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Abstract

For the entangled neutral kaon system we formulate a Bell inequality sensitive to CP violation in mixing. Via this Bell
inequality we obtain a bound on the leptonic CP asymmetry which is violated by experimental data. Furthermore, we connect
the Bell inequality with a decoherence approach and find a lower bound on the decoherence parameter which practically
corresponds to Furry’s hypothesis. © 2001 Elsevier Science B.V. All rights reserved.
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Recently, there has been great interest in investi-
gating entangled massive particle systems, e.g., neu-
tral kaons [1–5]. In analogy to spin-1/2 particles or to
polarized photons [6], neutral kaons also can be de-
scribed by a “quasi-spin”, a view which is especially
useful in this connection (see, e.g., Ref. [4]). They
are ideal systems to test the EPR–Bell correlations for
massive systems. A general test of quantum mechan-
ics (QM) versus local realistic theories (LRT) is per-
formed via Bell inequalities [7]. In the kaon case we
have the freedom of choosing different detection times
and different quasi-spins. They play the role of the dif-
ferent angle choices in the spin-1/2 or photon case.
Experimentally such systems are produced at the Φ
resonance, for instance, in the e+e− collider DA"NE
at Frascati or in pp̄ collisions in the CPLEAR experi-
ment at CERN.
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An interesting feature of the kaon systems is that the
kaons reveal CP violation and, amazingly, it turns out
that Bell inequalities for such systems imply bounds
on the physical CP violation parameters [8,9], which
can be checked experimentally, indeed, not necessarily
in experiments with entangled kaons.
It was Uchiyama [8] who first found that a Bell

inequality with different quasi-spin eigenstates leads
to an inequality for the CP violation parameter ε.
The derivation relied on a specific phase convention
for the kaon states. Such a specific choice, although
customary in kaon physics, is a certain drawback for
the physical interpretation of Bell inequalities since
their formulation should be as general and loophole
free as possible (see, e.g., Ref. [10]).
It is the purpose of the present Letter to optimize

the Bell inequality (BI) for such entangled kaons by
exploiting the phase freedom in the definition of the
kaon states. In this way we will clarify the relation
between Uchiyama’s BI and CP violation in mixing.
Quantum mechanically we are considering entan-

gled states of K0K̄0 pairs, in analogy to the entangled

0375-9601/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01)00577-1



22 R.A. Bertlmann et al. / Physics Letters A 289 (2001) 21–26

spin up and down pairs, or photon pairs. They are cre-
ated through the reaction e+e− → Φ → K0K̄0 in a
JPC = 1−− quantum state, and are thus antisymmet-
ric under C and P , and are described at the time t = 0
by the entangled state

(1)

∣

∣ψ(t = 0)
〉

= 1√
2
{
∣

∣K0〉
l
⊗

∣

∣K̄0〉
r
−

∣

∣K̄0〉
l
⊗

∣

∣K0〉
r

}

,

which can be rewritten in the KSKL basis as

(2)

∣

∣ψ(t = 0)
〉

= NSL√
2

{

|KS⟩l⊗ |KL⟩r − |KL⟩l⊗ |KS⟩r
}

with NSL = N2/(2pq). Then the neutral kaons fly
apart and will be detected on the left (l) and right (r)
side of the source. Of course, during their propagation
the K0 and K̄0 oscillate and KS,KL decays will oc-
cur.
What is Uchiyama’s inequality? Imagine the fol-

lowing gedanken experiment. Two neutral kaons are
produced at the Φ resonance, each one in a defi-
nite quasi-spin state. The probability of measuring the
short lived state KS on the left side and the anti-
kaon K̄0 on the right side, at the time t = 0, is de-
noted by P(KS, K̄0), and analogously the probabili-
ties P(KS,K0

1 ) and P(K0
1 , K̄

0). Then under the usual
hypothesis of Bell’s locality the following Bell in-
equality can be derived [8]:

(3)P
(

KS, K̄0) ! P
(

KS,K0
1
) + P

(

K0
1 , K̄

0).

