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The familiar Greenberger–Horne–Zeilinger (GHZ) states can be rewritten by entangling the Bell states 
for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in 
a constructive way we obtain all eight independent GHZ states that form the simplex of entangled 
entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions 
both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering 
n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is 
relevant for experimental and quantum information theoretic applications.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Entanglement as one of the most fundamental phenomena in 
quantum physics has many fascinating aspects. An amazing fea-
ture that occurs for multipartite systems is entangled entanglement. 
The term was coined by Krenn and Zeilinger [1] to characterize the 
phenomenon that the entanglement of two qubits, expressed by 
the Bell states, can be entangled further with a third qubit, produc-
ing such a particular Greenberger–Horne–Zeilinger (GHZ) state. We 
take up this idea, develop it further and show that all independent 
(maximally entangled) GHZ states, can be expressed, geometrically 
quite obviously, in an entangled entanglement form. These basis 
states configure the magic simplex [2]. The word “magic” goes back 
to Wootter’s magic basis to compute the concurrence [3]. We show 
then explicitly how our construction procedure, which is entirely 
systematic and intuitive, can be generalized to higher dimensions 
d and to any finite number of particles n, namely to n-partite qudit 
states d ⊗ d ⊗ d ⊗ d ⊗ . . . ⊗ d = d⊗n .

To obtain an understanding and intuition of the physics behind 
entangled entanglement we discuss the case of the tripartite GHZ 
states in Section 2, on one hand, with respect to the Einstein–
Podolsky–Rosen (EPR) paradox, and on the other hand, with ref-
erence to the mathematical structure, the freedom to factorize a 
tensor product of algebras (or Hilbert spaces) in different ways, 
which forms the mathematical basis for the phenomenon of en-
tangled entanglement. In Section 3 we introduce our procedure 
how to construct systematically the states of entangled entangle-
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ment for any higher dimension and number of particles. The use 
of the unitary Weyl operators [4] turns out to be very helpful 
(also known under names like “generalized spin operators”, “Pauli 
group” and “Heisenberg group”, Refs. [5–8]). In Weyl’s book these 
unitary operators, consisting of phase and (cyclic) ladder operators, 
were introduced by a “quantization” of classical kinematics that is 
the reason why the magic simplex is sometimes considered as a 
phase-space.

We also illustrate the geometric structure of the state space 
(see Fig. 2), the symmetries inherent in a magic simplex and the 
cyclicity of the phase operations, when moving from one state to 
another within the simplex. In particular we discover a Merry Go 
Round of the qutrit GHZ states (see Fig. 3). Finally, conclusions are 
drawn in Section 4.

2. Physical aspect and mathematical structure

Let us begin with discussing the physics behind the phe-
nomenon of entangled entanglement. We recall the well-known 
GHZ state [9,10]

|GHZ1−〉123 = 1√
2

(|R〉1 ⊗ |R〉2 ⊗ |R〉3+, |L〉1 ⊗ |L〉2 ⊗ |L〉3
)
,

(1)

where |R〉, |L〉 denote the right- and left-handed circularly polar-
ized photons. Interestingly, expression (1) can be re-expressed by 
decomposing (1) into linearly polarized states |H〉, |V 〉 and Bell 
states

|GHZ1−〉123 = 1√ (|H〉1 ⊗ |φ−〉23 − |V 〉1 ⊗ |ψ+〉23
)
, (2)
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Fig. 1. (a) Bob’s photons are in an entangled state. (b) Bob’s photons are in a separable state.
where |φ±〉 = 1√
2

(|H〉 ⊗|H〉 ± |V 〉 ⊗|V 〉) , |ψ±〉 = 1√
2

(|H〉 ⊗|V 〉 ±
|V 〉 ⊗ |H〉) represent the familiar maximally entangled Bell states. 
The linearly polarized states |H/V 〉 are related to the circularly 
polarized states via |R/L〉 = 1√

2
(|H〉 ± i|V 〉).

