
Inefficient Entry Order in Preemption Games ∗

Rossella Argenziano† Philipp Schmidt-Dengler‡

July 2012

Abstract

In a preemption game, players decide when to take an irreversible action. Delaying

the action exogenously increases payoffs, but there is an early mover advantage. Riordan

(1992) shows that in a preemption game with two asymmetric players, players act in

decreasing order of efficiency. This provides a microfoundation to the assumption that

entry in a market occurs in the order of profitability, commonly used in the empirical

analysis of market entry. We provide a counterexample showing that with more than

two players this intuitive result can be reversed. We present a preemption game of entry

into a new market. The potential entrants are three asymmetric firms: one "efficient"

firm with high post-entry profits, and two "inefficient firms". We show that the set of

parameters such that the equilibrium entry order does not reflect the efficiency ranking

is nonempty, and analyze which changes in post-entry profits preserve this entry order.

K�������: Timing Games, Preemption, Dynamic Entry.

J�� C�����������: C73, L13.

∗A previous version of this paper was circulated under the title "Preemption and the Efficiency of Entry".
We thank Riccardo Martina, Pierre Regibeau, Nicolas Schutz, Francesco Squintani, and seminar audiences
at the University of Manchester, the University of Naples "Federico II" and at the seventh IIOC in Boston for
helpful comments. Financial support from ESRC under grant RES-000-22-1906 is gratefully acknowledged.

†University of Essex, Email: rargenz@essex.ac.uk
‡University of Mannheim, Email: p.schmidt-dengler@uni-mannheim.de



1 Introduction

A preemption game is a game of timing: Players have to decide when to take an action. The

cost of taking the action declines over time. A player earns a positive profit flow upon acting.

This profit flow is decreasing in the number of players who have already acted. Delaying

the action exogenously increases payoffs, but the early mover advantage gives players an

incentive to act early. A fundamental implication of the analysis by Riordan (1992) is that

if the game is played by two players, and one of them is more efficient, in the sense that he

receives higher profit flows upon acting, the unique subgame-perfect equilibrium outcome

of the game is that the efficient player is the first to act. This paper shows that when such a

game is played by more than two players this intuitive result is sometimes reversed: Adding

a third player qualitatively changes the equilibrium outcome.

An important application of preemption games is the analysis of firms entry into a

new market. In the recent empirical literature on entry games with asymmetric potential

entrants, a modelling problem that needs to be addressed is the inherent multiplicity of

equilibria. Following Berry (1992), this problem is often addressed assuming that entry

occurs in the order of profitability. We show that if the underlying game is a preemption

game, the assumption is problematic: At any given point in time, the firms observed in the

market are not necessarily the most efficient among the potential entrants.

To prove that with more than two players the order of action does not necessarily reflect

their relative efficiency, we provide a simple example involving three players. We consider

one efficient firm (“type A” firm) and two inefficient firms (“type B” firms) playing a

preemption game of entry in a new market. The cost of entry declines exogenously over

time. Post-entry profits are declining in the number of rivals already in the market, and

are higher for firm A than for the type B firms, conditional on the number and type of

competitors.

We show that with a general payoff structure, the unique subgame-perfect equilibrium

outcome may be such that the order of entry is B −A−B. That is, one of the inefficient

firms enters first, the efficient firm follows strictly later, to be followed by the remaining

inefficient firm. We prove that the set of parameters such that the order of entry is B−A−B

is nonempty, and analyze which changes in flow profit parameters preserve this entry order.

In Appendix A, we numerically obtain the range of parameters for which the equilibrium

entry order is B−A−B in an example where profits are derived from Cournot competition.
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Moreover, we illustrate the possible effects of an inefficient entry order on social welfare.1

The intuition behind our result is as follows. When a firm considers entering first in the

market, it takes into account for how long it will earn monopoly profits. Thus the incentive

to enter first, to preempt its rivals, depends on the timing of second entry, which in turn

depends on the intensity of the preemption race in the ensuing two-player subgame. If firm

A enters first, the resulting subgame among the two type B firms can involve a very intense

preemption race, and thus second entry will occur relatively soon. If however a type B firm

enters first, the resulting subgame among firm A and the remaining type B firm involves

relatively weak preemption incentives: The second entrant is firm A, and it can afford to

wait long and enter at a relatively low cost, because B is a weak competitor. As we show,

this can result in a first entrant of type A earning monopoly profits for a shorter period than

a first entrant of type B. This shorter monopoly period can outweigh the higher monopoly

flow profit that the more efficient firm A would earn. As a result, in equilibrium one of the

inefficient type B firms will enter first. The exact timing of first entry will be determined

by a preemption race among the two inefficient firms. Rents among the two inefficient type

B firms are equalized.

The above intuition also explains how the primitives of the model determine whether

the first entrant is one of the less efficient firms. A decrease in the monopoly profits for

A decreases its incentive to be first. An increase in the monopoly profits for the type B

firms increases their incentive to be first. Next, consider the changes in the duopoly and

triopoly profits that make the preemption race between two type B firms to be second

rather than third more intense. Any such change brings forward the time of second entry,

conditional on A being the first entrant. Therefore, it decreases A’s incentive to be first,

because it shortens the period for which A would earn monopoly profits. Similarly, consider

the changes in the duopoly and triopoly profits that make the preemption race to be second

rather than third between A and a type B firm less intense. Any such change delays the

time of second entry, conditional on one of the B firms being the first entrant. It increases

the incentive for a type B firm to be first, because it prolongs the period for which it would

earn monopoly profits.