Generalizations can be found in Ref. [4]. Although
this BI is rather formal because it involves the unphys-
ical CP-even state |K0

1 ⟩, it implies an inequality on
the physical CP violation parameter ε, which is ex-
perimentally testable. The procedure to derive this in-
equality is as follows.
In QM we describe the neutral kaons by three

sets of quasi-spin eigenstates. Let us begin with the
strangeness eigenstates. They distinguish the K0 from
its antiparticle K̄0 by

S
∣

∣K0〉 = +
∣

∣K0〉,

(4)S
∣

∣K̄0〉 = −
∣

∣K̄0〉.

As the K mesons are pseudoscalars, their parity P is
negative and charge conjugation C transformsK0 and
K̄0 into each other so that we conventionally have for

the combined transformation CP:

CP
∣

∣K0〉 = −
∣

∣K̄0〉,

(5)CP
∣

∣K̄0〉 = −
∣

∣K0〉.

From this follows that the orthogonal linear combina-
tions
∣

∣K0
1
〉

= 1√
2
{
∣

∣K0〉 −
∣

∣K̄0〉},

(6)
∣

∣K0
2
〉

= 1√
2
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are eigenstates of CP,

CP
∣

∣K0
1
〉 = +

∣

∣K0
1
〉

,

(7)CP
∣

∣K0
2
〉

= −
∣

∣K0
2
〉

,

a quantum number conserved in strong interactions.
Due to weak interactions, which are CP-violating,

the kaons decay and the “physical” states are the short
and long lived states

|KS⟩ = 1
N

{

p
∣

∣K0〉 − q
∣

∣K̄0〉},

(8)|KL⟩ = 1
N

{

p
∣

∣K0〉 + q
∣

∣K̄0〉}.

They are eigenstates of the non-Hermitian “effective
mass” Hamiltonian. In a particular phase convention,
the weights are expressed by [11]

p = 1+ ε, q = 1− ε, and
(9)N2 = |p|2 + |q|2,

where ε is the complex CP-violating parameter, asso-
ciated with the neutral kaon decay into the isospin-0
two-pion state (CPT invariance is assumed; thus the
short and long lived states contain the same CP-violat-
ing parameter εS = εL = ε).
Note that the two states |K0⟩ and |K̄0⟩ can be

regarded as the quasi-spin states up |⇑⟩ and down |⇓⟩,
and the operators acting in this quasi-spin space are
expressible by Pauli matrices; the strangeness operator
S can be identified with the Pauli matrix σ3, the CP
operator with (−σ1) and CP violation in the effective
Hamiltonian is proportional to σ2 [4].
Calculating now the probabilities of Eq. (3) within

quantum mechanics the Bell inequality (3) turns into
an inequality for the CP-violating parameter ε:

(10)Re {ε} ! |ε|2.
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Inequality (10) is obviously violated by the experi-
mental value of ε, having an absolute value of order
10−3 and a phase of about 45◦ [12]. In this way CP
violation inK0K̄0 mixing is related to the violation of
a Bell inequality.
Alternatively, we could choose KL instead of KS

and K0
2 instead of K0

1 in the BI (3) and arrive at the
same inequality (10).
However, as already mentioned above, the deriva-

tion of inequality (10) relies on a specific choice of the
phases of the kaon states. In particular, the choice of
the weights in Eq. (9), where the CP violation parame-
ter ε enters, is a convention such that the relative phase
of the decay amplitudes K0 → ππ and K̄0 → ππ ,
both ππ states with isospin I = 0, is 180◦ (see, for in-
stance, Ref. [11]). However, the BI (3) involves only
the two-dimensional space generated by the basis ele-
ments |K0⟩ and |K̄0⟩ and has nothing to do with de-
cays. This suggests to dispense with the phase conven-
tion (9) and rather use the phase freedom to define the
unphysical state |K0

1 ⟩.
This we can achieve by having a phase in the CP

transformation:

CP
∣

∣K0〉 = eiα
∣

∣K̄0〉,

(11)CP
∣

∣K̄0〉 = e−iα
∣

∣K0〉,

where we have chosen (CP)2 = 1. In Eq. (5) the
phase α has been fixed for convenience to α = 0,
but in general it is arbitrary and without any physical
significance. So the CP eigenstates are the following
linear combinations:
∣

∣K0
1
〉 = 1√

2
{
∣

∣K0〉 − eiα
∣

∣K̄0〉},

(12)
∣

∣K0
2
〉

= 1√
2
{∣

∣K0〉 + eiα
∣

∣K̄0〉},

and with this definition the quantum mechanical prob-
abilities are

PQM
(

K0
1 , K̄

0) = 1
4
,

PQM
(

KS, K̄0) = 1
2N2 |p|2,

(13)PQM
(

KS,K0
1
) = 1

4N2

∣

∣peiα − q
∣

∣

2
.

