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A Review of Scale Dependency
in Landslide Hazard
and Risk Analysis

T. Glade and M.J. Crozier

3.1 Introduction

Landslides occur at various spatial and temporal scales. They are a natural part of land-
scape evolution, and differ greatly in their contribution to slope-forming processes in
different environmental settings. When landslides occur, they can move quickly downs-
lope at rates of several m/s, or they can creep slowly at rates of only a few mm/year.
On the one hand, they can move instantaneously following a specific trigger such as an
earthquake, an intense rainfall event,.an explosion, or undercutting event. On the other
hand, they may show a_.delayed response to critical triggering conditions, for example
after a prolonged rainfall event. with a gradual rise in porewater pressures. The range of
spatial and temporal scales covered by different landslide types is shown schematically
in Figure 3.1.

The wide range of both spatial and temporal scales distinguishes landslide processes
significantly from other natural processes such as floods, earthquake shaking or tsunamis.
Some examples of the range of landslide occurrences are given in Figure 3.2. The relative
spatial and temporal coverage of these examples is indicated in Figure 3.1. Despite these
extreme variations, some general patterns of occurrences can be recognized.

The spatial and temporal behaviour of landslides and the occurrence of specific types
of landslide can be linked to particular environmental domains, but only in the most
general terms (Figure 3.2). For example, all types and scales of movement can be found
in mountainous terrain. However, rock avalanches (Bergsturz) and instantaneous rock
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Figure 3.1 Schematic diagram of scales of landslide occurrence. Letters refer to examples
shown in Figures 3.2(a—f)

and debris falls, slides, and flows with long runouts are generally restricted to these steep
mountainous areas. Such areas provide the potential and kinetic energy requirements by
having high relief and steep slopes, as well as providing large rock-dominated slopes,
and sources of mechanically weathered debris. Nevertheless, rotational failures (slumps)
require rock and soil conditions that are massive and free from structural control in
order to achieve their full development. Typically, such conditions are met in softer
rock in more gentle terrain. Large failures, however, are not restricted to any terrain.
Block slides, rotational failures (slumps) and lateral spreading of large dimensions have
been recorded in areas of very low slope angle as well as low relative relief. Critical
in these instances is the presencerof weak or failure-prone material. The slump flows in
the quick clay of Scandanavia and North America are prime examples (e.g. Larsen et al.,
1999). Other problem situations are'’commonly found in areas where slopes have been
actively and recently destabilized, usually by active undercutting such as on river banks
and coasts or whererhuman construction has taken place. All forms of movement are
possible in thesedocations and their magnitude and behaviour are largely dictated by the
available relief-and slope angle. Regolith and soil failures are, by definition, characteristic
of areas that are of sufficiently low angle or sufficiently susceptible to weathering to
have produced and retained a regolith mantle (for example rolling hill country). The
soil and debris slides and flows that eminate from these areas are supply-constrained.
Their frequency of occurrence is dependent not only on triggering forces but also on the
availability of material. These failures become most threatening in areas where they can
become channelized. Thus moderate to steep terrain, retaining a regolith and drained by
high-angle valleys, provides the potential for high-velocity, high-magnitude events.

The character of magnitude and frequency distributions can also be related to the nature
of the triggering event. Earthquake shaking and extreme climatic conditions (including
intense rainfall) can trigger movements over areas of many square kilometres in extent
(Crozier and Preston, 1999; Eyles et al., 1978; Keefer, 2002). These situations commonly
produce multiple-occurrence events with up to thousands of landslides occurring over
hundreds of square kilometres in the range of a few minutes or hours. Their impact can
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Figure 3.2a Examples of landslides occurring at different temporal and spatial scales.
Rockfall in the Ahr Valley, Germany (photo by T. Glade)
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Figure 3.2c Debris flow in the Matter Valley, Switzerland (photo by H. Gartner)
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Figure 3.2d Debris and earthslides and flows in Makahoni,~New: Zealand (photo by
M.J. Crozier)

Figure 3.2e Coastal landslides in the south of the Isle of Wight, UK (photo by T. Glade)
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Figure 3.2f lLarge rock slumps in King Country, New Zealand (photo by M.J. Crozier)

be registered in all types of terrain, from gentle relief to mountainous terrain. Analysis
of such events has indicated difficulities in differentiating the landslide signature arising
from earthquake- and rainfall-triggered events. Crozier (1997) suggests that climatically
triggered events have a predominance of small to medium-size landslides, with only
the rare large event, whereas'he concludes that earthquake-triggered events are capable
of producing a high proportiontof-large failures. Alternatively, Guzzetti etal. (2002b)
suggest that the magnitude—frequency distribution of events triggered by rainfall and
earthquakes are indistinguishable.

Irrespective of the triggering mechanism, on most slopes, landslides will occur where
inherent susceptibility (excess strength) is lowest. However, failure sites for climatically
triggered events will normally occur where surface and groundwater concentrate or
where _sufficient depth of susceptible material occurs (e.g. hillslope hollows, Crozier
etal.] 1990), In some situations, prevailing antecedent soil-water conditions may be
related to slope aspect, consequently dictating the distribution of landslide occurrence
during.an event (Crozier eral., 1980). In contrast, seismically triggered failures may
occur preferentially on ridge crests where topographic enhancement of earthquake waves
occurs or within material susceptible to liquefaction. Other triggering mechanisms such
as undercutting by geomorphic process occur in predictable locations such as the outside
bends of stream channels and exposed coastal cliffs. Triggering by human action is
indiscriminate (Baroni eral., 2000), generally confined to areas of undercutting, mining
or oversteepening or to areas that have been loaded by material or excess drainage.
However, human action as a preparatory factor (see Chapter 2) can exert its influence
over wide areas, such as in the case of deforestation (e.g. Glade, 2003a; Guthrie, 2002;
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Marden and Rowan, 1993; Montgomery etal., 2000; Vanacker etal., 2003; Wu and
Swanston, 1980).

3.2 Philosophy of Spatial Modelling

The temporal and spatial behaviour of landslides dictates the method of hazard and risk
analysis as well as the treatment of the problem. While individual landslides may be
treated with site investigations and possibly advanced numerical stability models, spatial
distributions require other techniques. Generally, it can be assumed that with increasing
spatial resolution more data are available to analyse the phenomenon, hence the system
complexity also increases. Accordingly, the model generalizing reality expands in its
complexity. Consequently, the more data available, the higher is the model complexity,
and the predictive potential of the result is more robust. This dependency /has been
described to determine spatial patterns of catchment hydrology by Grayson and Bloschl
(2000) as well as Grayson et al. (2002) and is transferred to spatial landslide observations
in Figure 3.3.

