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Abstract

We consider the time evolution of the density matrix ρ in a 2-dimensional complex Hilbert space. We allow for dissipation
by adding to the von Neumann equation a term D[ρ], which is of Lindblad type in order to assure complete positivity of the
time evolution. We present five equivalent forms of D[ρ]. In particular, we connect the familiar dissipation matrix L with a
geometric version of D[ρ], where L consists of a positive sum of projectors onto planes in R3. We also study the minimal
number of Lindblad terms needed to describe the most general case of D[ρ]. All proofs are worked out comprehensively, as
they present at the same time a practical procedure how to determine explicitly the different forms of D[ρ]. Finally, we perform
a general discussion of the asymptotic behaviour t → ∞ of the density matrix and we relate the two types of asymptotic
behaviour with our geometric version of D[ρ]. © 2002 Published by Elsevier Science B.V.
PACS: 03.65.-w; 03.65.Yz
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1. Introduction

Particle physics is not only a field where funda-
mental interactions are explored, but it has also be-
come a testing ground for possible deviations from the
quantum-mechanical time evolution. The time evolu-
tion of the density matrix ρ is given by the master
equation

(1)
dρ

dt
= −iHρ + iρH † − D[ρ],
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where D[ρ] is a dissipative term which adds to the
quantum-mechanical term on the right-hand side of
Eq. (1). Such a term can emerge if the system un-
der consideration is not fully closed but interacts
weakly with the environment. In general the nature
of such an interaction is unknown, but experimen-
tal data from suitable systems can be used to place
bounds on the parameters of such hypothesized in-
teractions. In the general case, the Weisskopf–Wigner
approximation [1] allows to incorporate also unsta-
ble particles, by using non-Hermitian Hamiltonians
H = M − iΓ /2, whereM and Γ ! 0 are Hermitian.
It is not only necessary that the time evolution (1)

respects ρ(t) ! 0 ∀t , but the stronger requirement of
complete positivity [2] seems to be a natural and phys-
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ical concept (for the general structure of completely
positive maps, see Refs. [3,4]). This concept is defined
in the following way. Let us assume that the system
under consideration is described by elements of the fi-
nite complex Hilbert space H (dimH ≡ d < ∞) with
time evolution ρ(t) ≡ γt (ρ) with ρ(0) = ρ. Consid-
ering in addition the finite-dimensional Hilbert space
Cn, one can extend the time evolution γt on H to
a time evolution γn;t on H ⊗ Cn by defining γn;t =
γt ⊗ C. If the time evolution γt derived from Eq. (1)
with the dissipative term D[ρ] has the property that
γn;t (ρ) ! 0 is valid for all times t , all n = 0,1,2, . . .
and all density matrices on the spaceH ⊗ Cn, then γt

is called completely positive.
Complete positivity of γt determines the general

structure of D[ρ] [5,6] (see also Refs. [7–10]). It has
been shown by Lindblad [5] (see also Ref. [11]) that
γt of Eq. (1) is completely positive if and only if D[ρ]
has the structure

D[ρ] = 1
2

r
∑

j=1

(

A†jAjρ + ρA†jAj − 2AjρA†j
)

(2)= 1
2

r
∑

j=1

([

A
†
j ,Ajρ

]

+
[

ρA
†
j ,Aj

])

,

where the operators Aj act onH.
Using the relation

(3)Aj = Bj + sj1 with TrBj = 0,

the dissipative term (2) can be reformulated as

D[ρ] = −i[∆H,ρ] + D′[ρ] with

(4)∆H = i

2

r
∑

j=1

(

sjB
†
j − s∗

j Bj

)

,

where D′[ρ] is obtained from D[ρ] by the replace-
ment Aj → Bj . This reformulation has the effect that
part of D[ρ] is shifted into the quantum-mechanical
term of the time evolution (1), such that a new Hamil-
tonianH ′ = H +∆H appears. Note that for Hermitian
operators Aj we have ∆H = 0. In the space of trace-
less operators on the Hilbert space H we can choose a
basis {Fj | j = 1, . . . , d2 − 1} with the property

(5)Tr
(

F
†
j Fk

)

= δjk

and expand the operators Bj as

(6)Bj =
d2−1
∑

k=1
CkjFk.