Note that besides α there is also the relative phase of
p and q , which is still not fixed.

We insert probabilities (13) into the Bell inequality
(3) and obtain

(14)Re
{

eiαpq∗} ! |q|2.
Nowwe choose α such that it compensates the relative
phase χ of the complex weights p and q :

(15)Re
{

eiαpq∗} = Re
{

ei(α+χ)|p||q|
}

= |p||q|.
Clearly, inequality (14) is optimal for α + χ = 0 and
we finally find an inequality independent of any phase
conventions,

(16)|p| ! |q|.
Inequality (16) is experimentally testable! Let us
consider the semileptonic decays of the K mesons, in
particular the leptonic asymmetry

(17)δl= Γ (KL → π−l+νl) −Γ (KL → π+l−ν̄l)
Γ (KL → π−l+νl) +Γ (KL → π+l−ν̄l)

,

where l represents either an electron or a muon. If
CP were conserved, we would have δl = 0. Experi-
mentally, however, the asymmetry is nonvanishing, 1
namely

(18)δl= (3.27 ± 0.12) × 10−3,

and is thus a clear sign of CP violation. On the other
hand, we recall the ∆S = ∆Q rule for the decays
of the strange particles. It implies that—due to their
quark contents—the kaon K0(s̄d) and the anti-kaon
K̄0(sd̄) have definite decays

K0 s̄→ūl+νl−→ π− + l+ + νl,

(19)K̄0 s→ul−ν̄l−→ π+ + l− + ν̄l.

Thus, l+ and l− tag K0 and K̄0, respectively, in the
KL state, and the leptonic asymmetry (17) is expressed
by the probabilities of finding aK0 and a K̄0 in theKL

state:

(20)δl= |p|2 − |q|2
|p|2 + |q|2 ≡ δ.

1 It is the weighted average over electron and muon events, see
Ref. [12].
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Then inequality (16) turns into the bound

(21)δ ! 0

for the leptonic asymmetry which measures CP vio-
lation. It is in contradiction to the experimental value
(18) which is definitely positive. In this sense CP vio-
lation is related to the violation of a Bell inequality.
On the other hand, we can replace K̄0 by K0 in the

BI (3) and along the same lines as discussed before we
obtain the inequality

(22)|q| ! |p|,
independent of any phase conventions. Inequalities
(16) and (22), however, imply the strict equality

(23)|p| = |q|,
which is in contradiction to experiment. Thus the
premises of LRT are only compatible with strict CP
conservation in K0K̄0 mixing. Conversely, CP viola-
tion in K0K̄0 mixing, no matter which sign the exper-
imental asymmetry (17) actually has, always leads to
a violation of a BI, either of inequality (16) or of (22).
Another interesting feature is the connection of the

Bell inequality with the decoherence approach, see
Ref. [13]. With a simple modification of the quantum-
mechanical probabilities, namely by multiplying the
interference term of the amplitudes by (1− ζ ), where
ζ is the decoherence parameter, we can achieve a
continuous factorization of the wavefunction (see, e.g.,
Refs. [14,15]). When does this approach represent a
local realistic theory, thus satisfying a Bell inequality?
For ζ = 0 we have pure QM, the violation of a BI
and thus a nonlocal situation. On the other hand,
for ζ = 1, called Furry’s hypothesis [16], there is
total decoherence or spontaneous factorization of the
wavefunction. Then the BI is satisfied and a LRT may
describe the physical phenomena.
However, what can we say for ζ values between 0

and 1? Let us consider again the Bell inequality (3) and
recalculate it with the modified probabilities, in order
to find a bound on ζ . We choose for the entangled
state the KSKL basis representation (2) and modify
the probabilities as described above:

P(f1, f2) = N4

8|p|2|q|2
∣

∣

∣
⟨f1|l⊗ ⟨f2|r

× {|KS⟩l⊗ |KL⟩r − |KL⟩l⊗ |KS⟩r
}

∣

∣

∣

2

(24)

→ Pζ (f1, f2) = N4

8|p|2|q|2
{

∣

∣⟨f1|KS⟩l
∣

∣

2∣
∣⟨f2|KL⟩r

∣

∣

2

+
∣

∣⟨f1|KL⟩l
∣

∣

2∣
∣⟨f2|KS⟩r

∣

∣

2

− 2(1− ζ )Re
{⟨f1|KS⟩∗l⟨f2|KL⟩∗r

× ⟨f1|KL⟩l⟨f2|KS⟩r
}

}

.