1Throughout the paper, we say that entry is “efficient” whenever the entry order reflects the firms’
profitability ranking, and “inefficient” otherwise. We discuss the impact of the entry order on welfare in
Section 4 and present numerical results in Appendix A.
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1.1 Related literature

Our model builds on the classic literature on two-player preemption games.2 We rely on

Fudenberg and Tirole (1985) to derive the outcome of the two-player symmetric subgame

played by two inefficient firms. From Riordan’s (1992) analysis, we obtain the outcome of

the two-player asymmetric subgame. Riordan (1992) shows that in a two-player asymmetric

game, the more efficient firm always enters first. We contribute to the literature by showing

that with more than two players the order of entry may not reflect the efficiency ranking.

While our paper focuses on a triopoly model with exogenous asymmetry in post-entry

profits, a number of papers explore different forms of asymmetry in the context of real

options duopoly models. Mason and Weeds (2010) consider a model in which asymmetry

of the post-entry profits can be endogenously generated by a first-mover advantage: Firms

are ex-ante identical but the first mover can gain an advantage that persists even after

the late mover acts. Hence, the entry order always reflects the (ex-post) efficiency order.

Pawlina and Kort (2006) investigate the consequences of an exogenous asymmetry in the

entry cost. They identify three classes of equilibria. In all of them, the firm with the lowest

cost always invests weakly earlier than the opponent. Femminis and Martini (2011) consider

a duopoly model in which firms are ex-ante identical but the entry cost of the late mover

is endogenously lower, due to a spillover effect from the action of the early mover. In our

model, entry costs are exogenous and symmetric.

Another possible explanation of the fact that the order of entry in a market does not

always reflect relative efficiency is ongoing technological progress: Later entrants can be

endogenously more efficient because the choice to wait allows them to develop a better

production process, or a higher-quality product. This explanation is analyzed by Dutta,

Lach and Rustichini (1995) for the case of costless technological progress, and by Hoppe

and Lehmann-Grube (2001) for the more general case of potentially costly R&D. In this

paper, we provide an alternative explanation that is more suitable for markets in which

the asymmetry in productive efficiency is due to factors that are given at the time the new

market opens, rather than to ongoing technological process. For example, the asymmetry

may be due to differences in managerial skills, geographical location, tax treatment, or

access to distribution channels and input markets.

2 In her survey on techonology adoption, Hoppe (2002) provides an excellent overview of both the theo-
retical and empirical literature on preemption games.
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Finally, our result relates to the work by Quint and Einav (2005). They show that the

assumption that the order of entry in a market reflects relative efficiency can be rationalized

by assuming that entry is the outcome of a war of attrition where entry costs are sunk

gradually. Our analysis shows that if the underlying game is a preemption game this result

may be reversed: At any given point in time, the firms observed in the market are not

necessarily the most efficient ones.

2 Model

We model entry in a new market as an infinite horizon dynamic game in continuous time.

Our assumptions correspond to those made by Fudenberg and Tirole (1985) and Riordan

(1992), when specialized to the case of a new market, and with a third firm added to the

model. In particular, we consider a model with one efficient firm, firm A, and two identical

“type B” firms, less efficient than A. Each firm has to decide whether and when to enter

a new market. More precisely, at each instant in time each firm that has not yet entered

the market observes the number and the identity of the firms already present in the market

and chooses one of two actions: “Enter” or “Wait.” Entry is irreversible. As in Simon

and Stinchcombe (1989), we restrict play to pure strategies and interpret continuous time

as “discrete time, but with a grid that is infinitely fine.” The solution concept we use is

subgame perfect Nash equilibrium. In section 2.2. below, we discuss in more detail how we

model strategies in games in continuous time and address the issue of possible non-existence

of subgame-perfect equilibria.

Before entry, a firm receives no profits.3 Upon entry, firm i (for i = A,B) earns flow

profits πi(m,−i), where m is the total number of firms that have entered, hence m ∈

{1, 2, 3}, and −i stands for the identity of rival firms that have entered. For example,

πB(2, A) stands for the profits of a type B firm in duopoly if its rival is firm A. The

3The assumption that pre-entry profits are independent of the number of firms already in the market is
essential for obtaining a unique equilibrium outcome. This assumption has been previously adopted by Bouis,
Huisman and Kort (2009), who study dynamic investment in oligopoly in a real options framework, and by
Argenziano and Schmidt-Dengler (2011), who study the existence of clusters of simultaneous investments in
N-player preemption games.
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following profits are relevant in our model:

Firm A Type B firms

Monopoly πA (1) πB (1)

Duopoly πA (2) πB (2, A) πB (2, B)

Triopoly πA (3) πB (3)

In monopoly there are no rival firms and in triopoly the identity of rivals is uniquely iden-

tified by the identity of firm i. Similarly, in a duopoly firm A will always oppose a type

B firm. Hence, to economize on notation, we leave out the −i term in the monopoly and

triopoly cases as well as for firm A’s duopoly profits. We denote by π = (πA (1) , ..., πB (3))

a flow profit structure, i.e. the set of all flow profits relevant in the model.

All the above profits are positive. For a given firm, profits decline in the number of

competitors. Moreover, firm A’s higher efficiency is reflected in payoffs. Firm A always

earns higher profits than a type B firm, for a given number of competitors. Also, a type B

firm earns lower duopoly profits if its opponent is firm A than if its opponent is the other

type B firm, i.e. profits decline in the efficiency of rival firms.4 Formally:

Assumption 1

(i) πi(m,−i) > 0 ∀(m,−i)

(ii)

πA (1) > πB (1)

πA (2) > πB (2, B) > πB (2, A)

πA (3) > πB (3)

πA (1) > πA (2) > πA (3)

πB (1) > πB (2, B) > πB (2, A) > πB (3)

We denote the present value at time zero of the cost of entering the market at time t by

c (t). Following the literature,5 we assume the following:

Assumption 2

The current value cost function c (t) ert is (i) strictly decreasing and (ii) strictly convex.

