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Violation of a Bell inequality
in particle physics experimentally verified?
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Abstract

Relevant aspects for testing Bell inequalities with entangled meson–antimeson systems are analyzed. In particular, we argue
that the results of Go [J. Mod. Opt. 51 (2004) 991], which nicely illustrate the quantum entanglement of B-meson pairs, cannot
be considered as a Bell-test refuting local realism.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A recent paper [1] reports that the famous Bell in-
equality [2] has been tested in a high-energy physics
experiment for the first time. Data on entangled B-
mesons, produced via the resonance decay Υ (4S) →
B0B̄0 at the KEKB asymmetric e+e− collider and
collected at the Belle detector, were analyzed. Events
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of EPR-entangled B0B̄0 meson pairs, identified via
their semileptonic decays, were used to claim for a
violation of a Bell inequality (BI) in the version of
Clauser, Horne, Shimony and Holt (CHSH) [3] by
more than 3σ . In this Letter we analyze the relevant
circumstances for testing Bell inequalities with entan-
gled meson–antimeson systems and, consequently, the
significance of the reported result.
Though the authors widely appreciate the interest in

basic questions of quantum mechanics (QM) explored
in particle physics, they have to argue that the reported
result is scarcely relevant in the discussion of a viola-
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tion of the Bell inequality for the entangled B-meson
system. In the authors opinion, the proof of the ex-
istence of correlations which are stronger than those
explainable by a theory based on the assumptions of
locality and realism is not conclusive due to the fol-
lowing two main drawbacks:

(1) “Active” measurements, opening the possibility to
choose among alternative setups, are missing; in
other words, there is no free choice for the ex-
perimenter on the specific question asked to the
system.

(2) The time evolution of an unstable quantum state is
unitary only if the state for the decay products is
included. The “information” of these decay prod-
ucts cannot be ignored as done in Ref. [1].

In addition, the authors will briefly review recent
proposals on how to test the peculiar non-local correla-
tions predicted by quantum theory for EPR-entangled
massive systems in high-energy physics. Most of these
proposals refer to two-kaon systems coming from
φ(1020)-resonance decays or proton–antiproton anni-
hilations, quite similar to the process Υ (4S) → B0B̄0

considered in Ref. [1].
In 1935 Einstein, Podolsky and Rosen [4] claimed

to have shown that quantum mechanics was an incom-
plete theory. Their reasoning relied on two assump-
tions—realism and locality—and on a precise criterion
for completeness. The introduction of local hidden
variables, which complement the information con-
tained in conventional state vectors, would allow for
such a completion of QM. In 1964 Bell [2] con-
sidered the whole class of completions with local
hidden parameters and showed that all expectation val-
ues or probabilities derived within that class are con-
strained to obey certain inequalities. However, expec-
tation values or probabilities derived within QM can
contradict these Bell inequalities. With this milestone,
Bell shifted the original arguments of Einstein, Podol-
sky and Rosen about the physical reality of quan-
tum systems from the realm of philosophy to the
domain of experimental testing. Moreover, a whole
new field which is now of increasing interest was
also opened. Indeed, the EPR-entanglement is the ba-
sic ingredient of new technologies such as quantum
information and quantum communication (see, e.g.,
Ref. [5]).

In the last two decades we have witnessed an out-
standing progress in testing the peculiar correlations
predicted by quantum theory between outcomes of
space-like separated measurements. But a decisive and
loophole-free experiment, which would rule out any
local realistic theory (LRT), has not been yet per-
formed in the opinion of the authors (for a differ-
ent view, see Ref. [6]). Notwithstanding, the authors
want to stress that they believe—as it is also the firm
consensus in the community—that there is almost no
doubt that the outcomes of this type of experiments
will agree with QM. The goal of such discussions and
experiments is then to re-educate our intuition and to
understand the very principles of quantum theory such
that one will be able to use them for new technolo-
gies.
The deficiencies of experiments testing Bell in-

