.1, b = 9.3, c = 11.7, $\alpha = 90.0$, $\beta = 97.7$, $\gamma = 90.0$ CCDC HXACAN04, $P2_1/n$, Paracetamol,
- 3. SHELXT solves structure
- 4. Difference map reveals hydrogen atoms: data sensitivity

Future: Complete crystallographic analysis from powder blends

Drug Design: Structure of a New Methylene Blue Derivative MBBF₄

Collaboration Dr. J. Holstein & Prof. G. Clever, TU Dortmund Gruene *et al.*, Angew. Chemie. Int. Ed. (2018), 57, 16313–16317

MBBF₄-nanoCrystal (Holstein/Clever, TU Dortmund)

Tip of thin MBBF_4 needle on a TEM sample grid

MBBF₄ — EIGER and a TEM make a Synchrotron

- $60 120^{\circ}$ @ $3^{\circ}/s = 40 \ s \ /$ data set
- 45 min for 16 data sets on both grids
- manual processing \approx 4h to structure solution

Structure of MBBF₄ (Refinement J. Holstein, TU Dortmund)

- $R1 = 22.7\%(2941F_o > 4\sigma_F)$
- $R1 = 27.2\%(4832F_o)$
- GooF = 1.5

Nd-MOF

Prof. Jia Min Chin & Prof. Michael Reithofer, University of Vienna

Jewels in the mud

photographs courtesy Dipl.-WIng. A. Roller

25th June 2020, Lecture 11

Powerful electron diffraction

Sample preparation: A. Roller & N. Gajic

0.90 Å

At DESY, the strongest X-ray source in the world, this crystal would probably not show any diffraction.

Nd-MOF structure from 5 crystals

Courtesy Jia Min Chin & Michael Reithofer, unpublished data Room temperature measurement, under vacuum

Preferred Crystal orientation & the Missing Wedge Problem

Wennmacher et al., Nat. Comm. (2019), 10, 3316; (Patent EP 18 202 868)

Missing Wedge in Electron Diffraction

- Crystals very often have a flat shape: always the same orientation
- Sample support stabilised by Cu-grid
- Copper grid too thick: intransparent for electrons
- Limited rotation range
- Crystals typically have low symmetry space group

Effect of Systematically Missing Data

- as little as 10° degree of missing data lead to shearing of the experimental map
- Shearing of experimental map results in unreliable coordinates for structure

Solution 1 — Coiled carbon grids

- Brush Stroke causes carbon layer to coil
- Visual selection of orientation from carbon curvature
- Complete data from 5'ish crystals

Solution 2 — Nylon Fibres

- Nylon fibres ($\approx 100 nm$ diameter) disturb preferred orientation
- Orientation less obvious from visual inspection possibly more screening required
- Complete data from 5'ish crystals
- Nylon grids adaptable to sample size and shape

Tim Grüne

Acknowledgements

- My colleagues at the X-ray Centre: A. Roller & N. Gajic
- My collaborators from the nanoArgovia project A3EDPI (cf. references)
- H. Stahlberg (C-CINA), N. Blanc (ScopeM), C. Schulze-Briese (DECTRIS Ltd.)
- B. Luethi, L. Wagner, L. Piazza, D. Mayani (all DECTRIS)
- B. Schmitt (PSI), E. Frojdh (PSI), G. Tinti (PSI), S. Vetter (all PSI detector group)
- R. Mezzenga (ETHZ), U. Shimanovich (Weizmann Inst.), I. Adrianssens Martiel (PSI), I. Schlichting (MPI Heidelberg), K. Diederichs (Uni Konstanz), J. Lübben (Bruker AXS), M. Clabbers (Uni Stockholm)
- J. Chin, M. Reithofer (both Uni Vienna)

stalled at Vienna University

detecting the future

EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU

nanoArgovia A3EDPI

SNF Project 169258

25th June 2020, Lecture 11