4We follow Fudenberg and Tirole (1985) and Riordan (1992) in assuming that post-entry flow profits
are parameters rather than deriving them from equilibrium behavior. We also assume that profits are
independent of the time of entry, which implies that there is no ongoing technological progress. Dutta, Lach
and Rustichini (1995) and Hoppe and Lehman-Grube (2001) analyze the case where efficiency depends on
the time of entry.

5See Fudenberg and Tirole (1985) and Riordan (1992).
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The cost of investing declines over time. This may capture upstream process innovations

or economies of learning and scale. Moreover, cost declines at a decreasing rate.

The payoff function for firm i, conditional upon a given entry order in which i is the

j-th entrant, as a function of its own entry time tj and the competitors’ entry times t−j is:

fi (tj, t−j) ≡
3∑

m=1

I [j ≤ m] ·

∫ tm+1

tm

πi(m,−i)e
−rsds− c (tj)

where I [·] is the indicator function and t4 ≡ +∞. Before tj, firm i receives zero prof-

its. Then, it receives flow profits πi(m,−i) depending on the number and identity of the

competitors present in the market. Finally, c (tj) denotes entry cost.

The next assumption guarantees that entry at time 0 is not profitable, and that all firms

enter the market eventually.

Assumption 3 (i) At time zero, for all firms, investment cost exceeds discounted monopoly

profits: πi(1)
r − c(0) < 0. (ii) Eventually, investment is profitable for all firms: ∃τ such that

c (τ) erτ < πi(3)
r .

Assumption 3(i) guarantees that investing at time zero is too costly. No firm would

invest immediately, even if it could thereby preempt all other firms and earn monopoly

profits πi (1) forever. Assumption 3(ii) ensures that the value of investing becomes positive

in finite time: The cost of investing eventually reaches a level sufficiently low, that it becomes

profitable to invest, even for a type B firm facing maximum competition. This guarantees

that the last investment occurs in finite time.

Next, to highlight the trade-offs faced by each firm, we extend the terminology in Katz

and Shapiro (1987) and define the stand-alone entry time for the profit flow πi(m,−i).

Consider the hypothetical problem of firm i, if it could act as a single decision maker and

select the optimal time to make an investment which costs c (t) and guarantees flow payoff

of πi(m,−i) forever. Let c (t) and πi(m,−i) satisfy assumptions 1, 2 and 3. This firm would

choose t to maximize the following function:

gi,m,−i (t) ≡
πi(m,−i)

r
e−rt − c (t) . (1)

We denote the solution to this problem as T ∗i (m,−i) and will refer to it as the stand-alone

entry time for the profit flow πi(m,−i). It follows immediately from the assumptions that
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gi,m,−i (t) is strictly quasi-concave and that T ∗i (m,−i) is well defined for every m ∈ {1, 2, 3}

and i = A,B as the solution to:6

g′i,m,−i (t) = 0⇐⇒−πi(m,−i)e
−rt − c′(t) = 0.

The condition is easily interpreted: a marginal delay of entry implies foregone profits

πi(m,−i)e
−rt and cost savings c′(t). Given the quasiconcavity of gi,m,−i (t) in t, it fol-

lows from the implicit function theorem that T ∗i (m,−i) is decreasing in πi(m,−i). Hence,

the following inequalities follow from assumption 1(ii):

T ∗A(1) < T
∗
B(1)

T ∗A(2) < T
∗
B(2, B) < T

∗
B(2, A)

T ∗A(3) < T
∗
B(3)

T ∗A(1) < T
∗
A(2) < T

∗
A(3)

T ∗B(1) < T
∗
B(2, B) < T

∗
B(2, A) < T

∗
B(3).

It is clear that firm A’s stand-alone entry time, for a given rank in the entry order, is always

earlier than that of a less efficient firm: By delaying entry, A would forego a higher profit

than a type B firm would.

2.1 Modelling continuous-time preemption games

To model strategies in a preemption game of complete information with observable actions in

continuous time, we follow Hoppe and Lehmann-Grube (2005) in adopting the framework

introduced by Simon and Stinchcombe (1989). A key question in this class of models is

how to associate an outcome to a strategy profile. Simon and Stinchcombe (1989) identify

“....a class of continuous-time strategies with the following property: when restricted to an

arbitrary, increasingly fine sequence of discrete-time grids, any profile of strategies drawn

from this class generates a convergent sequence of outcomes, whose limit is independent of

the sequence of grids.”7 They then define this limit as the outcome of the continuous-time

strategy profile. Hoppe and Lehmann-Grube (2005) were the first to adopt this approach

to model innovation timing games, and to clarify how to do so.

Another issue to be addressed is the issue of nonexistence of a subgame-perfect equilib-

6See Claim 1 in Appendix B.
7Simon and Stinchcombe (1989), abstract.
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rium in pure strategies in preemption games. This is due to the possibility of coordination

failures.8 Since we adopt the Simon and Stinchcombe (1989) framework, we need to explic-

itly rule out the possibility of coordination failures,9 and we do so using a randomization

device as in Katz and Shapiro (1987), Dutta, Lach and Rustichini (1995), and Hoppe and

Lehmann-Grube (2005):

Assumption 4

If n firms plan to enter at the same instant t (with n ∈ {2, 3}), then only one firm, each

with probability 1
n , succeeds.

Assumption 4 rules out the possibility of coordination failures and thus ensures existence

of an equilibrium in pure strategies.

In what follows, we will denote by tj the j-th equilibrium investment time. All proofs

are relegated to Appendix B.

2.2 Example

We conclude this section presenting a simple example that satisfies our assumptions and

that forms the basis of the numerical analysis in Appendix A.