equalities are essentially twofold and usually known
as the “locality” and the “detection efficiency” loop-
hole. The Weihs et al. experiment [7] with entangled
photons closes the first loophole but not the second
one. Conversely, the Rowe et al. experiment [8] with
entangled beryllium ions closes the second loophole
but not the one related to locality. This locality loop-
hole requires space-like separated measurements by
the two observers, Alice and Bob, i.e., alternative mea-
surement settings that can be changed sufficiently fast
during the flight of the two particles and that can be
chosen completely at will or (more easily) at random
on each side. The detection efficiency loophole arises
from the low efficiency of the detectors—only a small
subset of all produced pairs is detected, most of the
pairs are lost. One is then forced to introduce the ad-
ditional and non-testable fair sampling hypothesis as-
suming that the reduced set of detected events behaves
like the total set.
Finally, Hasegawa et al. [9] reported an experi-

ment with single neutrons in an interferometric device
which shows a violation of a Bell-like inequality. The
entanglement is achieved not between two separate
particles but between two degrees of freedom of a sin-
gle neutron, namely, between the path it takes in the
interferometer and its spin component which is differ-
ent for the two paths. The mathematical description of
the entangled state is the same as for the previously
mentioned systems. However, as there are no two spa-
tially separated particles, it is contextuality rather than
non-locality that is tested (see also Ref. [10]).
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2. Requirements for testing a Bell inequality and
drawbacks of Ref. [1]

2.1. Choice arguments

Generally, when discussing Bell inequalities and,
particularly, in the CHSH-version, Alice can choose
to measure either with setup A or A′, each one hav-
ing two possible outcomes. Similarly, Bob can choose
between his two dichotomic setups B or B ′. By her
choice, the particles under Alice’s control are pro-
jected either onto the A- or the A′-basis, but the mea-
surement outcome in the chosen basis is, of course,
under God’s dices and out of Alice’s control. The fact
of being able to choose “actively” between alternative
bases is crucial to derive Bell inequalities from local
realism. This possibility of a choice is strictly needed
in order to argue that “. . . had Alice chosen in the very
last moment to measure A instead of A′, her choice
would not modify the outcome of Bob’s measurement
. . .”. As it is well known [11], counterfactuality, as
exemplified in the above sentence, is necessary in de-
riving a genuine Bell inequality: without an “active”
choice it is indeed impossible to enforce the locality
condition.
For the previously mentioned experiments with

photons, ions or neutrons, such an “active” choice be-
tween alternative measurement bases with dichotomic
outcomes was clearly possible. But the situation is dif-
ferent in the B-meson experiment [1]. In this case, one
starts with the B0B̄0 state
∣∣ψ−(0)

〉
= 1√

2
{∣∣B0

〉
l
⊗

∣∣B̄0
〉
r
−

∣∣B̄0
〉
l
⊗

∣∣B0
〉
r

}

(1)

≃ 1√
2
{
|BL⟩l⊗ |BH ⟩r −|BH ⟩l⊗ |BL⟩r

}
,

where l and r denote the “left” and “right” direc-
tions of motion of the two separating B-mesons
and |BL,H ⟩ = {|B0⟩ ± |B̄0⟩}/

√
2, once (small) CP-

violation effects are ignored. One then allows for their
time evolution in free space given by

(2)|BL,H ⟩ → e−imL,H t e−1
2ΓL,H t |BL,H ⟩,

where ΓL ≃ ΓH = ΓB = 1/τB (h̄ = 1) is the com-
mon decay width of the light- (mL) and heavy-mass
(mH ) eigenstates, BL and BH , of the non-Hermitian,
“effective-mass” Hamiltonian. The mass difference,