Then we obtain the expression

D′[ρ] = −1
2

r
∑

j=1

([

Bj ,ρB†j
]+ [

Bjρ,B†j
])

(7)= −1
2

d2−1
∑

k,l=1
ckl

([

Fk,ρF †
l

]+ [

Fkρ,F †
l

])

,

where (ckl) is a positive matrix defined by

(8)ckl =
r
∑

j=1
CkjC

∗
lj .

The form (7) of the dissipative term has been derived
by Gorini, Kossakowski and Sudarshan [6]. It is
equivalent to the Lindblad form (2). Thus the time
evolution with H and D[ρ] is equivalent to the one
with H ′ and D′[ρ].
In particle physics, searches for deviations from

the quantum-mechanical time evolution are going
on in neutral meson–antimeson systems (K0K̄0 and
B0B̄0) (for a list of papers see, e.g., Refs. [12–21])
and neutrino physics (for a list of papers see, e.g.,
Refs. [22–26]). The importance of complete positivity,
in particular, in K0K̄0 and analogous systems, has
been stressed in Refs. [16,18]. For instance, only if
γt is completely positive, the positivity of the time
evolution γt ⊗ γt in the space H ⊗ H is guaranteed.
This follows from the decomposition γt ⊗ γt = (γt ⊗
1)(1 ⊗ γt ), where both factors are positive according
to complete positivity. Forming the tensor product
γt ⊗ γt is a method for implementing the 1-particle
time evolution at the 2-particle level, which is an often
used procedure, e.g., in the K0K̄0 system. For an
example where γt is only positive but not completely
positive, with ensuing non-positivity of γt ⊗ γt , see
Ref. [18].
For simplicity we assume a Hermitian Hamil-

tonian H from now on, but this assumption is irrel-
evant for our discussion of complete positivity; it only
concerns the investigation of the asymptotic limit of
the time evolution, where loss of probability due to
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a non-Hermitian H as obtained in the Weisskopf–
Wigner approximation [1] will lead to ρ(t) → 0 for
t → ∞.
Apart from complete positivity of the time evolu-

tion, the assumptions on which the present work is
based are the following:

1. We work in a 2-dimensional complex Hilbert
space, which we can identify with C2;

2. We assume Hermitian Lindblad operators, i.e.,
Aj = A

†
j ∀j .

Both assumptions are crucial for the following discus-
sions. The first one is motivated by the applications in
particle physics, whereas the second assumption guar-
antees that the entropy S[ρ] = −Tr(ρ lnρ) cannot de-
crease as a function of time [27]. In this framework
we will discuss the different forms of the dissipative
term D[ρ] used in the literature and we will show
their equivalence. We will put emphasis on the formu-
lation of the time evolution (1) in R3, where we will
represent D[ρ] as a positive sum over projectors onto
planes. We will also study in detail the matrix formu-
lation ofD[ρ] as advocated by Benatti and Floreanini,
e.g., in Refs. [16,18], and relate this formulation with
the geometric version of D[ρ] as a sum of projectors.
Finally, we will investigate the limit t → ∞ of the den-
sity matrix.

2. Equivalent forms of the dissipative term

We start with the original form of the dissipative
term (2) and take into account that we confine our-
selves to Hermitian Lindblad operatorsAj . ThusD[ρ]
simplifies to

Form A: D[ρ] = 1
2

r
∑

j=1

(

A2jρ + ρA2j − 2AjρAj

)

(9)= 1
2

r
∑

j=1

[

Aj , [Aj ,ρ]
]

.

The number of Lindblad terms in Eq. (9) is denoted
by r .
Next we note that the dissipative term can be rewrit-

ten in terms of projectors Pj and their orthogonal com-

plements P ⊥
j = 1 − Pj as

Form B: D[ρ] = 1
2

r
∑

j=1
λj

(

PjρP ⊥
j + P ⊥

j ρPj

)

.

(10)

The projectors Pj are non-trivial projectors in C2,
which can be parameterized as

(11)Pj = 1
2
(

1 + n⃗j · σ⃗
)

,

where the n⃗j are real unit vectors and σ⃗ denotes the
vector of Pauli matrices. The quantities λj are real,
positive numbers.

Proposition 1. Forms A and B of D[ρ] are equivalent.