The GHZ state as expressed in Eq. (2) obviously represents 
entangled entanglement. This feature has been verified experi-
mentally by Zeilinger’s group [11] who has performed a Bell-type 
experiment on three particles, where one part, Alice on line 1, 
projects onto the horizontally |H〉1 or vertically |V 〉1 polarized 
state and the other part, Bob on lines 2 and 3, projects onto 
the maximally entangled states |φ−〉23 or |ψ+〉23 via a Bell state 
measurement based on a polarizing beam splitter [12]. Then the 
authors test a Clauser–Horne–Shimony–Holt inequality established 
between Alice and Bob and find a strong violation of the inequal-
ity (specifically, of the Bell parameter) by more than five standard 
deviations. Thus the entangled states of the two photons on Bob’s 
side are definitely entangled again with the single photon on Al-
ice’s side.

What is the physical significance of it, in particular, in the light 
of an EPR reasoning? Let us start with an EPR-like discussion as 
in Ref. [11]. If Alice is measuring the linearly polarized state |H〉1
then Bob will find the Bell state |φ−〉23 for his two photons (see 
Fig. 1(a)). If she obtains a |V 〉1 state in her measurement then 
Bob will get the Bell state |ψ+〉23. This perfect correlation between 
the polarization state of one photon on Alice’s side and the entan-
gled state of the two photons on Bob’s side implies, under the EPR 
premises of realism and “no action at a distance”, that the entan-
gled state of the two photons must represent an element of reality. 
Whereas the individual photons of this state, which have no well-
defined property, do not correspond to such elements. For a realist 
this is a surprising feature, indeed.

If, on the other hand, Alice is measuring a right-handed circu-
larly polarized state |R〉1 then Bob will find his two photons in 
a separable state |R〉2 ⊗ |R〉3 (see Fig. 1(b)), or if Alice measures 
|L〉1 Bob will get |L〉2 ⊗ |L〉3. Then the two photons of Bob con-
tain individually an element of reality, which is more satisfactory 
to a realist. Thus by the specific kind of measurement, projecting 
on linearly or circularly polarized photons, Alice is able to switch 
on Bob’s side the properties of the two photons — and their reality 
content — between entanglement and separability.

This feature is even more puzzling in case of entangling in-
ternal with external degrees of freedom, which is experimentally 
achieved in neutron interferometry. The experimenters of Ref. [13]
produced a GHZ-like state for single neutrons entangled in path–
spin–energy. There the above considerations also have to hold.

How can we understand this switching phenomenon between 
entanglement and separability? A quantum theorist can trace this 
switch back to two different factorizations of the tensor product 
of three algebras A1 ⊗ A2 ⊗ A3, where A1 belongs to Alice and 
A2 ⊗ A3 to Bob. There is total democracy between the different 
factorizations [14,15], no partition has ontologically a superior sta-
tus over any other one (if no specific physical realization is taken 
into account). For an experimentalist, however, a certain factoriza-
tion is preferred and is clearly fixed by the set-up.

For tripartite states, the GHZ states, which are defined on a 
tensor product of three algebras, there exists the following theo-
rem [14], where ρ = |ψ 〉 〈ψ | denotes the corresponding density 
matrix of the quantum state |ψ〉:

Theorem 1 (Factorization algebra). For any pure tripartite state ρ one 
can find a factorization M =A1 ⊗A2 ⊗A3 such that ρ is separable with 
respect to this factorization and another factorization M = B1 ⊗B2 ⊗B3
where ρ appears to be maximally entangled.

For mixed states, however, such a unitary switching between 
separable and entangled states exists only beyond a certain bound 
of mixedness [14].

Example. To illustrate Theorem 1 we consider the circularly polar-
ized states {|R〉, |L〉}. We find, for example, the following unitary 
matrix U † that transforms the separable state |R〉1 ⊗ |R〉2 ⊗ |R〉3
into the entangled state |GHZ1−〉123 of Eq. (1)