Example Post-entry flow profits arise from Cournot competition. The inverse demand

function is given by P (Q) = Q−η, where Q is total output in the industry and η ∈ (0, 1)

is the elasticity. Firms’ cost functions are given by Ki(qi) = kiqi for i = A,B. Marginal

costs are: kA = 1 and kB ∈
(
1, 1
1−η

)
.10 The resulting profit structure satisfies Assumption

1. The current value cost of entry declines exponentially at rate α > 0: c(t)ert = ce−αt

where c is a positive constant.11 This cost function satisfies Assumption 2. Assumption 3

is satisfied for any c > η
1−η

(1−η)
1
η

r .12

8See the example in Simon and Stinchcombe (1989, p. 1178-1179).
9This observation is due to Hoppe and Lehmann-Grube (2005).

10The upper bound on kB guarantees that all firms produce strictly positive quantities in all possible
market structures (see Corchon (2007)).

11This choice of cost function is motivated by the example given in Fudenberg and Tirole (1985).

12 In equilibrium, πA(1)
r

= η

1−η
(1−η)

1

η

r
and πB(3)

r
= ((η−1)kB+1)

2

(3−η)η(1+2kB)

(
1+2kB
3−η

)− 1

η 1
r
> 0. Thus Assumption

3(i) is satisfied if c > η

1−η
(1−η)

1

η

r
= πA(1)

r
and Assumption 3(ii) is satisfied for any finite c since c(t)ert =

ce−αt → 0 < πB(3)
r

.
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3 Inefficient Entry Order

In this section, we show that the efficient entry order result in the two-firm game analyzed

by Riordan (1992) can be reversed when there are more than two firms. More precisely, we

provide a counterexample in which there is one efficient firm and two inefficient firms. We

show that for a nonempty set of parameter values the unique equilibrium outcome involves

entry order B−A−B. We analyze which changes in post-entry profit parameters preserve

this entry order.

The first step in our construction is to establish that last entry in the game must occur

no later than T ∗B(3).

Lemma 1 In any SPNE, all firms enter the market in finite time, and last entry occurs

no later than T ∗B(3).

This result follows from Assumption 3: Eventually, the entry cost becomes sufficiently

small, that even entry with the lowest possible profits dominates staying out of the market.

Last entry must occur by T ∗B(3) because afterwards the foregone profit flow from delaying

entry always exceeds the reduction in the entry cost, for either type of firm.

As it is standard in the preemption games literature, we continue solving the game using

backwards induction. In order to construct the incentive of each type of firm to be the first

entrant in the market, we have to characterize the outcome of two-firm subgames which

start after first entry has occurred. For expositional purposes, we present the outcome

of these subgames for the case where first entry has occurred sufficiently early that second

entry occurs strictly later.13 Section 3.1 considers the symmetric two-firm subgame between

two inefficient type B firms following entry by firm A. Section 3.2 considers the asymmetric

two-firm subgame between firm A and one type B firm following entry by the other type

B firm. Having characterized the outcomes following first entry by either type of firm, we

study the incentives to invest first in this game. Section 3.3 characterizes conditions under

which the unique equilibrium outcome involves entry order B −A−B. Section 3.4 shows

that the set of model primitives resulting in this entry order is nonempty and analyzes

which changes in flow profit parameters preserve it.

13Appendix B provides the complete characterization, allowing for first entry to occur at any time t ≤
T ∗B(3).
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3.1 The symmetric two-firm subgame

Suppose firm A is the first to enter the market. Here we consider the ensuing symmetric

preemption game played by the two inefficient type B firms. It is analogous to the game

analyzed by Fudenberg and Tirole (1985). The following characterization follows directly

from their analysis. Figure 1 illustrates.

By Lemma 1, last entry in the subgame occurs no later than T ∗B(3). Hence, either

both firms enter exactly at T ∗B(3), or one of them enters at some time t earlier than T ∗B(3),

taking the role of leader of the subgame. In the latter case, the remaining firm takes the

role of follower and enters exactly at T ∗B(3) because it chooses its entry time solving the

single-agent optimization problem max
t
gB,3 (t).

Consequently, the payoff of the leader and follower are:

LBBB (t) = πB(2, A)

∫ T ∗B(3)

t
e−rsds+ πB(3)

∫ +∞

T ∗B(3)
e−rsds− c(t)

FBBB (t) = πB(3)

∫ +∞

T ∗B(3)
e−rsds− c (T ∗B(3))

respectively.14 FBBB (t) is constant with respect to t, and positive, by assumption 3. LBBB (t)

is strictly quasi-concave and maximized at T ∗B(2, A).
15 Now consider the incentive for each

firm to preempt the competitor and be the leader of the subgame, rather than the follower.

At time t, a firm prefers to be the leader rather than the follower if the following expression

is positive:

DBBB (t) = LBBB (t)− FBBB (t) = πB(2, A)

∫ T ∗B(3)

t
e−rsds− [c (t)− c(T ∗B(3))] .

The function DBBB (t) is strictly quasiconcave. At time zero it is negative: The leader’s

payoff curve is negative by assumption 3, hence it is below the follower’s curve. At T ∗B(3),

leader and follower curves intersect, so DBBB (T ∗B(3)) is zero. The reason is that if the first

entry in the subgame occurs at T ∗B(3), the rival follows immediately, and both firms obtain

the same payoff. Since the leader’s curve is maximized before T ∗B(3), the two curves must

also intersect in a point to the left of T ∗B(3), that we denote by TBBB : The earliest point

where DBBB (t) is zero. The following result follows from Fudenberg and Tirole (1985).

14 In our analysis of two-firm subgames, subscripts of the L(·) and F (·) functions denote the type of the
firm. Superscripts denote the firms active in the subgame.