The conceptual relation between data availability, model complexity and predictive
capacity shows that there is an ‘optimum model complexity’ (bold~dashed line in
Figure 3.3) best describing the relation of these three variables. The following example
demonstrates this dependency for a given data set (bold line:in Figure 3.4). Analysis of
a medium-sized data set shows a decreasing model performance. after having passed the
line of ‘optimum model complexity’. Even better and more advanced models describe
the data set with less predictive capacity. This relation can be attributed to the fact that a
specific data set allows only the application of specific:models; more advanced models
do not necessarily increase the accuracy of prediction. Similarly, a model with a given
complexity can only be used to predict’a data set of a given quality. Even better data
sets (in quality, quantity, resolutions“etc.) downot significantly enhance the prediction
given by the similar model complexity. Although the general trend shown in this figure
is reasonable, some problems are inherent in details. The line of ‘optimum model com-
plexity’ is not necessarily as straight as shown in Figure 3.3. Another possible relation
is a step-wise increase in-prediction accuracy, which is given when the data availability
increases, but model complexity and the predictive surface stay constant. In contrast,
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Figure 3.3 Schematic diagram showing one relation between data availability, model com-
plexity and predictive capacity of the result (based on Grayson and Bléschl, 2000 and Grayson
etal., 2002). The ‘optimum model complexity’ (Grayson etal., 2000) is marked as a bold
dashed line and described in the text
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Figure 3.4 Schematic relation between data availability, model complexity and predictive
capacity of the result. This figure gives a probable relation of current reality. The'boldine
indicates a decrease of the predictive surface after exceeding the line of ‘optimum:model
performance’ (bold dashed line) although the data availability increases

models with increasing complexity applied to the same data set do not necessarily change
the predictive surface. In addition, often the accuracy of results (or predictive surface)
from different models with increasing complexity decreases after exceeding the line of
‘optimum model complexity’ (bold line in Figure 3.4). This«can be related to the fact that
the more variables included in a data set, the more uncertain.are the interrelationships, and
positive or negative feedback loops between the variables exist. Larger model complex-
ities cannot address these interrelations and loops adequately. Consequently, more data
do not necessarily allow better predictive surfaces; as indicated in Figure 3.3. Therefore,
the minimum set of information that best explains the system behaviour with current
methods and techniques has to be determined. It must be asked whether the most accurate
predictive result is better modelled using smaller data sets than applying additional data to
a similar model. In addition, the simpler black<box models (i.e. models where only input
and output are known and no knowledge on internal links is available) are often more
robust than advanced numerical models. Hence, after exceeding the line of ‘optimum
model complexity’ there is.no constant prediction surface associated with increasing data
sets for similar models as shownsin Figure 3.3; rather the prediction surface decreases
again with larger data sets: This'dependency is given schematically in Figure 3.4.

To summarize, Figute 3.3 gives theoretical relations, but these relations can often not
be verified by analysis for-the reasons explained in the previous paragraph. Independent
of the previously mentioned constraints, however, research should aim to move towards
a relation such.as-given in Figure 3.3.

For practical application (e.g. planning purposes), it is most important to consider
the cost of the analysis, and the benefit of the proposed measures. Such cost—benefit
considerations are often the driving force of practical solutions and thus the line of
‘optimum model complexity’ helps to define which method describes the available data
set with highest precision for which resolution. Consequently, it is most important to be
sure that the result of the applied method meets the requirements of the study aim.

Having this schematic concept of data availability, model complexity and prediction
capacity in mind, the following sections review approaches for local investigations and
spatial analysis. Three distinct different landslide types have been selected: rockfall,
debris flow and translational/rotational earth- and soil slides. These three groups are the
most common landslide types and are thus briefly reviewed with respect to susceptibility,
hazard and risk.
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3.3 Landslide Susceptibility and Hazard Analysis

3.3.1 Site-based Stability and Hazard Analysis
3.3.1.1 Rock slope analysis

Rock slope failures, rockfalls and rock topples can occur in any size. Worldwide examples
are summarized by Evans and DeGraff (2002). Analytical techniques for rockfalls and
rock slopes have been developed since the beginning of the twentieth century. Albert
Heim (1932) analysed rockfalls systematically in the European Alps. This work has been
extended by Abele (1974) to produce one of the most comprehensive monographs on
rockfalls in the European Alps. On the basis of this type of information various other
authors have continued to develop the empirical methods. Many of these methods use, in
particular, fall height and rock volume to establish empirical estimates of runout distance
(e.g. Scheidegger, 1973, 1984). Mapping of field evidence and the characterization 'of
different terrain along with landslide attributes are common to many empirical models
of this type (e.g. Li Tianchi, 1983). In contrast, detailed rock slope monitoring is often
required in order to give predictions for rockfall occurrences (e.g..Monma.etal., 2000).
These studies require more advanced models.

A summary of those various analytical methods and techniques.is given in Giani
(1992) and Erismann and Abele (2001). Following Coggan et al. (1998), Moser (2002)
differentiates between conventional techniques and numerical methods for rock slope
analysis. The conventional methods include stereographic and kinematic analysis, limit
equilibrium analysis and physical modelling, including the use of rockfall simulators.
Stereographic and kinematic analyses aim at’determining critical slope, discontinuity
geometry and approximate shear strength characteristics. Limiting equilibrium analysis
focuses on determining the degree of stability of a slope and requires information on slope
geometric and material characteristics; rock mass shear strength parameters (cohesion
and friction), as well as groundwater conditions (Stead etal., 2001). Physical models
use material characteristics at appropriate/scaling factors. Rockfall simulators are based
on slope geometry, rock block sizes, shapes along with density, and on the coefficients
of restitution (Moser, 2002). Examples of such models widely applied for practical use
include the Colorado Rockfall Simulation Program CRSP (Jones eral., 2000) and the
‘Rockfall’ model developed by Spang and Sonser (1995), which additionally considers the
influence of vegetation characteristics (Ploner and Sonser, 1999). A similar ROCKFALL
model, developed by Evans and Hungr (1993), is based on a random collision lumped
mass modelling approach. The ROCKFALL model uses two restitution coefficients and
a transition to rolling criterion (Evans and Hungr, 1993). A comparison of some rockfall
models is given by Guzzetti etal. (2002a).

Numerical models may include continuum modelling (e.g. finite-elements, finite-
difference), discontinuum modelling (e.g. distinct-elements, discrete-elements) (e.g.
Yamagami et al., 2001), and hybrid/coupled modelling (Moser, 2002). In general, advan-
tages of these numerical approaches are: a basis on general physical laws, a deformation
and stability consideration performed within one model only, any kind of support or
construction is incorporated, and dynamic impacts such as vibrations or earthquakes can
be modelled. These models are mainly used in mining and civil engineering situations.
Specific applications include tunnel constructions, foundations, and surface excavations
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(Kliche, 1999). The main disadvantage is, however, the high demand for precise data,
which are often not available in view of the cost involved or the high complexity of the
slopes.

