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Previous Lecture
1. Model building

2. Refinement

3. Constraints & Restraints
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Today’s Lecture
1. Example of constraints and data:parameter ratio

2. Validation
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Example: Stabilisation through restraints
Two hypothetic measurements:
Experiment 1: high resolution, 21 pairs of measurements (x1, y1), . . . , (x21, y21)

and errors σ1, . . . , σ21

Experiment 2: low resolution, 3 pairs of measurements (x1, y1), . . . , (x3, y3)

and errors σ1, . . . , σ3
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Example: Stabilisation through restraints
Testing two models:

Model 1: g(x) = g2x
2 + g1x+ g0

Model 2: h(x) = h3x
3 + h1x+ h0

Either model has three parameters, g0, g1, g2 and h0, h1, h3 respectively. These
parameters correspond to e.g. the model coordinates (xi, yi, zi), or the ADPs
Ui.
We will fit both models to the data to find out which model better represents
the data.
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Example: Stabilisation through restraints
Least-squares-minimisation:

minimise:
N∑
i=1

1

σ2
i

(yi − g(xi))
2 model 1

minimise:
N∑
i=1

1

σ2
i

(yi − h(xi))
2 model 2

• Experiment 1: N = 21 data points

• Experiment 2: N = 3 data points

We will start with the high resolution experiment 1
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Example: Stabilisation through restraints
experiment 1: high resolution; high data to parameter ratio = 21:3=7
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x3-model

Model 1: 1.2x2 + 0.0x− 0.5

rmsd: 1.07
Model 2: 0.5x3 − 0.3x− 0.8

rmsd: 4.74

The root mean square deviation rmsd between model and data corresponds
to the crystallographic R1 value.
The lower rmsd 1.07 clearly favours model 1. The pink curve also visually fits
the data better than the green curve.
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Example: Stabilisation through restraints
experiment 2: low resolution, low data to parameter ration = 3:3 = 1
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data
x2-model
x3-model

model 1: 0.7x2 + 0.0x+ 1.2

rmsd: 0
model 2: 0.5x3 − 2.7x− 2.6

rmsd: 0
When there are as many parameters as data points, any model can be fitted

perfectly to the data. We cannot distinguish between the two models
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Example: Stabilisation through restraints
experiment 2: low resolution with constraint

For some reason we know that the data must pass through the point (0, 0).
For the two models this means

0 = g(0)

= g2 ∗ 02 + g1 ∗ 0 + g0

⇒ g0 = 0

and analogously

h0 = 0

The constraint reduced the number of parameters, only two parameters per
model
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Example: Stabilisation through restraints
experiment 2: low resolution with constraint
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data
x2-model constraint
x3-model constraint

model 1: 0.9x2 − 0.1x

rmsd: 1.13
model 2: 0.8x3 − 4.9x

rmsd: 3.7

Due to the constraint, data to parameter ratio = 3:2 = 1.5. Now there is an
rmsd, and it favours (again) the first model.
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Summary & model building
• (cf. phase problem)

• phases are calculate from the model

• model phases and observed data yield the electron density map, and
electron difference map

• model building improves the model in large steps

• refinement optimises the model against the data

• medium resolution data or poor quality data require restraints and con-
straints in order to create a chemically sensible model
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Model quality and data quality: structure
validation
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Atom coordinates 6= model accuracy

Guanine model in ribosome, data
resolution 3.1Å

Guanine model in Z-DNA, at resol-
ution 1.0 Å

The coordinates of the model do no reveal the data quality, nor the model
quality.
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model coordinates = interpretation of data

Guanine model with map in ribo-
some, data resolution 3.1Å

Guanine model with map in Z-
DNA, at resolution 1.0 Å

Only in combination with the data can we judge the model quality
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Once more: data to parameter ratio
Example Ciprofloxacin (a = 9.5Å, b = 9.9Å, c = 11.0Å, α = 94.2◦, β =

100.2◦, γ = 91.3◦)

• FC17N3O9H30: 60× 9 = 540 Parameter

data resolution 0.43 Å: 26’308 reflections =̂ 48.7 data points per para-
meter: very high, reliable refinement

data resolution 0.8 Å: 2’926 reflections =̂ 5.4 data points per parameter:
medium, refinement needs checking
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Once more: data to parameter ratio
Example Ribosome (a = 401.4Å, b = 401.4Å, c = 175.9Å, α = β = γ = 90◦,
P41212)

• PDB ID 1J5E: 51’atoms atoms = 207’768 parameters

• data resolution 3.05 Å 238’205 reflections

238′205

207′768
= 1.15

Even at such low data to parameter ratio can a reasonable model be built and
refined. It is important to be aware of differences in the interpretation of the
data
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Quality indicators
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Example data quality
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Important quality indicators
Rmeas relative difference between:

1. measured data

2. calculated data

data completeness : fraction of measured data w.r.t. theoretically possible
data

multiplicity (alias: redundancy): how often every unique reflection was
measured (on average)

signal strength I(hkl)/σI(hkl) < 1: noise

CC1/2 1. split data set into two random halves

2. calculated correlation coefficient between symmetry equivalent re-
flections
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R-values for data
The classic data quality indicator is Rint, alias Rmerge or Rsym:

Rint =
∑
h

∑
j

|Ihj − 〈Ih〉 |
〈Ih〉

Rint mathematically increases with multiplicity, although data quality improves
with multiplicity
Rint is typically shown in publications. It is, however, obsolete and should not
be published. Rmeas alias Rr.i.m. should be published instead:

Rmeas =
∑
h

nh

nh − 1

∑
j

|Ihj − 〈Ih〉 |
〈Ih〉
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Example data statistics (XPREP)
Resolution #Data #Theory %Complete Redundancy Mean I Mean I/s Rmerge

Inf - 2.46 196 197 99.5 39.27 215.01 110.27 0.0300
2.46 - 1.13 1762 1825 96.5 14.86 75.32 42.01 0.0453
1.13 - 0.89 1972 2123 92.9 8.71 25.52 19.00 0.0895
0.89 - 0.77 2007 2258 88.9 6.81 10.84 10.39 0.1425
0.77 - 0.69 1864 2499 74.6 3.37 5.66 5.76 0.1885
0.69 - 0.62 2108 3360 62.7 2.24 2.88 3.29 0.2890
0.62 - 0.57 1929 3542 54.5 1.44 1.51 1.79 0.4191
0.57 - 0.54 1123 2367 47.4 1.10 0.90 1.14 0.5593
----------------------------------------------------------------------
0.64 - 0.54 3720 7014 53.0 1.43 1.47 1.76 0.4170
Inf - 0.54 12961 18171 71.3 5.08 20.64 13.61 0.0514

Merged [A], lowest resolution = 11.49 Angstroms
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CC1/2, and resolution cut-off
• CC1/2 should be close to 100% throughout resolution range

• where CC1/2 drops below 70%, noise becomes significant, and data at
higher resolution can be excluded from refinement

• I/σ(I) should be about 2, where CC1/2 about 70%

• I/σ(I) should be about 1, where CC1/2 about 40% (in cases very
resolution cut-off is critical)
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Example CC1/2, and resolution cut-off

−10

0

10

20

30

40

50

60

70

80

90

100

0.60.70.80.91.01.11.21.41.82.6

Self−CC against resolution (Å)
IrKu079.HKL

CC1/2 vs. data resolution
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R-values for the model

R = R1 =
∑
h

||Fh(data)| − |Fh(model)||
|Fh(data)|

weighted R-value:

wR =
∑
h

|wh|Fh(data)| − |Fh(model)||
wh|Fh(data)|

weighted intensity based R-value:

wR2 = RB =

√∑
h

|wh(Ih(data)− Ih(model))2|
w|Ih(data)|2

Small molecules: R1 of the refined model 2-5 %.
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GooF

Goodness of Fit

GooF =

√∑
h wh (Fh

2(data)− Fh
2(model))

2

n− p

• Takes number of parameters (p) and number of data (n) into account

• Ideally ≈ 1, increases with worse model
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model: residual density
SHELXL calculates the “highest peak” and “deepest hole” in the electron
density map. Units are electrons, e.g. at the beginning of model building:

Electron density synthesis with coefficients Fo-Fc

Highest peak 4.95 at 0.5434 0.9981 0.3231 [ 0.04 A from RU01 ]
Deepest hole -3.34 at 0.0057 0.4976 0.3299 [ 0.99 A from RU02 ]
^^^^^^
Mean = 0.00, Rms deviation from mean = 0.34 e/A^3
^^^^^^^^^^^^
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model: residual density
SHELXL calculates the “highest peak” and “deepest hole” in the electron
density map. Units are electrons, e.g. for the refined model:

Electron density synthesis with coefficients Fo-Fc

Highest peak 0.50 at 0.6610 0.1969 0.4278 [ 0.69 A from C006 ]
Deepest hole -1.22 at 0.2635 0.6156 0.2132 [ 0.04 A from P003 ]
^^^^^^

Mean = 0.00, Rms deviation from mean = 0.06 e/A^3
^^^^^^^^^^^^
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checkCIF (PLATON web-based)

Every published structure should have a checkCIF report. There are different
alert levels of decreasing severity. Reviewers typically require that a structure
should not contain A- or B-alerts.
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Summary
• A model without data does not reflect data quality

• Data quality: data resolution, multiplicity, R-values, I/σI , CC1/2

• Model quality: R1-values, GooF, residual density

• available for everyone: checkCIF http://checkcif.iucr.org (with
or without data)

• ALERT levels A, B, …

• (Analogously for macromolecular structures: http://molprobity.biochem.
duke.edu/)

Tim Grüne

29/ 30VO 27028728th May 2020, Lecture 8

Chemical Crystallography II

http://checkcif.iucr.org
http://molprobity.biochem.duke.edu/
http://molprobity.biochem.duke.edu/


Tim Grüne

30/ 30VO 27028728th May 2020, Lecture 8

Chemical Crystallography II

End of lecture
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