Chemical Crystallography and Structural Chemistry

(VO 270287)

Lecture 5

23rd April 2020

Dr. Tim Grüne Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna

tim.gruene@univie.ac.at

23rd April 2020, Lecture 5

Previous Lecture

- 1. Space groups and crystallographic point groups
- 2. Choice of unit cell
- 3. 7 Crystal systems and 14 Bravais lattices
- 4. Symmetry in reciprocal space
- 5. Space group determination

Today's Lecture

- 1. Overview: from data to structure
- 2. Programs for data reduction
- 3. Scaling
- 4. Phasing = solving the structure

From Data Collection to Structure

Data collection	Data integrat	ion	Data 2	Scaling	
	0 0 -1 2.7	0.9	0 0 -1	2.8	0.55
	0 0 1 4.0	1.0	0 0 1	3.8	0.63
•••	0 0 -2 1'257.0	35.5	0 0 -2	1'432.0	95.7
•	0 0 -2 1'600.0	42.7	0 0 -2	1'282.0	85.9

several GB

several files, 100's MB 1 "hkl"-file, 50MB

Chemically sensible model

Refinement

23rd April 2020, Lecture 5

VO 270287

Data Collection

1	2.8	0.55
1	3.8	0.63
2	1'432.0	95.7
2	1'282.0	85.9

How to collect good data

- Resolution limit $d_{\min} = \lambda/2$ (or worse for poor quality crystals, *e.g.* protein crystals)
- Typical resolution limit $d_{min} = 0.84$ Å (resolution limit for publishing in Acta Crystallographica C)
- Reflections that can be measured theoretically: all Miller indices (hkl) with $\|h\vec{a^*} + k\vec{b^*} + l\vec{c^*}\| \leq 1/d_{\min} (\vec{a^*}, \vec{b^*}, \vec{c^*})$ reciprocal unit cell vectors)
- Multiple measurements per reflections improve data quality

Data completeness and multiplicity

- grey dots: reciprocal lattice
- grey sphere: resolution limit, radius $2/\lambda$
- green sphere: Ewald sphere, radius $1/\lambda$
- red bar: rotation axis of crystal

Rotation about a single axis by 360° captures all reflections inside green torus. Capturing all reflections inside grey "resolution shell" requires several orientations.

Data Integration

·1	2.8	0.55
1	3.8	0.63
·2	1'432.0	95.7
·2	1'282.0	85.9

Data Integration

Data integration comprises

- 1. Indexing: Determination of unit cell dimensions, orientation of the crystal, point group
- 2. Extraction of spot intensities from detector images.
- 3. Optimisation of experimental parameters

Programs for data integration (incomplete)

- **Saint** Licensed by Bruker AXS. Specific to Bruker programs. Very good for data from twinned crystals. Derived from XDS.
- **XDS** Free for non-commercial users (http://xds.mpimf-heidelberg.mpg. de). Supports nearly all detector formats, very well documented. Very fast.
- **DIALS** Free for non-commercial users. Very active development. (https:// dials.diamond.ac.uk/)
- **EVAL Suite** Free for non-commercial users (http://www.crystal.chem.uu. nl/distr/eval). Can integrate *e.g.* incommensurate crystals
- **Crysalis Pro** Licensed by Rigaku (https://dials.diamond.ac.uk/)
- **iMosflm** Free for non-commercial users, distributed with CCP4 (http://www. ccp4.ac.uk)
- **HKL3000** Very good visualisation GUI for fine-tuning of parameters. very popular in the US (https://hkl-xray.com/)

Indexing

"Ewald sphere backwards:"

- find 200–1000 spots
- backtransform into recip-rocal space (Laue equations)
- find a lattice and a suitable basis

strong

basis for reciprocal lattice corresponds to reduced unit cell constants

Indexing

Unfocused synchrotron beam, courtesy N. Sanishvili, APS, Chicago, USA

Possible reasons lems:

- Incorrect parameters: detector distance, direction of rotation, wavelength, especially at synchrotrons
- Too few reflections
- Distorted spots (lattice defects, unfocused beam)
- Alien spots (ice, metal, contaminant)
- multiple lattices twins

Possible reasons for indexing prob-

Spot Intensity

Ideal diffraction image

- no lattice disorder
- no background noise
- perfect beam

Realistic diffraction image

- strong background noise
- smeary spots (lattice disorder)
- spot overlap
- saturated detector pixels
- finite resolution

courtesy Dr. Kevin Pröpper

Signal extraction

- 1. Calculate reflex positions
- 2. Determine local background
- 3. Differentiate background from signal (spot volume, shape)
- 4. Different approach for strong spots and weak spots

Signal extraction: strong spots

- High intensity ⇒ Small error from noise
- Spot covers large detector area: noise approximated by average
- Good spot separation
- Good spot profile (shape)

Signal extraction: weak spots

- Low intensity: \Rightarrow high error from noise
- Spot covers small detector area: large effect from noise
- Background difficult to determine