3.3.1.2 Debris-flow analysis

Debris flows are complex mass movement processes determined by hydraulic flow
behaviour, which is strongly dependent on the composition of the solids (Hungr, in
press; Hungr etal., 2001). One of the first monographs specifically devoted to debris
flows was published by Stiny (1910). The most recent textbook on debris flows and
debris avalanches is edited by Jakob and Hungr (in press). The methods used to.assess
debris flows on a site-specific scale range from general geometric relations to_advanced
numerical modelling. Current research on debris flows is summarized in Chen(1997),
Wieczorek and Naeser (2000), Rickenmann and Chen (2003) as well’as within the
proceedings of the International Symposium INTERPRAEVENT (proceedings of last
symposia are INTERPRAEVENT, 2000a, b, c, 2002a, b).

Relatively simple empirical and semi-empirical methods commonly relate geometric
parameters to debris-flow characteristics. Due to practical demands, one.of the most com-
mon debris flow characteristics to be modelled is the runout distance (e.g. Rickenmann,
1999; Wieczorek et al., 2000). Although originally developed for rockfalls (as suggested
by Heim, 1932 and further developed by Scheidegger, 1975; Li Tianchi, 1983 and others),
the empirical model describing the relationship between volume and travel distance, and
in some cases relief (height difference betweenthe starting and deposition point) has also
been widely applied to debris flows (e.g. Cannon, 1989; Corominas, 1996; Mark and
Ellen, 1995; Rickenmann, 1999; Wong and Ho, 1996; Zimmermann et al., 1997). Other
studies using statistical analysis of slope geometry to predict landslide travel distances
are limited to cut slopes, fill slopes, retaining walls and boulder falls (e.g. Finlay etal.,
1999). However, there are some-drawbacks in these empirical approaches. First, some
models do not consider slope breaks within the longitudinal channel profile (e.g. Cannon,
1993; Fannin etal., 1997): Second, some models give statistical relationships between
various factors which have been calculated for specific regions only, and are therefore
not easily applicable-to other regions. Additionally, it is impossible to model or include
complex flow mechanisms involved in the equations. Despite all of these limitations,
Rickenmann (1999)‘has shown a surprisingly good fit of general and global trends for
these empirical models.

Rheological and physical-based modelling of debris flows needs detailed information
on rheologic, hydrologic and hydraulic properties (e.g. Coussot et al., 1998). For example,
Hungr (2000) analysed debris-flow surges using the theory of uniformly progressive flow.
Numerous authors are working with such physical models (e.g. Costa and Wieczorek,
1987; Iverson, 1997a, b; Major and Iverson, 1999; Revellino et al., 2002). A recent review
of different approaches is given by Hutter etal. (1996), Jan and Shen (1997), Chen and
Lee (2000) and within Rickenmann and Chen (2003).

3.3.1.3 Slide stability investigations

Slide stability analysis have a long history going back to Terzaghi (1925), Terzaghi and
Peck (1948), Skempton and Northey (1952), and Skempton (1953). Besides modelling
the stability of unfailed slopes, it is also of interest to get more information on the
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importance of certain stability factors of previous events, which can be verified by back-
analysis. For example, a large event which interests researchers until today is the Vaiont
slide (e.g. Kiersch, 1980; Miiller, 1964; Petley, 1996; Skempton, 1966; Voight and Faust,
1992). Most recently, Vardoulakis (2002) performed a dynamic analysis and presented
two early stages of the earth slide considering two mechanically coupled substructures:
(a) the rapidly deforming shear band at the base of the slide, and (b) the accelerating
(rotating) rigid body.

Most recent reviews of slope stability concepts and techniques have been reviewed
by Bromhead (1996, 1997). Applications of numerical modelling tools to slope stabil-
ity assessments for single landslides are given in Bandis (1999). Additionally, the use
of neural networks for slope stability modelling is becoming popular (e.g. Mayoraz
etal., 1996), and some authors also used this method to predict slope movements (e.g:
Fernandez-Steeger and Czurda, 2001). Collections of most recent approaches of slope
stability modelling are within the conference proceedings edited by Anderson and Brooks
(1996), Li etal. (1998), especially by Ho and Li (2003).

Actual research tries to extend sophisticated models originally developed for two-
dimensional approaches to the third dimension (e.g. Bromhead et al., 2002;-Wang et al.,
2001). One example is CHASM in its latest version 4.0. Within this.Combined Hydrol-
ogy And Stability Model, geometrical characteristics, geotechnical properties, hydrologic
conditions and vegetation-related information are defined for squares with three dimen-
sions. In combination with triggering conditions, both rainfall events and earthquakes,
slope stability calculations give most likely failure  surfaces with respective factor-of-
safety values, and runout distance can be obtained (Lloyd ¢fal., in press). Another recent
method is the Energy Approach (EA) developed by Ekanayake and Phillips (1999). The
newly proposed approach incorporates, within the stability analysis, the ability of soil
with roots to withstand strain, based on‘a consideration of the energy consumed during
the shearing process of the soil-rootsystem (Ekanayake and Phillips, 1999). All these
new promising approaches cannot be used at larger spatial scales, because neither data
are available in the required detail nor does the computational capacity exist. However,
with further development of computer technology, these approaches have the potential
to be applied within the next years:

3.3.1.4 Conclusion

Rock slope analyses are commonly based on empirical estimates, conventional stability
analysis techniques, and more sophisticated numerical methods. The more advanced the
models, the higher the input data requirement and thus, the more complex the assessment.
Hence empirical and conventional techniques are applied either for back-analysis or for
preliminary ‘assessments. Detailed site-specific investigations require numerical models
based on continuum modelling, discontinuum modelling, or hybrid/coupled modelling.
The last models, in particular, are used in mining and civil engineering applications.
Debris-flow analysis is strongly determined by hydraulic-flow behaviour. Empirical
and semi-empirical methods relate geometric parameters to debris-flow characteristics.
Despite restrictive assumptions these relatively simple methods have proven their poten-
tial in practical applications. Rheological and physical-based modelling approaches have
been further developed over the last decades. Although these approaches allow a detailed
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modelling of debris flows, data requirements are very high and thus such models applied
to practical applications are limited.