Proof. A general Hermitian 2× 2 matrix Aj can be
represented by

(12)Aj = 1
2
(

aj1 +
√

λj n⃗j · σ⃗
)

,

where aj and λj are real numbers (λj ! 0) and n⃗j is
a unit vector. Note that the part of Aj proportional to
the unit matrix does not contribute to D[ρ], as evident
from Eq. (9). Therefore, λj must not be zero in order
to have a non-trivial effect of Aj . Consequently, we
are allowed to replace Aj by

√

λj Pj in D[ρ]. Using
Eq. (9) and P 2

j = Pj , we derive

(13)D[ρ] = 1
2

r
∑

j=1
λj (Pjρ + ρPj − 2PjρPj ),

which can be rewritten in Form B of Eq. (10). ✷

The time evolution (1) is easily reformulated as a
differential equation for a real 3-vector ρ⃗ by using

(14)ρ = 1
2
(1 + ρ⃗ · σ⃗ ) and H = 1

2
(

1 + h⃗ · σ⃗
)

.

Since for simplicity we have assumed that H is Her-
mitian, the 3-vector h⃗ is real as well (for an extension
to non-Hermitian Hamiltonians see, e.g., Ref. [28]).
The new version of Eq. (1) is given by

(15)
dρ⃗

dt
= h⃗ × ρ⃗ − Lρ⃗.
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With Form A or B of the dissipative term and Eq. (12)
or (11), we arrive at a geometric version of D[ρ]:

(16)Form C: Lρ⃗ = 1
2

r
∑

j=1
λj

(

ρ⃗ − n⃗j n⃗j · ρ⃗),

where the matrix L is a positive linear combination of
projectors

(17)P
(

n⃗j

)= 13 − n⃗j n⃗
T
j .

The projector (17) projects onto the plane orthogonal
to n⃗j . Clearly, Form C is equivalent to the the previous
forms of the dissipative term.
The dissipation matrix L in Form C can be refor-

mulated as [16]

(18)Form D: Lαβ = 1
2
(Λδαβ − qα · qβ)

with

(19)qα ∈ Rr (α = 1,2,3) and Λ =
3
∑

α=1
|qα|2.

Proposition 2. Forms C and D are equivalent.

Proof. The proof of this statement amounts to a mere
rewriting of the elements of L by

r
∑

j=1
λj

(

δαβ −
(

n⃗j

)

α

(

n⃗j

)

β

)

(20)=
r
∑

j=1
λj δαβ −

r
∑

j=1

√

λj

(

n⃗j

)

α

√

λj

(

n⃗j

)

β
.

Then we define

(21)qα =
⎛

⎝

√
λ1 (n⃗1)α

...√
λr (n⃗r )α

⎞

⎠ and Λ =
r
∑

j=1
λj .

The sum over the square of the lengths of the three
vectors qα is performed via

3
∑

α=1
|qα|2 =

3
∑

α=1

r
∑

j=1
λj

(

n⃗j

)2
α

(22)=
r
∑

j=1
λj

( 3
∑

α=1

(

n⃗j

)2
α

)

=
r
∑

j=1
λj .

Here, we have used that the n⃗j are 3-dimensional unit
vectors. Thus we have obtained Form D of L from
Form C. This procedure can be reversed: given three
vectors qα ∈ Rr , we can use Eq. (21) to construct r

unit vectors n⃗j and positive numbers λj . In this way,
we gain Form C from Form D. ✷

The question arises how many terms are necessary
in D[ρ] in the most general case. This question is
answered by the following theorem.

Theorem 1. The most general case is covered by three
Lindblad terms in D[ρ], i.e., if D[ρ] is given by a sum
over more than three terms, then it can be rewritten
as a sum of at most three terms. If D[ρ] is formulated
with the minimal number of terms, then, using Forms B
or C, there are three distinct minimal cases referring
to one, two or three linearly independent vectors n⃗j

with λj > 0; we will denote these cases by an index
ℓ ∈ {1,2,3}.1

Proof. Let us first assume that r > 3. Since there are
only three vectors qα , we can find a rotation R acting
on Rr such that

(23)Rqα =

⎛

⎜

⎜

⎝

Qα

0
...

0

⎞

⎟

⎟

⎠

with Qα ∈ R3.

In the most general case the set of vectors Q =
{Qα | α = 1,2,3} is linearly independent and can be
parameterized by

(24)Qα =
⎛

⎝

q1α
q2α
q3α

⎞

⎠=
⎛

⎝

√
µ1 (m⃗1)α√
µ2 (m⃗2)α√
µ3 (m⃗3)α

⎞

⎠ .

