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Abstract
I present my encounter with John Bell at CERN, our collaboration and joint
work in particle physics. I also recall our quantum debates and give my
personal view on Bellʼs fundamental work on quantum theory, in particular,
on contextuality and nonlocality of quantum physics. Some mathematical and
geometric aspects of entanglement are discussed as influence of Bellʼs theo-
rem. Finally, I make some historical comments on the experimental side of
Bell inequalities.

This article is part of a special issue of Journal of Physics A: Mathematical
and Theoretical devoted to ‘50 years of Bell’s theorem’.
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PACS numbers: 03.65.Ud, 03.65.Aa, 02.10.Yn, 03.67.Mn

(Some figures may appear in colour only in the online journal)

1. Prologue

1.1. Encounter with John Bell

At the end of 1977 I received a letter from CERN that the Selection Committee had appointed
me to be a Fellow at CERN and that my employment would begin on 1 April 1978, a
memorable day. At the end of March 1978, I moved from Vienna to Geneva with all my
scripts and books, heavy luggage at that time. I introduced myself at CERNʼs theory division
and began to attend all the activities and events like the theoretical seminar. Already in one of
the first weeks, after one of these seminars, when drinking a welcome tea in the common
room, an impressive man with metal-rimmed glasses, red hair, and a beard appeared in the
door, looked around, fixed me, and approached straightaway. ‘Iʼm John Bell, who are you?’
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he introduced himself. Of course, being a young postdoc, I was quite speechless to have this
famous physicist in front of me, renowned for his work in weak interactions and gauge
theories. With a bit of stuttering I replied, ‘I am Reinhold Bertlmann from Vienna, Austria.’
‘What are you working on?’ was his next question and I answered ‘Quarkonium...’. Bell
began to smile gently and we immediately fell into a lively discussion about bound states of
quark–antiquark systems, a very popular subject at that time. The discussions continued in
front of the blackboard in his office and gave rise to common calculations—a happy and
fruitful collaboration and friendship began.

1.2. Joint work in particle physics

The 1970s was a glorious time for experimental particle physics, in particular, several spectra
of hadronic narrow resonances, like the ψJ charmonium and Υ bottonium resonances, had
been discovered in + −e e collisions. The production and the properties of these particles had to
be understood.

The first problem we attacked was how to understand the production of hadrons in + −e e
collisions. Hadrons consist of quarks and antiquarks, thus the + −e e collisions actually produce
quark–antiquark (qq̄) pairs. The idea was that at high energies, which correspond to short
distances, the qq̄ pairs behave as quasi-free particles that produce a flat cross-section.
However, at low energies the quarks propagate larger distances, are confined and generate
bound states—called quarkonium—which show up as bumps, resonances, in the cross-
section.

We followed an idea that goes back to Sakurai [1]. We smeared each resonance in energy
appropriately so that the cross-section over one resonance agreed already with the corre-
spondingly averaged asymptotic result. We called it local duality [2, 3] since two seemly
different features appeared as the dual aspects of one and the same reality.

The duality relation we can understand quite easily. Allowing for an energy spread means
—via the uncertainty relation—that we focus on short times. But for short times the corre-
sponding wave does not spread far enough to feel the details of the long distances, the
confining potential. So this part can be neglected and the wave function at the origin of the
bound state, which determines the leptonic width or area of a resonance, matches the averaged
quasi-free qq̄ pair. However, if we want to push the idea of duality even further in order to
become sensitive to the position of the bound state, the resonance, in the mass spectrum then
we have to include the contributions of the larger distances into the wave function. That
means, we must have some information about confinement.

Thatʼs the subject Bell and I got interested in next and it resulted in a wonderful
collaboration which we called Magic Moments [4]. As a true Irishman John always had to
drink a 4 oʼclock tea , see figure 1, and this we regularly practised in the CERN cafeteria. He
ordered with his typical Irish accent, ‘deux infusions verveine, sʼil vous plâit’, Johnʼs favorite
tea. There, in a relaxed atmosphere, we talked not only about physics but also about politics,
philosophy, and when Renate Bertlmann joined us we also had heated debates about mod-
ern art.

How could we include confinement in our duality concept? Our starting point was the
vacuum polarization tensor, the vacuum expectation value of the time ordered product of two
quark currents in quantum field theory, quantum chromodynamics. This quantity was pro-
portional to the hadronic cross-section and calculable within perturbation theory. At that time
a Russian group including Shifman et al [5], claimed that the so-called gluon condensate, the
vacuum expectation value of two gluon fields, is responsible for the influence of confinement.
We wanted to examine this idea further.
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Approximating quantum field theory by potential theory, we could calculate both the
perturbative and the exact result. For the energy smearing we chose an exponential as the
weight function, which is called a moment by the mathematicians. In this case, the procedure
corresponds to perturbation theory of a Hamiltonian with respect to an imaginary time. I
found this quite fascinating. The ground state level could be extracted by using the loga-
rithmic derivative of a moment, which approaches the ground state energy for large (ima-
ginary) times since the contributions of the higher levels are cut off. In this way we were able
to predict the ground states of charmonium (the ψJ resonances) and of bottonium (the Υ
resonances) to a high accuracy, quantitatively within 10% [4, 6, 7]. Thus in this respect we
could demonstrate the success of the procedure.

John and I were working within potential theory which functioned surprisingly well [8].
Therefore it was quite natural for us to ask whether one can attach a potential to the
occurrence of the gluon condensate. Indeed, we found ways to do this [9, 10].

One way was to work within the moments, which regularize the divergence of the long-
distance part of the gluon propagator, the gluon condensate contribution. In this case a static,
nonrelativistic potential containing the gluon condensate can be extracted, which is called in
the literature the equivalent potential of Bell and Bertlmann [9]. The short-distance part is the
well-known Coulomb potential, whereas the long-distance component, the gluon condensate
contribution, emerges as a quartic potential mr4 and is mass- i.e. flavour-dependent. In this

Figure 1. Bell and Bertlmann choosing the right sort of tea in 1980. Foto: © Renate
Bertlmann.
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respect it differs considerably from the familiar mass-independent, rather flat potential models
[11–14]. However, for a final comparison with potential models one has to go further and take
into account the higher order fluctuations [15].

By studying very heavy quarkonium systems, which describe e.g. bottonium (the Υ
resonances), John and I also found another way to extract a potential from the gluon con-
densate effect [10]. In that case the low-lying bound states, because of their small size, will be
dominated by the Coulomb potential. The condensate effect, an external colour field repre-
senting the gluon, can be added as a small perturbation. Leutwyler [16] and Voloshin [17] had
considered such a colour-electric Stark effect and calculated the energy spectrum for all
quantum numbers n and l. John and myself, on the other hand, were able to construct a
gluonic potential, which by perturbing the Coulomb states provides the energy spectrum of
Leutwyler–Voloshin. The leading term of this potential, the infinite mass limit, has a cubic r3

dependence and is therefore mass-independent. But for finite masses there are further cor-

rections proportional to , ,r

m

r

m m

constant2

2 3 such that the potential becomes flavour-dependent
again.

In conclusion, no adequate bridge was found between a field theory containing the gluon
condensate, quantum chromodynamics on one side, and popular potential models on the
other. For an overview of this field I refer to [18].

2. Out of the blue into the middle of the quantum debate

Looking again through my written records from that time at CERN I must say that I was
totally fascinated and absorbed by the extraordinary personality of John Bell. I admired his
knowledge and wisdom, for me he was the man who had a deep understanding of quantum
field theory and could simplify its issues within very concrete examples of potential theory.
His maxim was ‘Always test your general reasoning against simple models!’ So it was quite
understandable that I was working passionately in our collaboration.

Of course, I had heard that he was also a leading figure in quantum mechanics (QM),
specifically, in quantum foundations. But nobody could actually explain to me his work in
this quantum area, neither at CERN nor anywhere else. The standard answer was: He dis-
covered some ‘relation’ whose consequence was that QM turned out alright, but this we knew
anyhow, so donʼt worry. And I didnʼt. John, on the other hand, never mentioned his quantum
works to me in the first years of our collaboration. Why? This I understood later on; John was
reluctant to push somebody into a field that was quite unpopular at that time (see remarks in
section 6).

At the end of the summer of 1980, I returned for some time to my home institute in
Vienna to continue our collaboration on the gluon condensate potential from there. At that
time, there was no internet, and it was a common practice to send preprints (typed manu-
scripts) of work prior to publication to all main physics institutions in the world. Also we in
Vienna had a preprint shelf where each week the new incoming preprints were exhibited.

One day, on the 15th of September, I was sitting in the instituteʼs computer room,
handling my computer cards, when my colleague Gerhard Ecker, who was in charge of
receiving the preprints, rushed in waving a preprint in his hands. He shouted, ‘Reinhold, look
—now youʼre famous!’ I could hardly believe my eyes as I read and reread the title of a paper
by Bell [19] (see figure 2): ‘Bertlmannʼs socks and the nature of reality’.

I was totally excited. Reading the first page my heart stood still:
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The philosopher in the street, who has not suffered a course in quantum
mechanics, is quite unimpressed by Einstein–Podolsky–Rosen (EPR) corre-
lations [21]. He can point to many examples of similar correlations in
everyday life. The case of Bertlmannʼs socks is often cited. Dr Bertlmann likes
to wear two socks of different colours. Which colour he will have on a given
foot on a given day is quite unpredictable. But when you see (figure 2) that the
first sock is pink you can be already sure that the second sock will not be pink.
Observation of the first, and experience of Bertlmann, gives immediate
information about the second. There is no accounting for tastes, but apart
from that there is no mystery here. And is not the EPR business just the same ?