15Notice that LBBB (t) is equal to gB,2,A(t) minus a constant.
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Figure 1: Preemption in the symmetric two-firm (BB) subgame. The figure is drawn using our

example with entry cost parameters c̄ = 20 and α = 0.08, interest rate r = 0.03, demand elasticity

η = 0.5, type B cost kB = 1.04. The DBBB (t) curve describes the relative benefit of being the

leader rather than the follower. Whenever it is positive, the incentive to preempt is positive. Hence,

the first investment must occur at the earliest point where DBBB (t) is zero: TBBB .

Lemma 2 If the first entrant in the three-firm game is A, and first entry occurs strictly

earlier than TBBB , then second entry occurs at TBBB and third entry occurs at T ∗B(3).

The mechanism at work is well-known: after A has entered the market, the most prof-

itable outcome for each of the B firms is to be leader of the subgame, entering at the

time when the leader’s curve is maximized, T ∗B(2, A). The opponent would then follow at

T ∗B(3). The leader would receive a higher payoff than the follower. This cannot occur in

equilibrium, because the firm who takes the role of follower could profitably deviate and

preempt the opponent by investing at T ∗B(2, A)− ε. This highlights that leader investment

cannot take place at any time when earlier preemption is profitable. As a consequence,

first investment must occur weakly before the first intersection of the leader and follower

payoff functions, when the leader’s payoff is not larger than the follower’s. In equilibrium,

it occurs exactly at the first intersection of the two curves, i.e. when DBBB (t) first equals

zero.

3.2 The asymmetric two-firm subgame

Now suppose that the first firm to enter the market is a type B firm. The ensuing subgame

is an asymmetric preemption game played by one efficient firm of type A and one inefficient

firm of type B. It is analogous to the game analyzed by Riordan (1992). The equilibrium

characterization follows directly from his analysis. Figure 2 illustrates.
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By Lemma 1, last entry in the subgame occurs no later than T ∗B(3). If the first firm to

enter in the subgame is A, at time t, then B follows exactly at the stand-alone entry time

T ∗B(3) because it solves the problem max
t
gB,3 (t). Hence, firm A receives the leader payoff

LABA (t) = πA(2)

∫ T ∗B(3)

t
e−rsds+ πA(3)

∫ ∞

T ∗B(3)
e−rsds− c(t)

and firm B receives the follower payoff

FABB (t) = πB(3)

∫ ∞

T ∗
B
(3)
e−rsds− c(T ∗B(3)).

Suppose instead that firm B takes the role of leader and enters at time t. Provided that the

subgame starts earlier than firm A’s stand-alone entry time T ∗A(3), firm A follows exactly

at T ∗A(3) because it solves the problem max
t
gA,3 (t). The leader’s and follower’s payoff are

LABB (t) = πB(2, B)

∫ T∗A(3)

t
e−rsds+ πB(3)

∫ ∞

T ∗A(3)
e−rsds− c(t)

FABA (t) = πA(3)

∫ ∞

T∗A(3)
e−rsds− c(T ∗A(3)).

respectively. Now consider the incentive for each firm to preempt the competitor and be

the leader of the subgame, rather than the follower. At time t, firm A prefers to be the

leader rather than the follower if the following expression is positive:

DABA (t) = LABA (t)− FABA (t)

= πA(2)

∫ T∗B(3)

t
e−rsds− πA(3)

∫ T ∗B(3)

T∗A(3)
e−rsds− [c (t)− c(T ∗A(3))] .

Similarly, at time t, firm B prefers to be the leader rather than the follower if the following

expression is positive:

DABB (t) = LABB (t)− FABB (t)

= πB(2, B)

∫ T ∗A(3)

t
e−rsds+ πB(3)

∫ T ∗B(3)

T ∗A(3)
e−rsds− [c(t)− c(T ∗B(3))] .

Both DABA (t) and DABB (t) are strictly quasiconcave.16 Define TABB as the earliest point such

16Notice that DAB
A (t) is equal to gA,2(t) minus a constant, and DAB

B (t) is equal to gB,2,B(t) minus a
constant. Also, notice that both FABB (t) and FABA (t) are constant in t, hence it is sufficient to consider
DAB
A (t) and DAB

B (t) to identify the equilibrium outcome (see Hoppe and Lehmann-Grube (2005)).
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that B prefers to be the leader of the subgame.17 Riordan (1992) showed that in a game with

two asymmetric firms the more efficient firm enters first: Either at the earliest time when

the less efficient firm prefers to be the leader (TABB in our game) or at the efficient firm’s

stand-alone investment time (T ∗A(2) in our game), whichever comes first. The following

Lemma summarizes this result:

Lemma 3 If the first entrant in the three-firm game is a type B firm, and first entry occurs

strictly earlier than min
{
T ∗A(2), T

AB
B

}
, then firm A enters second at min

{
T ∗A(2), T

AB
B

}
and

the remaining B firm enters last at T ∗B(3).

To gain intuition for why the leader in the subgame must be A, observe that the pre-

emption incentive for A is stronger than the preemption incentive for B. The two functions

DABA (t) and DABB (t) describe the preemption incentive for A and B respectively, and the

former is larger than the latter. Compare the first term in both functions. If firm A enters

first in the subgame, it earns duopoly profits longer than a B would, because T ∗A(3) <

T ∗B(3). Moreover, the duopoly profits are higher for A than for B : πA(2) > πB(2, B).