'm ≡ mH −mL, induces B0–B̄0 oscillations in
time, detectable by B-meson flavor measurements
with quantum number “beauty” B = +1 for B0 and
B = −1 for B̄0. This requires the discrimination of
the B0 decay modes from their corresponding charge
conjugate modes from B̄0, e.g., B0 → D∗−l+ν vs.
B̄0 → D∗+l−ν̄, as done in Ref. [1]. As explained
in Refs. [12–14], the different times tA, tA′ , . . . (Al-
ice’s side) and tB, tB ′ , . . . (Bob’s) of the joint flavor
measurements play then the same role as the distinct
orientations of the polarization analyzers in photonic
experiments. The procedure is formally analogous to
that in the above mentioned experiments, but it is by
no means an “active” measurement. There is no way
for the experimenter to force a B-meson to decay at
a given instant tA or tA′ , i.e., she/he cannot choose
“actively” the measurement bases and the decay just
occurs according to the well-known probabilistic law.
It is Nature that decides the measurement bases leav-
ing no room for counterfactual considerations. Thus,
a basic condition for the correct derivation from LRT
of the BI used in Ref. [1] is not fulfilled and the results,
despite providing a notable test of the QM correlations
exhibited by B0B̄0 entangled pairs, cannot be relevant
when confronting LRT vs. QM.

2.2. Unitarity constraints

But, even if flavor measurements could be actively
induced at different times, another drawback affects
these kind of Bell-tests. This second drawback, origi-
nated by the postulate of QM according to the evolu-
tion of a closed quantum system is unitary, is a little
more involved but not less important. It requires the
discussion of the time evolution of the meson states,
including the possibility of the decay, a case we cer-
tainly do not have to consider for photons or stable
spin- 12 particles. In this paragraphwe will explain why
the normalization of the expectation value to the sur-
viving meson pairs, Eq. (9) of Ref. [1], is not appropri-
ate. Note that without this normalization no violation
of the Bell–CHSH inequality occurs for reasons we
discuss in the following.
Quite generally, we consider now decaying neutral

meson systems such as B0B̄0 orK0K̄0 pairs. Because
of unitarity of the time evolution, the norm of the total
state must be conserved. This means that the decrease
of the norm of the meson state must be compensated
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by the increase of the decay product state norm. Thus
we describe the complete time evolution of a meson
quantum state through a unitary operator U(t,0) as
follows (see Refs. [14–16])

|M1,2⟩ →
∣∣M1,2(t)

〉
= U(t,0) |M1,2⟩

(3)= e−iλ1,2t |M1,2⟩ +
∣∣Ω1,2(t)

〉
,

where |M1,2⟩ represents the eigenstate of the non-
Hermitian, “effective mass” Hamiltonian and can be
written as superpositions of the flavor states |M0⟩ and
|M̄0⟩. The exponential evolution of the decaying me-
son state is given by the eigenvalues λ1,2 = m1,2 −
i
2Γ1,2, with m1,2 the mass and Γ1,2 the decay width
of the meson M1,2. The state |Ω1,2(t)⟩ represents the
decay products.
Starting then with an entangled M0M̄0 pair, the

unitary time evolution also provides a contribution
from the decay product states. These introduce a third
possible experimental outcome which complicates the
issue because Bell–CHSH inequalities refer to di-
chotomic measurements only.
For decaying systems, it is therefore crucial to for-

mulate the experimental dichotomic question in accor-
dance with unitarity. The appropriate question on the
system when it has evolved up to time t is “Are you
a meson M0 of a certain flavor f = +1 or not?”—
question I. It is clearly different to the question “Are
you a meson M0 with flavor f = +1 or an antime-
son M̄0 with f = −1?”—question II—as treated in
Ref. [1], since all decay products (an additional in-
formation from the quantum system) are ignored by
the latter. Question I admits just two answers, ques-
tion II is dichotomic only if conditioned to the survival
of both mesons.
Let us be more concrete and consider the expecta-

tion values for a series of correlation measurements in
these two cases:

(i) For question II: “Are you a meson M0 or an an-
timeson M̄0?”

Enon-unitary(tl; tr )

(4)= −cos('m't) · e−Γ (tl+tr ),

where 'm = m1 −m2, 't = tl −tr and Γ =
(Γ1 + Γ2)/2.

(ii) For question I: “Are you a mesonM0 or not?”