Seeing the cartoon John had sketched himself showing me with my odd socks nearly
knocked me down. All this came so unexpectedly—I had not the slightest idea that John had
noticed my habit of wearing socks of different colours, which I had cultivated since my early
student days, my special generation-68 protest. This article pushed me instantaneously into
the quantum debate, which changed my life. Since then ‘Bertlmannʼs socks’ has developed a
life of its own. You can find Bertlmannʼs socks everywhere on the internet, in popular science
debates, and even in the fields of literature and art.

Now the time has come to dive into John’s quantum work, to understand his contribu-
tions in the quantum debate. It was John who pushed the rather philosophical Einstein–Bohr
discussions of the 1930s about realism and incompleteness of QM onto physical grounds. His

Figure 2. (a) Original CERN preprint Ref.TH.2926-CERN ‘Bertlmannʼs socks and the
nature of reality’ of John Bell from 18 July 1980 [19]. It had been ‘decorated’ by
Gerhard Ecker who was in charge of receiving the preprints. (b) Cartoon about
Bertlmannʼs socks published in Journal de Physique, [20]. The article is based on an
invited lecture John Bell has given at le Colloque sur les ‘Implications conceptuelles de
la physique quantique’, organisé par la Foundation Hugot du Collège de France, le 17
juin 1980.
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axiom of locality or separability was the essential ingredient of a hidden variable theory
(HVT) and illuminated physical differences between all such HVT and the predictions of QM.
As result of ‘Bellʼs theorem’ we can distinguish experimentally between QM and all local
realistic theories with hidden variables. I was impressed by the clarity and depth of Johnʼs
thoughts. From this time on we had fruitful discussions about the foundations of QM and this
was a great fortune and honour for me. It was just about the time when Aspect [22] finished
his time-flip experiments on Bell inequalities and the whole field began to attract the
increasing interest of physicists.

For me a new world opened up—the Universe of John Bell—and caught my interest and
fascination for the rest of my life. In the following chapters I will present my personal view of
this Universe with the implications it had for my own research.

3. HVT—contextuality

3.1. Bellʼs dissatisfaction with QM

Bellʼs dissatisfaction with QM can be traced back to the time when he was a student at
Queenʼs University in Belfast (1948–49). In particular he disliked the so-called Copenhagen
Interpretation with its distinction between the quantum world and the classical world, the
quantum system described by the wave function and the measuring apparatus as a classical
device. He was thinking deeply about QM, not just how to use it, but about its conceptual
meaning. He wondered ‘where does the quantum world stop and the classical world begin’.
So he always thought about how to get rid of that division.

For him it was clear that HVT would be appropriate to reformulate quantum theory, even
though they were totally out of favour in the physics community. This shows Bellʼs strong
moral character. If the quantum particles do have definite properties, hidden variables, then
we donʼt have to be concerned that the classical apparatus has definite properties. ‘Everything
has definite properties!’ I remember John saying.

3.2. HVT

HVT as well as QM describes an ensemble of individual systems. Whereas in QM the
orthodox (Copenhagen) doctrine tells us that measured properties, e.g. the spin of a particle,
have no definite values before measurement, the HVT in contrast postulates that the properties
of individual systems do have pre-existing values revealed by the act of measurement.

What are the features of HVT quite generally? Let us consider an ensemble of individual
systems, each of which is prepared in a state ψ〉| , which is described by a set of observables

…A B C, , , . (1)

An HVT [23] assigns to each individual system a set of values corresponding to the
observables (1), one of the eigenvalues of the corresponding operator

…v A v B v C( ), ( ), ( ), , (2)

such that a measurement of observable A in an individual system gives the numerical value
v A( ).

The HVT now provides a rule how the values (2) should be distributed over all individual
systems of the ensemble that is given by the state ψ〉| . Of course, it must be such that the
statistical distribution of the results agrees with QM. The states, specified by the quantum

J. Phys. A: Math. Theor. 47 (2014) 424007 R Bertlmann

6



mechanical state vector and by an additional hidden variable which determines individually
the results as in classical statistical mechanics, are called dispersion-free.

If, in particular, a functional relation is satisfied

… =f A B C( , , , ) 0, (3)

by a set of mutually commuting observables …A B C, , , then the same relation must hold for
the values in the individual systems

… =f v A v B v C( ( ), ( ), ( ), ) 0. (4)

Amazingly, just by relying on conditions (3) and (4) one can construct so-called No-Go
theorems that arrive at a contradiction. I will explain these theorems in the following sections.

3.3. von Neumann and additivity of measurement values

John Bell started his investigation ‘On the problem of hidden variables in quantum
mechanics’ [24] by criticizing von Neumann. John von Neumann had written already in 1932
[25] a proof that dispersion-free states, and thus hidden variables, are incompatible with QM.
Due to the high reputation von Neumann had in the physics community his proof was widely
accepted. Bell, in contrast, examined von Neumannʼs proof carefully and critically. The
essential point was the following.

Consider three operators with condition (3)

= +C A B, (5)

then it follows that the corresponding attached values in the individual systems must also
satisfy

= +v C v A v B( ) ( ) ( ), (6)

since the operators A B, are supposed to commute.
Now von Neumannʼs assumption was to impose condition (6) on an HVT also for

noncommuting operators. Interestingly, already in 1935 the mathematician and philosopher
Hermann [26] raised her objection to von Neumannʼs assumption but she was totally ignored.
Also Kochen and Specker [27], when reading von Neumannʼs proof in 1961, had their doubts
about the additivity (6) for noncommuting operators. And John Bell grumbled, ‘This is
wrong!’

Why? Consider the following example. The measurement of the σx operator for a
magnetic particle requires a suitably oriented Stern–Gerlach apparatus. The measurement of
σy demands a different orientation and σ σ+( )x y again a different one. The operators cannot
be measured simultaneously, thus there is no reason for imposing the additivity relation (6). In
fact, von Neumann was somehow misled by QM since for the quantum mechanical expec-
tation values we have

ψ ψ ψ ψ ψ ψ+ = +A B A B , (7)

that is, additivity holds in the mean, irrespective whether A B, commute or not.
Then Bell proceeds to construct a simple two-dimensional example demonstrating that

von Neumannʼs additivity assumption (6) is not reasonable for noncommuting observables.
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3.4. Bellʼs two-dimensional hidden variable model

Consider a spin measurement along some direction ⃗n

σ ⃗ ⃗ ± ⃗ = ± ± ⃗n n n· , (8)

where ∣ ± ⃗〉n are the eigenstates of operator σ ⃗ ⃗n· measuring the spin. Each observable can be
represented quite generally by Pauli matrices

 σ σ= + ⃗ ⃗ = + ⃗ ⃗A a a B b b· , · . (9)0 0

The operators A B, commute if and only if ⃗a and ⃗b are parallel or antiparallel. The allowed
values for an individual system are

= ± ⃗ = ± ⃗v A a a v B b b( ) , ( ) . (10)0 0

Therefore, if the observables commute—let us first choose the vectors ⃗a and ⃗b to be parallel
—we obtain

 σ+ = + + ⃗ + ⃗ ⃗

= + ± ⃗ + ⃗

= +

(( ) ( ) )v A B v a b a b

a b a b

v A v B

( ) ·

( ) ( ), (11)

0 0

0 0

the corresponding attached values are additive since ⃗ + ⃗ = ⃗ + ⃗a b a b| | | | | |. If ⃗a and ⃗b are
antiparallel we have ⃗ + ⃗ = ⃗ − ⃗a b a b| | | | | | for ⃗ > ⃗a b| | | | , which leads to the same additivity
result (11) since in this case = ∓ ⃗v B b b( ) | |0 .

If, however, the observables are noncommuting—the vectors are not (anti)parallel—then
we have ⃗ + ⃗ ≠ ⃗ + ⃗a b a b| | | | | | and consequently

+ ≠ +v A B v A v B( ) ( ) ( ). (12)

Bell went on to show the invalidity of von Neumannʼs conclusion by formulating a
hidden variable (HV) model that reproduces the QM predictions in this system. Consider the
expectation value, for such a mean value we can distribute the single values in the following
way

λ

λ

= + ⃗ ⃗ + ⃗ ⃗ >

= − ⃗ ⃗ + ⃗ ⃗ <

( )
( )

v A a a n a

v A a a n a

( ) for · 0,

( ) for · 0, (13)

0

0

where λ ⃗ denotes some random unit vector, the hidden variable. Then the mean value of (13)
over a uniform distribution of directions λ ⃗ provides the quantum mechanical result as
required

∫π
Ω λ= ⃗ = + ⃗ ⃗ = + ⃗ + ⃗( )v A v A a a n n A n¯ ( )

1

4
d ( ) · , (14)0

and, of course, with the additivity property

+ ⃗ + + ⃗ = + ⃗ + ⃗ + + ⃗ + ⃗n A B n n A n n B n . (15)

This is a simple two-dimensional HV model for QM demonstrating that von Neumannʼs
assumption (6) is not justified.
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3.5. Gleason and contextuality

Josef-Maria Jauch, professor for theoretical physics at the University of Geneva, drew Bellʼs
attention to the work of Andrew M Gleason. The rather mathematical work of Gleason [28]
was not explicitly addressed to HVT but aimed instead to reduce the axioms for QM. The
theorem of Gleason states the following:

Theorem 1 (Gleason's theorem). In a Hilbert space  of >dim 2 the only probability
measures of the state associated with a linear subspace  of the Hilbert space are of the form

ρPTr ( ) , where P ( ) is the projection operator onto  and ρ the density matrix of the
system.