Hence, the first term in DABA (t) is larger than the first term in DABB (t). Next, consider the

third term in DABA (t) and DABB (t). Bringing entry forward to t is cheaper from T ∗A(3) than

from T ∗B(3). Thus the last term D
AB
A (t) is larger than the first term in DABB (t). To complete

the argument, we must consider the second terms in DABA (t) and DABB (t). In particular we

have to show that triopoly profits for B earned from T ∗A(3) to T
∗
B(3) and the triopoly profits

not earned by A over the same period do not offset the previous two effects. The intuition

is as follows. By preempting B, firm A delays the date from which it earns triopoly profits

from T ∗A(3) to T
∗
B(3). In the interval [T ∗A(3), T

∗
B(3)) triopoly profits are replaced by duopoly

profits, so the total effect for A is still positive. Now consider firm B. By preempting A

it brings forward the time from which it earns triopoly profits from T ∗B(3) to T
∗
A(3). By

definition of T ∗B(3), bringing entry as a triopolist forward to the left of this point diminishes

B’s payoff: extra triopoly profits are more than offset by the increase in entry cost.

Given that DABA (t) > DABB (t), we can conclude that in equilibrium B cannot enter first

in this subgame. If it did, at some time t, it would have to be the case that at t firm B

weakly prefers the leader’s payoff to the follower’s payoff: DABB (t) ≥ 0. But then DABA (t),

which is larger than DABB (t), would be strictly positive, hence A could profitable deviate,

preempting B and entering at (t− ε).

17 If DAB
B (t) < 0 for every t ≤ T ∗A (3), let T

AB
B =∞.
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Figure 2: Weak and strong leader in the asymmetric two-player (AB) subgame. The figure is

drawn using our example. All the parameter values are as in Figure 1, except for B′s cost. We

set kB equal to 1.01 in (2a) and 1.06 in (2b). Both panels show that the preemption incentive is

larger for A than for B: DABA (t) > DABB (t) everywhere. In (2a), the relative inefficiency of B with

respect to A is small and hence A is a weak leader. A is bound by B′s preemption incentive and

enters at TABB , the earliest point where B is indifferent between being the leader and the follower. In

(2b), the inefficiency is larger. WithDABB (t) always negative, B never finds it profitable to preempt.

Hence, A is a strong leader and invests at the optimal stand-alone time T ∗A(2).

Having identified the order of entry, we can turn to identifying timing of entry. Again we

look at the properties of the preemption incentives DABA (t) and DABB (t). First, they are both

negative at t = 0 by Assumption 3: preemption is too costly at time zero. Moreover, they

are both strictly quasi-concave and have a maximum in T ∗A (2) and T
∗
B(2, B) respectively.

Finally, in t = T ∗A(2), the function DABA (t) is strictly positive.

Following the argument in Riordan (1992), the equilibrium in the subgame must have

the following features. First entry in the subgame cannot occur at t very close to zero,

because DABA (t) and DABB (t) are both negative. From some TABA < T ∗A(2) onwards, D
AB
A (t)

becomes positive: firm A would rather be leader than follower in the subgame, and ideally

it would like to enter first in the subgame at T ∗A(2). If D
AB
B (t) is negative for all entry times

earlier than T ∗A(2), firm B has no incentive to enter before T ∗A(2). Firm A can therefore not

only be the first to enter in the subgame, but also enter at its preferred time, i.e. T ∗A(2). If

instead DABB (t) is positive from some time TABB ∈
(
TABA , T ∗A(2)

)
onwards,18 then the threat

of preemption forces A to bring entry forward to t = TABB . Following the terminology in

Riordan (1992), we refer to firm A as a “weak leader” if TABB < T ∗A(2) and as a “strong

18The fact that DAB
A (t) > DAB

B (t) guarantees that TABA < TABB .
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leader” otherwise.

3.3 Inefficient entry in equilibrium

The analysis of the asymmetric two-firm subgame highlights the well-known result that in

such a game the more efficient firm must be the leader because it has a stronger preemption

incentive. A key force driving this result is that by preempting the opponent, A earns higher

profits for a longer period. We now show that this mechanism is not necessarily at work

in the three firm game. By investing first in the three-firm game, the efficient firm would

earn a higher monopoly payoff than an inefficient firm would. However, it may do so for a

shorter period. This may diminish the efficient firm’s preemption incentive sufficiently so

that one of the less efficient type B firms enters first in equilibrium. Figure 3 illustrates the

analysis.

Suppose that the type A firm preempts its rivals and enters first, and that it does so

earlier than TBBB . From Lemma 2, the B firms will follow at TBBB and T ∗B(3) respectively,

hence firm A will earn a leader payoff:

LA(t) = πA(1)

∫ TBBB

t
e−rsds+ πA(2)

∫ T ∗B(3)

TBBB

e−rsds+ πA(3)

∫ ∞

T ∗B(3)
e−rsds− c(t)

and each of the B firms will earn a follower payoff:

FB(t) = πB(2, A)

∫ T ∗B(3)

TBBB

e−rsds+ πB(3)

∫ ∞

T ∗B(3)
e−rsds− c

(
TBBB

)

= πB(3)

∫ ∞

T ∗B(3)
e−rsds− c (T ∗B(3)) .

where the second equality follows from the definition of TBBB .

Next, suppose that instead a type B firm enters first in the game, and it does so at a

time t no later than min
{
T ∗A(2), T

AB
B

}
. From Lemma 3, A enters at min

{
T ∗A(2), T

AB
B

}
and

the remaining B firm at time T ∗B(3). The early B firm obtains the leader payoff:

LB(t) = πB(1)

∫ min{T ∗A(2),TABB }

t
e−rsds+πB(2, A)

∫ T ∗B(3)

min{T ∗A(2),TABB }
e−rsds+πB(3)

∫ ∞

T ∗B(3)
e−rsds−c(t).
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Firm A is preempted and thus earns the follower payoff:

FA(t) = πA(2)

∫ T ∗B(3)

min{T ∗A(2),TABB }
e−rsds+ πA(3)

∫ ∞

T ∗B(3)
e−rsds− c(min

{
T ∗A(2), T

AB
B

}
)

and the late B firm obtains follower’s payoff FB(t).
19

We can now write the incentive to be the first entrant in the game for an efficient and

an inefficient firm, respectively.

