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Previous Lecture

1. Conducting a diffraction experiment - cont’d

2. Objectives of a Crystal Structure

3. Diffraction theory

4. Unit Cell and Reflections

5. Laue Equations
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Today’s Lecture

1. Laue Equations

2. Ewald Sphere Constructions

3. Bragg’s Law and Resolution

4. Symmetry, Point Groups and Space Groups
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Laue equations

~a ·~S = |~a||~S|cos(~a,~S) = h

~b ·~S = |~b||~S|cos(~b,~S) = k

~c ·~S = |~c||~S|cos(~c,~S) = l

The Laue equations describe the diffraction experiment:

• The triplet (h,k, l) is called the Miller index. Each tripled (h,k, l) describes exactly one re-
flection. (W. H. Miller, 1801–1880)

• The crystal orientation~a,~b,~b and the scattering vector ~S describe the position where to record
the reflection (h,k, l).

• The Laue equations say where each reflection can be recorded, but nothing about the
intensity

• The Laue equations depend on the unit cell parameters a,b,c,α,β ,γ. They are independent

from the chemical composition inside the unit cell.
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Indexing

• the term indexing describes the assignment of the Miller indices to and the reflections re-
corded on the detector.

• Indexing is equivalent to determining the unit cell parameters a,b,c,α,β ,γ and the crystal
orientation.

• Indexing is an essential step for data processing

• In most cases, indexing algorithms work very easily and fast

• Reasons for difficulties with indexing:

– More than one crystal lattice (twinning)

– Very large unit cell leads to overlapping reflections

– Wrong values for the experimental parameters (detector dstance, wavelength, rotation
axis)
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The Ewald Sphere Construction
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The Ewald Sphere

Laue equations: mathematically handy, but difficult to imagine

Ewald sphere: Construction to help understand the diffraction pattern
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Prelude: The reciprocal lattice

• The corners of the unit cell span the crystal lattice

• The unit cell vectors ~a,~b,~c build the basis for the crystal lattice

• Many aspects of diffraction can be described more easily with the help of the reciprocal
lattice.

• ~a∗ =
~b×~c

V
: ~a∗ ⊥ plane(~b,~c)

• ~b∗ = ~c×~a
V

: ~b∗ ⊥ plane(~c,~a)

• ~c∗ = ~a×~b
V

: ~c∗ ⊥ plane(~a,~b)

V : unit cell volume (Å3), V = (~a×~b) · c

The Miller indices (hkl) span the reciprocal lattice:

h~a∗+ k~b∗+ l~c∗ h,k, l ∈ Z

• Each reflection corresponds to one point of the reciprocal lattice.

• When α = β = γ = 90
◦ (orthorhombic unit cell): |~a∗|= 1/a, |~b∗|= 1/b, |~c∗|= 1/c
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Laue Equations: The Ewald Sphere Construction
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Reciprocal Lattice:
~a∗ =

~b×~c
(~a×~b)·~c

~b∗ = ~c×~a
(~a×~b)·~c

~c∗ = ~a×~b
(~a×~b)·~c

Lattice points at:
h~a∗+ k~b∗(+l~c∗)
(hollow circles)

The crystal rotates about the origin of the reciprocal lattice.
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Laue Equations: The Ewald Sphere Construction
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Draw a sphere with
radius 1/λ that touches

the lattice origin. The sphere
centre lies aligned with the
X-ray source.

This sphere is the Ewald Sphere.
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Laue Equations: The Ewald Sphere Construction
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The scattering vector ~S
points from the origin to
the lattice point.

Exactly those lattice
points on the surface of
the Ewald sphere fulfil
the Laue conditions.

They are the recordable

reflections.
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Laue Equations: The Ewald Sphere Construction
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Some of these
spots hit the
detector.

Tim Grüne

12/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II



Tim Grüne

13/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II

Laue Equations: The Ewald Sphere Construction
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Crystal rotation =
Lattice rotation =
New spots

(Rot. axis perpendicular to slide)
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Bragg’s Law
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Bragg’s Law

Idea:

• X-rays are reflected on lattice planes (German: “Gitterebenen” or “Netzebenen”)

• Reflections occur when the path difference is a multiple integer of the wave length
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Bragg’s Law

source
X−rays

X−ray

1. Lattice: Corners of the
unit cells.
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Bragg’s Law

X−ray
source

X−rays

1. Lattice: Corners of the
unit cells.

2. Three corner points make
a plane.
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Bragg’s Law

X−ray
source

X−rays

1. Lattice: Corners of the
unit cells.

2. Three corner points make
a plane.

3. Parallel shifting of plane
through all lattice corners
creates a set of planes.
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Bragg’s Law

X−ray
source

X−rays

2θ
θ

θ

1. Lattice: Corners of the
unit cells.

2. Three corner points make
a plane.

3. Parallel shifting of plane
through all lattice corners
creates a set of planes.
4. Constructive interfer-
ences leads to Bragg’s Law:

nλ = 2d sinθ

d : distance between planes.
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Bragg’s Law

X−raysX−ray
source

nλ = 2d sinθ

Context with Laue equations and
Miller indices:
When Bragg’s law holds, the set
of planes divides the three unit
cell constants a, b, and c into a
integer number of segments.
Here: (2,3,0)

Tim Grüne

20/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II



Tim Grüne

21/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II

Bragg’s Law and Resolution of a Reflection

nλ = 2d sinθ

• The value d is called the resolution of the reflection (hkl)

• d is measured in Å.