A property of theorem 1 is certainly that the probability of the sum of commuting
projections equals the sum of the probabilities of those projections individually. However,

ρPTr ( ) cannot have values restricted just to 0 or 1 for all projection operators P ( ), and
consequently the state represented by ρ cannot be dispersion-free for each observable.

Always preferring to construct his own proof, Bell established the following corollary
[24]. It is more directed to HVT.

Figure 3. John Bell presenting himself as real Californian in 1964, while spending his
sabbatical at SLAC, USA. It was the time when he worked on hidden variables and
wrote his celebrated paper on Bellʼs inequality. Foto: © Mary Bell.
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Corollary 1 (Bell's corollary). Consider a state space  . If >dim 2 then the additivity
requirement for expectation values of commuting operators cannot be met for dispersion-free
states.

Corollary 1 states that for >dim 2 it is in general impossible to assign a definite value
for each observable in each individual quantum system. Note that this is not in conflict with
Bellʼs HV model (section 3.4), which has only two dimensions.

In his HV paper, which Bell wrote in 1964, while spending his sabbatical at SLAC, USA
(see figure 3), Bell formulated the impossibility of assigning a definite value for each
observable in each individual system in the following way [24]:

‘It was tacitly assumed that measurement of an observable must yield the same
value independently of what other measurements may be made simulta-
neously. Thus as well as ϕP ( )3 say, one might measure either ϕP ( )2 or ψP ( )2 ,
where ϕ2 and ψ2 are orthogonal to ϕ3 but not to one another. These different
possibilities require different experimental arrangements; there is no a priori
reason to believe that the results for ϕP ( )3 should be the same. The result of an
observation may reasonably depend not only on the state of the system
(including hidden variables) but also on the complete disposition of the
apparatus.’

Thus Bell pointed to another class of hidden variable models, where the results may
depend on different settings of the apparatus. Such models are called contextual and may
agree with QM. Corollary 1, on the other hand, states that all noncontextual HVT are in
conflict with QM (for >dim 2). Hence the essential feature for the difference between HVT
and QM is contextuality.

In 1967, Simon Kochen and Ernst Specker published their famous paper on ‘The pro-
blem of hidden variables in quantum mechanics’ [29], where they established their no-go
theorem that noncontextual HVT are incompatible with QM.

Since then, contextuality has become an important issue in the research of quantum
systems (see, e.g., [30–35], and references therein).

3.6. Bohm and nonlocality

In 1952, Bohm [36] published his vision of how to reinterpret quantum theory as a
deterministic, realistic theory with hidden variables. His work was not appreciated by the
physics community, not even by Einstein, with whom Bohm had discussed these issues.
One might think that Einstein would have been particularly enthusiastic about Bohmʼs
view. Not at all. In a letter [37] to his friend Max Born dated 12 May 1952, Einstein
dismissed Bohmʼs theory, saying, ‘That way seems too cheap to me.’ This was partly
because Bohm had to introduce additional parameters in order to save realism and deter-
minism and partly because his model did not contain any new physics, it was just
equivalent to QM. Also Wolfgang Pauli rejected Bohmʼs work as ‘artificial metaphysics’.
John Bell, however, was very much impressed by Bohmʼs work and often remarked, ‘I saw
the impossible thing done’. To me John continued, ‘In every QM course you should learn
Bohmʼs model!’

At the end of his HV paper [24], Bell examined Bohmʼs model quite carefully. He
considered a system of two particles with spin 1/2. The quantum mechanical state is described
by a wave function
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ψ ⃗ ⃗( )r r, , (16)ij 1 2

with i j, for the spin indices. The wave function is governed by the Schrödinger equation

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤⎦

ψ

μ σ μ σ ψ

⃗ ⃗ = − ∂
∂ ⃗

+ ∂
∂ ⃗

+ ⃗ − ⃗

+ ⃗ ⃗ ⃗ + ⃗ ⃗ ⃗ ⃗ ⃗

 ( ) ( )

( ) ( ) ( )

t
r r

m r r
V r r

B r B r r r

i
d

d
,

2

· · , , (17)

ij

ij

1 2

2 2

1
2

2

2
2 1 2

1 1 1 2 2 2 1 2

where V represents the interaction potential and ⃗B the external magnetic field of the magnets
that analyze the spins.

The hidden variables are two vectors ⃗X1 and ⃗X2 which yield the results for position
measurements. The variables are supposed to be distributed in configuration space with
probability density

∑ρ ψ⃗ ⃗ = ⃗ ⃗( ) ( )X X X X, , , (18)
i j

ij1 2

,

1 2
2

which describes the quantum mechanical state.
For a one-particle system the position operator would follow the time evolution

ρ

⃗
=

⃗ ⃗

⃗
( )
( )

X

t

j X t

X t

d

d

,

,
, (19)

where ⃗j denotes the probability current calculated in the usual way

ψ ψ⃗ ⃗ = ⃗ ∂
∂ ⃗

⃗( ) ( ) ( )j X t
m

X t
X

X t,
2

Im * , , . (20)

For our two-particle system the position operators, the hidden variables, then vary in time
according to ( = = m1, 2 1)

∑

∑

ρ
ψ ψ

ρ
ψ ψ

⃗
=

⃗ ⃗
⃗ ⃗ ∂

∂ ⃗
⃗ ⃗

⃗
=

⃗ ⃗
⃗ ⃗ ∂

∂ ⃗
⃗ ⃗

( ) ( ) ( )

( ) ( ) ( )

X

t X X t
X X t

X
X X t

X

t X X t
X X t

X
X X t

d

d

1

, ,
Im , , , ,

d

d

1

, ,
Im , , , , . (21)

i j
ij ij

i j
ij ij

1

1 2 ,

* 1 2
1

1 2

2

1 2 ,

* 1 2
2

1 2

The strange feature now is that the trajectory equations (21) for the operators, the hidden
variables, have a highly nonlocal character. Only in case of a factorizable wave function for
the quantum system

ψ η χ⃗ ⃗ = ⃗ ⃗( ) ( ) ( )X X t X t X t, , , · , , (22)ij i j1 2 1 2
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the trajectories decouple

∑
∑

∑
∑

η
η η

χ
χ χ

⃗
=

⃗
⃗ ∂

∂ ⃗
⃗

⃗
=

⃗
⃗ ∂

∂ ⃗
⃗

( )
( ) ( )

( )
( ) ( )

X

t X t
X t

X
X t

X

t X t
X t

X
X t

d

d

1

,
Im , ,

d

d

1

,
Im , , . (23)

i i
i

i i

j j
j

j j

1

1
2

* 1
1

1

2

2
2

* 2
2

2

The Schrödinger equation (17) separates too and the trajectories of ⃗X1 and ⃗X2 are determined
separately by involving the magnetic fields ⃗ ⃗B X( )1 and ⃗ ⃗B X( )2 respectively. However, in
general this is not the case. The particle 1 depends in a complicated way on the trajectory and
wave function of particle 2, no matter how remote the particles are.

Bohm was aware of the peculiar feature of his model that particle 1 depends on the
characteristics of particle 2, but it was Bell who realized the importance of it. He wondered if
it was just a defect of this particular HV model, or is it somehow intrinsic in a HVT
reproducing QM. Bell was also acquainted with Bohmʼs spin version [38] of the EPR
paradox, where distant correlations were considered. This two-spin setup à la EPR he
investigated further.

John told me once:

‘At the beginning I just played around to get simple relations which would
give a local account for the quantum correlations but everything I tried didnʼt
work. So I felt it couldnʼt be done and then I constructed an impossibility
proof.’

Historically, Bellʼs impossibility proof for local hidden variables [39], local realistic
theories, was published already in 1964, before Bell could present his earlier work on hidden
variables [24]. The reason was that the HV work remained unattended in a drawer of the
editorial office of Review of Modern Physics. SLACʼs post office was not efficient enough to
forward the editorial reply to Bell, who moved meanwhile to an other university in the USA.
Only when Bell, getting no response for a year, inquired politely about the status of his paper,
the editorial office reconsidered it and published it in 1966.

Figure 4. In a Bohm–EPR setup a pair of spin 1
2
particles, prepared in a spin singlet

state, propagates freely in opposite directions to the measuring stations called Alice and
Bob. Alice measures the spin in direction ⃗a , whereas Bob measures simultaneously in
direction ⃗b .
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4. Bell inequalities—nonlocality

4.1. Bellʼs locality hypothesis

Bellʼs starting point was: ‘On the Einstein–Podolsky–Roden paradox’ [39]. More precisely,
he considered Bohmʼs spin version [38] of it. The paradox of EPR served as an argument that
QM is an incomplete theory and that it should be supplemented by additional parameters, the
hidden variables. These additional variables would restore causality and locality in the theory.