Firm A would like to preempt its rivals and be the leader rather than the follower if

DA(t) = LA(t)− FA(t)

= πA(1)

∫ TBBB

t
e−rsds+ πA(2)

∫ min{T∗A(2),T
AB
B }

TBB
B

e−rsds−
[
c(t)− c

(
min

{
T ∗A(2), T

AB
B

})]

is positive.20 By preempting the rivals, firm A gains monopoly profits from time t until

TBBB , achieves duopoly profits starting from TBBB rather than min
{
T ∗A(2), T

AB
B

}
, and finally

sustains a higher entry cost because it enters earlier.

Similarly, a type B firm prefers to be the leader rather than the follower if

DB(t) = LB(t)− FB(t)

= πB(1)

∫ min{T ∗A(2),TABB }

t
e−rsds+ πB(2, A)

∫ TBBB

min{T ∗A(2),TABB }
e−rsds−

[
c(t)− c

(
TBBB

)]

is positive. By preempting the rivals, aB firm gains monopoly profits from t untilmin
{
T ∗A(2), T

AB
B

}
,

achieves duopoly profits starting from min
{
T ∗A(2), T

AB
B

}
rather than TBBB , and finally sus-

tains a higher entry cost because it enters earlier.

Consider the Di(t) functions, for i = A,B. In t = 0, they are both negative, because

by Assumption 3 preemption is too costly at time zero. Moreover, they are both strictly

quasi-concave21 and have a maximum in T ∗i (1) for i = A,B respectively. Let their earliest

19Observe that a B firm’s follower payoff is independent of whether the subgame following first entry is
between two type B firms or one type A and one type B firm.

20Notice that both FB(t) and FA(t) are constant in t, hence it is sufficient to consider DA (t) and DB (t)
to identify the equilibrium outcome (see Hoppe and Lehmann-Grube (2005)).

21Notice that DA(t) is equal to gA,1(t) minus a constant and DB(t) is equal to gB,1(t) minus a constant.
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intersections with zero be defined as follows:

T 1B ≡




min {τ such that DB(τ) = 0} if DB(t) admits at least one zero

+∞ otherwise

T 1A ≡




min {τ such that DA(τ) = 0} if DA(t) admits at least one zero

+∞ otherwise

The following result holds:

Proposition 1 If T 1B < T
1
A, the game admits a unique SPNE outcome, in which the entry

order is B −A − B, and entry times are t1 = T
1
B, t2 =min

{
T ∗A(2), T

AB
B

}
, t3 = T

∗
B(3). In

equilibrium, both inefficient firms achieve the same equilibrium payoff, and the efficient firm

achieves a higher payoff.

Suppose that T 1B < T
1
A. This implies that either the preemption incentive for A is always

negative (if T 1B is finite and T 1A = +∞) or that the preemption incentive for B is strictly

positive whenever it is positive for A. Therefore, the efficient firm cannot be the leader of

the three-firm game. The first entrant must be a type B firm. Consider the timing of entry.

First entry takes place exactly at T 1B. Clearly, no firm has an incentive to enter earlier,

because for t < T 1B, all firms prefer to be the follower. Moreover, first entry cannot take

place later than T 1B because in a right-neighbourhood of T 1B, DB(t) is positive. If first entry

took place at t > T 1B, one of the two B firms would enter third at T ∗B(3) and receive FB(t).

That firm would rather deviate, preempt the rivals, and be a leader at T 1B + ε. Following

a logic that is analogous to that in Fudenberg-Tirole (1985), the preemption race between

the two B firms guarantees that first entry takes place exactly at T 1B so that there is rent

equalization for the two B firms and neither has an incentive to preempt further. Finally,

T 1B < T
1
A guarantees that DA(T

1
B)<0: at T 1B firm A strictly prefers to be follower rather

than leader, hence has no incentive to deviate and preempt.

Proposition 1 establishes that if T 1B < T
1
A the entry order in equilibrium is B −A−B.

The next remark provides the main intuition for this result:22

Remark 1 A necessary condition for T 1B < T
1
A is that TBBB <min

{
T ∗A(2), T

AB
B

}
: first entry

in a BB subgame must occur earlier than first entry in an AB subgame.

22For a formal proof, see Claim 4 in Appendix B.
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Figure 3: Inefficient entry order in the three player game. The figure is drawn using our
example. All the parameter values are as in Figure 1. Second entry occurs earlier if the
first entrant is A, than if it is B: TBBB < TABB . Hence the necessary condition of Remark
1 is satisfied. The longer monopoly period for B outweighs the lower monopoly profits:
D1B(t) > D

1
A(t) everywhere, and the first entrant is a type-B firm, at T 1B.

If the model primitives are such that this condition holds, then by preempting the

opponents and investing first in the three-firm game, the efficient firm would earn a higher

monopoly payoff than an inefficient firm, but it would earn it for a shorter period. Hence,

it does not necessarily have a stronger incentive than the opponents to be first in the game.