• N.B.: High resolution corresponds to a small value of d

• n ≥ 2 higher order reflections, which usually do not occur. We only need to consider the case
n = 1, i.e.

λ = 2d sinθ
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Bragg’s Law and Resolution of a Reflection

λ = 2d sinθ

• Sometimes, the inverted value

d∗ ≡ 1/d =
2sinθ

λ

is called resolution, measured in 1/Å

• High values of d∗ correspond to high resolution and vice versa

• d∗ has the length of the reciprocal lattice vector

d∗ = 1/d = ‖h~a∗+ k~b∗+ l~c∗‖
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Example image with resolution rings

• All reflections on a circle about the direct beam have the same resolution

• When the detector if offset (2θ 6= 0
◦), the circles become ellipses (intersection of a cone and

a plane)
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Reflection Intensity

• The Laue equations, the Bragg equation, and the Ewald sphere construction all refer to the
spot positions.

• They contain no information about spot intensity

• The molecule inside the unit cell determines the intensity of every reflections:

I(hkl) ∝ | ∑
atom j

f j cos(hx j + ky j + lz j)|
2

∝ | ∑
atom j

f je
2πi(hx j+ky j+lz j)|2

1. every atom emits a small spherical wave (cos-term)

2. the amplitude f j is proportional to the atom number Z

3. f j is called atomic scattering factor
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Summary Laue equations

• Reflex positions (“patterns”) depend on the unit cell parameters a,b,c,α,β ,γ and the orienti-
ation of the crystal.

• Reflex positions do not depend on the chemical content of the unit cell.

• Reflex intensities depend on the chemical content of the unit cell

• “chemical content”: atom type and atom positions

• Ewald sphere visualises the Laue equation

• Every reflex has a resolution d, via Bragg’s law.

• High resolution = small d, low resolution = large d
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Symmetry and Space Groups
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Shape and Appearance of Crystals

Steve Lower, http://www.chem1.com/acad/webtext/virtualtextbook.html

Historically, the science of crystallography describes the appearance and (visual) regularity of
crystals.
Nicolaus Steno (1638–1686) states the “law of constant angles” or the “first law of crystallography”
(1669)

Angles between corresponding faces on crystals are the same for all specimens of
the same mineral
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Steno: Law of Constant Angles

lattice plane (120): small Miller index lattice plane (37̄0): large Miller index
=̂ large lattice distance d =̂ smalle lattice distance d

(low resolution reflection) (high resolution reflection)
high atom density along plane: stable low atom density along plane: unstable

Crystal breaks between stable planes
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Example Crystals

Image courtesy Mark Minge,
http://www.diamant-edelstein.de

Ruby (Al2O3+Cr) Pyrite (FeS2)
(100)-direction (210)-direction

b=4.75Å

a=4.75Å

c=12.98Å, α=β=90°

γ=120°

γ=90°

c=5.42Å, α=β=90°

b=5.42Å

a=5.42Å
γ=90°

hexagonal cell cubic cell
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History of Symmetry of Crystals

1801 René-Just Haüy describes crystal symmetries using group theory.

1850 Auguste Bravais describes the 14 Bravais lattices.

1890/1891 Arthur Moritz Schönflies und Jewgraf Stepanowitsch Fjodorow derive all 230
emphspace groups.

1912 Max von Laue, Walter Friedrich und Paul Knipping carry out the first X-ray
diffraction experiment. They prove:

• X-rays are waves

• crystals consists of a lattice
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Meaning of Symmetry for Structure Determination

The symmetry of a crystal is important because it affects

• data acquisition and scaling

• structure solution

• refinement
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Symmetry in molecules

1. What is symmetry?

2. elementary symmetry operations: rotation, mirror plan, inversion centre

3. Combination of symmetry operations: point groups
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The Term “Symmetry”

Symmetry is part of our daily lives:

Butterfly with a mirror plane Flower with 5-fold rotational symmetry

Tim Grüne

33/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II



Tim Grüne

34/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II

Example: 12-fold Rotational Symmetry

60
◦

y
60

◦

y
60
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60
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y
60

◦

y

(http://commons.wikimedia.org/wiki/File:Parliament_Clock_Westminster.jpg)

Symmetry (in real life) is never ideal.
Ideally, all six images would be identical.
The symmetry of crystals and of individual molecules is much closer to the mathematical meaning
of symmetry than macroscopic symmetry.
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Symmetric molecules

Benzene: 6-fold rotational symmetry α-D-Glucose: no proper symmetry
+ mirror planes

non-symmetric molecules can still crystallise
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Symmetry by arrangement: towards a crystal

Crystals without proper symmetry can still be arranged symmetrically.

