
Tim Grüne

1/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II

Chemical Crystallography and Structural Chemistry

(VO 270287)

Lecture 2

19th March 2020

Dr. Tim Grüne
Centre for X-ray Structure Analysis
Faculty of Chemistry
University of Vienna

tim.gruene@univie.ac.at

Tim Grüne

1/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II



Tim Grüne

2/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II

Previous Lecture

1. (Teaching) Resources for crystallography

2. (public) data bases for crystallography

3. what are crystals

4. X-rays and X-ray diffractometers

5. (Conducting a diffraction experiment)
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Today’s Lecture

1. Conducting a diffraction experiment - cont’d

2. Objectives of a Crystal Structure

3. Diffraction theory

4. Unit Cell and Reflections
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Data Collection experiment
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Reflections are data point. Each one contains different information. In order to collect as many
data points as possible:

1. Rotation of the crystal (about one of three different axes, called φ–, ω–, and χ–circles)).

2. Rotation of the detector around the crystal, called 2θ–circle. This is parallel to the ω–circle).
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The Data Set

The reflections can be described as three dimensional reciprocal lattice. The two dimensional
detector records an intersection of the three dimensional lattice.
The full experiment results in a data set.
One data set consists of several runs (1–20). One run is the rotation of the crystal about a single
axis. Per run, 180–2,000 frames are recorded. One frame corresponds typically to 0.1◦ – 1

◦

rotation of the crystal.
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Examples of Data Frames

• Small molecule, unit cell dimen-
sions: a = 10.56Å, b = 11.64Å, c = 16.14Å,
α = β = γ = 90

◦

• Small unit cell: ⇒ few reflections

• Reflections beyond edge of de-
tector: → 2θ offset of detector ne-
cessary

• black reflections = data; grey re-
gions: noise, neglectable
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Examples of Data Frames

• Macromolecule. unit cell dimen-
sions: a = 92.6Å, b = 92.6Å, c = 128.9Å,
α = β = 90

◦,γ = 120
◦

• Many more reflections

• Reflexes form patterns Muster
(lunes, “Kugeldreiecke”)

• Intensity reduces towards edge of
detector
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Examples of Data Frames

• Macromolecule. unit cell dimen-
sions: a = 111.7Å, b = 80.5Å, c = 70.3Å,
α = γ = 90

◦,β = 94.2◦

• smeared reflexes

• ice rings (formed during measure-
ment, or due to poor shock-freezing
conditions)

• Closer look: small spots between
“patterns”: twinned crystal, not a
single crystal.
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Objectives of a Crystal Structure

Tim Grüne

9/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II



Tim Grüne

10/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II

Why Crystal Structure Determination?

The Structure provides atom coordinates: arrangement of elements in 3D space

Organic Chemistry:

• Purity of synthesis

• Success (or failure) of synthesis

• Determination of absolute structure

Inorganic Chemistry"

• Bonding geometry, coordination geometry (of metals . . . )
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Comparison with other Structural Methods

NMR : chemical environment, sum formula. Not absolute structure

Rotational spectroscopy: (and gas phase electron diffraction): bond distances (much more
precise than crystal structure)

Crystallography : Virtually no size limit (protein complexes > 1.5 MDa; differentiation of element
types
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Examples: Absolute structure and degree of purity

• Methylphenidate (alias Ritalin): medication to treat Atten-
tion Deficit Hyperactivity Disorder (ADHD).

• Two chiral centres, four stereoisomers

• Typical: only one stereoisomer with desired effect.

• Remaining stereoisomers: side effects

(E. J. Ariëns:Stereochemistry, a basis for sophisticated

nonsense in pharmacokinetics and clinical pharmacology,
European Journal of Clinical Pharmacology, 26 (1984), pp.
663–668).

http://de.wikipedia.org/wiki/Methylphenidat

The crystal structure is the only method to determine the absolute structure and the degree of
purity of mixtures.
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Structure based Drug Development

Knowledge of structure of ligand and target:

• Improvement of chemical interaction

• Improvement of shape / surface: Func-
tionality and access to cell or nucleus.

• Uptake in body (cf.
http://de.wikipedia.org/wiki/

Insulinpräparat)

The antibiotic Thiostrepton together with its tar-
get DNA. Dr. K. Pröpper.
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Crystal Diffraction: Why do crystals produce reflections?
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Independent Atom Model (IAM)

O

Crystal structure determination is based on the independ-
ent atom model (IAM):

• the molecule consists of spherical atoms
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Independent Atom Model (IAM)

O

Crystal structure determination is based on the independ-
ent atom model (IAM):

• the molecule consists of spherical atoms

• upon irradiation, each atom re-emits a small spherical
wave independently from the others

• the strength depends on the atom type
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Independent Atom Model (IAM)
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Crystal structure determination is based on the independ-
ent atom model (IAM):

• the molecule consists of spherical atoms

• upon irradiation, each atom re-emits a small spherical
wave independently from the others

• the strength depends on the atom type

• the detector records the overlap of all (tiny) waves
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Independent Atom Model (IAM)

• every atom emits a tiny signal

• individual molecules are too weak to detect

• the crystal amplifies the signal

To understand, we introduce the unit cell and the crystal lattice.
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The Unit Cell

“Periodicity of the unit cell”?
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The Unit Cell

“Periodicity of the unit cell”?