Slide stability analysis usually provides a statement of site susceptibility in terms of
a factor-of-safety. In the case of first-time failures, the magnitude of event is largely
unknown. However, modelling multiple potential failure surface permits some estimate,
usually in a two-dimensional sense, of the likely magnitude involved. Moreover, the mag-
nitude of movement associated with pre-existing failures can be addressed by locating
the boundary shear surfaces within the slope. In addition, if the significance of dynamic
stability factors (such as porewater pressure) can be determined through sensitivity analy-
sis, then the behaviour of such critical factors may be linked to external triggering factors
(such as rainfall). An examination of the climatic record may then reveal the frequency
with which critical conditions may be reached within the slope. In some instances, the
importance of certain stability factors can be verified by back-analysis of previous events.

For site-based analysis, irrespective of the process types and the applied method, the
main objective should be the determination of both the magnitude and frequency of
landslide occurrence, in order to properly estimate the hazard. By definition, the general
location and, in some cases, the actual landslide itself is predetermined in site-based
analyses. If no information on frequency is available, then itis only possible to determine
the susceptibility of a given location towards the respective process. In some cases,
frequency—magnitude information may be obtained by using historical archives or field
evidences to approximate temporal landslide occurrence (e.g. Glade eral., 2001a).

3.3.2 Spatial Susceptibility and Hazard Analysis

Investigations of numerous landslides extending over large regions have been performed
for decades. Many of the first regional assessments carried out were based on mapping
techniques as part of extensive field survey campaigns (e.g. Brabb and Pampeyan, 1972).
With the development of new.computer technologies, particularly GIS techniques (e.g.
Carrara and Guzzetti, 1995), controlled automated mapping procedures are becoming
more popular (e.g. McKean and Roering, 2004). These techniques are commonly based on
remote sensing data and use either aerial photography or satellite images to obtain spatial
information on landslide occurrence and movement (e.g. Hervds etal., 2003). These
automated procedures'are constantly being developed with new computer generations,
along with thevavailability of remote sensing imagery with increased resolution and
accuracy. The main advantage of any GIS technique is its capacity for spatial analysis
of large data sets. Different spatial information can be linked and coupled, new data sets
can be created, and additional information can be obtained. Thus these recent advances
provide a powerful tool for spatial landslide assessment.

Within the last decade, techniques of spatial landslide analysis have been greatly
improved (e.g. summarized in Carrara and Guzzetti, 1995). Based on the scale classifi-
cation for engineering geology maps (International Association of Engineering Geology,
1976), Soeters and van Westen (1996) have carried out extensive assessments of spatial
landslide hazard. They slightly modified the original classification to produce the follow-
ing classes ranging from large scales (<1:10000), medium scales (1:15000-1:100 000),
regional scales (1:125000-1:500 000), to national scales (>1:750000). A typical method
of analysis can be assigned to each investigation scale. This classification is summarized
in Table 3.1.
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Table 3.1 Recommended scales for different spatial landslide analysis (extended from
Soeters and van Westen, 1996)

Scale Qualitative methods Quantitative methods
Inventory ~ Heuristic ~ Statistical ~ Probabilistic Process-
analysis analysis prediction based and
analysis numerical
analysis
<1:10000 Yes Yes Yes Yes Yes
1:15000-1:100 000 Yes Yes Yes Yes Probable
1:125 000-1:500 000 Yes Yes Probable Probable No
>1:750000 Yes Yes No No No

Two main types of investigation can be differentiated on the basis of .methodology:
qualitative and quantitative. Landslide inventories plus heuristic approaches are grouped
within the qualitative methods. In nearly all spatial investigations, landslide inventories
are the basis for developing and/or verifying the method. Even if the chosen method does
not use landslide locations for model development (e.g. numerical models), information
on locations is needed for verification and validation of theresults (e.g. Santacana et al.,
2003). These inventories are thus of great importance, and provide a potential source
of information for future developments in spatial analysis (Guzzetti etal., 1999). Conse-
quently, a high proportion of project resources should be allocated for the development of
inventories, because only high-quality inventories allow a reliable proof for spatial analy-
sis. A second qualitative method is the heuristic approach. Based on a priori knowledge,
local experiences, as well as expert judgement, are included. The heuristic approach also
uses spatial information in explaining landslide occurrence. Commonly, such information
includes topographic, hydrological, geologic, geotechnical, or geomorphic factors, and
often vegetation coverage along with land use is considered, too. These factors are deter-
mined by either field campaigns or aerial‘photograph interpretation. In particular, spatial
geomorphic factor maps offer a first approximation of the activity degree regarding the
respective landslide processes (e.g./Cardinali etal., 2002). In addition to inventories and
other factor maps, this geemorphic information is an important basis for any further
assessment (e.g. Glade and Jensen, 2004). Experts weight the importance of different
environmental factors based on personal knowledge and experience, thus providing an
initial assessment of landslide susceptibility. Indeed, qualitative weightings are heavily
dependent on the experience of the person or expert group responsible for the analysis.
Criteriafor the assessments are not always identifiable by others, which is a major limi-
tation of the heuristic approach. Thus the objectivity is not measurable, and consequently
the reproducibility is often difficult. However, if the expert has a profound understand-
ing of the processes involved and knows the study region in detail, such assessments
can also be accurate and applicable, in particular for first approximations of landslide
susceptibility.

In contrast, approaches using quantitative methods are generally based on objective cri-
teria and are thus, in theory at least, repeatable, producing identical results for similar data
sets. The quantitative methods include statistical, probabilistic prediction, process-based,
or numerical approaches. The statistical methods are the most popular ones. Factor maps
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such as geology, soils, or topographic conditions (e.g. slope angle, horizontal and vertical
curvature, aspect, distance to divide, etc.) are compared with landslide distribution from
inventory maps and landslide density is calculated. Initially bivariate statistical analysis
may be used to compare each factor separately with landslide locations, and weighting
factors are computed on this basis for each factor. However, using multivariate statistics,
any combination of factor maps can be related to landslide locations and the resulting
matrix is then analysed using statistical tests, such as multiple regression or discriminant
analysis (e.g. Chung etal., 1995). The statistical tests then provide information on which
factor or which combination of factors best explains landslide occurrence. The areas with
factor scores equivalent to those for areas associated with landslides, but without former
landslide occurrence, are thus considered prone to future landslides. Resulting maps give
only spatial landslide susceptibility, because they do not contain any direct information
on the hazard, that is, temporal variation of magnitude and frequency of landslides. Other
statistical methods providing probabilistic prediction models (e.g. Bayesian probability,
fuzzy logic) can also be used to produce landslide susceptibility’maps (e:g. Binaghi
etal., 1998; Chung and Fabbri, 1999; Fabbri et al., 2002; Fernandez-Steeger et al., 2002;
Pistocchi eral., 2002). For example, the fuzzy method simply applies.‘if-then’ rules to
the different factor sets, and is thus based on a decision tree approach (e.g. Ercanoglu
and Gokceoglu, 2002; Mackay etal., 2003). The result is still a susceptibility map.
Basic assumptions in both statistical approaches are static/environmental and triggering
boundary conditions. Considering the ongoing debate on.the effects of climate change
on landslide occurrence (e.g. Dehn, 1999; Schmidt and Glade, 2003), on changes of
catchment conditions following each landslide event (e.g. Crozier and Preston, 1999),
and on human impact on environmental conditions through, for example, land use change
(e.g. Frattini and Crosta, 2002), it is.obvious that these assumptions strongly influence
the interpretation of the result.

