The Syntax of Valuation in Auxiliary–participle Constructions

Susi Wurmbrand
University of Connecticut

1. Introduction

This paper addresses the question of where and how morphological dependency relations, specifically the selectional relation between an AUX[iliary] and a PART[iciple]), are established. I propose that morphological properties are, to a significant part, determined by the syntactic configuration, and that morphological forms are the result of spell out features assigned (valued) via the syntactic licensing relation Reverse Agree in (1) (see Adger 2003, Haegeman and Lohndal 2010, Zeijlstra 2010, Merchant 2011 for similar proposals). While in the standard case, Reverse Agree is equivalent to selection (or ‘government’ in the traditional sense), I argue that the syntactic determination of morphological realizations is motivated by two properties: (apparent) non-local selection, and cases where syntactic movement feeds morphology. Both properties will be illustrated by parasitic participles in Germanic. Lastly, I argue that the syntactic licensing configuration is invariable within and across languages: the higher element licenses (=values) the lower element under Agree. However, languages can differ, based on their morphological inventory, regarding which element (AUX or PART) values the other: generally, AUX values PART, but in languages with prefixal/circumpositionals PARTs, the licensing relation is reversed.

(1) Reverse Agree
A feature F: __ on α is valued by a feature F: val on β, iff
i. β asymmetrically c-commands α AND
ii. There is no γ, γ distinct from β, with a valued interpretable feature F such that γ commands α and is c-commanded by β.

2. Reverse Agree and selection

2.1 The mechanics

Following Pesetsky and Torrego (2007) and Bošković (2009, To appear), I assume that Agree is valuation driven and that interpretability (i/uF) does not correlate with valuation (i.e., both i/uF: val [valued] and i/u F: __ [unvalued] are possible). I also adopt a cyclic spell-out model, which entails that Agree is essentially phase-bound (see Wurmbrand 2010, 2011a for details and arguments for the domain of Agree). Regarding the distribution of verbal features, I assume that functional clausal heads (T, Mod, Asp etc.) have an interpretable T-feature which is typically (but not necessarily) valued; the value corresponds to the semantic value of the head (e.g., iT: past, modal, perfect). Furthermore, all verbal heads have an uninterpretable T-feature, which is typically (but not necessarily) unvalued. As unvalued features cannot pass the interfaces, F: __ must undergo Agree with the closest valued feature. Lastly, the value of the uninterpretable T-feature is what is realized at PF. For instance, the uT: __ of a verb which is valued by a modal is realized as an infinitive in English; a verb which is valued by a perfect or passive AUX is realized as a PART. A sample derivation for an English sentence such as He must have been left alone is given in (2) (I ignore uT-features of the highest head, since this depends

*I would like to thank the audiences at the Universities of Stuttgart, Nova Gorica, Vienna, Yale, Ghent, Stony Brook, Cornell, ZAS, and Potsdam, as well as the participants of the UConn Spring seminar (2011) for feedback and comments.
on the properties of the domain above ModP, which is irrelevant for the current paper). Features that have been valued under Agree are underlined.

(2) a. ModP
 \[\begin{array}{c}
 \text{MOD} \\
 \text{iT: mod}
 \end{array}\]
 \[\begin{array}{c}
 \text{AuxP} \\
 \text{iT: perf}
 \end{array}\]
 \[\begin{array}{c}
 \text{PassP} \\
 \text{uT: _ PASS}
 \end{array}\]
 \[\begin{array}{c}
 \text{VP} \\
 \text{uT: _}
 \end{array}\]
 \[\begin{array}{c}
 \text{_}
 \end{array}\]

b. ModP
 \[\begin{array}{c}
 \text{MOD} \\
 \text{iT: mod}
 \end{array}\]
 \[\begin{array}{c}
 \text{AuxP} \\
 \text{iT: perf}
 \end{array}\]
 \[\begin{array}{c}
 \text{PassP} \\
 \text{uT: if_ PASS}
 \end{array}\]
 \[\begin{array}{c}
 \text{VP} \\
 \text{uT: perf}
 \end{array}\]
 \[\begin{array}{c}
 \text{_}
 \end{array}\]

As illustrated in (2), features are valued in a downward fashion, which guarantees that a verb correctly realizes the morphology “selected” by the higher head. Reverse Agree is thus essentially a syntactic mechanism to implement morphological selection. However there are two crucial differences where Reverse Agree and selection yield different results, which will motivate the syntactic approach advocated here. First, if, for some reason, a head (X) which semantically selects a verb (Y) is not specified for an itT-feature, an element higher than X can value Y, and Y will occur with the morphology corresponding to the higher verb rather than the selecting verb. Second, movement, which changes the syntactic Agree configuration (but not the semantic selectional properties) can affect valuation, and a verb can surface in a morphological form different from the form predicted by selection. We will see that parasitic participles provide evidence for both of these cases.