U † |R〉1 ⊗ |R〉2 ⊗ |R〉3 = |GHZ1−〉123 , (3)

where

U = U T ⊗3
0 · Uent · U ⊗3

0 with U0 = 1√
2

(
1 i

1 −i

)
(4)

and Uent =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 0 0 0 1√
2

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
1√
2

0 0 0 0 0 0 − 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Having found the structure of entangled entanglement, it is 
quite natural to ask if other GHZ states can be expressed in a 
similar way. The answer is yes, we can construct a complete or-
thonormal system. Geometrically it is quite obvious how to pro-
ceed. We just have to entangle the opposite states |φ−〉 and |ψ+〉
or |φ+〉 and |ψ−〉 of the 2 ⊗ 2 dimensional tetrahedron of Bell 
states [16–18] with |H〉 and |V 〉, and respect the symmetric and 
antisymmetric property respectively. In this way we immediately 
find an orthonormal basis of eight states

|GHZ1+〉123 = 1√
2

(|H〉1 ⊗ |φ−〉23 + |V 〉1 ⊗ |ψ+〉23
)

|GHZ1−〉123 = 1√
2

(|H〉1 ⊗ |φ−〉23 − |V 〉1 ⊗ |ψ+〉23
)

|GHZ2+〉123 = 1√
2

(|H〉1 ⊗ |φ+〉23 + |V 〉1 ⊗ |ψ−〉23
)

|GHZ2−〉123 = 1√
2

(|H〉1 ⊗ |φ+〉23 − |V 〉1 ⊗ |ψ−〉23
)

|GHZ3+〉123 = 1√
2

(|V 〉1 ⊗ |φ−〉23 + |H〉1 ⊗ |ψ+〉23
)

|GHZ3−〉123 = 1√
2

(|V 〉1 ⊗ |φ−〉23 − |H〉1 ⊗ |ψ+〉23
)

|GHZ4+〉123 = 1√
2

(|V 〉1 ⊗ |φ+〉23 + |H〉1 ⊗ |ψ−〉23
)

|GHZ4−〉123 = 1√ (|V 〉1 ⊗ |φ+〉23 − |H〉1 ⊗ |ψ−〉23
)
. (6)
2
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These eight states form the vertices of a simplex S in the cor-
responding eight dimensional Hilbert space of the tensor product 
2 ⊗2 ⊗2. It is the analogue to the tetrahedron of Bell states in 2 ⊗2
dimensions. The set S itself, the magic simplex of entangled entangle-
ment, consists of the convex combinations of all the corresponding 
density matrices ρGHZi±

S :=
{

ρ =
∑

i=1,...,4;k=+,−
λk

i ρGHZik | λ±
i ≥ 0,

∑
λ±

i = 1

}
, (7)

where

ρGHZi± = |GHZi±〉〈GHZi±|, i = 1, . . . ,4 . (8)

The convex combination (7) of the GHZ states builds up a sim-
plex with the maximally mixed state 1

81 in its center. All the den-
sity matrices inside this simplex represent valid quantum states: 
The eigenvalues of every state ρ = ∑

i=1,...,4;k=+,− λk
i ρGHZik in the 

simplex are just equal to the eight coefficients λk
i [19]. For the ele-

ments of S, we know, by construction, that λ±
i ≥ 0 and 

∑
λ±

i = 1, 
so that inside the simplex all the eigenvalues are non-negative and 
for the trace we have Trρ = 1. Therefore, any element ρ ∈ S corre-
sponds to a density matrix.

On the other hand, we can show that the matrices outside the 
simplex S have to violate one of the above properties and therefore 
do not form density matrices of physical states.

All states of entangled entanglement (6) can certainly be re-
expressed by tensor products of right-handed |R〉 and left-handed
|L〉 circularly polarized photon states [19]

|GHZ1+〉123

= 1√
2

(|R〉1 ⊗ |L〉2 ⊗ |L〉3 + |L〉1 ⊗ |R〉2 ⊗ |R〉3
)

|GHZ1−〉123

= 1√
2

(|R〉1 ⊗ |R〉2 ⊗ |R〉3 + |L〉1 ⊗ |L〉2 ⊗ |L〉3
)

|GHZ2+〉123

= 1√
2

(|R〉1 ⊗ |R〉2 ⊗ |L〉3 + |L〉1 ⊗ |L〉2 ⊗ |R〉3
)

|GHZ2−〉123

= 1√
2

(|R〉1 ⊗ |L〉2 ⊗ |R〉3 + |L〉1 ⊗ |R〉2 ⊗ |L〉3
)