The real and positive numbers µj are chosen in such
a way that the vector m⃗1, extracted from the first
elements of the vectors Qα , is a unit vector; the
same is done for the second and third elements.2 In
this case we have an index ℓ = 3. If Q spans a 2-
dimensional space, we choose the rotation R such that
the third elements of all Qα are zero; if Q spans a 1-
dimensional space, the second and third elements are

1 Obviously, in the minimal formulation of D[ρ] we have r ≡ ℓ.
2 This procedure is analogous to the one to prove that Form C

follows from Form D.
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taken to be zero. These two cases refer to index ℓ = 2
and 1, respectively. Form D of the dissipative term
tells us that D[ρ] is independent of any rotation R.
Consequently, we arrive at

r
∑

j=1
λj

(

δαβ −
(

n⃗j

)

α

(

n⃗j

)

β

)

(25)=
ℓ
∑

j=1
µj

(

δαβ −
(

m⃗j

)

α

(

m⃗j

)

β

)

,

which proves the theorem for r > 3. For r " 3 we
follow analogous steps performed after Eq. (23), with
the rotation R acting now on a 3 or 2-dimensional
space. For r = 1 the procedure is trivial. ✷

On the other hand, to find the minimal number of
operators Aj needed for the most general dissipative
term (2), we could start from the Gorini–Kossa-
kowski–Sudarshan expression (7). Transforming back
to the Lindblad structure (2) by using the relations

(26)ckl = (

UĉU†)
kl

and Bj =
d2−1
∑

k=1
Ukj

√

ĉjj Fk,

where ĉ ! 0 is diagonal and U a unitary matrix, it can
be seen that, in the general case, we obtain d2 − 1
terms in D[ρ] of Eq. (2); if some of the elements ĉjj

are zero, we will have less than d2−1 terms. Applying
this to d = 2, we find at most three terms, which agrees
with the result of the explicit calculations leading to
Theorem 1.

3. Complete-positivity conditions on the
dissipation matrix L

Benatti and Floreanini [16–18] parameterized the
dissipation matrix L by 6 real constants and expressed
complete positivity in the form of inequalities satisfied
by these parameters. Thus they have the version

(27)Form E: L = 2

(

a b c
b α β

c β γ

)

,

together with

2R ≡ α + γ − a ! 0,
2S ≡ a + γ − α ! 0,

(28a)2T ≡ a + α − γ ! 0;
(28b)RS ! b2, RT ! c2, ST ! β2;
(28c)RST ! 2bcβ + Rβ2 + Sc2 + T b2.

We will show now that Form E is equivalent to the
forms presented in the previous section.
First we want to put Eqs. (28a), (28b), (28c) into a

simpler equivalent form.

Lemma 1. Given L, there exists a symmetric matrix
M such that

(29)L = 1
2
(TrM13 − M).

In terms of M , Eqs. (28a), (28b), (28c) are given by

(i) Mαα ! 0 (α = 1,2,3),
(ii) MααMββ ! M2

αβ ∀α ̸= β,

(30)(iii) detM ! 0,

respectively.

Proof. For α ̸= β we haveMαβ = −2Lαβ . The diago-
nal elements ofM are determined byMαα = −Lαα +
Lββ + Lγ γ , where α ̸= β ̸= γ ̸= α. The second part
of the lemma is proved by plugging Eq. (29) into Eqs.
(28a), (28b), (28c). ✷

The next lemma will allow us to connect M pos-
sessing properties (30) with Form D of the dissipative
term.

Lemma 2. A real and symmetric 3× 3 matrix M has
the properties of Eq. (30) if and only if there exist
vectors qα ∈ R3 (α = 1,2,3) such that

(31)Mαβ = qα · qβ .

Proof. (⇐) This direction of the proof is quickly
dealt with. Since Mαα = q2α ! 0, property (i) is valid.
Furthermore, for α ̸= β , with the Cauchy–Schwarz
inequality we derive M2

αβ = (qα · qβ )2 " q2α q2β =
MααMββ and property (ii) holds as well. Defining
a 3 × 3 matrix q = (q1,q2,q3), we have detM =
det(qT q) = (detq)2 ! 0 and thus property (iii). This
completes the first half of the proof.
(⇒) This direction of the proof is more involved.

If all Mαα were zero, then according to property (ii)
of Eq. (30) we would have M = 0. Therefore, at
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least one of the diagonal elements of M is non-zero.
Without loss of generality we assume M11 > 0. First
we consider the case

(32)M11M22 − M2
12 > 0.

