Chemical Crystallography and Structural Chemistry

(VO 270287)

Lecture 2

19th March 2020

Dr. Tim Grüne Centre for X-ray Structure Analysis Faculty of Chemistry University of Vienna

tim.gruene@univie.ac.at

Previous Lecture

- 1. (Teaching) Resources for crystallography
- 2. (public) data bases for crystallography
- 3. what are crystals
- 4. X-rays and X-ray diffractometers
- 5. (Conducting a diffraction experiment)

Today's Lecture

- 1. Conducting a diffraction experiment cont'd
- 2. Objectives of a Crystal Structure
- 3. Diffraction theory
- 4. Unit Cell and Reflections

Data Collection experiment

Reflections are data point. Each one contains different information. In order to collect as many data points as possible:

- 1. Rotation of the crystal (about one of three different axes, called ϕ -, ω -, and χ -circles)).
- 2. Rotation of the detector around the crystal, called 2θ -circle. This is parallel to the ω -circle).

The Data Set

The reflections can be described as three dimensional **reciprocal lattice**. The two dimensional detector records an intersection of the three dimensional lattice.

The full experiment results in a data set.

One data set consists of several runs (1–20). One run is the rotation of the crystal about a single axis. Per run, 180–2,000 frames are recorded. One frame corresponds typically to $0.1^{\circ} - 1^{\circ}$ rotation of the crystal.

Examples of Data Frames

- Small molecule, unit cell dimensions: a = 10.56Å, b = 11.64Å, c = 16.14Å, $\alpha = \beta = \gamma = 90^{\circ}$
- Small unit cell: \Rightarrow few reflections
- Reflections beyond edge of detector: $\rightarrow 2\theta$ offset of detector necessary
- black reflections = data; grey regions: noise, neglectable

Examples of Data Frames

- Macromolecule. unit cell dimensions: a = 92.6Å, b = 92.6Å, c = 128.9Å, $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
- Many more reflections
- Reflexes form patterns Muster (lunes, "Kugeldreiecke")
- Intensity reduces towards edge of detector

Examples of Data Frames

- Macromolecule. $\alpha = \gamma = 90^\circ, \beta = 94.2^\circ$
- smeared reflexes
- conditions)
- single crystal.

unit cell dimensions: a = 111.7Å, b = 80.5Å, c = 70.3Å,

• ice rings (formed during measurement, or due to poor shock-freezing

• Closer look: small spots between "patterns": twinned crystal, not a

Objectives of a Crystal Structure

Why Crystal Structure Determination?

The Structure provides atom coordinates: arrangement of elements in 3D space

Organic Chemistry:

- Purity of synthesis
- Success (or failure) of synthesis
- Determination of absolute structure

Inorganic Chemistry"

• Bonding geometry, coordination geometry (of metals ...)

Comparison with other Structural Methods

- **NMR** : chemical environment, sum formula. Not absolute structure
- Rotational spectroscopy: (and gas phase electron diffraction): bond distances (much more **precise** than crystal structure)
- **Crystallography** : Virtually no size limit (protein complexes > 1.5 MDa; differentiation of element types

Examples: Absolute structure and degree of purity

- Methylphenidate (alias Ritalin): medication to treat Attention Deficit Hyperactivity Disorder (ADHD).
- Two chiral centres, four stereoisomers
- Typical: only one stereoisomer with desired effect.
- Remaining stereoisomers: side effects

(E. J. Ariëns: Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology, European Journal of Clinical Pharmacology, 26 (1984), pp. 663-668).

http://de.wikipedia.org/wiki/Methylphenidat

The crystal structure is the only method to determine the absolute structure and the degree of purity of mixtures.

Structure based Drug Development

The antibiotic *Thiostrepton* together with its target DNA. Dr. K. Pröpper.

Knowledge of structure of ligand and target:

- Uptake in http://de.wikipedia.org/wiki/ Insulinpräparat)

• Improvement of chemical interaction • Improvement of shape / surface: Functionality and access to cell or nucleus.

body (Cf.

Crystal Diffraction: Why do crystals produce reflections?