Bellʼs profound discovery was that the requirement of locality is incompatible with the
statistical predictions of QM. He phrased the requirement that created the essential difficulty
in the following way [39]:

‘The result of a measurement on one system be unaffected by operations on a distant
system with which it has interacted in the past.’

In such a Bohm–EPR setup a pair of spin-1/2 particles is produced in a spin singlet state
and propagates freely in opposite directions (see figure 4). The spin measurement on one side,
called Alice, performed by a Stern–Gerlach magnet along some direction ⃗a is described by
the operator σ ⃗ ⃗a·A and yields the values ±1. Since we can predict in advance the result of
σ ⃗ ⃗b·B on the other side, Bobʼs side, the result must be predetermined. This predetermination
we specify by the additional variable λ. In such an extended theory we denote the mea-
surement result of Alice and Bob by

λ λ⃗ = ± ⃗ = ±( )( )A a B b, 1, 0 and , 1, 0. (24)

We also include 0 for imperfect measurements to be more general, i.e., what we actually
require is

⩽ ⩽A B1 and 1. (25)

Then the expectation value of the joint spin measurement of Alice and Bob is

∫ λ ρ λ λ λ⃗ ⃗ = ⃗ ⃗( ) ( ) ( )E a b A a B b, d ( ) , · , . (26)

This choice of the product λ λ⃗ ⃗A a B b( , ) · ( , ) in expectation value (26) is called Bellʼs locality
hypothesis. It is the obvious definition of a physicist as an engineer, and must not be confused
with locality definitions in quantum field theory.

The function ρ λ( ) represents some probability distribution for the variable λ, and does
not depend on the measurement settings ⃗a and ⃗b , which can be chosen truly free or random.
This is essential! The distribution is normalized

∫ λ ρ λ =d ( ) 1. (27)

Now it is quite easy to derive an inequality that is well adapted to real experiments with
apparatus inefficiencies. Starting with the following difference of expectation values

∫
∫

λ ρ λ λ λ λ λ

λ ρ λ λ λ λ λ

⃗ ⃗ − ⃗ ′⃗ = ⃗ ⃗ ± ′⃗ ′⃗

− ⃗ ′⃗ ± ′⃗ ⃗

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

( ) ( )

E a b E a b A a B b A a B b

A a B b A a B b

, , d ( ) , · , 1 , · ,

d ( ) , · , 1 , · , , (28)
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taking the absolute values

∫
∫
λ ρ λ λ λ

λ ρ λ λ λ

⃗ ⃗ − ⃗ ′⃗ ⩽ ± ′⃗ ′⃗

+ ± ′⃗ ⃗

⩽ ± ′⃗ ′⃗ + ′⃗ ⃗

( )
( )

( ) ( )

( )

( )
( )

( )

( )

( )

E a b E a b A a B b

A a B b

E a b E a b

, , d ( ) 1 , · ,

d ( ) 1 , · ,

2 , , , (29)

and choosing the minus sign in equation (29), which makes the inequality tighter, we find

= ⃗ ⃗ − ⃗ ′⃗ + ′⃗ ⃗ + ′⃗ ′⃗ ⩽( ) ( )( ) ( )S E a b E a b E a b E a b: , , , , 2. (30)CHSH

Inequality (30) is the familiar CHSH inequality, named after Clauser, Horne, Shimony, and
Hold who published it in 1969 [40]. Bell presented his own, more general derivation of (30)
at the International School of Physics ‘Enrico Fermi’ in Varenna at Lake Como in 1970 [41]
and in his ‘Bertlmannʼs socks’ paper in 1980 [19, 20].

Calculating now the quantum mechanical expectation value for the joint measurement
when the system is in the spin singlet state ψ 〉 = ⇑〉 ⊗ ⇓〉 − ⇑〉 ⊗ ⇓〉−| (| | | | )1

2
, also called

Bell state,

ψ σ σ ψ

α β

⃗ ⃗ = ⃗ ⃗ ⊗ ⃗ ⃗

= − ⃗ ⃗ = − −

− −( )E a b a b

a b

, · ·

· cos ( ), (31)

A B

where α β, are the angles of the orientations in Aliceʼs and Bobʼs parallel planes, then we
know that for the choice of the ‘Bell angles’ α β α β′ ′ = π π π( , , , ) (0, , 2 , 3 )

4 4 4
the CHSH

inequality (30) is maximally violated

= = >S 2 2 2.828 2. (32)CHSH
QM

Inequality (30) had been tested experimentally by Zeilingerʼs group by using entangled
photons in the Bell state ψ 〉−| (see section 6.3). In the photon case, the expectation value (31)
changes to α β⃗ ⃗ = − −E a b( , ) cos 2( ), i.e., the Bell angles become a factor of 2 smaller as
compared to the spin case.

In order to arrive next at Bellʼs original inequality we assume perfect (anti-)correlation

⃗ ⃗ = −( )E a a, 1, (33)

and choose only three different orientations, which is the minimal choice, e.g., we equate
′⃗ = ′⃗a b , then inequality (30) gives

= ⃗ ⃗ − ⃗ ′⃗ − ′⃗ ⃗ ⩽( )( ) ( )S E a b E a b E b b: , , , 1, (34)Bell

Bellʼs original inequality [39]. Inequality (34) is violated maximally for the quantum
mechanical expectation value (31) of the Bell state ψ 〉−| and the choice of
α β β′ = π π( , , ) (0, 2 , )

3 3
for the Bell angles

= = >S
3

2
1.5 1. (35)Bell

QM

When I studied and derived Bellʼs inequality (34) for the first time, I was surprised and
fascinated that QM contradicted an inequality that relied on such general and quite ‘natural’
assumptions. Bellʼs talent to turn the pure philosophical debate of Einstein and Bohr into
exact mathematical terms was impressive. This formulation could be tested experimentally! It
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was amazing how John was able to find this special linear combination of expectation values,
which were in contradiction to QM at certain angles, called by himself the ‘awkward Irish
angles’. I got the feeling that there is something deep in it, especially because, at that time, the
early 1980s, the experiments of Aspect received much attention, in particular his time-flip
experiment [22] that revealed the nonlocal structure of Nature. But I certainly could not
anticipate what came afterwards, this explosion into a new area of quantum physics called
nowadays quantum information, quantum communication and quantum computation [42, 43].

Finally, I would like to discuss two other types of Bell inequalities which are often used
in experiments. The first one has a very simple form and was derived by Wigner in 1970 [44].
He focused on probabilities which are proportional to the number of clicks in a detector. In
terms of probabilities P for the joint measurements the expectation value can be expressed by

⃗ ⃗ = ⃗⇑ ⃗⇑ + ⃗⇓ ⃗⇓ − ⃗⇑ ⃗⇓ − ⃗⇓ ⃗⇑( ) ( ) ( ) ( ) ( )E a b P a b P a b P a b P a b, , , , , , (36)

and assuming that ⃗⇑ ⃗⇑ ≡ ⃗⇓ ⃗⇓P a b P a b( , ) ( , ) and ⃗⇑ ⃗⇓ ≡ ⃗⇓ ⃗⇑P a b P a b( , ) ( , ) together with
∑ =P 1 the expectation value becomes

⃗ ⃗ = ⃗⇑ ⃗⇑ −( ) ( )E a b P a b, 4 , 1. (37)

Inserting expression (37) into Bellʼs inequality (34) yields Wignerʼs inequality for the joint
probabilities, where Alice measures spin ⇑ in direction ⃗a and Bob also ⇑ in direction ⃗b (we
drop from now on the spin notation ⇑ in the formulae)

⃗ ⃗ ⩽ ⃗ ′⃗ + ′⃗ ⃗( ) ( )( )P a b P a b P b b, , , , (38)

or rewritten

= ⃗ ⃗ − ⃗ ′⃗ − ′⃗ ⃗ ⩽( ) ( ) ( )S P a b P a b P b b: , , , 0. (39)Wigner

For the Bell state ψ 〉−| the quantum mechanical probability gives

ψ α β⃗ ⃗ = ∣ 〈 ⃗⇑∣ ⊗ 〈 ⃗⇑∣ ∣ 〉∣ = −−( ) ( )P a b a b,
1

2
sin

1

2
( ), (40)2 2

and leads to a maximal violation of inequality (39)

= = >S
1

8
0.125 0, (41)Wigner

QM

for α β β′ = π π( , , ) (0, 2 , )
3 3

, the same choice as in Bellʼs original inequality.
The last inequality I want to mention is the Clauser–Horne inequality of 1974 [45]. It

relies on weaker assumptions and is very well suited for photon experiments with absorptive
analyzers. Clauser and Horne work with relative counting rates, i.e., number of registered
particles in the detectors. More precisely, the quantity ⃗ ⃗N a b( , ) is the rate of simultaneous
events, coincidence rate, in the photon detectors of Alice and Bob after the photons passed the
corresponding polarizers in direction ⃗a or ⃗b respectively. The relative rate

⃗ ⃗ = ⃗ ⃗N a b N P a b( , ) ( , ), where N represents all events when the polarizers are removed, cor-
responds in the limit of infinitely many events, which is practically the case, to the joint
probability ⃗ ⃗P a b( , ). If one polarizer is removed, say on Bobʼs side, then expression

⃗ = ⃗N a N P a( ) ( )A A stands for the single probability at Aliceʼs (or the correspondingly at
Bobʼs) side.