The use of different data sets for spatial analysis requires a good deal of caution. First,
large data sets are required which are difficult to assess for some remote regions. Second,
the input data need to be.of identical quality and resolution. For example, generating a
10 m raster resolution from a‘1:2 750 000 soil map using downscaling techniques provided
in any GIS is very_easy. This‘downscaled high-resolution raster can be used for large-
scale analysis, for example at a scale of 1:25000. However, the information stored with
the 10 m raster.pixel still relates to the original scale, and is thus of little value for
comparison' with more detailed data sets, for example landslide locations. Although this
pitfall is.obvious, one might be tempted to apply this procedure in order to gain a result;
but when analysing data sets with two different resolutions, the result can lead to an
incorrect conclusion. As a general rule-of-thumb, spatial analysis can only be carried
out at the scale of the data set with the coarsest resolution. Nevertheless, despite all
these potential pitfalls and limitations, the beauty of this approach is its simplicity and
reproducibility. And for numerous applications, the derived information on landslide
susceptibility is sufficient.

The second group of quantitative methods includes the empirical and deterministic,
process-based methods. Within this set of methods, topographic attributes (e.g. slope
angle, vertical and horizontal curvatures, slope aspect, distance to divide or channel,
contributing area, etc.) are coupled with hydrological conditions (e.g. soil saturation,
permeability, hydraulic conductivity) and generalized geotechnical information on soil
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properties (e.g. cohesion, angle of internal friction, specific weight) in order to perform a
stability analysis. Most of the available models are based on the infinite slope approach
(e.g. Vanacker etal., 2003).

Verification of modelled results, however, is an important task which is not always
carried out (Chowdhury and Flentje, 2003). One example of a spatial application of the
infinite slope approach is the SHALSTAB model, which has been developed by Mont-
gomery and Dietrich (1994) and Dietrich eral. (1995) and was applied to various sites in
the United States (e.g. Dietrich and Sitar, 1997, Montgomery efal., 2000; Montgomery
etal., 1998) and in Rio de Janeiro (e.g. Fernandes etal., 2004). A recent development is
the application of numerical cinematic approaches to spatial analysis (e.g. Giinther et al.,
2002a, b).

After having addressed major issues in site-specific and spatial landslide analysis, the
final part of this chapter focuses on spatial landslide assessments. Due to the numerous
demands from agencies responsible for spatial planning and to the increasing numbers
of studies published in recent years, it is important to give an overview of spatial
assessments. Consequently, the following sections give some examples of different kinds
of spatial landslide susceptibility and hazard, but also risk investigations.

3.4 A Review of Spatial Landslide Susceptibility and Hazard
Investigations

Qualitative methods and approaches are popular for providing a preliminary estimation of
landslide susceptibility and hazard. While some investigations do not distinguish between
the different types of landslide, others treat specific.types separately. To illustrate different
types of analysis, some examples of the many studies that have been carried out are given
below. Whenever possible, the studies have been classed in the two groups of ‘catchment
and regional scale’ and ‘national scale’ analysis.

3.4.1 General Landslide Information

Table 3.2 lists sources providing information on the spatial distribution of landslides.
These sources treat landslides collectively and do not provide an analysis on the basis
of landslide type. The nature of the data provided (whether in the form of general
information, landslide distribution, or inventory) is noted for each entry. For some sources,
it was difficult to determine which form of spatial information was used. If no details on
the spatial data set were available, the label ‘information” was added. Table 3.2 shows
that numerous spatial landslide studies have been carried out. These data sets provide a
rich information base for future detailed analysis.

Table 3.3 includes references to those spatial data sets providing estimations of land-
slide susceptibility and hazard. None of these, however, differentiates between different
types of landslide. These sources of information have been classified in the table as
susceptibility, hazard, zonation, or qualitative assessment. This table demonstrates the
performance of numerous spatial analyses throughout the world and the availability of
spatial landslide susceptibility and hazard estimates for numerous catchments and regions.
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3.4.2 Rock Slope Analysis

Spatial rock slope analysis focuses mainly on rockfalls and rock slides, the latter mostly of
large dimension. Information on spatial studies on rockfalls, topples, slides and avalanches
is summarized in Table 3.4. Inventories give spatial distributions (e.g. Gardner, 1983;
Luckman, 1972; McSaveney, 2002). Other inventories have been further analysed using
statistical approaches (e.g. Bartsch eral., 2002) and apply empirical models to spatial
rockfall analysis (e.g. Dorren and Seijmonsberegen, 2003; Meifl, 2001; Wieczorek et al.,
1998). Most recently, numerical models have been developed to calculate spatial move-
ment patterns (e.g. Guzzetti etal., 2002a). Although a few general national inventories
provide information on rockfalls and topples (e.g. Guzzetti etal., 1994), no nationwide
inventory has been carried out specifically for rock slope events.

3.4.3 Debris-flow Analysis

In contrast, debris flows have been investigated at catchment, regional and national scales
(Table 3.5). Such investigations have been focused on general inventories of spatial
debris-flow occurrence (e.g. Calcaterra et al., 1996a) or on distributions following distinct
triggering events (e.g. Del Prete etal., 1998; Pareschi etal., 2000; Rickenmann, 1990;
Villi and Dal Pra’, 2002). Statistical techniques along with numerical approaches to assess
debris-flow susceptibility and hazard have been applied in' various regions worldwide
(e.g. D’ Ambrosio et al., 2003a; D’ Ambrosio et al., 2003b; Lorente efal., 2002; Mark and
Ellen, 1995). Besides the catchment and regional analysis, national scale investigations
have also been carried out. For example, maps showing the reported debris flows, debris
avalanches and mudflows (Bert, 1980), as well-as inventory and regional susceptibility
for Holocene debris flows and related fast-moving landslides (Brabb eral., 1999), are
available for the USA or for Switzerland (Zimmermann ezal., 1997).