Then we find the following probabilities modified
by ζ :

Pζ
(

K0
1 , K̄

0) = PQM
(

K0
1 , K̄

0) − ζ
1
8
(

1− η2
)

,

Pζ
(

KS, K̄0) = PQM
(

KS, K̄0) − ζ
1
4
(

1− η2
)

,

(25)

Pζ
(

KS,K0
1
)

= PQM
(

KS,K0
1
)

+ ζ
1
8η2

(

1− η2
)2

,

where

(26)η= |q|
|p|

is a measure for CP violation in K0K̄0 mixing. Note
that all ζ terms are independent of the phase α; it
enters only in the quantum mechanical probability
PQM(KS,K0

1 ) (see Eq. (13)).
Inserting now probabilities (25) into the Bell in-

equality (3), choosing α—like before in Eq. (15)—
such that it compensates the relative phase χ of the
weights p and q and expressing η by

(27)η2 = 1− δ

1+ δ
,

we find the bound

(28)
(1− δ)

δ

(

√

1− δ2 − 1+ δ
)

! ζ.

The expansion to order δ gives

(29)1− 3
2
δ " ζ.

Numerically, from the experimental value (18) we get
the bound

(30)0.9951 ± 0.0002" ζ,

which is, due to our optimal choice of the phases in
inequality (14), a slight improvement as compared to
the numerical bound of 0.987 of Ref. [13]. Thus, the
decoherence parameter ζ has to be very close to one;
hence, Furry’s hypothesis or spontaneous factorization
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has to take place totally. Intuitively, we would have
expected that there exist local realistic theories which
allow at least partially for an interference term; see, for
instance, Refs. [17,18].
On the other hand, we can compare this result with

the experimentally determined ζKSKL = 0.13+0.16
−0.15

(see Ref. [15]), where ζ = 1 is excluded by many
standard deviations. This means that for experimental
reasons a LRT equivalent to a modification of QM in
the KSKL basis choice is definitely excluded!
However, the situation changes when modifying the

quantum-mechanical probabilities in the K0K̄0 basis
[14,15]. Then we obtain

Pζ
(

K0
1 , K̄

0) = PQM
(

K0
1 , K̄

0),

Pζ
(

KS, K̄0) = PQM
(

KS, K̄0),

(31)

Pζ
(

KS,K0
1
) = PQM

(

KS,K0
1
)

+ ζ
1
2N2 Re

{

eiαpq∗},

which implies with inequality (3) the lower bound

(32)1−
√

1− δ

1+ δ
! ζ.

To order δ we have

δ " ζ

and, numerically,

(33)0.0033 ± 0.0001" ζ.

Comparing this bound with the experimentally deter-
mined ζK0K̄0 ∼ 0.4 ± 0.7 [15], we see that we cannot
discriminate between QM and LRT in this case.
Summarizing, we have related Uchiyama’s Bell in-

equality (3)—valid for the entangledK0K̄0 state with
negative C parity—with CP violation in K0K̄0 mix-
ing. Avoiding to involve any phase convention re-
ferring to K0 and K̄0 decays, we have shown that
Uchiyama’s inequality necessarily requires the CP-
violating leptonic asymmetry δ to be zero, in contra-
diction to experiment. In this way, δ ̸= 0 is a mani-
festation of the entanglement of the considered state. 2
Amazingly, the nonzero result of δ, obtained from

2 Wewant to stress that in the case of Uchiyama’s Bell inequality
(3), since it is considered at t = 0, it is rather contextuality [19] than
nonlocality which is tested.

measurements at one-particle states, gives us informa-
tion about the entanglement of the two-particle state
produced at the Φ resonance. Moreover, connecting
the BI with the decoherence parameter ζ , then the
premises of locality and reality are only compatible
with a practically totally factorized wavefunction, i.e.,
with ζ = 1 (Furry’s hypothesis), and not with a par-
tially contributing interference term.
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