Starting from a pure algebraic inequality − ⩽ − + + −XY x y x y x y x y1 1 1 2 2 1 2 2
− = ⩽Yx Xy S 02 1 for numbers ⩽ ⩽x x X0 ,1 2 and ⩽ ⩽y y Y0 ,1 2 , it is now easy to
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derive the corresponding inequality for probabilities, which is the Clauser–Horne inequality

− = ⃗ ⃗ − ⃗ ′⃗ + ′⃗ ⃗ + ′⃗ ′⃗ − ′⃗ − ⃗ = ⩽( ) ( )( ) ( ) ( )( )P a b P a b P a b P a b P a P b S1 , , , , : 0. (42)A B CH

Inequality (42) has been used by Aspect in his time-flip experiment [22] (see section 6.2).
The two-photon state produced was the symmetrical Bell state ϕ 〉 = 〉 ⊗ 〉++ R L| (| |1

2

〉 ⊗ 〉 = 〉 ⊗ 〉 + 〉 ⊗ 〉L R H H V V| | ) (| | | | )1

2
, where 〉 〉R L| , | denote the right- and left-han-

ded circularly polarized photons and 〉 〉H V| , | the horizontally and vertically polarized ones.
In case of ϕ 〉+| entangled photons the quantum mechanical probability to detect a linear

polarized photon with an angle α on Aliceʼs side, and simultaneously an other linear polarized
one with angle β on Bobʼs side, is given by

α α β β ϕ

α β

⃗ ⃗ = + ⊗ +

= −

+( )P a b H V H V, [( cos sin ) ( cos sin )]

1

2
cos ( ). (43)

2

2

Choosing now for the Bell angles α β α β′ ′ = π π π( , , , ) (0, , 2 , 3 )
8 8 8

the quantum mechanical
probabilities (43) violate the Clauser–Horne inequality (42) maximally

= − = >S
2 1

2
0.207 0. (44)CH

QM

For further literature I refer to the review article [46].

4.2. Conclusions

What are the conclusions? In all Bell inequalities the essential ingredient is Bellʼs locality
hypothesis, equation (26), i.e., Einsteinʼs vision of reality and Bellʼs concept of locality,
therefore we have to conclude:

Local realistic theories are incompatible with QM!
Bell in his seminal work [39] realized the far-reaching consequences of a realistic theory

as an extension to QM and expressed it in the following way:

‘In a theory in which parameters are added to QM to determine the results of
individual measurements, without changing the statistical predictions, there
must be a mechanism whereby the setting of one measuring device can
influence the reading of another instrument, however remote. Moreover, the
signal involved must propagate instantaneously, so that such a theory could
not be Lorentz invariant.’

He continued and stressed the crucial point in such EPR-type experiments: ‘Experi-
ments... , in which the settings are changed during the flight of the particles, are crucial.’

Thus it is of utmost importance not to allow some mutual report by the exchange of
signals with velocity less than or equal to that of light.
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5. Entanglement

5.1. Werner states

In the 1980s, there was still the common belief that the violation of a Bell inequality, the
nonlocal feature of QM, would imply that the quantum states involved were entangled, and
vice versa. It was a great surprise, when in 1989 Werner [47] discovered that a certain mixture
of entangled states may also satisfy a Bell inequality, i.e., behaves strictly local. Thus
entanglement and nonlocality are not the same but different concepts! How come?

Let us consider a bipartite quantum system given by its density matrix ρ in the Hilbert–
Schmidt space = ⊗͠ ͠ ͠  A B of linear operators (also denoted by L ( )) on the finite
dimensional bipartite Hilbert space = ⊗  A B of Alice and Bob, with dimension

= ×D d dA B. For our discussion of qubits = =d d 2A B . The quantum states ρ, the density
matrices, are elements of ͠ with the properties ρ ρ=† , Tr ρ = 1 and ρ ⩾ 0. A scalar product
on ͠ is defined by =A B A B| Tr † with ∈ ͠A B, and the corresponding squared norm is
∥ ∥ =A Tr A A2 † .

Then all quantum states can be classified into separable or entangled states. The set of
separable states is defined by the convex (and compact) hull of product states

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭∑ ∑ρ ρ ρ= = ⊗ ⩽ ⩽ =S p p p0 1 , 1 . (45)

i
i i

A
i
B

i
i

i

A state is called entangled if it is not separable, i.e., ρ ∈ Sc
ent , where Sc denotes the

complement of S, with ∪ = ⊂͠ S S L ( )c .
In terms of density matrices the CHSH inequality (30) can be rewritten in the following

way

ρ ρ= ⩽ Tr 2, (46)CHSH CHSH

for all local states ρ, where the CHSH–Bell operator in case of qubits is expressed by

σ σ σ σ= ⃗ ⃗ ⊗ ⃗ − ′⃗ ⃗ + ′⃗ ⃗ ⊗ ⃗ + ′⃗ ⃗ ( ) ( )a b b a b b· · · · . (47)A B A BCHSH

Rewriting inequality (46) gives

ρ − ⩾2 · 0. (48)CHSH

If we choose, however, the entangled Bell state ρ ψ ψ= 〉〈− − −| | the inner product changes the
sign

ρ − <− 2 · 0. (49)CHSH

Now we can ask, is the inner product (49) negative for all entangled states? The answer is
yes for all pure entangled states [48], i.e., there exist measurement directions for which the
CHSH inequality is violated. For mixed states, however, the situation is much more subtle.
Werner [47] discovered that a certain family of bipartite mixed states, which remained
entangled, produced an outcome that admitted a local HV model for projective measurements,
that is, it satisfies all possible Bell inequalities.
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This feature is nicely demonstrated by the so-called Werner states

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ρ α ρ α

α
α α

α α
α

= + − =
−

+ −
− +

−

− 1

4

1

4

1 0 0 0
0 1 2 0
0 2 1 0
0 0 0 1

, (50)Werner 4

or in terms of the Bloch decomposition we have

 ρ ρ α σ σ≡ = ⊗ − ⊗α ( )1

4
, (51)i iWerner

with the parameter values α ∈ [0, 1].
Currently, the overall picture is the following:
the Werner states (50) are separable within the bound of mixedness α ⩽ =1 3 0.33 (see

theorem 2). The states admit a local HV model for all (positive-operator-valued) measure-
ments within α ⩽ =5 12 0.42 [49] and Wernerʼs local HV model for projective measure-
ments for α ⩽ =1 2 0.5 [47]. Focusing on projective measurements the critical value for
local states can be pushed further to α ⩽ =1 K (3) 0.66G (where K (3)G is Grothendieckʼs
constant of order 3) [50]. On the other hand, we know that Werner states (50) violate the
CHSH inequality for α > =1 2 0.707 (see theorem 3), thus becoming nonlocal. This
bound of nonlocality can be slightly decreased to α > 0.705 if Bell inequalities are considered

Figure 5. Tetrahedron of physical states in 2 × 2 dimensions spanned by the four Bell
states ψ ψ ϕ ϕ+ − + −, , , : the separable states with the maximal mixture   = ⊗( )1

4 4
1
4

at

the origin form the blue double pyramid and the entangled states are located in the
remaining tetrahedron cones. The local states satisfying a CHSH–Bell inequality lie
within the parachutes (dark-yellow surfaces) containing all separable but also a lot of
mixed entangled states. The Werner states (50) (red line from the origin to the maximal
entangled Bell state ψ-) pass through all regions exhibiting the intervals of separability,
locality and entanglement.
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that can be violated slightly stronger than the CHSH one [51]. An illustration of these features
in Hilbert-Schmidt space can be seen in figure 5, the geometric details we will discuss in
section 5.3.

The region of separability is determined by the so-called PPT criterion (positive partial
transposition) of Peres and the Horodecki family [52, 53]. Given a general density matrix ρ in
Hilbert–Schmidt space = ⊗͠ ͠ ͠  A B in its Bloch decomposition form

   ρ σ σ σ σ= ⊗ + ⊗ + ⊗ + ⊗( )r u t
1

4
, (52)i i i i ij i j

then a partial transposition is defined by the operator T acting in a subspace ͠A or ͠B and
transposing there the off-diagonal elements of the Pauli matrices: σ σ=T ( ) ( )i

kl
i

lk.

Theorem 2 (PPT-criterion [52, 53]). If  ρ⊗ ⩾T( ) 0A B or  ρ⊗ ⩾T( ) 0A B ⟺ ρ
separable.

Theorem 2 holds only in 2 × 2 and 2 × 3 dimensions. We say a PPT state is a state that
remains positive under partial transposition. In higher dimensions the PPT criterion is only
necessary but not sufficient for separability. If, however, at least one of the eigenvalues of the
partially transposed matrix is negative we call it a NPT state, and it has to be entangled. But
there exist entangled states that remain positive semidefinite, PPT entangled states, these are
called bound entangled states, since they cannot be distilled to a maximally entangled state
(see [54–61]).

In our case of the Werner states (50) partial transposition acts like

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
 ρ

α α
α

α
α α

⊗ =
− −

+
+

− −

( )T
1

4

1 0 0 2
0 1 0 0
0 0 1 0
2 0 0 1

, (53)A B Werner

which has as eigenvalues λ = α+
1,2,3

1

4
and λ = α−

4
1 3

4
. Therefore the states are separable for

α ⩽ 1

3
and entangled for α > 1

3
.