Denoting the elements of qα by q
j
α , we can define a

vector q1 by q11 = √
M11, q21 = q31 = 0. From M12 =

q1 · q2, it follows after a sign choice that q12 = M12/√
M11. Taking into account that q2 · q2 = M22 and

defining q32 = 0, the first two vectors are given by

q1 =
(

√
M11
0
0

)

,

(33)q2 =

⎛

⎜

⎝

M12/
√

M11
√

M22 − M2
12/M11

0

⎞

⎟

⎠
.

With the relation of Eq. (32) we find that q2 is a well-
defined real 3-vector. Next we use M13 = q1 · q3 and
M23 = q2 · q3 and obtain

q13 = M13√
M11

and q23 = M23 − M12M13/M11
√

M22 − M2
12/M11

.

(34)

It remains to take into account q3 · q3 = M33. After
some algebra we arrive at
(

q33
)2 = M33 −

(

q13
)2 −

(

q23
)2

(35)= detM
M11M22 − M2

12
! 0.

The positivity follows from property (iii) of Eq. (30).
Thus, q33 is well-defined and we have proven rela-
tion (31), provided condition (32) holds.
It remains to check the same for the special case

(36)M11M22 = M2
12,

which was excluded by Eq. (32). From Eq. (36) we
obtainM12 = η

√
M11M22 with η = ± 1 and

(37)detM = −
(

√

M11M23 − η
√

M22M13
)2

.

Since detM ! 0 (see Eq. (30)), it follows that

(38)M23 = ηM13
√

M22/M11.

With this relation and taking into account condition
(36), it is easy to check that

q1 =
√

M11

(1
0
0

)

, q2 = η
√

M22

(1
0
0

)

,

(39)q3 =

⎛

⎜

⎝

M13/
√

M11
√

M33 − M2
13/M11

0

⎞

⎟

⎠

represents a consistent choice of vectors, which fulfills
Eq. (31). This completes the proof. ✷

With Lemmata 1 and 2 we now readily see that a
matrix L fulfills the conditions of Eqs. (28a), (28b),
(28c) if and only if L is given by Lαβ = (1/2)(Λδαβ −
qα · qβ), where qα ∈ R3 and Λ =∑3

α=1 |qα|2.

Proposition 3. Forms D and E of the dissipation
matrix L are equivalent.

Proof. According to Lemma 1, from the matrix L we
construct a matrix M with properties (30). Lemma 2
tells us that such an M is represented by a matrix
of scalar products (see Eq. (31)) and vice versa.
Therefore, our statement is true. ✷

4. The asymptotic limit t → ∞

Now we consider the asymptotic limit of the
density matrix ρ(t) with time evolution (1) [20]. For
this purpose we use the results of Theorem 1, where
we have also defined the index ℓ of L. For a general
study of the large time behaviour of the density matrix
starting with expression (7), see Ref. [29].

Theorem 2. For index ℓ = 2 or ℓ = 3, the asymptotic
limit of the density matrix is given by

(40)lim
t→∞ρ(t) = 1

2
1.

Proof. This statement is most easily proved by using
Form C, Eq. (16), of the dissipative term and Eq. (15)
of the time evolution. Denoting by A the operator on
the right-hand side of Eq. (15), we have

(41)Ax= h⃗ × x− 1
2

ℓ
∑

j=1
λjP

(

n⃗j

)

x
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for arbitrary complex 3-vectors x. If we can show that
every eigenvalue c of A fulfills Rec < 0, the theorem
is proved. Let x be a normalized eigenvector with
eigenvalue c. Then, with x†x= 1 we have

c = x†Ax= −2ih⃗ · (Rex× Imx)

(42)− 1
2

ℓ
∑

j=1
λjx†P

(

n⃗j

)

x

and, consequently,

(43)Re c = −1
2

ℓ
∑

j=1
λjx†P

(

n⃗j

)

x.

