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1. Introduction 

 

A procedure that filters the seasonal fluctuations from a time series is called a 

seasonal adjustment program. There exist a lot of different procedures but most 

of the statistical agencies use quite standardized techniques where the most 

important ones are the Census X-11 and its successor the Census X-12 program 

and in addition the TRAMO/SEATS procedure. We will discuss the main features 

of those techniques in detail. 

First of all it should be mentioned that all seasonal adjustment procedures rely on 

a decomposition of the data series into orthogonal unobserved components which 

can be done in a lot of different ways and in more or less detailed form. We will 

present the two most common methods of decompositions used by seasonal 

adjustment programs which are also quite intuitively clear: In both cases the 

original series is decomposed into a trend and cycle component, tc

ty , into a 

seasonal component, s

ty ,  and into an irregular noise component, i

ty , but in the 

first case the different components are multiplied with each other whereas in the 

second case they are summed: 
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s

t
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tt yyyy ++=    (log) additive version, (a) 

 

If in the second case the data is in logarithmic form one refers to this case as the 

log additive version instead of the additive version. There also exists a pseudo 

additive decomposition, which is better than a multiplicative one, if in some 

months parts of the series have zero values. However lots of extensions can be 

made to those simple decompositions, for example to account for deterministic 

effects like holidays, trading days, length of months etc. but this is not necessary 

to understand the principles of seasonal adjustment programs. 
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After a series has been decomposed into estimates of the different parts, 

seasonal adjustment is done by dividing the series by an estimate of the seasonal 

component in the multiplicative case and by subtracting this estimate in the (log) 

additive case. 

 

2. Census X-11 

 

The Census X-11 procedure is the most widely used seasonal adjustment 

program. Its roots go back to the early 1930’s and it was developed during the 

next decades until in the 1960’s it was really an operable algorithm. Basically 

Census X-11 consits of different MA- filters that are sequentially applied to the 

data. All in all the X 11 Program can be approximated by a linear filter if no 

extreme value corrections have to be performed and if forecasting and 

backcasting is unnecessary since enough data points are available. This is the 

case for the default options and in Census X-12 there are new procedures 

implemented that deal with these two possible sources for nonlinearities. 

The basic algorithm can be described by the following three steps in case of a 

monthly cycle, the seasonal cycle is treated in a similar way: 

 

1. Initial estimates: 

 

First of all an initial estimate for the trend (business)cycle component is obtained 

by the following centered MA filter, where SM refers to the fact that it is a monthly 

series: 
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which seemed to be more accessible to us in following form: 
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Next the initial seasonal + noise part can be obtained for the two different 

representations as: 
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Now it is possible to calculate a first estimate of the seasonal part by applying the 

following filter for S = 12: 
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However in this expression the seasonal components do not sum up to unity 

therefore the filter is applied once again to get the initial seasonal factor as: 
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After this initial seasonal factor is obtained one can calculate the initial seasonal 

adjustment as: 
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2. Intermediate estimates: 

 

The first thing that has to be done is to detrend the initially obtained series by a 

Henderson filter of the order H. The choice of H will be described below but the 

default value is H = 6 leading to a thirteen-term (2H+1) Henderson MA-filter of the 

following form: 
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where the lags and leads of order 4 have a weight of 0. Afterwards the seasonal 

adjustment can be refined by the following steps. 

The second seasonal + noise part is obtained as: 
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Analogous to the first estimate of the seasonal part the second preliminary 

estimate is calculated by applying the seasonal MA- filter: 
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where again the seasonal components do not sum up to unity and therefore the 

procedure is applied again: 

 

)()2(~)()2(~)2(

)(
)2(~)(

)2(~
)2(

ayLSMyy

m
yLSM

y
y

s

t

s

t

s

t

s

t

s

ts

t

−=

=
      (10) 

 

yielding the second seasonal factor. Therefore the second seasonal adjustment 

can be done by: 
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In principle the algorithm could stop here but fort he sake of completeness also 

the last step is described which enables to calculate the final trend-

(business)cycle and the irregular component. 

 

3. Final Henderson Trend and Final Irregular 

 

Once more the order of the Henderson filter has to be chosen, but this doesn’t 

need to coincide with the previously chosen value of H. Then the final trend-

(business)cycle component is: 
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and the final irregular part becomes: 

 

)()3()2()3(

)(
)3(

)2(
)3(

ayyy

m
y

y
y

tc

t

sa

t

i

t

tc

t

sa

ti

t

−=

=
      (13) 

 

altogether yielding the final estimated decomposition: 
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To summarize, all three steps together lead to the linear approximation of the 

monthly X-11 filter with the following weights for a total of 68 lags and leads: 

 

 
  

Figure 2.1: weights of the monthly linear X-11 filter (Ghysels, Osborn, 2001; p. 99) 

 

One can easily see that every lag and lead that is a multiple of 12 has a negative 

sign. A similar table for the quarterly X-11 filter is presented in Ghysels and 

Osborn (Ghysels, Osborn, 2001; p. 102) as well. 

 

2.1 Possible Sources of Nonlinearity 

 

All in all in earlier stages of development seasonal adjustment procedures were 

seen as linear data transformations in earlier stages of the development of 

seasonal filters. However recently this question is addressed again and the 

answer is not so clear anymore. There are some possible sources of nonlinearity 

in the X-11 procedure: 

 

• If the multiplicative decomposition is used, as it is often the case, X-11 

uses arithmetic means rather than geometric means 
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• There is an outlier detection algorithm implemented that basically consists 

of rules of thumb for the confidence bands whether observations should be 

included or not 

• There is an automatic algorithm that chooses the order of the Henderson 

filter as new raw data is added (this algorithm applies in both cases when 

the Henderson filter is used) Also this algorithm is based on rules of thumb 

• If disaggregated data is available and one is interested in the aggregate a 

possible source of nonlinearity is, that the disaggregated data is already 

seasonally adjusted, and afterwards the aggregate of those series is 

obtained. If the seasonal adjustment procedure is linear and uniform the 

two operations are interchangeable, otherwise additional nonlinearities are 

introduced. 

 

2. Census X-12 

 

The core procedure of the Census X-12 procedure is the same as those of 

Census X-11 but some improvements were implemented: 

 

• A better treatment of back- and forecasted time series was made possible 

by implementations of Statistics Canada which also allowed for smaller 

revisions of seasonally adjusted series when new data got available 

• New diagnostic tools were introduced (for example to investigate the 

stability of the seasonal factors if new data is available) 

• The most important improvement is the application of the so called 

regARIMA program for a preadjustment of the data series. This 

preadjustment contains for example trading day effects, length of month 

variables, outlier detection/removal and so on 

 

3. Practical application of Census X-12 

 

To show an example for a seasonal adjustment procedure we applied the Census X-

12 program that is implemented in Eviews 5.0 to the index of the Volume of Austrian 

GDP from 1970 (1) to 1997 (4) were the base year lies outside the considered range 

and is the year 2000. As options we chose the additive version of the procedure and 

automatic Henderson filter selection. The original and the transformed series are 

shown in the next two diagrams: 
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Figure 3.1: Unadjusted index of Austrian GDP from 1970 (1) to 1997 (4) 

 

 
 

Figure 3.2: Seasonally adjusted index of Austrian GDP from 1970 (1) to 1997 (4) 

 

So it is easily seen that in Figure 3 the seasonal movements are almost completely 

removed. 

 

4. TRAMO/SEATS 

 

4.1 Motivation: 

 

The described family of filters is called „ad-hoc“ filters in the literature. The choice of 

weights is done “a priory”, in the sense that it is independent of the actual series it is 
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applied to.1 To point out possible shortcomings of these methods and to motivate the 

use of a model-based approach, such as it is used in the programs TRAMO/SEATS, 

it is useful to have a look at the spectrum of a seasonal time series. Recall that every 

time series with T observations can be perfectly “explained” and reproduced by the 

sum of 2/T  cosine functions of the type  

 

)cos( BtAr t

t += ω                                                                                                   (4.1) 

 

where A denotes the amplitude, B the phase, and ω  the frequency. The set of 

function is constructed by starting with the fundamental frequency 
T

πω 2=  , which 

completes one cycle in T periods, and its harmonics j
T

πω 2= ,  where 2/,...,1 Tj = . 

For simplicity we assume that T  is even. The function (4.1) can then be expressed 

as: 

 

 tbtar jjjjjt ωω sincos +=                                                                                       (4.2) 

 

The coefficients a  and b  are related to the amplitude by 222

jjj Aba =+ . The observed 

values tz  can then be written as: 

 

  ∑
=

=
2/

1

T

j

jtt rz                                                                                                              (4.3) 

 

We now have a set of periodic functions with different frequencies and amplitudes. 

These functions can be grouped in intervals of frequencies by summing up the 

squared amplitudes of the functions which fall in the same interval. Doing so, a 

histogram of the contributions of each frequency to the overall variation of the series 

is obtained. Letting the intervals go to zero the histogram becomes a continuous 

function which is denoted as sample spectrum. It shows for each frequency the 

contribution to the variation of the series. 

 

The smoothed spectrum of the quarterly measured Austrian GDP is shown in Figure 

4.1: 

 

                                                 
1 Though, this is not true in this strict form. Especially the X12 filters can be seen as a move from “ad hoc” 

filtering to a model based approach.   
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Figure 4.1: smoothed spectrum of the quarterly measured Austrian GDP 

 

We have a peak at the zero frequency, and at the seasonal frequencies π  and 2/π . 

The width of the peaks depends on “how stochastic” the process is. A deterministic 

seasonal process will simply have a spike at the seasonal frequencies.  

 

Ad hoc filters clean or adjust the series from the variance which falls in a certain band 

around the frequencies which are regarded as noise. Seasonal adjustment cleans 

the series from the variation which can be attributed to the seasonal frequencies. 

Since the width of this band is chosen a priory, this can lead to under- or to over-

fitting, depending on the time series. In the first case not all of the variation which is 

due to seasonality is cleaned from the series, in the second case variation which is 

not part of seasonality is cleaned from the series. It seems obvious that the filter 

should depend to a higher degree on the structure of the time series it is applied to. 

 

4.2 Introduction to TRAMO/SEATS 

 

One package of programs which use such a model based adjustment method is 

TRAMO/SEATS. TRAMO does the pre-adjustment of the series and stands for “Time 

Series Regression with ARIMA Noise, Missing Observations and Outliers”. It does a 

similar job as regARIMA in the X12 program. SEATS stand for “Signal Extraction in 

ARIMA Time Series” ,and decomposes the series in its unobserved components 

following an ARIMA based method. It extracts the signal of interest from the series, 

thus those components which are of interest, and cleans the series from the noise, 

the seasonal components. 

The TRAMO and SEATS packages were developed at the Bank of Spain by Victor 

Gomez and Agustin Maravall, with the programming help of Gianluca Caporello. A 

Windows version of the programs is downloadable from the homepage of the Bank of 
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Spain. There exists also a package for implementation in MATLAB and they are 

included in newer versions of EViews as well. Eurostat released the program 

package DEMETRA, which includes X12 and the TRAMO/SEATS programs.  

 

4.3 TRAMO 

 

The pre-adjustment of the series is an important part of seasonal adjustment or 

signal extraction. TRAMO adjusts the series for outliers which can not be explained 

by the underlying normality of the ARIMA model. It further interpolates missing values 

and provides forecasts. Effects which are adjusted by TRAMO can be forms of:  

 

Outliers: 

- additive outliers, thus isolated deviations 

- level shifts, which imply step changes in the mean level 

- transitory changes 

Calendar Effects: 

This term refer to effects of calendar dates such as working days in a period, holidays 

or the location of Easter. 

Intervention Variables: 

This are special unusual events, like natural disasters, change of the base index, new 

regulations,… 

 

If z is the vector of observations, TRAMO fits the regression model ttt xyz += β' . 

The regression variables ),...,( 1 ntt yyy =  should capture the above mentioned effects. 

They can be entered by the user or generated by the program. The tx  follow a 

general ARIMA process: 

  

tt aBxBB )()()( θδφ =                                                                                                (4.4) 

 

The polynomial )(Bδ contains the unit root associated with differencing, )(Bφ  the 

stationary autoregressive roots. )(Bθ  is the invertible moving average polynomial. 

 

4.4 SEATS 

 

Usually SEATS receives from TRAMO the original series, the “deterministic” effects 

(outlier, calendar effects,…) and the “linearized” (in the sense that it can be assumed 

to be generated by a linear process) and  interpolated series. TRAMO also already 

identifies an ARIMA model to the stationary (and pre-adjusted) series.                                                                     

 

Decomposition: 
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The decomposition is done multiplicative or additive. The latter can be achieved by 

taking logs, in the following discussion we will use the additive decomposition: 

 

∑=
i

itt xx                                                                                                               (4.5) 

 

where itx  represents a component. 

 

SEATS considers 

  

- the trend-cycle component 

- the seasonal component 

- the transitory component 

- the irregular component 

 

The trend-cycle component captures the low frequency variation. It displays a peak at 

the spectral frequency 0. The seasonal component captures the spectral peaks at the 

seasonal frequencies, the irregular component is erratic white noise and therefore 

has a flat spectrum. The transitory component is a zero mean, stationary component 

that picks up those fluctuations which should not contaminate the trend or seasonal 

component and are not white noise.  

SEATS also contains an ARIMA estimation routine, since there is the possibility that 

the model passed over by TRAMO does not accept an admissible decomposition. 

SEATS performs a control on AR and MA roots. The AR roots are fixed when they 

are in preset interval around 1. SEATS then uses the ARIMA model to filter the 

linearized series to obtain the residuals. It also estimates the residuals which are lost 

through differencing. These residuals are then subject to diagnostics such as 

autocorrelation, presence of seasonality, randomness of signs, skewness, kurtosis, 

normality and nonlinearity.  

Afterwards the program proceeds to decompose the ARIMA model. The 

decomposition assumes orthogonal components of which every one will have an 

ARIMA expression of the form 

 

itiiti aBxB )()( θφ =                                                                                                     (4.6) 

 

 for each component ki ,..,1= . )(Biφ  and )(Biθ  are finite polynomials in B  of order 

ip  and iq , with no roots in common and all roots on or outside the unit circle. The 

following assumptions are made: 

 

- The variables ita are independent white noise processes 

- The iφ processes are prime  
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- The iθ  polynomials do not share unit roots in common 

 

The first assumption is based on the belief that the forces which drive or cause the 

single components are different. For example, that the causes seasonality (weather), 

has nothing to do with the trend. The second assumption is sensible given that 

different components are associated with different spectral peaks. The last 

assumption guarantees the invertibility of the model. 

The spectrum is decomposed into additive spectra associated with different 

components. These are determined by the AR roots of the model.  The factorization 

can be written as 

 

)()()()( BBBB csp φφφ=Φ                                                                                         (4.7) 

 

where )(Bpφ , )(Bsφ  and )(Bcφ  are the AR polynomials associated with the trend, 

seasonal and transitory roots, respectively. Since aggregation of ARIMA models yield 

an ARIMA model, it should be clear that aggregation of the models unobserved 

components should lead to the estimated model for the adjusted series.  