2.2 Parasitic participles — Type #1

Several Germanic languages allow what I will refer to as parasitic participles (ParPars). ParPars are parts selected by verbs (e.g., modals), which normally can only combine with infinitival complements. Examples from Norwegian and Frisian are given in (3); the parasitic forms are highlighted by boxes, and auxs are underlined.

(3) a. Jeg \underline{hadde} villet \underline{lese} boka Norwegian
 I \underline{had} want PART \underline{read} PART / read INF book DEF
 ‘I would have liked to read the book.’
 [Wiklund 2001:201]

b. hy soe it \underline{dien} / dwaan wollen ha Frisian
 he would it \underline{do} PART / do INF wan PART have INF
 ‘He would have liked to do it.’
 [den Dikken and Hoekstra 1997: 1058]

c. Ik bin tankber dat ik sa folle \underline{dien} kinnen haw […]
 I am thankful that I so much \underline{do} PART can PART have
 ‘I’m grateful that I was able to do so much…’
 [E. Hoekstra, p.c., from corpus]

The common properties of ParPars are: i) the parasitic form is optional; ParPars always alternate with infinitives; ii) ParPars are only possible when there is an appropriate licensing head—an overt or covert aux (as German will show not necessarily another part); iii) the parasitic morphology is semantically vacuous; ParPars are not interpreted as a perfectives, but rather the meaning is identical to the meaning of the infinitival construction (see Wiklund 2005, 2007 for a caveat about covert auxs and arguments against a necessary counterfactual interpretation).

There are three major analyses of ParPars: den Dikken and Hoekstra’s (1997) checking approach, Wiklund’s (2005, 2007) Inverse Agree approach, and Vogel’s (2009) Optimality Theory approach. Since there are significant differences among the languages when and where parasitic forms are possible, the previous accounts have not aimed at a unified analysis of all parasitic constructions. According to the checking approach, one aux checks features on one or more parts in a local specifier–head relation. Movement of parts is thus necessary, which straightforwardly accounts for
ParPars in Frisian (cf. the obligatory head-final word order). This approach, however, cannot, as the authors note, be extended to Swedish and Norwegian.

Wiklund (2005, 2007) argues that the parasitic copying relation is “top-down, syntactic, local”, and suggests that parasitic forms are transmitted top-down via Inverse Agree. The exact mechanism of this Agree relation is not spelled out, however, and Wiklund notes an inconsistency with the standard probe–goal approach. As illustrated in (4), assuming the Agree version in Chomsky (2000, 2001), AUX would have to involve an uninterpretable unvalued feature, which probes down to get valued by a corresponding interpretable valued feature. Furthermore, given the activation condition (the stipulation that both probe and goal must be active; i.e., both must involve some uninterpretable feature), both parts would need to involve an additional uninterpretable/unvalued feature to be visible as goals. Several issues arise. The first question is what those uninterpretable features on the parts are and why they are obligatory. Note that it is crucial that both parts bear uninterpretable features to guarantee that there is a dependency between AUX and each part. If, for instance, the second part was not equipped with such an uninterpretable feature, that part could not function as a goal for AUX, and Agree would only take place between AUX and the first part. The lack of Agree between the lower part and a higher head, however, would then incorrectly generate parts in cases where there is no higher AUX (e.g., *He want.PAST read.PART). Thus the only way to derive ParPars in the Agree framework of Chomsky (2000, 2001) would be to postulate obligatory uninterpretable features on both parts and allow for the operation of Multiple Agree as suggested in Hiraïwa (2001, 2005)—that is, one probe must be allowed to Agree with multiple goals simultaneously. Such a system, however, then essentially suggests that it is the uninterpretable features of the parts that drive Agree, rather than some deficiency of AUX (see Zeijlstra 2010 for a similar point regarding multiple nominative licensing). In addition to these theoretical concerns, there is a more serious empirical problem with this system. The configuration in (4) would lead to the wrong semantics—both parts would be interpreted as participles/perfectives, contrary to fact.

(4)
<table>
<thead>
<tr>
<th>AUX</th>
<th>PART1</th>
<th>PART2</th>
</tr>
</thead>
<tbody>
<tr>
<td>uT:</td>
<td>__</td>
<td>iT: perf</td>
</tr>
<tr>
<td>uF:</td>
<td>??</td>
<td>uF: ??</td>
</tr>
</tbody>
</table>

The main reason for these problems is that the framework in Chomsky (2000, 2001) relies on two theoretical assumptions: the stipulation that uninterpretable features must be unvalued and interpretable features valued; and the activation condition. Later works on Agree have argued that both of these assumptions are unnecessary and should be abandoned (see Pesetsky and Torrego 2007, Bošković 2007, 2009, To appear). The version of Reverse Agree in (1) follows these insights and allows us to straightforwardly implement Wiklund’s idea within a general Agree framework. I propose that in both Scandinavian and Frisian, the basic structures for the infinitival and parasitic participle constructions in (3) are as in (5).

As shown in (5), modal verbs can combine with different types of complements—a complement as in (5a) which contains an infinitival head carrying an interpretable T-feature (e.g., an infinitival aspect head; I remain agnostic about the exact label of that head), or a smaller complement (e.g., a simple Vp/VP as in (5b)) which lacks such an infinitival head and hence an interpretable infinitival T-feature. These structural differences reflect Wiklund’s observation that ParPars are restricted to restructuring contexts, that is, reduced infinitival complements. The different morphological forms then follow from Reverse Agree in (1). While in (5a) AUX values the modal as a PART, it is not close
enough to the lowest verb to value that verb as a PART—there is an intervening infinitival head with an interpretable T-feature which is closer to the main verb, and hence only an infinitive is possible on V. In (5b), on the other hand, the infinitival head is missing, and AUX can Agree with both the modal and the lexical verb, and value both verbal heads as PARTs. What is “special” about ParPar constructions is thus that they lack an infinitival head with an interpretable T-feature which values the lowest verb as an affirmative. The analysis correctly accounts for the dependency of ParPar on a higher AUX—PARTs require valuation by an AUX. Furthermore, since only AUX involves an interpretable T-feature (iT: perf), ParPars are not interpreted as perfect/participles, but only morphologically realized as PARTs. Lastly, regarding the word order differences between Scandinavian and Frisian, I assume that the head-final word orders in (3b,c) are derived by PF-linearization (see Wurmbrand 2011b for further details).

2.3 Parasitic participles — Type #2

Frisian allows a second type of ParPar construction illustrated in (6a). As shown in (6b,c), the semantic (selectional) structure is would → want → have done (numbers on verbs always refer to the hierarchical/semantic order, which can differ from the linear order in verb clusters). That is, AUX is selected by the modal want (which in turn is selected by another modal). Nevertheless, the modal want can be morphologically realized as a (parasitic) PART (as before, a regular infinitive is also possible).

There are two important facts about this apparent “upward” parasitism. First, this construction is restricted to head-final languages (it is also found in the Stellingwerf dialect; see Bloemhoff 1979, Zwart 1995), and impossible in the Scandinavian languages. Second, “upward” ParPars are only possible when the modal selecting want (namely soe ‘would’ in (6a)) has moved to verb second position (cf. (7a)). Crucially, as shown in (7b), no such restriction is in effect in the regular downward ParPar construction.

I argue that the distribution of this construction follows from the Reverse Agree account proposed here coupled with the following assumption (see Abels 2003 for a similar view): valuation can occur at any time during the derivation (or more concretely at any point within a phase before Spell-Out). Structure is built cyclically and any merge operation must extend the structure. However, feature valuation, which does not extend the structure, is not subject to the Extension Condition, but can be postponed, as long as all features are valued by Spell-Out.

1 An alternative to (5a) would be to treat modals as functional heads in the infinitival construction. In that case, the modal itself carries an iT: mod, which intervenes between AUX and the main verb.
Let us now consider the apparent upward participle licensing in (6). How could we ever get a PART form on a verb selecting an AUX? For AUX to value a verb as a PART, AUX must asymmetrically c-command that verb. If AUX originates lower than the verb to be valued, movement of AUX or AuxP is necessary to establish the required Agree relation. Note that following Bošković (2007), I assume that phrases can act as valuator (see the definition of Reverse Agree), and assuming that the features of a head are also present on the projection of that head, AuxP can value an unvalued feature of a verb it c-commands. This is, I argue, exactly what happens in (6a). The relevant part of the derivation is given in (8). (8a) represents the underlying (semantic) structure of the verbal elements present in this example. At this stage in the derivation, there are two options. The first (and general) option is for the modal soe (5) to value the uT:__ of the modal want (2), which results in an infinitive on want. But since the structure is not spelled-out at this point, valuation is not necessary but can be postponed. Since the verbs of a verb cluster in Frisian must appear in inverted (i.e., 3–2–1…) order, syntactic movement of the elements of a verb cluster is also an option (see Wurmbrand 2011b for details).

Suppose now, as shown in (8b), that movement of AuxP to the top of the verb cluster applies (possibly followed by further movement of 5; Frisian only allows fully descending word orders, hence movement has to always target the top of the cluster). Once AuxP is adjoined to the highest position in the cluster, it asymmetrically c-commands the modal want (2). However, Agree could not be established across the highest modal (5), given the locality restriction of Agree. The only way for AuxP to value want is if the highest verb (soe) gets out of the way first—i.e., if it moves to C. Thus the verb second restriction follows as a result of the locality of Agree.

This account has several interesting consequences. First, it provides new evidence for the claim that morphological properties are determined (in part) by the syntactic configuration, rather than simply by selection. Second, the fact that the morphological form is dependent on a derived syntactic configuration (subject to locality restrictions), and not simply determined by selectional properties provides indirect support for a model in which syntax feeds into morphology (rather than vice versa). Lastly, the analysis supports the claim that the syntactic licensing configuration which enables valuation is invariant within and across languages: the higher element licenses the lower element under Reverse Agree.

Based on “upward” ParPar constructions in Frisian, which do not have an analogue in the Scandinavian languages, I have argued that there is no upward licensing or valuation, neither in downward nor in upward parasitic constructions. Rather, the c-command relation between AUX and the higher PART is reversed due to movement in the latter. Crucially, this movement comes with its own restrictions and is only possible in languages that allow inverted (head-final) word orders which can be derived via syntactic movement.

2.4 German — A snapshot of the “Skandal” construction

German also allows a parasitic participle construction, which is illustrated in (9a) (see Merkes 1895, Reis 1979, Meurers 2000, Vogel 2009, Haider To appear). In contrast to Frisian and

2 To exclude valuation of a head by its own complement (e.g., valuation of Mod 2 by AuxP in situ in (8a)), I have defined Agree as asymmetric c-command here. This restriction is motivated by recursive “upward” ParPars (see Wurmbrand 2010), and can be derived by a ban on mutual valuation of two elements.

3 Vogel (2009) dubbed this construction Skandalkonstruktion ‘scandal construction’, since every verbal element appears in an unexpected form. The semantic structure is AUX–MOD–V, however, the infinitival marker appears
Scandinavian, German ParPars are more restricted (Vogel 2009). First, ParPars are impossible when the PART occurs with an overt DP subject. The infinitival construction in (9a) where the PART has no or a PRO subject contrasts with the finite context in (9b) where an overt DP subject is present (note that (9b) would be grammatical with an infinitive instead of PART). This restriction clearly differentiates German ParPars from the Frisian and Scandinavian analogues (cf. (3a,c)).

\[(9)\]
\[
\begin{align*}
&\text{a. ohne es} & \text{verhindert} & \text{haben} & \text{zu können} & \text{"Skandal"} \\
&\text{without it} & \text{prevent.PART} & \text{have.INF} & \text{to can.IPP} \\
&\text{without having been able to prevent it} & \text{[Vogel 2009]}
\end{align*}
\]

\[
\begin{align*}
&\text{b. *weil er es nicht} & \text{verhindert} & \text{hat} & \text{können} \\
&\text{since he it not} & \text{prevent.PART} & \text{has can.IPP} \\
&\text{"since he has not been able to prevent it”}
\end{align*}
\]

Second, while non-parasitic infinitival constructions can also occur in the 1–3–2 order in German (see (10a); note again that the semantic order is have » can » prevent), ParPars are excluded in this order (see (10b)). ParPars are only possible in the 3–1–2 order in (9a).

\[(10)\]
\[
\begin{align*}
&\text{a. ohne es} & \text{haben} & \text{verhindern} & \text{zu können} & \text{1–3–2} \\
&\text{without it} & \text{have.INF} & \text{prevent.INF} & \text{to can.IPP} \\
&\text{without having been able to prevent it”} & \text{[Vogel 2009]}
\end{align*}
\]

\[
\begin{align*}
&\text{b. *ohne es} & \text{haben} & \text{verhindert} & \text{zu können} & \text{*Skandal 1–3–2} \\
&\text{without it} & \text{have.INF} & \text{prevent.PART} & \text{to can.IPP}
\end{align*}
\]

The second property provides an important clue about the difference between German and Frisian/Scandinavian ParPars. As argued in Wurmband (2004, 2011a), the 3–1–2 order of verbs cannot be derived by PF-linearization (which only orders sister nodes), but must involve a step of syntactic movement. The Skandal construction is thus only possible in contexts that require syntactic movement. The basic structure is given in (11). Given the system of Reverse Agree outlined so far the question arises how movement creating the 3–1–2 order could be tied to the licensing of ParPars.

\[(11)\]
\[
\begin{align*}
\text{AuxP} & \\
\text{VP} & \text{AuxP} \\
\text{prevent.PART} & \text{AUX} \\
\text{have.INF} & \text{MOD} \\
\text{can.IPP} & \text{tVP}
\end{align*}
\]

The answer I provide is that the dependency relation between AUX and PART is reversed in German (and, as I will propose in the next section, in certain other Germanic languages as well). Before providing motivation for this assumption, let me lay out how this accounts for the properties of the German ParPar construction. If, as shown in (12a), in certain languages PART is valued, but AUX is unvalued, Reverse Agree will entail movement of PART(P) above AUX to value the unvalued (but still interpretable; see Pesetsky and Torrego 2007) T-feature of AUX.

before the modal (the middle element), the modal is realized as an infinitive (the **infinitivus pro participio**—IPP), and the main verb as a (parasitic) PART. In this paper, I can only concentrate on the ParPar. See Wurmband (2010) for a detailed account of the other aspects of this construction.

Note that Vogel (2009) conducted several experiments testing the acceptability of this construction, all of which lead to the same conclusion: the Skandal construction is more frequent than corresponding regular infinitival construction. Writing off this construction as a non-standard, marginal phenomenon, or a repair strategy used to deal with the lack of explicit grammatical rules (Reis 1979; see Vogel 2009 for an extensive criticism of this approach) is hence not appropriate.
This immediately explains why the 1–3–2 order is impossible with a participial “3” and AUX “1”—PART would be too low to license AUX. This account, supplemented with two assumptions, also gives us a way to implement the no-subject restriction in (9b). The first assumption I adopt is Anti-locality (Abels 2003), which states that movement of VP is impossible if VP is the complement of a phase head (v). The second assumption (argued for in detail in Wurmbrand 2010, 2011a) is that v combining with PRO or no subject is not a phase head. A VP that is part of a PRO vP (or no vP) is hence not subject to Anti-locality. Putting these assumptions together accounts for the difference between (9a) and (9b): (9a) is possible since the participial VP is not the complement of a phase head, and therefore movement of VP.PART above AUX is possible. After movement, VP.PART is in a position to value AUX. In (9b), on the other hand, VP.PART is the complement of a phase head, and as such is frozen. Since VP.PART cannot move, AUX ends up unvalued, which cancels the derivation.

Crucially, no such restriction holds in Scandinavian or Frisian, which shows that VP-movement cannot be involved in these constructions, or in other words, movement is not necessary to establish the dependency leading to ParPars in Scandinavian and Frisian ParPars of Type #1. Furthermore, although I have suggested that languages differ regarding which element is valued (and I will offer a way to predict this property in the next section), the syntactic configuration enabling valuation—Reverse Agree—is again invariable across languages.

2.5 Which way do dependencies go?

In the above section, I have assumed that the feature value \([T: \text{perf}]\) resides in AUX in Frisian, Scandinavian, and English, whereas in German, PART is inserted with the valued \([T: \text{perf}]\) feature. In this final section, I offer an account of the distribution of participle features based on the lexical inventory of the elements involved. German PARTs are circumpositional—they are composed of a prefix \(ge\) and a participial ending \(-en/-t\). I propose that the participial prefix (specifically, the head corresponding to the prefix \(ge\)) is lexically valued as a participle.

Looking at the word order options in AUX–PART constructions across Germanic, an interesting generalization emerges. In all languages with prefixal participles, the order PART (2) – AUX (1) is possible, noteworthy even in languages where the typical order otherwise is the head-initial 1–2 order (see Table 1). For instance, in Afrikaans, modal–infinitive constructions must appear in the 1–2 order; however, AUX–PART constructions can only occur in the 2–1 order. The distribution below follows if the licensing relation is reversed in ge-languages: PARTs license AUX, which, under the Agree/valuation view proposed here, triggers movement of PART above AUX, resulting in the head-final order (see Wurmbrand 2011b for preliminary suggestions about why some of the ge-languages also allow the 1–2 order).

