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Abstract
Landslide susceptibility maps can be elaborated using a variety of methodological approaches.
This study investigates quantitative and qualitative differences between two statistical
modelling methods, taking into account the impact of two different response variables
(landslide inventories) for the Rhenodanubian Flysch zone of Lower Austria. Quantitative
validation of the four generated susceptibility maps is conducted by calculating conventional
accuracy statistics for an independent random landslide subsample. Qualitative geomorphic
plausibility is estimated by comparing the final susceptibility maps with hillshades of a high
resolution Airborne Laser Scan Digital Terrain Model (ALS-DTM). Spatial variations between
the final susceptibility maps are displayed by difference maps and their densities. Although
statistical quality criterions reveal similar qualities for all maps, difference maps and
geomorphic plausibility expose considerable differences between the maps. Given that, this
conclusion could only be drawn by evaluating additionally the geomorphic plausibility and
difference maps. Therefore, we indicate that conventional statistical quality assessment should
be combined with qualitative validation of the maps.
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27.1 Introduction

Landslides represent a widespread hazard for residents and
their properties in many hilly and mountainous areas of the
world. The relative spatial likelihood of a certain area pos-
sibly endangered by a landslide can be displayed by land-
slide susceptibility maps. In order to assess landslide
susceptibility at medium and small scale, statistical suscep-
tibility methods represent the most frequently used approa-
ches (Cascini 2008; Van Westen 2000).

A literature review demonstrated that numerous studies focus
on the statistical assessment of model performance computing
confusion matrices, receiver-operating characteristic (ROC)

plots, the area under the ROC-curve (AUROC) or prediction
rates (Beguería 2006; Chung and Fabbri 2003; Frattini et al.
2010).

We assume that the explanatory power of these statistical
measures is highly dependent on the quality of the inventory
used to calculate these statistics.

However, previous studies outlined the need for qualita-
tive evaluation methods such as the geomorphic plausibility
(Bell 2007; Demoulin and Chung 2007). Therefore, we
investigate the effect of different modelling methods and
different inventories by validating the resulting maps statis-
tically and qualitatively.

27.2 Study Area and Data

The Rhenodanubian Flysch zone of the provincial state
Lower Austria is located in the eastern part of Austria and
covers an area of 1,354 km2. The west-to-east oriented
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highly human influenced tectonic unit can be divided into
five geologic sub-units (Fig. 27.1) and is well known to be
susceptible to rainfall triggered landslides (Steger 2012).

The four susceptibility maps, which represent the basis
for this study, were generated in an earlier work using
variables (slope, geology, aspect, curvature, topographic
position index, mean annual precipitation) selected on the
basis of a comprehensive exploratory data analysis (Steger
2012). Susceptibility was calculated applying two methods:
multivariate logistic regression (Atkinson and Massari 1998)
and bivariate Landslide Susceptibility Index (LSI) (Lee
2004).

The two landslide inventories used to generate and vali-
date the susceptibility maps quantitatively are the (i) highly
accurate ALS-Inventory, which contains 6,218 landslide
scarps and was mapped from a high resolution ALS-DTM
purposely for susceptibility modelling (Petschko et al. 2013)
and the (ii) less accurate building ground register (BGR), an
archive consisting of 681 landslides representing the dam-
aging events documented in this area. Furthermore, a hill-
shade was generated from a high-resolution ALS-DTM
(1 m × 1 m) to assess the geomorphic plausibility.

27.3 Methods

Quantitative validation was conducted by comparing the
generated susceptibility maps with 20 % of randomly
selected landslides for the respective inventory. This inde-
pendent subsample was not used to generate the maps. The
output of the LSI-models (values ranging from 0 to ∞) did
not allow to compute the “classical” threshold independent
ROC-curves and AUROC-values. Therefore, four threshold
dependent (logistic regression: 0.1, 0.3, 0.8, median; LSI: 1,
1.2, 1.5, median) confusion matrices were calculated for
each model. The resulting sensitivity/specificity-pairs were
plotted on a ROC-graph (Beguería 2006).

Based on the hillshade, geomorphic plausibility (Bell
2007) was subjectively assessed by evaluating the geomor-
phic situation of the area and by comparing this evaluation
with equally classified (quartiles) susceptibility maps at
medium scale. If this estimation converged with the ranking
expressed in the susceptibility map, high geomorphic plau-
sibility was assigned and vice versa.

Difference maps and their densities (values averaged over
a radius of 500 m) were calculated to visualize pixel-based
spatial variations between the equally classified susceptibil-
ity maps.