The MA polynomial can be obtained through the relationship 

 

iti

k

i

nit aBBaB )()()(
1

θφθ ∑
=

=                                                                                        (4.8) 

 

where the )(Bniφ  are the product of all jφ , kj ,...,1= , not including iφ . Equations (4.5) 

and (4.6), together with the assumptions above are referred to as Unobserved 

Component ARIMA model. 

In general, there is no unique UCARIMA representation that can generate it. The AR 

polynomials are obtained through factorization, but the MA polynomials and 

innovation variances are not identified. This under-identification problem is solved by 

assuming that ii pq ≤ .2 The compositions then differ in the way white noise is 

allocated among the components. In order to uniquely identify the components, all 

white noise is added to the irregular component. This is called the canonical 

decomposition. 

 

4.5 Constructing the Filter 

 

After identifying the UC-model an optimal filter can be constructed. Optimal in the 

sense, that it minimizes the mean squared error ]X|)ŝ[( t

2−sE  where s  denotes the 

real signal and ŝ  its estimate. The minimum mean squared error is obtained by the 

                                                 
2 It is possible to estimate also models with PQ > , but it is recommended to favor balanced models because of 

their better decomposition properties. 
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conditional expectation of the unobserved s . Since the joint distribution is 

multivariate normal, the conditional expectation is a linear combination of the 

elements tx  . 

The conditional expectation can be computed by the Kalman Filter or the Wiener-

Kolmogorov  (WK) Filter. In the stationary case these filters are equivalent. If one 

writes the model for tx , and the model for the signal in their MA expression as 

taB)(Ψ  and sts aB)(Ψ , where 
)(
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B
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φ
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=Ψ  . and denotes the 

forward operator with F , then ŝ  is obtained by the symmetric filter  
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The filter can be expressed in the frequency domain as 
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This function is also referred to as gain of the filter. The spectrum of the estimator of 

the signal is given by 
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The squared gain of the filter determines how the variance of the series contributes to 

the variance of the signal. If the ratio is 1, the variance corresponding to these 

frequencies is completely passed through to the signal. The frequencies where the 

ratio is 0 are cut out and do not contribute to the estimated spectrum of the signal.  

An example how the squared gain of the filter for the quarterly GDP series could look 

like is given in Figure 4.2: 

 



 14

 
 

Figure 4.2: example of how the squared gain of the quarterly series could look like 

 

The part of the variance corresponding to the seasonal frequencies is filtered out, 

while the other part of the variance is passed through and contributes to the 

formation of the signal.  

In the non-stationary case the spectra have to be replaced by pseudo-spectra. Note 

that the frequency-domain representation remains valid, despite ∞  peaks in the 

spectrum, )(
~ ωϑ  is everywhere well defined. 

It is clear that in a symmetric (or two-sided) filter the signal for the most recent and  

therefore most interesting observations would not be available. SEATS solves this by 

producing several years of forecasts. SEATS also produces standard errors of the 

estimates and forecasts as well as standard errors for the revision the estimator and 

forecasts will undergo. Revisions are the corrections when new observations become 

available. They are necessary until the estimate for the signal is based solely on 

observed values. 

 

4.6 Conclusion 

 

TRAMO/SEATS tailors the filter to the observed series according to the underlying 

ARIMA model. At Eurostat a lot of research is done which compares the performance 

of the X12 family of filters and model based approaches. There is a tendency which 

favors model based methods, however for most tasks all these filters do their job 

well. In addition the “real” data generating process is unknown and therefore it is 

impossible to justify which procedure leads to a better fit of the adjusted series to the 

generated data without a seasonal cycle. Figure 4.3 shows the seasonal adjusted 

series for the Austrian GDP using the X12 filter and TRAMO/SEATS. For most parts 

of the series the differences between the two methods are negligible small. However, 

adjusting quarterly GDP for seasonality is quite a standard application and huge 

differences would be very surprising. 
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Figure 4.3: Comparison of Census X12 and TRAMO/SEATS for the quarterly 

Austrian GDP series 
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