Cross section of a spot on the detector

VO 270287

Detector Counts

23rd April 2020, Lecture 5

- 6

Reflection profile

Most integration programs create a set of reflection profiles from strong and reliable reflections, e.g. a 3D Gauss function. The profiles depend on the region on the detector and on the crystal orienation. Advantages:

- 1. Measurement of weak reflections (fitting data for profile)
- 2. takes non-isotropic crystal shape into accoung
- 3. takes regions of varying detector sensitivity into account
- 4. produces a standard deviation of the reflection intensity: (h, k, l, I, σ_I)

Summary Data Integration

- Starts with indexing: crystal orientation, unit cell
- Look at all images per run
- Look only at calculated spot positions on detector
- Strong spots: sum pixel values, substract background
- Strong spots: determine average reflection profile
- Weak spots: extract data based on profiles

Scaling

·1	2.8
1	3.8
·2	1'432.0

- 0.55 0.63
- 95.7 85.9

Objective of the diffraction experiment

Structure elucidation of a chemical compounds

- chemical composition (*e.g.* purity after chromatography)
- Connectivity, distances between (non-) bonded atoms
- Configuration of stereochemical centres (R,S)

The values should be independent from the experimental setup. Scaling makes the raw intensities (from data integration) independent from the experimental setup

Calculation of Intensities

Under consideration of the experimental, non-idealised setup, intensities are calculated as 1

$$I_{exp}(hkl) = \frac{e^4}{m_e^2 c^4} \frac{\lambda^3 V_{crystal}}{V_{u.c.}^2} I_0 LPTE |F_{theor.}(hkl)|^2$$

- I₀ incoming intensity (may vary with time)
- L Lorentz factor describes trajectory through the Eqwald sphere
- *P* Polarisation correction; $P = (1 + \cos^2 2\theta)/2$ for unpolarised source
- T Absorption correction (esp. heavy elements)
- *E* extinction correction (crystal defects, mosaicity)
- *F_{theor.}*(*hkl*) structure factor (calculated from structure)

¹Giacovazzo et el., "Fundamentals of Crystallography" (IUCr Texts on Crystallography), 1985, Chapter "Diffraction Intensities"

23rd April 2020, Lecture 5

(1)

24

Scaling = Idealisation and correction

In order to make data as independent from the experiment as possible, data are "standardised". Some corrections are of numerical nature (polarisation), others are sample dependent (extinction: depends on elements in compounds). Two examples: absorption and angle of incidence

Absorption in the crystal depends on tector surface leads longer through detector phosphor and thus the path to stronger signal

Higher angle of incidence w.r.t. depath

Basis for Scaling: Symmetry and multiple measurements

- Some corrections depend on the instrument and can be calibrated (polarisation, angle of incidence, Lorentz factor)
- Some corrections (*e.g.* absorption, extinction) are (also) sample dependent
- **Idea:** symmetry equivalent reflections, or multiply measured reflections, should have the same intensity

Scaling means

- 1. Determination of the measured intensity I_{obs} of a set of equivalent reflections
- 2. Determination of their standard uncertainties
- 3. Result: idealised data set

Examples for corrections

Detector "gain": dark regions of the detector are more sensitive (factor between 0.97 and 1.3). Direct beam (left): indicates non-linear response at high intensity

Scaling details

- Statistical average: exaggerates outliers
- Scaling of each group of equivalents independently from other groups: neg-lects systematic errors.
- Instead: **One** scale factor for several groups of equivalent reflections (*e.g.* 100 groups) which are close together on the detector

Scaling plots (program SADABS)

Spatial distribution of (I-<I>)/su for Scaling MC3 Scan 4, detector 2–theta 0.03°, II–<I>I>3.00su (red+, blue–), errors (black)

Idealised intensities

Before Scaling

After Scaling

0	-1	5	1.379E+03	2.516E+02
0	-1	-5	1.367E+03	2.726E+02
0	1	5	1.184E+03	2.610E+02
0	1	-5	1.347E+03	2.674E+02
0	-1	6	1.090E+04	-1.229E+03
0	-1	-6	4.677E+03	5.733E+02
0	1	6	4.286E+03	5.488E+02
0	1	-6	9.065E+03	-1.034E+03
0	-1	7	0.204E+02	0.571E+01

- 0 -1 5 7.014E+0 0 -1 -5 6.812E+0 0 1 5 5.987E+0
- 0 1 -5 6.753E+0
 - outlier remove
- 0 -1 -6 2.365E+
- 0 1 6 2.145E+ outlier removed
- 0 -1 7 1.404E+02 2.271E+01

$c|F(hkl)|^2$

(2)

01	1.208E+01
01	1.274E+01
01	1.231E+01
01	1.258E+01
d	
02	2.856E+01
02	2.689E+01
d	

Detour before Phasing: The Structure factor *F*(*hkl*)

The Structure Factor *F(hkl)*

- Context between atoms and diffraction intensities
- Describing the electron density with the independent atom model ("IAM")
- Formfactor and the "fudge factor" ADP

The Structure Factor

The structure factor F(hkl) is related to the **electron density** $\rho(x, y, z)$, i.e. the distribution of electrons inside the unit cell:

$$F(hkl) = \int_{\text{unit cell}} \rho(x,y,z) e^{2\pi i (hx+ky+lz)} d^3x$$

This equation is the Fourier transformation of the electron density. *Note:* The term "Fourier transformation" is important mainly because computers are very fast in calculating Fourier transformations.