14/ 52

Crystal structure determination is based on the **independent atom model** (IAM):

• the molecule consists of spherical atoms

Crystal structure determination is based on the **independent atom model** (IAM):

- the molecule consists of spherical atoms
- upon irradiation, each atom re-emits a small spherical wave independently from the others
- the strength depends on the atom type

Crystal structure determination is based on the **independent atom model** (IAM):

- the molecule consists of spherical atoms
- upon irradiation, each atom re-emits a small spherical wave independently from the others
- the strength depends on the atom type
- the detector records the overlap of all (tiny) waves

- every atom emits a tiny signal
- individual molecules are too weak to detect
- the crystal **amplifies** the signal

To understand, we introduce the **unit cell** and the **crystal lattice**.

"Periodicity of the unit cell"?

19th March 2020, Lecture 2

"Periodicity of the unit cell"?

19th March 2020, Lecture 2

"Periodicity of the unit cell"?

VO 270287

"Periodicity of the unit cell"?

Periodicity of the unit cell:
Connect two equivalent atoms in two equivalent molecules:
connection can be shifted throughout the crystal

- connection
- atom

Periodicity of the unit cell: Connect two equivalent atoms in two equivalent molecules: shifted can be throughout the crystal

• connection independent of

This results in the **crystal lattice** The smallest parallelepiped (smallest "box") from the **unit cell** of the crystal.

- 1. Pick an arbitrary reference atom 2. Connect with the next equivalent
- 3. in all three directions
- 4. Continue for all molecules:

A three-dimensional box requires six parameters:

- unit cell constants *a*,*b*,*c* (edge lengths)
- angles between the edges

$$\alpha = \angle(b,c)$$
 $\beta = \angle(c,a)$ γ

- constants and angles are independent from the orientation of the crystal
- when written as vectors \vec{a} , \vec{b} , \vec{c} , they also describe the orientation of the crystal with respect to the instrument.

The convention a: red, b: green, c: blue comes from computer graphics, where colours are described as rgb.

19th March 2020, Lecture 2

 $= \angle (a,b)$

29/52

Fractional Coordinates

Atom coordinates are often described with *fractional coordinates*. **Every position** in the crystal has unique coordinates (x, y, z)

$$x * \vec{a} + y * \vec{b} + z * \vec{c}$$

(x, y, z) are called the **fractional coordinates** of this position. For any position *inside* the unit cell:

$$0 \le x, y, z \le 1.$$

Fraction coordinates facilitate the use of symmetry operators. They are normally used in crystallographic computing.

- SHELXL ins-files always use fractional coordinates.
- Macromolecular PDB-files use orthogonal coordinates.

Example: ins-file for Oxalic Acid

```
OH
TITL Oxalic Acid in P 1 21/n 1
       0.71073 6.1026 3.4867
                                   11.9540 90.000
                                                       105.791 90.000
CELL
        4.00 0.0020 0.0016 0.0036
                                           0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000

→ 0.000
ZERR
LATT 1
                                                Ditto grovy name tide
       1/2 - X, 1/2 + Y, 1/2 - Z
SYMM
NEUT
                                                                                SFAC
SFAC C H O
      4 12 12
UNIT
LIST 6
RIGU
L.S.
       10
       0.0180 1.3244
WGHT
        0.09892
FVAR
                                                            0.00919
                                               11.00000
     1 -0.045033
                    0.058931
                                  0.051985
С1
                                  0.321439
                                               11.00000
     3 -0.048452
                    0.131974
                                                            0.01180
03
     3 -0.221285
                                  0.036277
                                               11.00000
                     0.243842
                                                           0.01151
02
     3 0.085162 -0.055871
                                  0.150165
                                              11.00000
                                                           0.01216
01
     2 -0.142238 -0.045413
                                 0.350385
                                              11.00000
                                                           0.02677
HЗ
        0.023619
                                  0.223012
                    0.022591
                                              11.00000
                                                           0.02363
Η1
     2
        0.079486
                    0.197530
                                  0.387391
                                              11.00000
H2
     2
                                                           0.02464
HKLF
       4
END
```


HO

Summary: The Unit Cell

The crystal structure is described by

- 1. the unit cell parameters $a, b, c, \alpha, \beta, \gamma$
- 2. positions and element types of the atoms inside the unit cell

The whole crystal is the result of integer translations (= shifts without gaps or overlaps) of the unit cell in all three directions.