Eunitary(tl; tr )

= −cos('m't) · e−Γ (tl+tr )

+ 1
2
(
1−e−Γ1tl

)(
1−e−Γ2tr

)

(5)+ 1
2
(
1−e−Γ2tl

)(
1−e−Γ1tr

)
.

The second expectation value, Eq. (5), compared to
the first one where the decay components are ignored,
contains additional terms which express the charac-
teristic contribution coming from the decay product
states |Ω1,2(t)⟩.
The expectation values of any LRT have to satisfy

the following Bell–CHSH inequality [3]:

S =
∣∣E(tA; tB) −E(tA; tB ′)

∣∣

(6)+
∣∣E(tA′; tB) + E(tA′; tB ′)

∣∣ ! 2.

However, the calculation of S using quantum me-
chanical expectation values shows a critical depen-
dence on the ratio x = 'm/Γ , which can be formu-
lated in the following way (see also Refs. [14–16]).

Proposition. The unitary expectation values (5) do
not violate the Bell–CHSH inequality for any choice
of the four involved times iff x = 'm/Γ < NI; the
non-unitary ones (4) do not violate the inequality iff
x < NII.

NI, NII are bounds which we determine numer-
ically. The values are: NI ≈ 2.6 and NII ≈ 2.0 for
the B0B̄0, D0D̄0 and B0s B̄0s systems, while for the
K0K̄0 system we have NI ≈ NII ≈ 2.0 since we
can neglect the width of the long-lived K-meson as
compared to the short-lived one, ΓL ≪ ΓS , implying
Enon-unitary(tl; tr ) ≈ Eunitary(tl; tr ).
The experimental x values for different meson sys-

tems are in Table 1. Therefore, no violation of the
Bell–CHSH inequality occurs for the familiar meson–
antimeson systems; only for the last system a violation
is expected.
Résumé. Normalizing the non-unitary expectation

value (4) to the surviving pairs, E
non-unitary
R (tl; tr ) =

−cos('m't)/ cosh('Γ 't/2), with 'Γ = Γ1 −Γ2,
as in Ref. [1], one obtains a formal violation of the
Bell–CHSH inequality. But this is hardly relevant for
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Table 1

x Meson system

0.77 B0B̄0

0.95 K0K̄0

< 0.03 D0D̄0

> 20.60 B0s B̄0s

testing LRT vs. QM. The reasons are twofold: firstly,
“active” measurements are missing, therefore an es-
sential hypothesis for the derivation of a genuine Bell
inequality is not satisfied; secondly, the unitary time
evolution of the unstable quantum state—the decay
property of the meson—is ignored, which is part of
its nature. Therefore, one has to use the unitary for-
mula (5), which, however, does not lead to a violation
of the Bell–CHSH inequality for the familiar systems:
B0B̄0, K0K̄0, D0D̄0.

3. Outlook

It turns out that quantum mechanical tests of
meson–antimeson systems are more subtle than na-
ively expected and one has to involve other features of
the mesons, which are characteristic for such massive
quantum systems, like CP violation or regeneration of
quantum states. For example, neutral kaons exhibit CP
violation in K0K̄0 mixing. It is remarkable that CP
violation is connected with the violation of a BI for
different K0–K̄0 superpositions (i.e., different quasi-
spin states instead of different times) of neutral kaons
[14,17,18].
It is also quite interesting that, using the well-

known regeneration mechanism of kaons, novel Bell
inequalities can be established [13,19] and tested
with K0K̄0 pairs produced at Φ-factories and pp̄-
machines.
Finally, we would like to point out that meson–

antimeson systems allow for other tests of QM. A pos-
sible approach to investigate the nature of entangle-
ment is to experimentally determine the decoherence
of entangled meson pairs [20–22] and thus the valid-
ity of QM. It turns out that decoherence is strikingly
connected to the entanglement loss of common en-
tanglement measures [22], e.g., the entanglement of
formation or the concurrence. Moreover, other sub-
tle features of quantum mechanics such as quantum

erasers [23], quantitative duality [24] or quantitative
complementarity [25] are interesting phenomena of
meson systems, which have been studied recently.
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