Tim Grüne

20/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II



Tim Grüne

21/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II

The Unit Cell

“Periodicity of the unit cell”?
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The Unit Cell

“Periodicity of the unit cell”?
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The Unit Cell

“Periodicity of the unit cell”?
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The Unit Cell

“Periodicity of the unit cell”?

Tim Grüne

24/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II



Tim Grüne

25/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II

The Unit Cell

“Periodicity of the unit cell”?
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The Unit Cell
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b = 9.2Å

a = 12.5Å

b = 9.2Å

a = 12.5Å

Periodicity of the unit cell:
Connect two equivalent atoms in two
equivalent molecules:

• connection can be shifted
throughout the crystal
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The Unit Cell
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a = 12.5Å

b = 9.2Å

a = 12.5Å

b = 9.2Å

a = 12.5Å

Periodicity of the unit cell:
Connect two equivalent atoms in two
equivalent molecules:

• connection can be shifted
throughout the crystal

• connection independent of
atom

Tim Grüne

27/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II



Tim Grüne

28/ 52VO 27028719th March 2020, Lecture 2

Chemical Crystallography II

The Unit Cell
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1. Pick an arbitrary reference atom

2. Connect with the next equivalent
one

3. in all three directions

4. Continue for all molecules:

This results in the crystal lattice
The smallest parallelepiped (smallest “box”) from the unit cell of the crystal.
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The Unit Cell

A three-dimensional box requires six parameters:

• unit cell constants a,b,c (edge lengths)

• angles between the edges

α = ∠(b,c) β = ∠(c,a) γ = ∠(a,b)

• constants and angles are independent from the orientation of the crystal

• when written as vectors ~a,~b, ~c, they also describe the orientation of the crystal with respect
to the instrument.

The convention a: red, b: green, c: blue comes from computer graphics, where colours are
described as rgb.
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Fractional Coordinates

Atom coordinates are often described with fractional coordinates.
Every position in the crystal has unique coordinates (x,y,z)

x∗~a+ y∗~b+ z∗~c

(x,y,z) are called the fractional coordinates of this position.
For any position inside the unit cell:

0 ≤ x,y,z ≤ 1.

Fraction coordinates facilitate the use of symmetry operators. They are normally used in crystal-
lographic computing.

• SHELXL ins-files always use fractional coordinates.

• Macromolecular PDB-files use orthogonal coordinates.

The position (0.3, 0.6, 0.5).
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Example: ins-file for Oxalic Acid

TITL Oxalic Acid in P 1 21/n 1

CELL 0.71073 6.1026 3.4867 11.9540 90.000 105.791 90.000

ZERR 4.00 0.0020 0.0016 0.0036 0.000 0.027 0.000

LATT 1

SYMM 1/2 - X, 1/2 + Y, 1/2 - Z

NEUT

SFAC C H O

UNIT 4 12 12

LIST 6

RIGU

L.S. 10

WGHT 0.0180 1.3244

FVAR 0.09892

C1 1 -0.045033 0.058931 0.051985 11.00000 0.00919

O3 3 -0.048452 0.131974 0.321439 11.00000 0.01180

O2 3 -0.221285 0.243842 0.036277 11.00000 0.01151

O1 3 0.085162 -0.055871 0.150165 11.00000 0.01216

H3 2 -0.142238 -0.045413 0.350385 11.00000 0.02677

H1 2 0.023619 0.022591 0.223012 11.00000 0.02363

H2 2 0.079486 0.197530 0.387391 11.00000 0.02464

HKLF 4

END
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Summary: The Unit Cell

The crystal structure is described by

1. the unit cell parameters a,b,c,α,β ,γ

2. positions and element types of the atoms inside the unit cell

The whole crystal is the result of integer translations ( = shifts without gaps or overlaps) of the unit
cell in all three directions.
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Diffraction Theory — Atoms and X-rays
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Physicists’ description of light
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Planar wave:

A(~x, t) = A0 cos(~k~x−ωt)

Spherical wave:

A(~x, t) =
A0

|~x|
cos(|k||~x|−ωt)

• Intensity I ∝ A0
2 and I ∝ (A0/|x|)

2, respectively

• Direction of propagation:~k; |~k|= 2π/λ = ω/c

Important features of waves: the sum of two waves result in a wave
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One Atom and X-rays

When a planar X-ray wave hits an atom, a spherical wave is emitted.
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Superposition with two Atoms
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Superposition with regular atoms (crystal)
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Crystal as amplifier

X−ray
source waves

X−ray

What intensity can be
observed here?
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Crystal as amplifier

X−ray
source waves

X−ray

What intensity can be
observed here?

