Black Locust (Robinia pseudacacia L.) in Austria: The Interplay of Climate, Climate Change and Range Expansion

KLEINBAUER Ingrid*, DULLINGER Stefan*, ESSL Franz°, PETERSEIL Johannes°, ENGLISCH Thorsten°

* VINCA – Institute for Nature Conservation and Analyses, Vienna, Austria
° UBA - Federal Environment Agency, Vienna, Austria

REFERENCES:
Jacob et al., 2005: unpublished report within the EU-project prudence - Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects

FIRST

The leguminous tree black locust arrived in Europe during the 17th century. By now it has become the most problematic introduced tree species in Austria: threatening silvicultures as well as rare endangered plant communities, in particular species-rich dry and semi-dry, nutrient poor grasslands and thermophilous oak forests. Once established population density increases rapidly due to efficient vegetative reproduction by root suckering.

THAT’S WHY

We have to identify regions and habitats at risk of becoming invaded under a warmer climate.

BUT HOW?

We constructed the environmental envelop for black locust in Austria, using Generalized Linear Models (GLM, McCullagh & Nelder, 1989) to regress several factors (Fig. 3) against presence/absence of black locust. Occurrence data was extracted from the “Mapping the Flora of Austria” database: for each cell (3’ x 5’) in a raster - covering the whole country - the status of black locust is known (see Fig. 2)

In a stepwise backward selection (p<0.05) the following factors were chosen as best predictors (see Fig. 3):
- mean April temperature
- mean winter precipitation sums
- mean number of frost days
- land use index
- curvature index

The bootstrap-corrected final model’s regression coefficient R^2 is 0.71 and Somer’s index (Dxy) is 0.89.

THEN

Mean April temperature and mean winter precipitation were recalculated using two different climate change scenarios for the end of the current century: 1) HadAM3 from the IPCC (Pope et al.,2000) and 2) a regionalized model from ETH Zurich (Jacob et al., 2005), CH, which has been downscaled for the whole Alpine region. Please see Fig. 4 and 5 for details in changes and comparison of climate change scenarios.

NEXT STEPS

To account for differences in recruitment success
- in different habitat types
- along a temperature gradient
- under increased Nitrogen availability
- and facing a competitor (native Quercus petraea) …

... we started a field experiment in late spring 2006 to test for germination success and survival (see Fig. 6 and 7). The experiment will be finished by the end of 2008.

REFERENCES:
Jacob et al., 2005: unpublished report within the EU-project prudence - Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects