A parking problem

Enumeration

Asymptotics

Conclusion

Counting Defective Parking Functions

PJ Cameron†, D Johannsen‡, T Prellberg†, P Schweitzer‡

† Queen Mary, University of London
‡ MPI für Informatik Saarbrücken

Workshop on “Combinatorics and Statistical Mechanics”
Erwin Schrödinger Institute, May 30, 2008
1. A parking problem (defective parking functions)

2. Enumeration (generating functions)

3. Asymptotics (limit distributions)

4. Conclusion and outlook
1 A parking problem (defective parking functions)

2 Enumeration (generating functions)

3 Asymptotics (limit distributions)

4 Conclusion and outlook
A parking problem

Consider \(n \) parking spaces in a one-way street.
A parking problem

- Consider \(n \) parking spaces in a one-way street

- Drivers of \(m \) cars choose their preferred parking space
A parking problem

- Consider \(n \) parking spaces in a one-way street

Drivers of \(m \) cars choose their preferred parking space

- If the space is free, the driver parks the car there
- If the space is occupied, the driver parks in the next free space
- If no free space is available, the driver leaves
Consider \(n \) parking spaces in a one-way street.

Drivers of \(m \) cars choose their preferred parking space:
- If the space is free, the driver parks the car there.
- If the space is occupied, the driver parks in the next free space.
- If no free space is available, the driver leaves.

\(n^m \) sequences of choices.
A parking problem

Consider n parking spaces in a one-way street.

Drivers of m cars choose their preferred parking space:
- If the space is free, the driver parks the car there.
- If the space is occupied, the driver parks in the next free space.
- If no free space is available, the driver leaves.

n^m sequences of choices.
If all drivers park successfully, the sequence is called a parking function.
A parking problem

Consider \(n \) parking spaces in a one-way street

Drivers of \(m \) cars choose their preferred parking space

- If the space is free, the driver parks the car there
- If the space is occupied, the driver parks in the next free space
- If no free space is available, the driver leaves

\(n^m \) sequences of choices

If all drivers park successfully, the sequence is called a parking function

If \(k \) drivers fail to park, the sequence is called a defective parking function of degree \(k \)
- $n = 2$ parking spaces, $m = 2$ cars:
- $n = 2$ parking spaces, $m = 2$ cars:
 - $k = 0$: 11, 12, 21
 - $k = 1$: 22
A parking problem

Enumeration

Asymptotics

Conclusion

\(n = 2 \) parking spaces, \(m = 2 \) cars:
- \(k = 0 \): 11, 12, 21
- \(k = 1 \): 22

\(n = 3 \) parking spaces, \(m = 3 \) cars:
A parking problem

Enumeration Asymptotics Conclusion

$n = 2$ parking spaces, $m = 2$ cars:

- $k = 0$: 11, 12, 21
- $k = 1$: 22

$n = 3$ parking spaces, $m = 3$ cars:

- $k = 0$: 111, 112, 121, 211, 113, 131, 311, 122,
 212, 221, 123, 132, 213, 231, 312, 321
n = 2 parking spaces, m = 2 cars:

- $k = 0$: 11, 12, 21
- $k = 1$: 22

n = 3 parking spaces, m = 3 cars:

- $k = 0$: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321
- $k = 1$: 133, 313, 331, 222, 223, 232, 322, 233, 323, 332
n = 2 parking spaces, m = 2 cars:

k = 0: 11, 12, 21
k = 1: 22

n = 3 parking spaces, m = 3 cars:

k = 0: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321
k = 1: 133, 313, 331, 222, 223, 232, 322, 233, 323, 332
k = 2: 333
- $n = 2$ parking spaces, $m = 2$ cars:
 - $k = 0$: 11, 12, 21
 - $k = 1$: 22

- $n = 3$ parking spaces, $m = 3$ cars:
 - $k = 0$: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321
 - $k = 1$: 133, 313, 331, 222, 223, 232, 322, 233, 323, 332
 - $k = 2$: 333

Theorem

*Every permutation of a defective parking function of degree k is also a defective parking function of degree k.***
The counting problem

Enumerate the number

\[\text{cp}(n, m, k) \]

of assignments of \(m \) drivers to \(n \) spaces such that exactly \(k \) drivers leave
The counting problem

Enumerate the number

\[cp(n, m, k) \]

of assignments of \(m \) drivers to \(n \) spaces such that exactly \(k \) drivers leave.

The probabilistic question

What is the probability

\[p_{n,m}(k) = \frac{1}{n^m} cp(n, m, k) \]

that for a randomly chosen assignment exactly \(k \) drivers leave? In particular, are there interesting limiting distributions?
Reference for this work:

Reference for this work:

Related work by Alois Panholzer, TU Wien:

- “Limiting distribution results for a discrete parking problem”, GOCPS 2008 (talk presented on March 5, 2008)
- “On a discrete parking problem”, AofA 2008 (talk presented on April 17, 2008)
Many equivalent or related formulations, for example

- Hashing with linear probing

 [Konheim and Weiss, 1966]
 [Flajolet, Poblete and Viola, 1998]

- Drop-push model for percolation

 [Majumdar and Dean, 2002]
Many equivalent or related formulations, for example

- Hashing with linear probing

 [Konheim and Weiss, 1966]

 [Flajolet, Poblete and Viola, 1998]

- Drop-push model for percolation

 [Majumdar and Dean, 2002]

Connections to other combinatorial objects:

- labelled trees, major functions, acyclic functions, Prüfer code, non-crossing partitions, hyperplane arrangements, priority queues, Tutte polynomial of graphs, inversion in trees
A parking problem (defective parking functions)

Enumeration (generating functions)

Asymptotics (limit distributions)

Conclusion and outlook
A parking problem

- **Enumeration**
- **Asymptotics**
- **Conclusion**

<table>
<thead>
<tr>
<th>cp((n, n, k))</th>
<th>(k = 0)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 1)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>107</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1296</td>
<td>1346</td>
<td>436</td>
<td>46</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16807</td>
<td>19917</td>
<td>8402</td>
<td>1442</td>
<td>87</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>262144</td>
<td>341986</td>
<td>173860</td>
<td>41070</td>
<td>4320</td>
<td>162</td>
<td>1</td>
</tr>
</tbody>
</table>

\(cp(n, n, k) \): the number of car parking assignments of \(n \) cars to \(n \) spaces such that \(k \) cars are not parked.
Theorem

For $m \leq n$,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$
Theorem

For $m \leq n$,

$$\text{cp}(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak ($m = n$), 1974).

- Consider a circular car park with m cars and $n + 1$ spaces.
Theorem

For $m \leq n$,

\[cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1} \]

Proof (adapted from Pollak ($m = n$), 1974).

- Consider a circular car park with m cars and $n + 1$ spaces.
- There are $(n + 1)^m$ choices of sequences.
Theorem

For $m \leq n$,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak ($m = n$), 1974).

- Consider a circular car park with m cars and $n + 1$ spaces.
- There are $(n + 1)^m$ choices of sequences.
- A sequence will be a parking function for the original problem if and only if space $n + 1$ is empty.
Theorem

For $m \leq n$,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak ($m = n$), 1974).

- Consider a circular car park with m cars and $n + 1$ spaces.
- There are $(n + 1)^m$ choices of sequences.
- A sequence will be a parking function for the original problem if and only if space $n + 1$ is empty.
- This will happen with a probability given by the fraction of empty spaces $(n + 1 - m)/(n + 1)$.
Definition

For \(r, s, k \in \mathbb{N}_0 \) let \(a(r, s, k) \) denote the number of choices for which \(r \) spaces remain empty, \(s \) spaces are occupied in the end and \(k \) people drive home.
Definition

For \(r, s, k \in \mathbb{N}_0 \) let \(a(r, s, k) \) denote the number of choices for which \(r \) spaces remain empty, \(s \) spaces are occupied in the end and \(k \) people drive home.

- \(n = s + r \) parking spaces, \(m = s + k \) drivers
- \(\text{cp}(n, m, k) = a(n - m + k, m - k, k) \)
Lemma (A recursion)

For $r, s, k \in \mathbb{N}_0$, the number of assignments of $s + k$ drivers to $s + r$ spaces such that r spaces remain empty, s spaces are occupied and k drivers leave is recursively defined by

$$a(r, s, k) = \begin{cases} \end{cases}$$
Lemma (A recursion)

For $r, s, k \in \mathbb{N}_0$, the number of assignments of $s + k$ drivers to $s + r$ spaces such that r spaces remain empty, s spaces are occupied and k drivers leave is recursively defined by

$$a(r, s, k) = \begin{cases}
1 & \text{if } r = s = k = 0, \\
\end{cases}$$
Lemma (A recursion)

For \(r, s, k \in \mathbb{N}_0 \), the number of assignments of \(s + k \) drivers to \(s + r \) spaces such that \(r \) spaces remain empty, \(s \) spaces are occupied and \(k \) drivers leave is recursively defined by

\[
a(r, s, k) = \begin{cases}
1 & \text{if } r = s = k = 0, \\
\sum_{i=0}^{k+1} \binom{s+k}{k+1-i} \cdot a(r, s - 1, i) & \text{if } k > 0,
\end{cases}
\]
Lemma (A recursion)

For $r, s, k \in \mathbb{N}_0$, the number of assignments of $s + k$ drivers to $s + r$ spaces such that r spaces remain empty, s spaces are occupied and k drivers leave is recursively defined by

$$a(r, s, k) = \begin{cases}
1 & \text{if } r = s = k = 0, \\
\sum_{i=0}^{k+1} \binom{s+k}{k+1-i} \cdot a(r, s - 1, i) & \text{if } k > 0, \\
\sum_{i=0}^{k+1} \binom{s+k}{k+1-i} \cdot a(r - 1, s, 0) + \\
a(r - 1, s, 0) & \text{if } k = 0 \text{ and } \\
\sum_{i=0}^{k+1} \binom{s+k}{k+1-i} \cdot a(r, s - 1, i) & (r > 0 \text{ or } s > 0).
\end{cases}$$
Lemma (A functional equation)

Let A be the formal power series in the three variables u, v, and t defined by

$$A(u, v, t) := \sum_{r,s,k \geq 0} a(r, s, k) \cdot u^r \frac{v^s t^k}{(s+k)!}.$$

Then $A(u, v, t)$ is the unique solution of

$$0 = \left(\frac{v}{t} e^t - 1\right) \cdot A(u, v, t) + (u - \frac{v}{t}) \cdot A(u, v, 0) + 1$$

in the ring of formal power series in u, v and t.
Lemma (The explicit generating function)

The generating function for the car parking problem is given by

\[A(u, v, t) = \frac{1}{1 - \frac{v}{t} e^t} + \frac{u - \frac{v}{t}}{1 - \frac{v}{t} e^t} \cdot \frac{e^{T(v)}}{1 - u e^{T(v)}}, \]

where \(T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^i \) is the tree function \((T(v) = v e^{T(v)}). \)
Lemma (The explicit generating function)

The generating function for the car parking problem is given by

\[
A(u, v, t) = \frac{1}{1 - \frac{v}{t}e^t} + \frac{u - \frac{v}{t}}{1 - \frac{v}{t}e^t} \cdot \frac{e^{T(v)}}{1 - ue^{T(v)}},
\]

where \(T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^i \) is the tree function \((T(v) = ve^{T(v)})\).

Proof (using the Kernel Method).
Lemma (The explicit generating function)

The generating function for the car parking problem is given by

\[A(u, v, t) = \frac{1}{1 - \frac{v}{t}e^t} + \frac{u - \frac{v}{t}}{1 - \frac{v}{t}e^t} \cdot \frac{e^{T(v)}}{1 - ue^{T(v)}}, \]

where \(T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^i \) is the tree function \((T(v) = ve^{T(v)}) \).

Proof (using the Kernel Method).

- Write
 \[0 = K(v, t) \cdot A(u, v, t) + (u - \frac{v}{t}) \cdot A(u, v, 0) + 1 \]

with the kernel \(K(v, t) = \frac{v}{t}e^t - 1. \)
Lemma (The explicit generating function)

The generating function for the car parking problem is given by

\[A(u, v, t) = \frac{1}{1 - \frac{v}{t}e^t} + \frac{u - \frac{v}{t}}{1 - \frac{v}{t}e^t} \cdot \frac{e^{T(v)}}{1 - ue^{T(v)}} , \]

where \(T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^i \) is the tree function \((T(v) = ve^{T(v)})\).

Proof (using the Kernel Method).

- Write
 \[0 = K(v, t) \cdot A(u, v, t) + (u - \frac{v}{t}) \cdot A(u, v, 0) + 1 \]
 with the kernel \(K(v, t) = \frac{v}{t}e^t - 1 \).
- Setting the kernel equal to zero gives \(t = T(v) \) and
 \[A(u, v, 0) = \frac{e^{T(v)}}{1 - ue^{T(v)}} . \]
After some further work (Lagrange inversion, resummation of quadruple sums) ...
After some further work (Lagrange inversion, resummation of quadruple sums) …

Theorem

The number of car parking assignments of \(m \) cars on \(n \) spaces such that at least \(k \) cars do not find a parking space is given by

\[
S(n, m, k) = \sum_{i=0}^{m-k} \binom{m}{i} \cdot (n-m+k) \cdot (n-m+k+i)^{i-1} \cdot (m-k-i)^{m-i}.
\]
After some further work (Lagrange inversion, resummation of quadruple sums) ...

Theorem

The number of car parking assignments of \(m \) cars on \(n \) spaces such that at least \(k \) cars do not find a parking space is given by

\[
S(n, m, k) = \sum_{i=0}^{m-k} \binom{m}{i} \cdot (n - m + k) \cdot (n - m + k + i)^{i-1} \cdot (m - k - i)^{m-i}.
\]

- \(S(n, m, k) = \sum_{j=k}^{m} \text{cp}(n, m, j) \)
After some further work (Lagrange inversion, resummation of quadruple sums) . . .

Theorem

The number of car parking assignments of \(m \) cars on \(n \) spaces such that at least \(k \) cars do not find a parking space is given by

\[
S(n, m, k) = \sum_{i=0}^{m-k} \binom{m}{i} \cdot (n - m + k) \cdot (n - m + k + i)^{i-1} \cdot (m - k - i)^{m-i}.
\]

- \(S(n, m, k) = \sum_{j=k}^{m} \text{cp}(n, m, j) \)
- The car parking numbers \(\text{cp}(n, m, k) \) are given by
 \[
 \text{cp}(n, m, k) = S(n, m, k) - S(n, m, k + 1)
 \]
Notice that

\[S(n, m, k) = \sum_{i=0}^{m-k} \binom{m}{i} \cdot (n - m + k) \cdot (n - m + k + i)^{i-1} \cdot (m - k - i)^{m-i} \]

are partial sums occurring in

Lemma (Abel’s Binomial Identity, 1826)

For all \(a, b \in \mathbb{R}, m \in \mathbb{N}_0, *\)

\[\sum_{i=0}^{m} \binom{m}{i} \cdot a \cdot (a + i)^{i-1} \cdot (b - i)^{m-i} = (a + b)^m \]
Notice that

\[S(n, m, k) = \sum_{i=0}^{m-k} \binom{m}{i} \cdot (n - m + k) \cdot (n - m + k + i)^{i-1} \cdot (m - k - i)^{m-i} \]

are partial sums occurring in

Lemma (Abel’s Binomial Identity, 1826)

For all \(a, b \in \mathbb{R}, m \in \mathbb{N}_0, *

\[\sum_{i=0}^{m} \binom{m}{i} \cdot a \cdot (a + i)^{i-1} \cdot (b - i)^{m-i} = (a + b)^m \]

- In fact, \(S(n, m, 0) = n^m \) proves Abel’s identity for \(a = n - m \) and \(b = m \).
1. A parking problem (defective parking functions)

2. Enumeration (generating functions)

3. Asymptotics (limit distributions)

4. Conclusion and outlook
Consider the distribution of the probability of a parking function with defect k,

$$p_{n,m}(k) = \frac{1}{n^m} \text{cp}(n, m, k),$$

for n (parking spaces) or m (cars) large.
Consider the distribution of the probability of a parking function with defect k,

$$p_{n,m}(k) = \frac{1}{n^m} \text{cp}(n, m, k),$$

for n (parking spaces) or m (cars) large.

Different regimes:

- $m \ll n$: cars park with probability 1
- $m \sim \lambda n$, $\lambda < 1$: discrete limit law
 - ($\sqrt{m} \ll m - n \ll m$: exponential distribution)
 - $m - n \sim \lambda \sqrt{m}$: linear-exponential distribution
 - ($\sqrt{m} \ll n - m \ll m$: exponential distribution)
- $m \sim \lambda n$, $\lambda > 1$: discrete limit law
- $m \gg n$: cars leave with probability 1
Define

\[P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^{m} p_{n,m}(j) \]

- \(m \ll n: \ P_{n,m}(k) \to 0 \)
Define

\[P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^{m} p_{n,m}(j) \]

- \(m \ll n \): \(P_{n,m}(k) \to 0 \)
- \(m \sim \lambda n, \lambda < 1 \): discrete limit law

\[P_{n,m}(k) \to (1 - \lambda) \sum_{l=0}^{k} (-1)^{k-l} \frac{(l + 1)^{k-l}}{(k - l)!} \lambda^{k-l} e^{\lambda(l+1)} \]
Define

\[P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^{m} p_{n,m}(j) \]

- \(m \ll n \): \(P_{n,m}(k) \to 0 \)
- \(m \sim \lambda n, \lambda < 1 \): discrete limit law

\[P_{n,m}(k) \to (1 - \lambda) \sum_{l=0}^{k} (-1)^{k-l} \frac{(l+1)^{k-l}}{(k-l)!} \lambda^{k-l} e^{\lambda(l+1)} \]

- \(m \sim \lambda n, \lambda > 1 \): discrete limit law

\[P_{n,m}(n - m + k) \to k \sum_{l=0}^{\infty} \frac{(l + k)^{l-1}}{l!} \lambda^{l} e^{-\lambda(l+k)} \]
Define

\[P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^{m} p_{n,m}(j) \]

- \(m \ll n \): \(P_{n,m}(k) \to 0 \)
- \(m \sim \lambda n, \lambda < 1 \): discrete limit law

\[P_{n,m}(k) \to (1 - \lambda) \sum_{l=0}^{k} (-1)^{k-l} \frac{(l + 1)^{k-l}}{(k-l)!} \lambda^{k-l} e^{\lambda (l+1)} \]

- \(m \sim \lambda n, \lambda > 1 \): discrete limit law

\[P_{n,m}(n - m + k) \to k \sum_{l=0}^{\infty} \frac{(l + k)^{l-1}}{l!} \lambda^l e^{-\lambda(l+k)} \]

- \(m \gg n \): \(P_{n,m}(k) \to 1 \)
The interesting scaling regime \(m - n \sim \lambda \sqrt{m} \)
The interesting scaling regime $m - n \sim \lambda \sqrt{m}$

Theorem

Let $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$. Then the limiting probability that in a random assignment of $n + \lfloor y \sqrt{n} \rfloor$ drivers to n spaces at least $\lfloor x \sqrt{n} \rfloor$ drivers fail to park is

$$\lim_{n \to \infty} P_{n, n + \lfloor y \sqrt{n} \rfloor}(\lfloor x \sqrt{n} \rfloor) = \begin{cases} e^{-2x(x-y)} & \text{if } x > y, \\ 1 & \text{otherwise.} \end{cases}$$
The interesting scaling regime $m - n \sim \lambda \sqrt{m}$

Theorem

Let $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$. Then the limiting probability that in a random assignment of $n + \lfloor y \sqrt{n} \rfloor$ drivers to n spaces at least $\lfloor x \sqrt{n} \rfloor$ drivers fail to park is

$$
\lim_{n \to \infty} P_{n, n + \lfloor y \sqrt{n} \rfloor}(\lfloor x \sqrt{n} \rfloor) = \begin{cases}
\exp^{-2x(x-y)} & \text{if } x > y, \\
1 & \text{otherwise}.
\end{cases}
$$

Therefore we have approximately

$$
\frac{cp(n, m, k)}{n^m} \approx \frac{2}{n} \cdot (2k - m + n) \cdot e^{-2k(k-m+n)/n}
$$
Proof.

Approximate the expression for $S(n, m, k)$ by an integral

$$\lim_{n \to \infty} P_{n,n+\lfloor y\sqrt{n} \rfloor}(\lfloor x\sqrt{n} \rfloor) = \int_0^1 \frac{x-y}{\sqrt{2\pi \alpha^3(1-\alpha)}} \cdot \exp \left(- \frac{(x - (1 - \alpha)y)^2}{2\alpha(1 - \alpha)} \right) d\alpha.$$
Proof.

Approximate the expression for $S(n, m, k)$ by an integral

$$\lim_{n \to \infty} P_{n, n+\lfloor y \sqrt{n} \rfloor}(\lfloor x \sqrt{n} \rfloor) = \int_0^1 \frac{x - y}{\sqrt{2\pi \alpha^3(1 - \alpha)}} \cdot \exp \left(-\frac{(x - (1 - \alpha)y)^2}{2\alpha(1 - \alpha)} \right) d\alpha.$$

Under the substitution $\alpha = \frac{u(x - y)}{x + u(x - y)}$ this integral simplifies to

$$= \frac{1}{\sqrt{2\pi}} \cdot \int_0^\infty \sqrt{\frac{x(x - y)}{u^3}} \cdot \exp \left(-x \cdot (x - y) \cdot \frac{(1 + u)^2}{2u} \right) du$$

$$= \exp(-2x(x - y)).$$
Proof.

Approximate the expression for $S(n, m, k)$ by an integral

$$\lim_{n \to \infty} P_{n,n+\lfloor y\sqrt{n} \rfloor} (\lfloor x\sqrt{n} \rfloor)$$

$$= \int_{0}^{1} \frac{x - y}{\sqrt{2\pi}\alpha^3(1 - \alpha)} \cdot \exp \left(-\frac{(x - (1 - \alpha)y)^2}{2\alpha(1 - \alpha)} \right) d\alpha.$$

Under the substitution $\alpha = \frac{u(x-y)}{x+u(x-y)}$ this integral simplifies to

$$= \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{\infty} \sqrt{\frac{x(x - y)}{u^3}} \cdot \exp \left(-x \cdot (x - y) \cdot \frac{(1 + u)^2}{2u} \right) du$$

$$= \exp(-2x(x - y)).$$

NB: neither Maple nor Mathematica can do the above integral!
Less cars than parking spaces ($n > m$):

$$\rho(100, 90, k)$$

$$\frac{cp(n, m, k)}{n^m} \approx \frac{2}{n} \cdot (2k - m + n) \cdot e^{-2k(k-m+n)/n}$$
Equal number of cars and parking spaces ($n = m$):

$$\frac{cp(n, m, k)}{n^m} \approx \frac{2}{n} \cdot (2k - m + n) \cdot e^{-2k(k-m+n)/n}$$
More cars than parking spaces \((n < m)\):

\[
cp(n, m, k) \approx \frac{2}{n} \cdot (2k - m + n) \cdot e^{-2k(k-m+n)/n}
\]
The approximation is surprisingly accurate:

\[
\frac{\text{cp}(n, m, k)}{n^m} \approx \frac{2}{n} \cdot (2k - m + n) \cdot e^{-2k(k-m+n)/n}
\]
What is the probability that the car park is full?
What is the probability that the car park is full?

Theorem

Let $\lambda \in \mathbb{R}^+$. Then the limiting probability that in a random assignment of $\lfloor \lambda n \rfloor$ drivers to n spaces all spaces are occupied is

$$
\lim_{n \to \infty} \frac{cp(n, \lfloor \lambda n \rfloor, \lfloor \lambda n \rfloor - n)}{n^{\lfloor \lambda n \rfloor}} = \begin{cases}
0 & \text{if } \lambda \leq 1, \\
1 - \frac{1}{\lambda} \cdot T(\lambda e^{-\lambda}) & \text{if } \lambda > 1.
\end{cases}
$$
$n = 10, 20, \infty$:

\[
\frac{\text{cp}(n, m, m - n)}{n^m} \bigg|_{m = \lfloor \lambda n \rfloor} \approx 1 - \frac{1}{\lambda} T(\lambda e^{-\lambda})
\]

1. A parking problem (defective parking functions)

2. Enumeration (generating functions)

3. Asymptotics (limit distributions)

4. Conclusion and outlook
Summary:

- Introduced interesting and apparently new parking problem
- Solved the counting problem (Kernel method!)
- Discussed limiting probability distributions
Summary:
- Introduced interesting and apparently new parking problem
- Solved the counting problem (Kernel method!)
- Discussed limiting probability distributions

Outlook:
- So far only “weak limit laws” - can refine analysis
- Extension to several generalised parking problems in the literature possible
The End