α-D-Glucose about 3-fold L-Cys und D-Cys with centre of inversion
rotation axis

Tim Grüne

36/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II



Tim Grüne

37/ 57VO 27028726th March 2020, Lecture 3

Chemical Crystallography II

Symmetric arrangement

Sometimes, the arrangement in a crystal may have a chemical meaning.

Hemoglobin in blood cells forms a dimer (dark/light) of two hetero dimers (α/β -globin green and
blue) with a 2-fold rotation axis.
Hemoglobin crystallises with the same arrangement
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Elementary Symmetry Operations
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Symmetry Operations

“Definition”: A Symmetry operation is a “movement” that does not change what an image looks
like.
Any (finite) object as three elementary symmetry operations:

1. (n-fold) rotation

2. mirror plane

3. inversion (=point point reflection)
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Symmetry operations: Rotation

An object with an n-fold axis of rotation can be rotated about this axis by 360
◦

n
without changing its

apparition.
With n such rotations, the object is back to where it was at the beginning.

Benzene: 6-fold axis of rotation
perpendicularly to plane of this
slide

Three glucose molecules with a
3-fold axis of rotation.

Clock face with 12-fold axis of
rotation
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Symmetry operations: Mirror plane

Butterfly with mirror plane Thionyl chloride (SOCl2) with mirror plane.
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Symmetry operations: Inversion

L- and D-Cysteine C10H14I2O4Pt, CSD entry No ACDIPT

displayed with MERCURY

All connections of corresponding atoms run through one single point, the inversion centre of the
object.
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Chiral Molecule

A molecule without centre of inversion and without mirror plane is called chiral.
Inversions or mirroring the molecule creates a different molecule.
The two forms are called right handed (R(ectus)) and left handed (S(inister)).

Important example: amino acids (and therefore all proteins), and nucleic acds (and therefore DNA
and RNA)
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Combination of symmetry operations

Symmetry operations can be combined arbitrarily: any object with two different symmetry operat-
ors is also symmetry with respect to the third symmetry operators, the combination of the two.

Mirror 1

Mirror 2 180
◦-rotation about

intersection of both
mirror planes
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“De-”combination of Symmetry operations

N. B.: The inverse statement is not necessarily correct: not every molecule with a 2-fold rotation
axis contains two mirror planes:

natural proteins are composed of S-
amino acids and are always chiral.
They never contain a centre of inver-
sion, or a mirror plane.
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Symmetry of crystals

1. Additional symmetry operations due to translational symmetry

2. Restrictions for the total number of symmetry
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Symmetry of crystals: Translation

ideal crystal: infinitely large
Therefore: Additional symmetry due to translation by integer shifts of the unit cell.

Additional symmetry operations:

1. glide plane

2. screw axis
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Glide Plane

1. mirror plane

2. translation along one unit cell axis by 1/2 of its length L"ange

racemates (i.e. equimolar mixtures of R- and S-form) often crystallise with glide mirror planes:
efficient packing.
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Screw Axis

A combination of an n-fold rotation axis by 360
◦

n
with a shift along one of the unit cell axes by 1/n of

its length is called a scree axis. Screw axis always run parallel to one it the unit cell axes.

Example for a 41 screw axis:
Rotation about 1/4 · 360

◦ = 90
◦ plus shift by

1/4 along the rotation axis

Side view top view
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Symmetry of crystals: Limitations

The lattice of crystals creates additional symmetry operations in comparison with single molecules
(glide mirror plancs and scew axes). However, since every symmetry operation must map the
lattice into itself, the number of combinations is finite.

This cell as angles 6= 90
◦. This prohibits a 4-fold rotation: a

rotation by 90
◦ creates gaps in the crystal lattice.

We cannot combine any symmetry operation with any cell.
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Symmetry of crystals: Limitations

• A mirror plane, or a centre of inversions, or a rotation axis imposes restrictions onto the
crystal lattice.

• Therefore, not every combination of lattice and symmetry operation is possible.

• Only 2-fold, 3-fold, 4-fold, or 6-fold rotations are possible

(gap-free tiling of the plane with regular squares or hexagons. Impossible with regular
pentagons.)
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Point groups and Space groups
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Point Groups and Space Groups

1. Classification and nomenclature

2. Symbols for symmetry elements
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Point Groups

For finite objects, e.g. molecules, the various symmetry operations create

32 point groups

Every molecule or chemical compound belongs to one out of 32 different point groups.
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Space Groups

The combination of 32 point groups with translation of the (infininte) crystal lattice create

230 space groups

Every crystal belongs to one out of 230 different space groups.
Chiral compounds belong to a subset, 65 different Sohncke groups 1. The Sohncke groups do not
violate the chirality of the compound. erhalten
All point groups and space groups are listed in the in “International Tables of Crystallography”,
Volume A (International Union of Crystallography, IUCr)

1Leonhard Sohncke, 1842–1897, German mathematician andphysicist
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Nomenclature

There are mainly two different types of nomenclatures for point groups and for space groups:

• Hermann-Mauguin System (primarily used in crystallography)

• Schönflies System (primarily used for symmetry of molecules, spectroscopy)
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Next Lecture: April2nd, 2020
(no excercise)
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