Since the projectors P(n⃗j ) are positive operators
and λj > 0, we have Re c " 0. If Re c = 0, it is
necessary that x†P(n⃗j )x = 1 − |n⃗j · x|2 = 0 ∀j =
1, . . . ,ℓ. Therefore, the eigenvector x is proportional
to n⃗j ∀j = 1, . . . ,ℓ. This is a contradiction for ℓ =
2 or 3 independent vectors n⃗j and, indeed, every
eigenvalue c has a negative non-zero real part. ✷

Theorem 3. For ℓ = 1 (n⃗1 ≡ n⃗, P1 ≡ P , λ1 ≡ λ) we
have either h⃗ ∥ n⃗ or, equivalently, [H,P ] = 0, in which
case we obtain

(44)lim
t→∞ρ(t) = Pρ(0)P + P ⊥ ρ(0)P ⊥ ;

or h⃗ ∦ n⃗, i.e., [H,P ] ̸= 0, then the asymptotic limit of
ρ(t) is the same as in Theorem 2.

Proof. We follow the same strategy as in the proof
of the previous theorem. Thus either Re c < 0 or
the eigenvector x is proportional to n⃗, in which case
Re c = 0. Assuming x = n⃗ without loss of generality,
we have nowAx= h⃗× n⃗ = cn⃗, where the eigenvalue c
is imaginary. This equation is only soluble for h⃗ ∝ n⃗,
whence it follows that c = 0. The relation h⃗ ∝ n⃗ is
equivalent to [H,P ] = 0. In this case we can write
the Hamiltonian as H = hP + h′P ⊥ . Decomposing
an arbitrary density matrix ρ as

ρ = ρ0 + ρ1 with
ρ0 = PρP + P ⊥ ρP ⊥ and

(45)ρ1 = PρP ⊥ + P ⊥ ρP,

we find
dρ0
dt

= 0 and

(46)

dρ1

dt
=
[

−i(h − h′) − λ/2
]

PρP ⊥

+ [

i(h − h′) − λ/2
]

P ⊥ ρP.

Therefore, we arrive at

ρ0(t) = ρ0(0) and

(47)

ρ1(t) = e[−i(h−h′)−λ/2]tPρ(0)P ⊥

+ e[i(h−h′)−λ/2]tP ⊥ ρ(0)P.

Since limt→∞ ρ1(t) = 0, the theorem is proven. ✷

The different limits of ρ(t) discussed in Theorems
2 and 3 have been noticed in Refs. [20,23,26]. In
the case of ℓ = 1 and [H,P ] = 0, the limit (44)
of the density matrix has the form ρ = µP + (1 −
µ)P ⊥ with 0 " µ " 1; all density matrices obeying
dρ/dt = 0 have this form for [H,P ] = 0. For ℓ = 1
and [H,P ] ̸= 0, and for ℓ = 2,3, the unique density
matrix which is time-independent is proportional to
the unit matrix.

5. Summary and conclusions

In this Letter we have considered the quantum-
mechanical time evolution of a 2 × 2 density ma-
trix ρ(t), where the von Neumann equation is mod-
ified by a dissipative term D[ρ], which, therefore,
must be of the Lindblad type or, equivalently, of the
Gorini–Kossakowski–Sudarshan type in order to as-
sure a completely positive time evolution. We have,
furthermore, assumed that the Lindblad operators Aj

are all Hermitian which ensues that the entropy is non-
decreasingwith time. Our starting point conformswith
many applications of the open-systems approach in
particle physics.
We have discussed five equivalent forms of D[ρ]

which all have their merits depending on the problem
considered. We have put particular emphasis on the
time evolution in the form of Eq. (15), where the
density matrix and the Hamiltonian are represented by
real 3-vectors, and Form C, Eq. (16), of the dissipative
term, where the dissipative term is a positive linear
combination of projectors onto 2-dimensional planes
in R3.
We have studied the question of the minimal num-

ber ℓ of Lindblad terms needed in order to repro-
duce a given D[ρ] and formulated the result in The-
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orem 1; the proof of this theorem represents at the
same time a procedure how to determine ℓ in prac-
tice. An other procedure would be to start with
the Gorini–Kossakowski–Sudarshan expression from
which it also can be seen that D[ρ] can be generally
decomposed into 3 terms.
We have also connected the approach where the

dissipative term is given by a matrix L specified by
the conditions (28a), (28b), (28c) with the geometric
picture of D[ρ] as given by Form C, Eq. (16). Again,
the proof which shows the equivalence between the
two approaches, given by Lemmata 1 and 2, indicates
a practical way to obtain the projectors P(n⃗j ) (17)
associated with D[ρ].
Finally, we have presented a general discussion of

the limit t → ∞ of ρ(t), where the usefulness of
Form C of D[ρ] was exemplified.
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