27.4 Results

The ROC-curves (Fig. 27.2e) reveal similar predictive capa-
bilities for all susceptibility maps. A comparison of this curves
with the associated AUROC-values of the logistic regression
models (ALS: 0.83, BGR: 0.79) approves that all maps exhibit
an acceptable to excellent ability to distinguish between sus-
ceptible and non-susceptible areas (Hosmer and Lemeshow
2000). In contrast, geomorphic plausibility differs substan-
tially among these maps. Generally we observed that similar
maps were created using the same inventory but different
modelling methods. However, the maps differed widely using
different inventories but the same modelling approach.
Looking at the geomorphic situation in the representative
section of the study area presented in Fig. 27.2we expected the
hummocky formed slopes of the northern transition zone (see
Fig. 27.1) being a landslide prone area, whereas the smooth
formed ridges and floodplains are not susceptible. Comparing
this expert based evaluation with the susceptibility maps, we
observed that ALS-maps resulting from both modelling
methods (Fig. 27.2a, b) were frequently able to match our
evaluation of the prevalent geomorphic situation. This ten-
dency can be observed throughout the study area. Conversely,
both BGR-maps (Fig. 27.2c, d) were regularly not able to

Fig. 27.1 Location and geologic
overview of the study area
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discriminate between susceptible and non-susceptible areas.
In order to evaluate the effects of different modelling
approaches on the geomorphic plausibility of the maps, we
detected that both logistic regression maps (Fig. 27.2a, c)
exhibit smoother transitions between the susceptibility classes
as the more scattered LSI maps (Fig. 27.2b, d).

Difference maps and their densities (Fig. 27.3) highlight
substantial spatial variations among the susceptibility maps.
In this respect, largest dissimilarities were observed between
maps created by different inventories (Fig. 27.3c, d). The
density maps display the small-scale differences between the
maps and point out that their main variations are frequently
in spatial agreement with the areal extend of the geologic
units (Fig. 27.1). Therefore, the differences can be explained
by differing weightings of geologic units between the
models. At medium scale (Fig. 27.3, difference maps)
highest differences between the maps can be detected on
steeper slopes and floodplains, whereas ridges are regularly
displayed as non-susceptible by all maps.

The plots in Fig. 27.3 summarize the pixel-based pro-
portion of differences between the maps for the entire study
area. These charts reveal that even the most similar
appearing maps (Fig. 27.3a) with similar statistical quality

(Fig. 27.2e) and comparable geomorphic plausibility
(Fig. 27.2a, b), differ largely by evaluating the differences at
largest scale (pixel-basis). Accordingly, the proportion of
dissimilar predictions between all maps is high and ranges
from 55 (Fig. 27.3a) to 66 % (Fig. 27.3d). A relative high
proportion (18 and 7 %) of completely opposed predictions
was observed by comparing the maps created by the same
modelling method using different inventories (Fig. 27.3c, d).

27.5 Discussion and Conclusion

The results of conventional statistical validation portrayed
similar predictive capabilities for all generated susceptibility
maps (Fig. 27.2e). Conversely, the assessment of geomor-
phic plausibility of these maps revealed substantial differ-
ences among the maps. Based on the results of this study and
the knowledge of the differing qualities of both inventories
(Petschko et al. 2013), we state that the explanatory power of
inventory based statistical performance measures is only as
high as the quality of the inventory used to calculate these
statistics. Consequently, the discrepancy between the cal-
culated high statistical quality (Fig. 27.2e) and the observed

Fig. 27.2 ROC-curves (e) and susceptibility maps created by logistic regression (a, c) and LSI (b, d) using ALS-Inventory (a, b) and
BGR-Inventory (c, d)
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low geomorphic plausibility of both BGR-maps (Fig. 27.2c,
d) can be explained. Since a complete highly accurate and
unbiased landslide inventory is seldom available (Malamud
et al. 2004; Petschko et al. 2013), we assume that a direct
deduction of the reliability and applicability of these maps
on the basis of conventional accuracy statistics may result in
misleading conclusions.

Thus, we conclude that an (inventory-independent)
assessment of geomorphic plausibility quality criterion
should be performed additionally.

The implementation of susceptibility maps into spatial
planning is accompanied by constructing a decisive reality
for end-users (Petschko et al. 2014) which is often directly
deduced from the respective color and/or pixel-value.
Accordingly, the observed large differences at pixel-scale
(Fig. 27.3) might result in major problems when imple-
menting these maps. Further research on the geomorphic
plausibility and the comparison of different modelling
approaches is envisaged.
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Fig. 27.3 Density maps,
difference maps and pixel-based
proportion of differences
displaying the spatial variation of
calculated susceptibility maps at
different scales
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