|GHZ3+〉123

= − i√
2

(|R〉1 ⊗ |R〉2 ⊗ |R〉3 − |L〉1 ⊗ |L〉2 ⊗ |L〉3
)

|GHZ3−〉123

= − i√
2

(|R〉1 ⊗ |L〉2 ⊗ |L〉3 − |L〉1 ⊗ |L〉2 ⊗ |R〉3
)

|GHZ4+〉123

= − i√
2

(|R〉1 ⊗ |L〉2 ⊗ |R〉3 − |L〉1 ⊗ |R〉2 ⊗ |L〉3
)

|GHZ4−〉123

= − i√
2

(|R〉1 ⊗ |R〉2 ⊗ |L〉3 − |L〉1 ⊗ |L〉2 ⊗ |R〉3
)
. (9)

Of course, via local unitary transformations the eight GHZ states 
(9) can be transformed into the corresponding states containing 
only linearly polarized |H〉 and |V 〉 states.

The appeal and importance of the construction of the entan-
gled entanglement is that this procedure can be easily generalized 
to construct the corresponding states of higher dimensions d and 
arbitrary number of particles n. Entangling the GHZ states (6) again 
with |H〉 and |V 〉 we obtain the corresponding simplex in the 
2 ⊗ 2 ⊗ 2 ⊗ 2 tensor space and so on. In this way we can con-
struct all higher dimensional simplices of entangled entanglement 
states in a straightforward way just by entangling again the ver-
tices of the simplex with |H〉 and |V 〉. Thus we find the magic 
simplex for any particle number. The extension to higher dimen-
sional system is obtained by generalization of the Pauli matrices 
to the unitary Weyl operators. The procedure that constructs the 
simplices in a systematic and straightforward way, where the Weyl 
operators simplify the method, we are going to present in the next 
section.

3. Construction procedure of entangled entanglement

We now construct a set of complete orthonormal basis states 
for any finite dimension and number of particles. Our point is that 
these basis states exhibit already the structure of entangled entan-
glement. A similar construction to our’s is the one of the authors of 
Ref. [20], who also used Weyl operators to classify the basis states. 
Whereas our construction is directed to show explicitly entangled 
entanglement, their’s, in contrast, is a classification in terms of so-
called “cluster sums”.

We proceed in two steps. Firstly, we construct one entangled 
entanglement state, and secondly, we find the remaining entangled 
entanglement states of the simplex basis. This we do by acting 
with Weyl operators in one of the subsystems.

Let us begin with qubits and choose without loss of generality 
the state

|�1〉 := |0〉 . (10)

From now on we use the convenient notation |0〉 and |1〉 of quan-
tum information instead of the experimental notation |H〉 and |V 〉, 
since it can easily be generalized for the higher dimensional cases.

Inspired by the construction in Eq. (6) we carry on the sub-
sequent strategy, where we apply the Weyl operators, generally 
defined by

Wk,l =
d−1∑
s=0

w(s−l)k|s − l〉〈s| with w = e
2π i

d and k, l = 0, . . . ,d − 1 ,

onto the subsystems.
Then we consider a two particle state |�2〉 and apply the Weyl 

operator W1,1 in the following way to obtain the Bell state |φ−〉

|�2〉 = 1√
2

(|0〉 ⊗ |�1〉 + |1〉 ⊗ W1,1|�1〉
)

= 1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ W1,1|0〉)

= 1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)
= |φ−〉 . (11)

Next we iterate the state and get a GHZ state, specifically
|GHZ1−〉123 of Eq. (6)

|�3〉 = 1√
2

( |0〉 ⊗ |�2〉 + |1〉 ⊗ (1 ⊗ W1,1)|�2〉
)

= 1√
2

( |0〉 ⊗ |φ−〉 − |1〉 ⊗ |ψ+〉 )
. (12)

Thus by iterating we find quite generally the n-partite qubit state 
already in its entangled entanglement form

|�n〉 = 1√
2

⎛
⎝|0〉 ⊗ |�n−1〉 + |1〉 ⊗ (1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

n−2

⊗W1,1)|�n−1〉
⎞
⎠

(13)