Far field approx-
imation: Detector
very far away, all
rays are parallel.
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Crystal as amplifier

X−ray
source waves

X−ray

A1

A2

A3

What intensity can be
observed here?

Path difference
∆ (red - blue)
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Constructive interference
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λ=1.6 A

w1=  6.0 cos (2π/λ*(x-0.0))
w2= 15.0 cos (2π/λ*(x-3.2))
w3=  8.0 cos (2π/λ*(x-4.8))

w(x)=w1+w2+w3
∆ = n ·λ
Path difference: integer multiple of the
wavelength: Maxima superpose with
maxima, minima superpose with min-
ima.
→ Maxima = spots on detector

Total amplitude: 6+15+8=29
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Destructive Interference
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λ=1.6 A

w1=  6.0 cos (2π/λ*(x-0.0))
w2= 15.0 cos (2π/λ*(x-0.8))
w3=  8.0 cos (2π/λ*(x-1.6))

w(x)=w1+w2+w3
∆ = (n+ 1

2
) ·λ

Path difference: Shift by half wave
length:
Maxima coincide with minima

Total amplitude: (6+8)-15=-1
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Inbetween maxima and minima
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λ=1.6 A

w1=  6.0 cos (2π/λ*(x-0.0))
w2= 15.0 cos (2π/λ*(x-1.8))
w3=  8.0 cos (2π/λ*(x-2.6))

w(x)=w1+w2+w3
In all other cases:
Total amplitude somewhere between
0 and 29.
With very many Atoms:
no detectable signal, just noise
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Crystal as amplifier

X−ray
source waves

X−ray

A1

A2

A3

Path difference: ∆ (red - blue)

constructive interference:
∆ = n λ
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Crystal as amplifier

X−ray
source waves

X−ray

A1

A2

A3

Path difference: ∆ (red - blue)

constructive interference:
∆ = n λ

When true for A1 and A2:
true for A3, A4, . . .
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Crystal as amplifier

X−ray
source waves

X−ray

A1

A2

A3

Path difference: ∆ (red - blue)

constructive interference:
∆ = n λ

When true for A1 and A2:
true for A3, A4, . . .

Amplification due to crystal periodicity
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The Laue equations
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Laue equations

• A reflection occurs at the detector, where the path difference is an integer multiple of the
wave length.

• The locations lie on rays coming from the crystal

• The directions depend on unit cell parameters and crystal orientation

• The directions are described by the Laue equations (Max von Laue, 1879 - 1960) .
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Laue equations

~a ·~S = |~a||~S|cos(~a,~S) = h

~b ·~S = |~b||~S|cos(~b,~S) = k

~c ·~S = |~c||~S|cos(~c,~S) = l

h,k, l: integer numbers ; ~S the scattering vector
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Laue equations

~a ·~S = |~a||~S|cos(~a,~S) = h

~b ·~S = |~b||~S|cos(~b,~S) = k

~c ·~S = |~c||~S|cos(~c,~S) = l

h,k, l: integer numbers ; ~S the scattering vector

X−ray
source waves

X−ray

~Sin. Length: 1/λ

~Sout. Length 1/λ

~S =~Sout−~Sin2θ
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Laue equations

~a ·~S = |~a||~S|cos(~a,~S) = h

~b ·~S = |~b||~S|cos(~b,~S) = k

~c ·~S = |~c||~S|cos(~c,~S) = l

The Laue equations describe the geometry of the experiments and reflect the physics of interfer-
ence:

~a,~b,~c: Orientation of the crystal

|~Sin|= 1/λ : wavelength of the experiment

|~Sout|: direction, alias position at the detector (is there a spot or not?)

h,k, l integer: integer multiple of path differences ∆ = n ·λ
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Laue equations

• Each scattering vector ~S describes exactly one position on the detector

• Only those positions, that fulfil all three Laue equations at once, will show a reflection

• Each reflection is uniquely described by the triplet of integers (hkl)

• The triplet (h,k, l) is called the Miller index of the corresponding reflection (W. H. Miller,
1801–1880)

• The direct beam ~Sin coincides with the reflection (0,0,0)

• The reflection (0,0,0) cannot be measured!
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