In order to find the states violating a Bell inequality an other theorem of the Horodecki
family [62] is very powerful since we do not have to check all measurement directions ⃗a and

⃗b .

Theorem 3 (Maximal violation of a Bell inequality [62]). Given a general 2 × 2
dimensional density matrix in Bloch form

   ρ σ σ σ σ= ⊗ + ⊗ + ⊗ + ⊗( )r u t
1

4
i i i i ij i j

and the Bell operator

σ σ σ σ= ⃗ ⃗ ⊗ ⃗ − ′⃗ ⃗ + ′⃗ ⃗ ⊗ ⃗ + ′⃗ ⃗ ( )( ) ( )a b b a b b
1

2

1

2
· · · · , (54)A B A BCHSH

then the maximal violation of the Bell inequality ρ= B max Trmax 1

2 CHSH is given by

= + >B t t 1, (55)max
1
2

2
2

where t t,1
2

2
2 denote the two larger eigenvalues of the matrices product t t( ) ( )ij

T
ij .
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In case of the Werner states we can read off the coefficient matrix directly from the Bloch
decomposition (51)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

α
α

α
= −( )t

0 0
0 0
0 0

, (56)ij

which yields the maximal violation of the CHSH inequality by α= >B 2 1max 2 . Thus, for
all α > 1 2 the CHSH–Bell inequality is violated.

5.2. Entanglement witness

From the above analysis we see that a Bell operator given by expression (47) is not appro-
priate to find all entangled states. In order to locate entanglement a different operator has to be
constructed. Quite generally, entanglement can be ‘detected’ by an Hermitian operator, the
so-called entanglement witness A, that detects the entanglement of a state ρent via the
entanglement witness inequalities (for details, see [53, 55, 63–69]).

Theorem 4 (Entanglement witness theorem [53, 63, 64]). A state ρent is entangled if and
only if there is a Hermitian operator A—the entanglement witness—such that

ρ ρ

ρ ρ ρ

= <

= ⩾ ∀ ∈

A A

A A S

Tr 0,

Tr 0 , (57)

ent ent

where S denotes the set of all separable states.

An entanglement witness is optimal, denoted by Aopt, if apart from equation (57) there
exists a separable state ρ ∈ S0 such that

Figure 6. Example of an entangled state ρ ω=ent and the set of separable states S . The

tangent plane Amax represents the optimal entanglement witness Aopt and ρ0 the nearest

separable state to ω. Theorem 5 is illustrated; it states that the maximal violation ωB ( )
of the entanglement witness inequality (57) is equal to the minimal Hilbert–Schmidt
distance of the entangled state ω to the set S of separable states, which represents a
measure of entanglement.
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ρ =A 0. (58)0 opt

The operator Aopt defines a tangent plane to the convex set of separable states S (45) (see
figure 6). Such an Aopt always exists due to the Hahn–Banach theorem and the convexity of S.

On the other hand, with help of the Hilbert–Schmidt norm we can define the Hilbert–
Schmidt distance between two arbitrary states ρ1 and ρ2

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ= ∥ − ∥ = < − − > = − −( ) ( )d ( , ) Tr . (59)HS 1 2 1 2 1 2 1 2 1 2
†

1 2

We can view the minimal distance of an entangled state ρent to the set of separable states, the
Hilbert–Schmidt measure

ρ ρ ρ ρ ρ= − = −
ρ∈

D ( ): min , (60)
S

ent ent 0 ent

where ρ0 denotes the nearest separable state, as a measure for entanglement.
There is an interesting connection between the Hilbert–Schmidt measure and the

entanglement witness inequality. Let us rewrite entanglement witness inequality (57)

ρ ρ ρ− ⩾ ∀ ∈A A S0 , (61)ent

and define the maximal violation of inequality (61) as follows (ρ and A are still free at our
disposal):

Definition 1 (Maximal violation of the entanglement witness inequality [64]).

⎛
⎝⎜

⎞
⎠⎟ρ ρ ρ= −

ρ∈
B A A( ) max min . (62)

A S
ent ent

The minimum is taken over all separable states and maximum over all possible entan-
glement witnesses A, suitably normalized. Then there holds the following theorem
[64, 68, 69]:

Theorem 5 (Bertlmann–Narnhofer–Thirring theorem [64]).

ρ ρ= ( )a B D( ) ( ) , (63)ent ent

(b) The maximal violation of the entanglement witness inequality is achieved when ρ ρ→ 0
and →A Aopt, then the optimal entanglement witness is given by

ρ ρ ρ ρ ρ

ρ ρ
=

− − −

−
A . (64)opt

0 ent 0 0 ent

0 ent

The maximal violation (62) of the entanglement witness inequality is equal to the Hil-
bert–Schmidt measure (60), which is a measure of entanglement. This is a remarkable result
(see figure 6). The optimal entanglement witness is given explicitly by expression (64).
However, we have to know the nearest separable state ρ0, which is easy to find in low
dimensions, but not in higher ones. Nevertheless, there exist approximation procedures to
approach ρ0 (see [56]).
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For example, in case of Alice and Bob the Werner states are given by ρα (51), and the
Bell state ρ ψ ψ= 〉〈− − −| | by choosing the parameter value α = 1, i.e., ρ ρ= α

−
=1.

The nearest separable state is easily found

⎜ ⎟⎛
⎝

⎞
⎠ ρ σ σ= ⊗ − ⊗1

4

1

3
, (65)i i0

yielding the Hilbert–Schmidt measure

⎜ ⎟⎛
⎝

⎞
⎠ρ ρ ρ α= − = −α αD ( )

3

2

1

3
. (66)0

The optimal entanglement witness we calculate from expression (64)

  σ σ= ⊗ + ⊗( )A
1

2 3
, (67)i iopt

and the maximal violation of the entanglement witness inequality from equation (62)

⎜ ⎟⎛
⎝

⎞
⎠ρ ρ α= − = −α αB A( )

3

2

1

3
. (68)opt

Clearly, both results (68) and (66) coincide as required by theorem 5.

5.3. Geometry of quantum states

The quantum states for a two-qubit system, the case of Alice and Bob, have very nice
geometric features in the Hilbert–Schmidt space, more precisely, in the spin–spin space. Quite
generally a quantum state can be decomposed as in equation (52), where the last term, the
spin–spin term, is the important one to characterize entanglement. If we parameterize the
spin–spin space by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟  ∑ρ σ σ= ⊗ + ⊗c

1

4
, (69)

i

i i i

the Bell states have the coefficients = ±c 1i .
Due to the positivity of the density matrix the four Bell states ψ ψ ϕ ϕ− + − +, , , set up a

simplex, a tetrahedron, in this spin–spin space [64, 70, 71] (see figure 5). The separable states,
given by the PPT criterion (theorem 2), form an octahedron which lies inside, and the
maximal mixed state   = ⊗( )1

4 4
1

4
is placed at origin. The entangled states are located in

the remaining cones. The local states, on the other hand, satisfying a CHSH–Bell inequality
lie within the parachutes, the dark-yellow surfaces in figure 5. They are determined by
theorem 3 and contain all separable but also a large amount of mixed entangled states. The
Werner states (50), the red line in figure 5 from the origin to the maximal entangled Bell state
ψ −, show nicely how the states change from maximal mixed and separable to local, mixed
entangled, and finally to nonlocal states, ending at ψ− which is pure and maximal entangled.

Finally, I want to make a remark about the entanglement and separability of the quantum
states. When talking about entanglement it is important to refer to the chosen factorization of
the algebra of a density matrix. Depending on the considered factorization, a quantum state
appears either entangled or separable [72]. For pure states we always can switch unitarily
between separability and entanglement, however, for mixed states a minimal amount of
mixedness is needed. It is interesting to search for this bound of mixedness. Within this bound
the states are separable with respect to all possible factorizations, i.e., they remain separable
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for all unitary transformations. Such states are called absolutely separable states [72–75], the
maximal mixed state 

1

4 4 represents the prototype. When considering the maximal ball around


1

4 4 of constant mixedness, which can be inscribed into the set of mixed states for a bipartite
system then all states belonging to that ball are not only separable but also absolutely
separable (see the green shaded ball in figure 7).

6. Bell experiments—a historical view

6.1. First-generation experiments of the 1970s

It is interesting that, in their quantum debate, neither Einstein in his EPR paper [21] nor Bohr
in his reply [76] to EPR proposed an experiment that could be performed; the discussion was
purely theoretical or philosophical. The first step towards an experimental verification was
laid by Bohm in his spin version [38] of the EPR paradox. Bell [39] developed it further and
discovered the inequality that all local realistic theories had to satisfy. But Bellʼs work was
not quite yet adapted to experiment.

In the late 1960s, John Clauser, a young graduate student from Columbia University,
read Bohmʼs [36] and de Broglieʼs [77–79] work about an alternative view of QM. While he
had difficulties in understanding the Copenhagen interpretation of QM, he found the works of
these two critics quite sensible. When studying next Bellʼs inequality paper [39] that

Figure 7. Tetrahedron of physical states in 2 × 2 dimensions spanned by the four Bell
states ψ ψ ϕ ϕ+ − + −, , , : the separable states form the blue double pyramid and the
entangled states are located in the remaining tetrahedron cones. The unitary invariant
maximal ball (shaded in green) of absolutely separable states is placed within the
double pyramid and the maximal mixture 

1
4 4 is at the origin.