3.4.4 Slide Analysis

References related to spatial assessments of soil and earth flows and slides are summarized
in Table 3.6. While some authors record deep-seated landslides only (e.g. Yamagishi ez al.,
2002), others focus on shallow translational slides. Several papers employ infinite limiting
equilibrium slope stability analysis. This method has been applied in particular to shallow
landsliding (e.g. Dietrich‘etal., 1995; Montgomery and Dietrich, 1994; Montgomery
etal., 2000; Wu_and Abdel-Latif, 2000) to estimate the factor of safety and probability
of failure. Derived from hydrological response units, soil mechanical response units
have been suggested by Moller eral. (2001) for application to the infinite slope model.
Some authors also include soil root strength (e.g. Ekanayake and Phillips, 1999). Simple
heuristic techniques are also applied to national scale investigations (e.g. Fallsvik and
Viberg, 1998; Viberg eral., 2002). In addition, Perov eral. (1997) presented a global
distribution of mudflows. Although this analysis is based on expert judgement, it gives a
first.approximation of mudflow distributions, thus providing a starting point for further,
more detailed analysis applying more advanced models.

3.4.5 Summary

Tables 3.2 to 3.6 demonstrate the wide application of spatial landslide analysis over the
last thirty years. Types of information range from landslide distributions and inventories to
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advanced mathematical modelling of spatial data sets at catchment, regional and national
scales. At regional scales, statistical models have been widely applied to assess landslide
susceptibility (e.g. Baeza and Corominas, 2001; Carrara, 1983, 1989; Carrara et al., 1977a;
Fernandes et al., 2004; Griffiths et al., 2002; Jiger, 1997) and hazard (e.g. Guzzetti et al.,
1999; van Asch etal., 1992). Also statistical techniques such as the fuzzy approach (e.g.
Ercanoglu and Gokceoglu, 2002; Pistocchi etal., 2002) as well as different probabilistic
prediction models (e.g. Pistocchi eral., 2002 or most recently Chung, Chapter 4 in this
book) have been applied recently to assess landslide susceptibility. At national scale,
Paige-Green (1985) has produced a classification of different susceptibility classes based
on expert judgement. Information on landsliding in Great Britain was summarized by
Jones and Lee (1994) and a comprehensive landslide inventory is provided by Guzzetti
etal. (1994) for Italy. For Germany, a national landslide susceptibility map was estimated
based on lithology and slope geometry (Dikau and Glade, 2003). The latter examples
show, despite the fact of landslide occurrence at distinct locations or within restricted
regions, the large potential for analysis at the national scale. Any available local or
regional landslide information can be used to validate and verify the results gained at
national scale analysis. Although major differences in the resolution and‘quality of basic
data sets and in the type of analysis appear, spatial landslide information is available and
provides a valuable source for further analysis, for example to estimate regional landslide
risk by combination with elements at risk and respective socio-economic attributes. For
some regions, such regional landslide risk estimates have already been carried out. Some
examples are given in the following section.

3.5 Landslide Risk Assessments

The history and basic concepts of landslide risk assessments and analysis are explained in
Chapters 1 and 2 of this book (refer also to Chowdhury, 1988; Evans, 1997; Kong, 2002).
The following section summarizes regional examples of landslide risk assessment. Due
to limited information,<Table 3.7 does not distinguish between different landslide types,
nor between different. methods used to assess the elements at risk and the respective
consequences. Methods may involve different spatial resolution of elements at risk (e.g.
single houses-versus. ‘urban settlement’) and different depth of quality and quantity of
socio-economic data (e.g. monetary value of a building including its content or of an
industrial.site including goods, number of persons of different ages in a house versus
‘population density’, population per km?). Such socio-economic data are fundamental to
an_accurate assessment of vulnerability (Romang eral., 2003). Comprehensive expres-
sions of vulnerability involve not only structural measures (e.g. the degree of damage
to a building hit by a given magnitude debris flow), but have also a social dimension
(e.g. coping capacity (resilience) of the affected person/family/community) as described
by Solana and Kilburn (2003).

Once landslide hazard maps have been produced and further spatial information on
potential consequences is available, landslide risk can be estimated (e.g. Wu et al., 1996).
Thus the consequences of the natural hazard occurring are the product of the elements at
risk and the vulnerability. A measure of vulnerability is essential for the determination
of consequences and is defined as the degree of loss for a given element at risk, or set
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of elements at risk, resulting from event occurrence of a given magnitude (Newman and
Strojan, 1998). Vulnerability is commonly expressed on a scale of 0 (no loss) to 1 (total
loss) and is expressed either in monetary terms, such as the loss experienced by a given
property, or to loss of life. The vulnerability concept has been reviewed for landslide risk
assessments by Alexander (Chapter 5 in this book) and Glade (2004).

The risk concept (hazard x elements at risk x vulnerability) (UNDRO, 1982) has
been transferred to landslides issues by various authors (Brabb, 1984; Einstein, 1988; Fell,
1994; Gill, 1974; Hearn and Griffiths, 2001; Hicks and Smith, 1981; Leone etal., 1996;
Leroi, 1996; Stevenson, 1977; Stevenson and Sloane, 1980; Wu and Swanston, 1980). One
comprehensive publication summarizing various attempts to address landslide risk is the
proceedings of a workshop on landslide risk assessment edited by Cruden and Fell (1997).
Since then, various case studies have been published on landslide risk (e.g. Cardinali
etal., 2002; Dai et al., 2002; Finlay eral., 1999; Guzzetti, 2000; Hardingham et al., 1998;
Hearn and Griffiths, 2001; Michael-Leiba et al., 2000). A comprehensive and generalized
definition of landslide risk has been proposed by the Australian Geomechanics Society
by Fell (2000) and adopted by the TUGS Working Group on Landslides — Committee
on Risk Assessment (1997). This report refers not only to”the definitions given in
Chapter 1 and in the glossary of this book, but also focuses on the'netions of ‘acceptable’,
‘tolerable’, ‘single’ (individual) and ‘collective’ (societal) risk. As a conclusion, however,
the majority of landslide hazard and risk literature is based.on natural science approaches
to assess landslide risk (Aleotti and Chowdhury, 1999). Social science studies looking at
coping strategies or resilience capacities of affected communities for landslide occurrence
are rather limited in contrast to those available for other natural processes such as floods
or earthquakes.

Table 3.7 gives an overview of various spatial'landslide risk assessments for different
regions worldwide. While some authors present landslide hazard and risk zonation based
on mapping procedures (e.g. Espizua and Bengochea, 2002), others propose empirical
assessments for specific landslide types, for example debris flows (Liu et al., 2002), or use
probabilistic methods to analyse landslide risk (e.g. Chung and Fabbri, 2002; Rezig et al.,
1996). Common to all approaches is the attempt to relate socio-economic data to spatial
landslide hazard information .in order to gain more informative data on the potential
consequences of dandslide occurrence. Numerous publications are available which use
‘risk” in their.title ‘and text, but do not cover the risk concept as previously defined.
Such studies have not been included in the presented tables. In order to demonstrate
the different depth of analysis, the following section gives examples of local and spatial
landslide risk assessments at varying levels of generalization.