= 1√
2

1∑(
1⊗(n−1) ⊗ W i,i

)
|i〉 ⊗ |�n−1〉 . (14)
i=0
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Finally, we generalize the states to higher dimensions d, what 
we can do in a similar way

|�d
n〉 = 1√

d

⎛
⎝|0〉 ⊗ |�n−1〉 + |1〉 ⊗ (1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

n−2

⊗W1,1)|�n−1〉

. . . + |d − 1〉 ⊗ (1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n−2

⊗Wd−1,d−1)|�n−1〉
⎞
⎠

= 1√
d

d−1∑
i=0

(
1⊗(n−1) ⊗ Wd−1,d−1

)
|i〉 ⊗ |�n−1〉 . (15)

Having obtained now an entangled entanglement state for any 
finite dimension d and number n of particles, Eq. (15), we proceed 
to construct the dn − 1 remaining entangled entanglement states 
of the simplex by acting in one of the subsystems with all d2 Weyl 
operators and in n − 2 subsystems with Weyl operators W s,0 that 
change the phase, i.e.

|�d
n(s1, s2, . . . , sn−2,k, l)〉
= 1 ⊗ W s1,0 ⊗ · · · ⊗ W sn−2,0 ⊗ Wk,l |�d

n〉. (16)

Let us remark that a certain selection of all possible locally uni-
taries Wa1,b1 ⊗ Wa2,b2 ⊗ · · · ⊗ Wan,bn does the job of defining a 
complete orthogonal basis. Such a selection can be illustrated as 
a “Merry Go Round” (see Fig. 2 and Fig. 3) and is discussed later. 
Herewith the construction of our entangled entanglement simplex 
Wd

n for n particles with dimension d is as follows

Wd
n :=

{ d−1∑
s1,...,sn−2,k,l=0

cs1,...,sn−2,k,l

· |�d
n(s1, s2, . . . , sn−2,k, l)〉〈�d

n(s1, s2, . . . , sn−2,k, l)|

with cs1,...,sn−2,k,l ≥ 0 and
∑

cs1,...,sn−2,k,l = 1

}
.

(17)

Due to our construction the states can be explicitly written as

|�d
n(s1, s2, . . . , sn−2,k, l)〉 = 1√

dn−1(
γ (0, . . . ,0,0) |0 . . . 00z(0, . . . ,0,0)〉 +
γ (0, . . . ,0,1) |0 . . . 01z(0, . . . ,0,1)〉 . . . +
γ (0, . . . ,0,d − 1) |0 . . . 0(d − 1)z(0, . . . ,0,d − 1)〉 +
. . . . . .

γ (d − 1, . . . ,d − 1,0)

|(d − 1) . . . (d − 1)0z(d − 1, . . . ,d − 1,0)〉 +
. . . . . .

γ (d − 1, . . . ,d − 1,d − 1)

| (d − 1), . . . , (d − 1)︸ ︷︷ ︸
(n−1)−times

z(d − 1, . . . ,d − 1,d − 1)〉
)

, (18)

where the coefficients γ (i1, . . . , in−1) are obtained from the dif-
ferent Weyl transformations, meaning that they are powers of 
the Weyl factor e

2π i
d and the entries z(i1, . . . , in−1) are the re-

sults of the Weyl transformations Wk,l for the last particle. The 
z(i1, . . . , in−1) take different values, but all in all there are equally 
many results giving the “digits” 0, 1, . . . , (d − 1).

For all dimensions d and particle numbers n, the set of d n

states{
|�d

n(s1, s2, . . . , sn−2,k, l)〉, 0 ≤ s1, s2, . . . , sn−2,k, l ≤ d − 1

}

(19)

form an orthonormal system, which can be proved straightfor-
wardly

〈�d
n(s′

1, s′
2, . . . , s′

n−2,k′, l′)|�d
n(s1, s2, . . . , sn−2,k, l)〉

= δs′1,s1
. . . δs′n−2,sn−2

δk′,kδl′,l . (20)

Summarizing, our construction mechanism works generally, i.e., 
for any number of particles n and any dimension d. The GHZ-type 
states, forming an orthonormal basis, have already the structure of 
entangled entanglement and reveal a particular geometry, which is 
quite remarkable.