J. Phys. A: Math. Theor. 47 (2014) 424007 R Bertlmann

23



contained a bound for all HVT, he was astounded by its result. As a true experimentalist he
wanted to see the experimental evidence for it. So he planned to do the experiment.

However, experiments of this type were not appreciated at that time; it was the ‘dark era’
of the foundations of QM. Pauliʼs opinion was often cited [80]:

‘One should no more rack oneʼs brain about the problem of whether some-
thing one cannot know anything about exists at all, than about the ancient
question of how many angels are able to sit on the point of a needle.’

When Clauser had an appointment with Richard Feynman at Caltech to discuss an
experimental EPR configuration for testing the predictions of QM, he immediately threw him
out of his office saying [81]:

‘Well, when you have found an error in quantum-theoryʼs experimental pre-
dictions, come back then, and we can discuss your problem with it.’

But Clauser remained stubborn, he belonged to the revolutionary generation, and pre-
pared the experiment. He sent an Abstract to the Spring Meeting of the American Physical
Society proposing the experiment [82]. Soon afterwards, Abner Shimony called and told him
that he and his student Michael Horne had the same ideas. So they joined and wrote together
with Richard Holt, a PhD student of Francis Pipkin from Harvard, the famous CHSH paper
[40], where they proposed an inequality that was well adapted to experiments.

Clauser carried out the experiment in 1972 together with Stuart Freedman [83], a
graduate student at Berkeley, who received his PhD with this experiment. As pointed out in
the CHSH paper [40], pairs of photons emitted in an atomic radiative cascade would be
suitable for a Bell inequality test. Clauser and Freedman chose calcium atoms pumped by
lasers, where the excited atoms emitted the desired photon pairs. The signals were very weak
at that time, a measurement lasted for about 200 h. For comparison with theory a very
practical inequality was used, which was derived by Freedman [84]. The outcome of the
experiment is well known; they obtained a clear violation of the Bell inequality very much in
accordance with QM.

At the same time, in competition to Clauserʼs experiment, Pipkin and Holt performed a
similar experiment at Harvard using a radiative cascade in mercury. The outcome was just
contrary; the results agreed with HVT and disagreed with QM [85]. Knowing about Clauserʼs
result they withdrew the paper from publication. Clauser repeated the Holt–Pipkin experiment
with the result that it violated the Bell inequality significantly [86].

Independently in 1976 at Houston, Edward Fry and his student Randall Thompson set up
an experiment by using mercury atoms. As in Clauserʼs experiment the correlated photons
were produced in a radiative cascade from by lasers excited atomic levels. Due to the much
better signals with improved lasers they could collect enough data already in 80 min. The
result was in excellent agreement with QM; the Bell inequality was violated by four standard
deviations [87].

Different kind of experiments, positron annihilation experiments [88–92] and proton–
proton scattering [93] pointed in the same direction.

Thus at that time, it was already convincing that HVT did not work but QM was correct.
However, the experiments were not yet perfect; the analyzers were static, only a small amount
of photon pairs were registered, etc. There still existed several loopholes, the detection
efficiency or fair sampling loophole, and the communication absence or freedom of choice
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loophole, just to mention some important ones. To close these loopholes was the challenge for
future experiments.

6.2. Second-generation experiments of the 1980s

In the late 1970s and beginning of the 1980s, the general atmosphere in the physics com-
munity was still such: ‘Quantum mechanics works very well, so donʼt worry!’ Nevertheless,
Alain Aspect, when reading Bellʼs inequality paper [39], was so strongly impressed that he
immediately decided to do his ‘thèse d’état’ on this fascinating topic. He visited John Bell at
CERN to discuss his proposal. Johnʼs first question was, as Aspect told me, ‘Do you have a
permanent position?’ Only after Aspectʼs positive answer could the discussion begin.
Aspectʼs goal was to include variable analyzers.

Aspect and his collaborators performed a whole series of experiments [22, 94–97] with
an improved design and approached step by step the ‘ideal’ setup configuration. As Clauser,
they chose a radiative cascade in calcium that emitted photon pairs in the Bell state ϕ 〉+| . For
comparison with theory the Clauser–Horne inequality (42) was used, which was significantly
violated in each experiment.

In the final time-flip experiment [22] together with Jean Dalibard and Gérard Roger a
clever acoustic-optical switch mechanism was incorporated. It worked such that the switching
time between the polarizers, as well as the lifetime of the photon cascade, was much smaller
than the time of flight of the photon pair from the source to the analyzers. That implied a
space-like separation of the event intervals. However, the time flipping mechanism was still
not ideal, i.e., truly random, but ‘quasi-periodic’, as they called it. The mean for two runs
which lasted about 2 h yielded the result = ±S 0.101 0.020CH

exp in very good agreement with

Figure 8. Above: a BBO crystal is pumped by a laser, the outgoing photons are
vertically and horizontally polarized on two different cones. Foto: © IQOQI, Vienna.
Below: a cut through the two different cones; in the overlap regions the photons are
entangled. Foto: © Faculty of Physics, University of Vienna, taken by Paul Kwiat and
Michael Reck.
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the quantum mechanical prediction = ±S 0.113 0.005CH
QM that had been adapted for the

experiment (recall the ideal value is =S 0.207CH
QM (44)).

Some time later, a different experiment was carried out by Hans Kleinpoppen and his
group [98]. They used metastable atomic deuterium for emitting spontaneously two correlated
photons which were measured. The data violated a Bell inequality in Freedmanʼs form [84]
and were in agreement with QM.

I remember that the time-flip experiment of Aspect received much attention in the
physics community and also in popular science, and Alain Aspect was its best apologist. In
my opinion, it caused a turning point, the physics community began to realize that there was
something essential in it. The research started and flourished into a new direction, into what is
called nowadays quantum information and quantum communication.

6.3. Third generation experiments of the 1990s and beyond

In the 1990s, the spirit towards foundations in QM totally changed as quantum information
gained increasing interest, Bell inequalities and quantum entanglement were the basis.

Meanwhile, the technical facilities improved considerably too, the electronics and the
lasers. Most important was the invention of a new source for creating two entangled photons.
That was spontaneous parametric down-conversion, where a nonlinear crystal was pumped
with a laser and the pump photon was converted into two photons that propagated vertically
and horizontally polarized on two different cones. In the overlap region they were entangled
(see figure 8).

Such an EPR source was used by Anton Zeilinger and his group, when they performed
their Bell experiment in 1998 [99]. Zeilingerʼs student Gregor Weihs obtained his PhD with
this experiment [100] (see figure 9). Their challenging goal was to construct an ultra-fast and

Figure 9. The timing experiment of Weihs et al [99]. The EPR source is a so-called
BBO crystal pumped by a laser, the outgoing photons are vertically and horizontally
polarized on two different cones and in the overlap region they are entangled. This
entangled photons are led separately via optical fibres to the measurement stations
Alice and Bob. During the photon propagation the orientations of polarizations are
changed by an electro-optic modulator which is driven by a truly random number
generator, on each side. In this way the strict Einstein locality condition—no mutual
influence between the two observers Alice and Bob—is achieved in the experiment.
The figure is taken from [100], © Gregor Weihs.
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truly random setting of the analyzers at each side of Alice and Bob, such that strict Einstein
locality—no mutual influence between the two observers Alice and Bob—was achieved in
the experiment. The data were compared with the CHSH inequality (30) and the experimental
result was: = ±S 2.73 0.02CHSH

exp , which corresponded to a violation of the inequality of 30
standard deviations. Due to this high efficiency photon source the measurement could be
performed already in 3–4 min. It was the experiment that truly included the vital time factor,
John Bell insisted upon so strongly.

About the same time other groups investigated energy correlated photon pairs to test Bell
inequalities [101, 102]. A record was set by the group of Gisin [103], by using energy-time
entangled photon pairs in optical fibres. They managed to separate their observers Alice and
Bob by more than 10 km and could show that this distance had practically no effect on the
entanglement of the photons. The investigated Bell inequalities had been violated by 16
standard deviations.

Fascinating experiments on quantum teleportation [104, 105] and quantum cryptography
[106, 107] followed.

Then a race started in achieving records of entanglement based long distance quantum
communication. The vision was to install a global network, in particular via satellites or the
International Space Station, that provided an access to secure communication via quantum
cryptography at any location.

It was again Zeilingerʼs group that pushed the distance limits further and further. Firstly,
in an open air experiment in the City of Vienna over a distance of 7.8 km the group [108]
could violate a CHSH inequality (30) by more than 13 standard deviations. Secondly, this is
currently the world record, the group [109] successfully carried out an open air Bell
experiment over 144 km between the two Canary Islands La Palma and Tenerife.

In search of closing loopholes a recent Bell experiment of the group [110] closed the fair-
sampling loophole, i.e., their results of violating an inequality à la Eberhard [111] were valid
without assuming that the sample of measured photons accurately represented the entire
ensemble.

Another loophole, the detection efficiency loophole, could be closed with ion traps.
Working with ions the group Rowe et al [112] tested a Bell inequality with perfect detection
efficiency.

Finally, I also want to refer to the Bell inequality tests of the group of Rauch [113–115].
These neutron interferometer experiments were of particular interest since in this case the
quantum correlations were explored in the degrees of freedom of a single particle, the neu-
tron. Physically, it meant that rather contextuality was tested than nonlocality in space.