3.6 Examples of Landslide Risk Analysis

Spatial landslide risk analysis provides a valuable tool for gaining risk estimates at
the regional scale. As with any spatial assessment, the choice of model type and the
performance of the model are strongly dependent on the data sets available for analysis.
Two examples of varying depth of analysis and data sets of different resolution give
some idea on the variety of details in spatial landslide risk analysis. Hence the focus of
the following examples is not on the calculation of the hazard using advanced methods
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(e.g. Guzzetti etal., 2003); rather it aims to demonstrate the application of different
information on elements at risk and potential consequences for spatial landslide risk
analysis.

3.6.1 A Quantitative Rockfall Risk Analysis in Bildudalur, Iceland

A comprehensive, object-oriented assessment of landslide risk has been carried out
by Glade and Jensen (2004) for Bildudalur in the northwest fjord region of Iceland
(Figure 3.5). To illustrate the result of the applied methodology of risk analysis, the
following description focuses on rockfalls. A detailed report of environmental settings of
Bildudalur, local rockfall history along with the method and results of calculating runout
zones for rockfalls are described in detail in Glade and Jensen (2004).

Based on this report, Bell and Glade (2004) developed a methodology for landslide risk
analysis as part of a general landslide risk assessment. For this methodology, the approach
of Heinimann (1999) was applied, which determines the vulnerability of buildings accord-
ing to building structure and their resistance to rockfalls of different magnitude. Historical
data could not be used to prove the reliability of vulnerability values because suitable
information was not available. Within the whole historical record, no fatalities have
been caused by rockfall events (Glade and Jensen, 2004). Although thereis no previous
evidence of serious consequences, there still is an inherent/tisk to life which needs to
be calculated to support responsible administration to take appropriate countermeasures.
Therefore the probability of loss of life in a building for both individuals (individual risk
of life) and all people living or working inside a house (object risk to life, thus a risk to
life considering all the people staying inside one‘building) has been calculated.

Rockfall runout zones determined by Glade‘andJensen (2004) have been transformed
into hazard zones by attributing a return period to each rock size used within the runout
calculations. Rockfall risk was calculated using these hazard zones in combination with
potential damage values and respective vulnerabilities of the elements at risk. The spatial
distribution of one set of elements at risk (number of residents and employees per
building) are shown in Figure 3:6. The consequence analysis was carried out considering
the vulnerability, the probability of spatial and temporal impact, as well as the probability
of seasonal impact of the-rockfall at any given location in the study area. Resulting risk
maps include individual risk to life and object risk to life, which are given in Figure 3.7.
On these maps, areas:with different probabilities of loss of life can be identified (refer
to Bell and Glade, 2004 for a comprehensive description).

The individual risk to life due to rockfalls ranges between 1.1 x 107> /year and 5.6 x
1073 /year and is thus relatively low (Figure 3.7a). Of the total area, 92% belong to low
risk and.8% to very low risk. Taking the total number of people in a building into account
(object risk to life), the risk increases (Figure 3.7b) and ranges between 1.6 x 1073 /year
and 2.1 x 1073 /year. For the total region, 4% relate to very low risk, 27% to low risk,
58% to medium risk, and 11% to high risk. The calculated total risk to life is 0.009
deaths per year.

Similar procedures can be used to calculate the monetary risk of the community. One
of the main advantages of such an approach is that this type of analysis can be performed
for just about any natural processes (e.g. rockfall, debris flow, snow avalanches, tsunami)
and a combined multi-risk analysis can be derived (Bell and Glade, 2004). Whether
appropriate countermeasures have to be organized is the decision of the responsible
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Figure 3.5 (a) Northwards view to Bildudalur, Northwest Iceland. Relief difference is
approx. 400 m. (b) Rock with diametres up to 1.7 m above a house in Bildudalur (photos by
T. Clade)
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Figure 3.6 from all elements at risk, the number of residents and employees per building
are given using the four classes of residents: ‘no’, ‘few’ (1-2 persons), ‘some’ (3-6 persons),
and ‘many’ (>7 persons). Eighty-nine buildings are garages and barns and are grouped as
‘no’ persons, ‘few’ persons reside in 26 buildings, 46 buildings accommodate ‘some’ persons,
and only two buildings belong to the largest class (Bell and Glade, 2004)
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584000

1
287000

Figure 3.7 The rockfall risk map gives two different types of risks in buildings. (a) refers to
the individual risk to life for each person. (b) gives the object risk to life considering all people
in a building, and hence is an average risk to life (Bell and Clade, 2004)



584000

A Review of Scale Dependency

109

287000

Figure 3.7 (Continued)
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administration. This type of analysis, however, provides the local administrations with
important information.

3.6.2 A Regional Approach to Address Regional Landslide Risk

The Rheinhessen study was designed to provide a landslide risk analysis by applying
simplified vulnerability values and generalized monetary values based on regional mean
values. Regional details and the general background of slope instability in Rheinhessen
are given in Glade eral. (2001b) and Glade etal. (in prep.b). Dominant landslide types
are shallow translational failures and rotational slides (Figure 3.8).

First, landslide risk analysis is based on landslide hazard map derived by Jager (1997),
but extended resolution using a 20 m DTM instead of the original 40 m. Second, elements
at risk have been determined for different land use groups and digitized from official land
use plans. Afterwards, for each element at risk, a damage potential has been defined based
on literature review and on data from national statistics yearbooks (Table 3.8). For this
region, no information on vulnerability of elements at risk from landslide initiation was
available. Therefore it was assumed that if an element at risk is affected by a landslide,
it is totally destroyed. Consequently, vulnerability has been assigned as-1 to all elements
at risk. Due to the low probability that a person will be injured or-even killed from a
landslide event, risk to life has been excluded from the analysis. Details on methods,
analysis and results are given by Glade etal. (in prep.b).

The classified elements at risk are summarized in Table 3.8. Respective damage
potentials have been assigned to enable a calculation of economic value for each class.

Figure 3.8 Example of the rotational landslide OCK3 in northwest Rheinhessen, view to east
(photo by T. Glade)
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Table 3.8 Elements at risk with attributed damage potential in (€/m?) (refer to Glade etal.
(in prep.b) for details of sources and calculations)

Risk element Monetary value (€/m?)  Risk element Monetary value (€/m?)
Residential Area 255 Pasture 0.5-0.7

Mixed usage 255-410 Agricultural areas 0.3
Industrial Region 205-255 Viniculture 10
Specialized Region 205 Forest 2

Road 13-15 Highway 85-128

These classes have been combined with natural hazard information and the elements at
risks. A qualitative matrix of the combination of these parameters resulted in different
landslide risk classes, which are shown in the landslide risk map (Figure 3.9 =~ see also
Colour Plate section Plate 1).