Diffraction Theory — Atoms and X-rays

Physicists' description of light

Planar wave:

Spherical wave:

$$A(\vec{x},t) = A_0 \cos(\vec{k}\vec{x} - \omega t) \qquad \qquad A(\vec{x},t) = \frac{A_0}{|\vec{x}|} \cos(\vec{k}\vec{x} - \omega t)$$

- Intensity $I \propto A_0^2$ and $I \propto (A_0/|x|)^2$, respectively
- Direction of propagation: \vec{k} ; $|\vec{k}| = 2\pi/\lambda = \omega/c$

Important features of waves: the sum of two waves result in a wave

$\cos(|k||\vec{x}| - \omega t)$

One Atom and X-rays

When a planar X-ray wave hits an atom, a spherical wave is emitted.

Superposition with two Atoms

Superposition with regular atoms (crystal)

19th March 2020, Lecture 2

- 4 3
- 2
- 1
- 0
- -1
- -2
- -3
- -4

19th March 2020, Lecture 2

VO 270287

What intensity can be

Far field approximation: Detector very far away, all rays are parallel.

VO 270287

What intensity can be

Constructive interference

λ=1.6 A

 $\Delta = n \cdot \lambda$ ima.

Total amplitude: 6+15+8=29

VO 270287

Path difference: integer multiple of the wavelength: Maxima superpose with maxima, minima superpose with min-

 \rightarrow Maxima = spots on detector

Destructive Interference

 $\lambda=1.6$ A

Path difference: Shift by half wave

Maxima coincide with minima

Total amplitude: (6+8)-15=-1

Inbetween maxima and minima

In all other cases: Total amplitude somewhere between 0 and 29. With **very many** Atoms: no detectable signal, just noise

19th March 2020, Lecture 2

VO 270287

, Path difference: Δ (red - blue)

44/ 52

VO 270287

, Path difference: Δ (red - blue)

45/52

, Path difference: Δ (red - blue)

The Laue equations

- A reflection occurs at the detector, where the path difference is an integer multiple of the wave length.
- The locations lie on rays coming from the crystal
- The directions depend on unit cell parameters and crystal orientation
- The directions are described by the Laue equations (Max von Laue, 1879 1960) .

$$\vec{a} \cdot \vec{S} = |\vec{a}| |\vec{S}| \cos(\vec{a}, \vec{S}) = h$$
$$\vec{b} \cdot \vec{S} = |\vec{b}| |\vec{S}| \cos(\vec{b}, \vec{S}) = k$$
$$\vec{c} \cdot \vec{S} = |\vec{c}| |\vec{S}| \cos(\vec{c}, \vec{S}) = l$$

h, k, l: integer numbers ; \vec{S} the scattering vector

h, k, l: integer numbers ; \vec{S} the scattering vector

$$\vec{a} \cdot \vec{S} = |\vec{a}| |\vec{S}| \cos(\vec{a}, \vec{S}) = h$$
$$\vec{b} \cdot \vec{S} = |\vec{b}| |\vec{S}| \cos(\vec{b}, \vec{S}) = k$$
$$\vec{c} \cdot \vec{S} = |\vec{c}| |\vec{S}| \cos(\vec{c}, \vec{S}) = l$$

The Laue equations describe the geometry of the experiments and reflect the physics of interference:

 $\vec{a}, \vec{b}, \vec{c}$: Orientation of the crystal

 $|\vec{S}_{in}| = 1/\lambda$: wavelength of the experiment

 $|\vec{S}_{out}|$: direction, *alias* position at the detector (is there a spot or not?)

h,*k*,*l* **integer:** integer multiple of path differences $\Delta = n \cdot \lambda$

- Each scattering vector \vec{S} describes exactly one position on the detector
- Only those positions, that fulfil all three Laue equations at once, will show a reflection
- Each reflection is uniquely described by the triplet of integers (*hkl*)
- The triplet (h, k, l) is called the Miller index of the corresponding reflection (W. H. Miller, 1801-1880)
- The *direct beam* \vec{S}_{in} coincides with the reflection (0,0,0)
- The reflection (0,0,0) cannot be measured!