(3)

The Structure Factor

The Independent Atom Model (IAM, alias isolated atom model) is a powerful method to calculate the atomic structure factor F(hkl)

$$F(hkl) = \sum_{\text{in u.c.}}^{\text{atoms }j} f_j(\theta) e^{-8\pi^2 U_j(\theta,\lambda)} e^{2\pi i (hx_j + ky_j + lz_j)}$$

- f_i atomic form factor. Dependent on atom element, decreases with decreasins scattering angle $\theta = \theta(hkl)$
- $U_i(\theta, \lambda)$ atomic displacement parameter (ADP, alias Debye-Waller factor): models thermal vibration of atoms

 $e^{2\pi i(hx_j+ky_j+lz_j)}$ phase shift of the atom relative to the origin of the unit cell

(4)

The form factor $f_{i}(\theta)$

The intensity of the scattered X-rays decreases with increasing scattering angle θ .

The wavelength λ is of the same order of magnitude as the size of the atoms: photons "see" the shape of atoms.

Note: hydrogen atoms do not contribute to data higher than 1 Å

The atomic displacement parameter $U_{i}(\theta, \lambda)$

- Atoms vibrate at T > 0K
- Vibration leads to reduction of spot intensities, but not to change in spot shape
- At medium resolution: 1 parameter

 $U_j(\theta,$

At high resolution: anisotropic description with 6 parameters as ellipsoids

Isotropic

Anisotropic

$$\lambda) = 4U_{iso} \frac{\sin^2 \theta}{\lambda^2} \qquad U_j(\theta, \lambda) = (hkl) \begin{pmatrix} U_{11} & U_{12} \\ U_{12} & U_{22} \\ U_{13} & U_{23} \end{pmatrix}$$

1 parameter per atom

6 parameters per atom

• Name : ADP = isotropic or anisotropic *atomic displacement parameter*

$$\begin{bmatrix} U_{13} \\ U_{23} \\ U_{33} \end{bmatrix} \begin{pmatrix} a^* \\ b^* \\ c^* \end{bmatrix}$$

Example images for ADP

Refinement with isotropic ADPs

Refinement with anisotropic ADPs

The ADP U: a fudge factor

- Sharp drop-off with resolution: can make wrongly placed atoms disappear.
- Similarity with form factor: confusion of atom types
- Risk of overfitting

Solving the Structure: Phasing

-1	2.8	0.55
1	3.8	0.63
·2	1'432.0	95.7
·2	1'282.0	85.9

Phasing *alias* Solving the structure

- Ideally, we would measure data, run a single calculation, and get the molecular structure as result.
- our data: thousands of measured intensities I(hkl).
- From Eq. 2 (p. 30) and Eq. 4 (page 34):

$$\begin{split} I(hkl) &= c |F(hkl)|^2 \\ &= c \left| \int_{\text{unit cell}} \rho(x,y,z) e^{2\pi i (hx+ky+lz)} d^3 \right. \end{split}$$

• If we could invert this equation, we could calculate the coordinates x, y, z in one go. But we cannot ...

12 \mathbf{x}

The phase problem

The inverse of the Fourier transformation

$$F(hkl) = \int_{\text{unit cell}} \rho(x,y,z) e^{2\pi i (hx+ky+lz)} d^3x$$

reads

$$\rho(x,y,z) = \sum_{(h,k,l)} F(hkl) e^{-2\pi i (hx+ky+lz)}$$

The phase problem

The structure factor F(hkl) is a complex number. Therefore, it has

an amplitude $|F(hkl)| = \sqrt{I(hkl)/c}$

a phase $\phi(hkl) =???$

 $F(hkl) = \sqrt{I(hkl)/c} \times e^{-i\phi(hkl)}$

We can measure the amplitude, but we cannot measure the phase. This is known as the phase problem of crystallography.

(Contributions per atom to F(430))

= rel. distance to origin $_{\mathbf{f}}$ = rel. distance to lattice plane

(Contributions per atom to F(430))

A different view of the phase - Summary

- The length f_i for each atom is independent of (hkl).
- The phase contribution $e^{2\pi i(hx_j+ky_j+lz_j)}$ varies for each reflection.
- The total phase $\phi(hkl)$ contains convoluted information from each atom

End of lecture