The landslide risk map includes ‘low’, ‘medium’, ‘high’ and ‘very high’ risk classes. Of
the total area, 90% has been classified as ‘low’, 8% as ‘medium’, 2% as ‘high’, and 0.2%
as ‘very high’ landslide risk. In general, ‘low’ risk areas refer to flat or moderately steep
slopes with pasture. In contrast, ‘high’ and ‘very high’ risk classes represent the steep
slope segments with either buildings or vineyards. This result highlights the importance
of the potential effects of landslides in the study area, which'is representative for the
whole Rheinhessen area. Due to its generalized input data, the resulting risk map cannot
be used by local administration for detailed planning, but it is of great value for both
local and regional governments to locate areas prone.to landslide risk and to organize
more detailed analysis in the identified ‘hot spot’ areas.

3.6.3 Summary

Both examples demonstrate the potential of landslide risk assessments at various scales
and with different levels of analysis. While detailed risk assessments are indispensable for
site-specific problems, more generalized risk analysis is also of major importance to gain
an overview of a large area: Besides the scale of interest of the administrative authorities,
detail of analysis is also highly dependent on numerous other factors such as financial
resources, time constraints, data availability and quality. However, it is important to use
the resources in the most profitable way to provide methods and concepts which can be
applied to gain the most benefit from lowest costs.

3.7 /Influence of the Triggering Agent

The previous discussion on local and spatial landslide investigations gave no details of
the respective landslide triggering agents. Nearly all reviewed landslide investigations are
related either to rainfall and subsequent soil moisture regimes or to earthquake triggers. In
terms of establishing an inventory or a susceptibility map, the landslide trigger is of minor
importance. Irrespective of the cause, the principal interest of these investigations is the
landslide location and the environmental factors, which give some indication of landslide
susceptibility. Indeed, some environmental factors are more important for earthquakes
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Figure 3.9 Regional landslide risk in Rheinhessen, Germany (Clade etal., in prep.b). Vul-
nerability to elements at risk is assumed to be 1, referring to total loss if an element is affected
by a landslide
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than for rainfall (e.g. orientation of geologic structure and landforms, distance to tectonic
lineaments). But most other factors are important for both triggers (e.g. slope geometry,
soils, vegetation). In any case, if the analysis extends further to address hazard, for a
specific landslide type, information on the triggering agent can be extremely valuable as
a component of the analysis.

Generally, it is easier to establish a temporal record of rainfall-triggered landslides
than of earthquake-triggered failures. Rainfall records coupled with historical landslide
information allow the calculation of the temporal probability of rainfall-triggered land-
slides. In contrast, information on landslide occurrence related to recurrence intervals
of different-sized earthquakes is more difficult to assess due to the low return periods
of these events. Despite these constraints, attempts to model the spatial extent of both
triggers using empirical and/or numerical approaches are in progress. These scenarios
of probable future triggers have the potential to be linked with empirical or numerical
models of landslide movement. This procedure allows an approximation of the change
of landslide hazard for different trigger magnitudes. Thus it enables a shift from static to
dynamic conditions. This scenario modelling is a powerful tool for any landslide hazard
assessment.

The consequences of a landslide event are also not dependent on'the.nature of the
trigger. Structural damage of elements at risk results purely from the landslide types and
expected magnitudes and intensities. Direct damage from earthquakes is not within the
scope of this work. Possibly, some elements at risk may already have been weakened by
foreshocks or an earlier earthquake (e.g. cracks in foundations, etc.) and are thus more
vulnerable to the subsequent landslides, while other elements at risk might become less
vulnerable. For example, foreshocks or the firstfew.seconds of an earthquake might allow
people to be better prepared for the subsequentlandslides, for example by moving into
other rooms in the case of debris flows,deaving the house in the case of large rotational
slides, or seeking shelter in the case of small rockfalls. In general, it is rather difficult to
forecast the consequences of a trigger and: thus their consideration within the landslide
risk analysis is complex.

3.8 Summary and Conclusion

The review of inventory, susceptibility and hazard analysis has shown the wide range of
studies and applications. Despite the numerous studies from worldwide examples, many
other regions are also affected by landslides. These also need to be examined in detail.
It is demonstrated that landslide inventories are of major value for any susceptibility,
hazard and risk analysis. Such inventories can be used as input data for the direct
calculation of susceptibility. Moreover, if there is temporal and magnitude information
available in the inventory, the probability of landslide occurrence of a given magnitude in
a specific time period and a predefined location can also be estimated, and thus landslide
hazard estimates delineated. Another application of landslide inventories is their use for
verification and validation of calculated susceptibility or hazard. If inventories need to be
used for both analysis and validation of results, the data sets can be split in two groups,
one for analysis and one for validation (Chung and Fabbri, 1999). This is a major and
fundamental issue which is often ignored.
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Independent of scale, the concepts and approaches to landslide hazard and risk analysis
outlined in this chapter allow a standardized and, in some cases, objective assessment
of potential consequences of an assumed triggering event. As well as the ultimate deter-
mination of a level of risk, decision makers and planners should also be aware of the
concepts, assumptions, methods or limitations involved in its computation. As with any
modelling procedure, limitations of the approach have to be appreciated when using the
information for making subsequent decisions on policy and management:

® Any spatial landslide information contains uncertainties that are difficult to evaluate
(e.g. Ardizzone etal., 2002; Carrara etal., 1992).

e The resolution and quality of the socio-economic data influence the accuracy-of the
resulting risk.

e In most cases, the vulnerability of structures and of societies can only be roughly
estimated or approximated (e.g. Glade, 2003b).

e The risk model is always a generalization of reality, and the model performance is
strongly dependent on data constraints.

® The calculated landslide risk is a stationary expression of reality at the time of analysis.

Alternatively, there are many advantages of landslide risk assessments (e.g. Petrascheck
and Kienholz, 2003). These are, in particular:

e Risk values and information are transparent and comprehensible.

e Scenarios allow assessment of the consequences of future developments.

e Reliability of the model performance is strongly dependent on data quantity and
quality; thus with increasing data availability, the reliability of the risk estimate
increases.

e Most models of landslide risk can be adapted to significant changes in the environment,
such as vegetation changes or changes in land use or suburban developments. Therefore
the potential exists to regularly update the static risk information.

e The conceptual approach and established methods allow a comparison not only of risk
from different landslide.types, but also from other natural hazards.

These advantages can be used to trace the evolution of landslide risk. Change of landslide
risk is not only dependent on'the change of the underlying landslide processes. Even
while the level of landslide hazard remains constant, the risk may change as a result
of human activity. Landslide risk is consequently not only an expression of the natural
environment, but is also related to human interference with nature.
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