<table>
<thead>
<tr>
<th>Language</th>
<th>ge-</th>
<th>AUX–PART MOD–INF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrikaans</td>
<td>yes</td>
<td>2–1, 1–2</td>
</tr>
<tr>
<td>West Flemish</td>
<td>yes</td>
<td>2–1, 1–2</td>
</tr>
<tr>
<td>Dutch</td>
<td>yes</td>
<td>2–1, 1–2</td>
</tr>
<tr>
<td>Standard German</td>
<td>no</td>
<td>2–1, 1–2</td>
</tr>
<tr>
<td>Swiss</td>
<td>yes</td>
<td>2–1, 1–2</td>
</tr>
<tr>
<td>Frisian</td>
<td>no</td>
<td>2–1, 1–2</td>
</tr>
<tr>
<td>Scandinavian</td>
<td>no</td>
<td>1–2, 1–2</td>
</tr>
</tbody>
</table>

See Wurmbrand (2004b, 2006b) and references therein for certain exceptions and variation.

Table 1: Word order in West Germanic verb clusters with two verbs.
3. Conclusion and extensions

To conclude this paper, I will summarize the mini-typology of ParPar constructions I have sketched in this paper. The full picture is given in Table 2. A precondition for licensing ParPars is that the language allows constructions of the form AUX–MOD–V. Since these constructions are independently excluded in English (English modals can never be embedded), ParPars are not found in English. The main properties that derive the different types of ParPar constructions are: i) the presence vs. absence of prefixal PARTs, and ii) whether a language allows movement in verb clusters. The first property determines which element (AUX or PART) is inserted with the valued feature. Only languages without prefixal PARTs allow ParPars of Type #1 (the downward construction). The main restriction on this construction is that the infinitive allows restructuring (i.e., the omission of infinitival heads carrying an interpretable T-feature which would value the embedded verb as an infinitive). The second property determines whether “upward” parasitic constructions are possible in non-prefixal languages, and whether ParPars are possible in prefixal languages. To allow a ParPar in a prefixal language, movement resulting in the 3–1–2 order must be independently possible. Since Dutch, for instance, only allows 1–2–3 orders in the AUX–MOD–V construction, the lack of movement creating the 3–1–2 order could be seen as the reason for why (Standard) Dutch, in contrast to German, does not allow the Skandal construction.

<table>
<thead>
<tr>
<th></th>
<th>Scandinavian</th>
<th>Frisian</th>
<th>German</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded modals</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No (*has could read)</td>
</tr>
<tr>
<td>ge-AUX values PART</td>
<td>No Type #1</td>
<td>No Type #1</td>
<td>Yes *Type #1</td>
<td>*Type #1</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Agree domain (restructuring)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement possible</td>
<td>No *Type #2</td>
<td>Yes Type #2 (upward)</td>
<td>Yes Type #2 (Skandal)</td>
<td>*Type #2</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Movement Locality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Licensing conditions for parasitic participles.

The analysis of ParPar is based on the licensing relation Reverse Agree in (1). In line with recent theories about feature licensing, I have provided further evidence for the assumption that Agree is valuation driven and that interpretability should be separated from valuation (see Pesetsky and Torrego 2007, Bošković 2009, To appear). Furthermore, Reverse Agree eliminates the need for the activation condition and reflex checking (see also Bošković 2007, Pesetsky and Torrego 2007).

Broader theoretical consequences of the system proposed here are, as I argue in Wurmbrand (2010, 2011a), that syntactic dependencies of diverse kinds are unified once Reverse Agree is assumed as the main syntactic licensing relation. Specifically, Reverse Agree unites dependencies such as Case assignment, anaphor binding, control, polarity licensing, negative concord, morphological selection, and the distribution of verbal morphology. I show that, in comparison with standard Agree à la Chomsky (2000, 2001), as well as the feature sharing version of Agree (Pesetsky and Torrego 2007), Reverse Agree provides a more straightforward account of the distribution of VP-ellipsis in English, the Germanic IPP-construction, and the complete picture of parasitic participle morphology in Germanic.

References

Zeijlstra, Hedde. 2010. There is only one way to agree. Talk given at 33rd GLOW Colloquium, Wroclaw, Poland.