In Fig. 2 we have depicted the geometry of three qubit states. 
We find squares of states which are obtained by applying the four 
different Weyl operators W0,0, W0,1, W1,0, W1,1 to one subsystem 
– in our choice to the third subsystem – of a reference GHZ-type 
state, denoted by GHZ000 in Fig. 2. Two squares are connected 
by applying a Weyl operator to another subsystem. In our choice 
the phase operation W1,0 is acting on the second subsystem and 
moves a certain GHZ state to a GHZ state in the other square.

The geometric structure generalizes for higher dimensions in an 
obvious way as illustrated for three qutrits in Fig. 3. We find three 
squares with each nine GHZ-type state related by the application 
of the nine Weyl operators to the third subsystem. To move from 
one square to another we have to apply the phase shift operations 
W1,0 or W2,0 to the second subsystem (as in the qubit case). In 
this way it yields a cyclic property – a Merry Go Round – of the 
GHZ states.

4. Conclusions

GHZ-type entangled states are from their physics content fun-
damentally different to other (genuine) multi-partite entangled 
states. They show the interesting feature of entangled entangle-
ment, where an entangled state of two qubits, a Bell state, is fur-
ther entangled with a third qubit state. We have shown that any 
GHZ state can be expressed in this way and we have given a gen-
eralization to higher dimensions. We have presented a procedure 
how to construct systematically, with help of Weyl operators, the 
entangled entanglement states for any higher dimension and num-
ber of particles. These states form the vertices of a “magic simplex” 
in the corresponding Hilbert–Schmidt space. Our construction pro-
cedure reveals an interesting cyclic geometric structure, a “Merry 
Go Round” between the GHZ states among a simplex, as depicted 
in Fig. 2 for qubits and in Fig. 3 for qutrits.

The physical significance of entangled entanglement is that the 
naive concept of reality, that these GHZ-type entangled states al-
ways have well-defined local properties, fails promptly. When Al-
ice is measuring one particle the reality content of the remaining 
photons on Bob’s side switches accordingly (see Fig. 1). If Alice 
projects, for instance, on linearly polarized photons Bob finds his 
two photons in a Bell state. According to Einstein–Podolsky–Rosen 
we have to attribute an element of reality to the entangled state 
on Bob’s side but not to each individual photon separately. On the 
other hand, if she measures a circularly polarized photons Bob 
detects his two photons in a separable state, that means, again 
according to EPR, they contain individually an element of reality. 
Thus Alice is able to switch the properties, the reality content, 
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Fig. 2. (Color online.) Geometry of the basis states forming the magic simplex S for three qubits: Here we simplify the notation by |�2
3(s, k, l)〉 = GHZ2

3(s, k, l) =: GHZskl. 
To change a certain GHZ state to another one within the square one needs to apply either a flip or phase operation in the last subsystem, whereas the phase operation W1,0

applied to the second subsystem moves a certain GHZ state to a GHZ state in the other square.

Fig. 3. (Color online.) “Schön ist so ein Ringelspiel ...” [21] or the Merry Go Round of the GHZ states. In our construction the GHZ states possess a cyclic property that allows to 
move from square to the next one like in the Carousel of the famous Viennese Prater [22]. The geometry for three qutrits is a generalization of the one for three qubits, i.e. 
Fig. 2. Here we simplify the notation by |�3

3(s, k, l)〉 = GHZ3
3(s, k, l) =: skl. To change a certain GHZ state to another one within the square one needs to apply either a flip or 

phase operation in the third subsystem, whereas the phase operation W1,0 or W2,0 applied to the second subsystem moves a certain GHZ state from one square to a GHZ 
state in another square, yielding in this way the cyclic property in our construction of GHZ states. This can be extended straightforwardly to higher dimensions.
of the photons on Bob’s side. Mathematically, this switching phe-
nomenon between entanglement and separability can be traced 
back to different factorizations of the tensor product of algebras 
of the quantum states for the involved particles.

An investigation of the separability and entanglement proper-
ties of the magic simplices within the HMGH-framework [23] can 
be found in Ref. [24].
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