It is quite interesting and amusing to see the development of Bell experiments in the
history of time. Beginning in the 1970s, where one had to overcome huge technical diffi-
culties and the enormous resistance of the physics community, the development ended in the
2010s in such a way that a Bell experiment belonged already to the standard educational
program ‘Laboratory Quantum Optics’ for the students at the faculty of Physics of the
University of Vienna. It would have been nice if John Bell could have seen that!

6.4. Bell experiments in particle physics

The quantum correlations discovered in photon physics had been also found in particle
physics. The particle–antiparticle systems that were generated in the huge particle accelerators
were already entangled due to conservations laws. The strangeness system K K̄0 0, produced at
the Φ resonance in the + −e e machine DAΦNE at Frascati, or the beauty system B B̄0 0 pro-
duced at the Υ(4S) resonance at KEK, Japan, were typical examples.
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The difference to the photon systems, discussed so far, was that particle systems had
entirely different and additional properties, which the photons did not have. First of all, the
investigated particles were very massive, they decayed into other particles, they oscillated
between their flavour content, i.e., between their particle and antiparticle nature, and they
could regenerate. In addition, they possessed internal symmetries, like the CP symmetry
(charge conjugation and parity), which turned out to be essential. For these reasons, I think
that it was, and still is, of great importance to investigate such systems, particularly with
regard to the EPR–Bell quantum correlations.

The typical feature of these particle systems, e.g., of a kaon–antikaon system, was that
the joint expectation value of a measurement at Aliceʼs and Bobʼs detectors depended on
both, on the flavour content, which corresponded to a quasi-spin property, and on the time of
the measurement, once the system was created. Correspondingly, also a Bell inequality
depended on both [116] (see [117, 118], for an overview in this field).

Therefore we might choose in a Bell inequality:

(a) varying the flavour (quasi-spin) or fixing the time,
(b) fixing the flavour (quasi-spin) or varying the time.

Quite generally, the experimental test of Bell inequalities in particle physics was much
more intricate than in photon physics. Active measurements had to be carried out, however,
they were difficult to achieve. Usually, the measurements were passive since they happened
through the decays of the particles [119].

Let me mention two important cases; further quantum proposals can be found in [120]:
Case a. By varying the flavour content in the particle–antiparticle system a Wigner-type

inequality, like equation (38), could be established for the kaon system, which related the
violation of the Bell inequality to CP violation [121, 122]. This connection between the
violation of a Bell inequality and an internal symmetry of a particle is quite remarkable and
must have a deeper and more general meaning.

Case b. When fixing the flavour of the kaons and varying the time of the measurements,
it turned out that due to the fast decay compared to the slow oscillation, which increased the
mixedness of the total system, a Bell inequality was not violated anymore by QM. However,
Beatrix Hiesmayr and a group of experimentalists [123] succeeded in establishing a gen-
eralized Bell inequality for the K K̄0 0 system, which was violated by QM in certain mea-
surable time regions. In this case the HVT were excluded. The experimental preparations for
the KLOE-2 detector at DAΦNE are in progress.

I also want to draw attention to possible experiments that test Bell inequalities by
inserting a regenerator, that is a piece of matter, into the kaon beam [124–128]. These
experiments are of particular interest since regeneration, a typical quantum feature of the K
meson, is directly related to a Bell inequality.

Furthermore, a Bell test for quite a different system, the ΛΛ̄ system, is in preparation
[129] and experimentally planned by the FLAIR collaboration, Darmstadt.

Last but not least, tests of local realism in the decay of a charmed particle into entangled
vector mesons should be mentioned as well [130–132].

Considering the quantum correlations of a particle–antiparticle system, the loss of
entanglement could be detected via a decoherence process of the system with its environment.
Quantitatively, the value of the decoherence parameter corresponded precisely to the amount
of entanglement loss [133]. A number of experiments had been already analyzed [134–137],
showing that the produced systems, K K̄0 0 and B B̄0 0, were indeed entangled over macroscopic
distances in accordance with QM. The local realistic theories totally failed to explain the data
(for details, see [117, 118, 138]).
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These direct Bell-type tests of our basic concepts about matter are of utmost importance
since there is always a slim chance of an unexpected result, despite the fact of the general
success of QM.

There is already a prospering collaboration between theoretical and experimental groups
that are planning and performing the tests. The outcome of these experiments will certainly
provide extremely valuable knowledge about the nonlocal nature of matter, in particular, in
connection with the inherent symmetries.

I think John Bell, who was both a particle and a quantum physicist, would have been
pleased to see the developments of these kinds of experiments.

7. Epilogue

When I think again about entanglement, nonlocality and contextuality I can roughly state the
following: entanglement is the appropriate concept for the mathematical and geometric
structure of the quantum states but for the physics, the experiments, the concept of nonlocality
and contextuality is more adapted.

Interestingly, John Bell was not so much concerned about contextuality and its impli-
cations, whereas, I think that contextuality as a quantum feature has a deep rooting in Nature;
it is very interesting and still needs to be explored. I am convinced that some day it will have
technical applications. Quantum mechanics tells us that the Hilbert spaces of the degrees of
freedom of a system are essential. Therefore, it is possible to have entanglement of an
internal- with an external-degree of freedom of a single particle, which is, in my opinion,
quite remarkable. In this connection, I appreciate very much the neutron interferometer
experiments [113–115, 139, 140], where by manipulating the spin (internal degree) one can
influence the path (external degree) of the neutron.

The nonlocality feature disturbed John deeply since for him it was equivalent to a
‘breaking of Lorentz invariance’ in an extended theory for QM, what he hardly could accept.
He often remarked: ‘Itʼs a great puzzle to me ... behind the scenes something is going faster
than the speed of light.’

Figure 10. Announcement of John Bellʼs talk: ‘What cannot go faster than light?’ at
the University of Hamburg in 1988. Somebody with Hanseatic humor added to the
announcement by hand: ‘John Bell, for example!’
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At the end of his Bertlmannʼs socks paper John expressed again his concern [20]:

‘It may be that we have to admit that causal influences do go faster than light.
The role of Lorentz invariance of a completed theory would then be very
problematic. An ‘aether’ would be the cheapest solution. But the unobserva-
bility of this aether would be disturbing. So would be the impossibility of
‘messages’ faster than light, which follows from ordinary relativistic QM in so
far as it is unambiguous and adequate for procedures we can actually perform.
The exact elucidation of concepts like ‘message’ and ‘we’, would be a for-
midable challenge.’

In Johnʼs last paper ‘La nouvelle cuisine’, published in 1990 [141] (and see his collected
quantum works [142]), he remained profoundly concerned with this nonlocal structure of
Nature. The paper was based on a talk he gave at the University of Hamburg, in 1988, about
the topic: ‘What cannot go faster than light?’. Somebody with Hanseatic humor added to the
announcement by hand: ‘John Bell, for example!’ (see figure 10). This remark made John
think about what exactly that meant: his whole body or just his legs, his cells or molecules,
atoms, electrons ...? Was it meant that none of his electrons go faster than light?

In our modern view of Nature the concepts of a classical theory changed, the sharp
location of objects had been dissolved by the fuzziness of the wave function or by the
fluctuations in quantum field theory. As John remarked: ‘The concept “velocity of an elec-
tron” is now unproblematic only when not thought about it.’

Finally, John discussed ‘Cause and effect’ in this paper. As Einstein [143] already
pointed out, if an effect follows its cause faster than the propagation of light, then there exists
an inertial frame where the effect happens before the cause. Such a thing was unacceptable for
both Einstein and Bell. Therefore, sticking to ‘no signals faster than light’ Bell defined

Figure 11. Sketch of my conclusions in the paper ‘Bellʼs theorem and the nature of
reality’, which I dedicated John Bell in 1988 on occasion of his 60th birthday [144].
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locally causal theories and demonstrated, via an EPR–Bell type experiment, that ‘ordinary
QM is not locally causal’, or more precisely, ‘QM cannot be embedded into a locally causal
theory’. It was essential in his argumentation that the measurement settings ⃗a at Aliceʼs side
and ⃗b at Bobʼs side could be chosen totally free, i.e., at random. ‘But still, we cannot signal
faster than light’, John noted at the end.

My personal feeling is that Bellʼs Theorem, which reveals an apparent nonlocality in
Nature, points to a more radical conception whose onset we do not even have yet. It is quite
remarkable that this nonlocality cannot be used to send signals with velocity faster than light.
Somehow there is a tacit agreement between QM and special relativity not to interfere each
other. Moreover, QM also does not seem to interfere with general relativity, the contemporary
theory of space-time. A consistent quantization of space-time is still lacking. The difficulties
are conceptual ones; at the Planck scale the quantum fluctuations of the space-time metric
become larger than the considered lengths, so that the metric structure is no longer well-
defined. My strong suspicion is, if we can overcome these difficulties once in a radically
modified conception, this tense status between QM and special relativity and the space-time
structure is resolved and finds a natural explanation.

In a revenge paper: ‘Bellʼs theorem and the nature of reality’ [144], which I dedicated to
John on occasion of his 60th birthday in 1988, I sketched my conclusions in a special figure
(see figure 11). John, as a strict teetotaler, was amused very much by this drawing since the
spooky, nonlocal ghost emerges from a Bell’s Whisky bottle that really does exist.
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