To see why the condition is necessary, suppose it were violated. In this case, the preemption

incentive to be the first rather than the second entrant would always be stronger for A than

for a type B firm, for the following reasons: The first entrant achieves monopoly profits for

some time. For firm A, these profits are higher than for firm B, and they would be achieved

for a longer time (until TBBB , rather than until min
{
T ∗A(2), T

AB
B

}
). Moreover, by entering

at t and being a leader rather than a follower, each firm sustains a higher entry cost. The

cost would increase less for firm A, who would otherwise enter at min
{
T ∗A(2), T

AB
B

}
, than

for firm B, who would otherwise enter at TBBB . Finally, by being leader rather than follower,

a firm changes the time from which it starts earning duopoly profits. For an A-type leader,

this date would be delayed frommin
{
T ∗A(2), T

AB
B

}
to TBBB . In that interval, duopoly profits

would be replaced by monopoly profits, so the total effect would be positive. For a type B

leader instead, this date would be anticipated from TBBB to min
{
T ∗A(2), T

AB
B

}
. Nonetheless,

the extra duopoly profits earned in this period would be more than offset by the increase in
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entry cost, so the total effect would be negative. In sum, if min
{
T ∗A(2), T

AB
B

}
≤TBBB , then

the total preemption incentive to be first rather than second is stronger for firm A than for

a type B firm and T 1B < T
1
A cannot hold.

3.4 Conditions for inefficient entry

In this subsection, we present our main result: We show that the set of parameter values

that induce equilibrium entry order B −A−B is nonempty and analyze which changes in

one or more flow profit parameters preserve this entry order.

Proposition 2 (a) For any cost function satisfying the model assumptions, the set of profit

structures satisfying the model assumptions and inducing equilibrium entry order B−A−B

is nonempty.

(b) Let π̂ be a profit structure such that the equilibrium entry order is B − A − B. Any

profit structure π that satisfies the model assumptions and the following inequalities also

induces equilibrium entry order B −A−B:

(i) πA(1) ≤ π̂A(1), (ii) πB (2, A) ≥ π̂B(2, A), (iii) πB(3) ≤ π̂B(3), (iv) πB(1) ≥ π̂B(1), (v)

πA(2) ≤ π̂A(2), (vi) πB(2, B) ≤ π̂B(2, B).

In Appendix A, we show that for the parametric example introduced in Section 2 the

set of profit structures inducing equilibrium entry order B −A−B is nonempty.

Part (a) of Proposition 2 shows that this existence result is more general: For any cost

function, there exist profit structures inducing the inefficient entry order.

The intuition for the result in part (b) is the following: Starting from a profit structure

that induces equilibrium entry order B−A−B, the entry order is preserved by any change

in the parameter values that weakly decreases the incentive for firm A to be first and/or

increases the incentive for the type B firms to be first.

Consider the incentive for firm A to preempt its rivals and be the first entrant. By doing

so, firm A earns monopoly profits for some time. Any change in the parameter values that

decreases either the level of A’s monopoly profits or the interval of time for which they are

earned, decreases A’s incentive to be first. In particular, condition (i) describes a weak

decrease in A’s monopoly profits, while conditions (ii) and (iii) are related to the time of

second entry. The time of second entry, after first entry by A, depends on the intensity

of the preemption race in the ensuing BB subgame. An increase in πB (2, A), and/or a
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decrease in πB (3), increases the incentive for each of the type B firms to be second, rather

than third. Hence, it brings forward the time of second entry. This shortens the interval of

time for which firm A, if first entrant, earns monopoly profits, thus decreasing A’s incentive

to be first.

Next, consider the incentive for a type B firm to preempt its rivals and be the first

entrant. Any change in the parameter values that increases either the level of the type B

firms’ monopoly profits or the interval of time for which they are earned, increases the type

B firms’ incentive to be first. In particular, condition (iv) describes a weak increase in the

type B firms’s monopoly profits, while conditions (iii), (v) and (vi) are related to the time

of second entry, hence to the features of the ensuing AB subgame. If A is a “strong leader”

in this subgame, min
{
T ∗A(2), T

AB
B

}
is equal to T ∗A(2). Therefore, the smaller πA (2), the

later is second entry after a type B firm has entered first, and the stronger the incentive

for a type B firm to be first. Similarly, if A is a “weak leader”, the second entry time after

first entry by a type B firm is equal to TABB , which in turn is determined by the incentive

B has to preempt A in the subgame. This incentive is increasing in both πB (2, B) and

πB (3): by being second rather than third, B would receive duopoly profits for some time,

and triopoly profits for a longer time (from T ∗A(3) rather than from T ∗B(3) ). Therefore, the

smaller πB (2, B) or πB (3), the later is second entry after a type B firm has entered first,

and the stronger the incentive for a type B firm to be first.

4 Concluding remarks

We analyzed a preemption game of entry into a new market with ex-ante asymmetric firms.

It is well known from the literature that in a two-firm game the equilibrium entry order

reflects the efficiency ranking. We show that this result can be reversed if the game is played

by more than two firms. We present an example with one efficient firm and two inefficient

firms. The set of parameters such that the unique equilibrium outcome involves first entry

by one of the inefficient firms is shown to be nonempty. Moreover we investigate which

changes in post-entry profit parameters preserve this entry order. Our result shows that

the assumption that market entry occurs in the order of profitability, often made in the

empirical entry literature, may be problematic.

We conclude with two remarks. First, an entry order that does not reflect the efficiency
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ranking has interesting welfare implications.23 When the equilibrium entry order isB−A−B

rather than A−B−B, not only do consumers face a less efficient monopolist, they also face

it for a longer period, as second entry is delayed. At the same time, there are savings in entry

costs due to the delay of second entry. We do not obtain general analytical results on the

total effect of the entry order on welfare. In Appendix A, we will however present numerical

results in the context of the example introduced earlier, showing that the negative effect on

the consumers’ surplus of the inefficiency in the entry order B-A-B tends to dominate the

savings in entry costs.24

Finally, we draw attention to the implications of a slightly more general model where

all three firms differ in efficiency. That is, there are three firms, A, B and C, where C is

strictly less efficient than B.While characterizing the equilibrium of such a game is beyond

the scope of this paper, we point out here that an equilibrium with the least efficient firm

C entering first is not feasible. The reason is that in such a candidate equilibrium, B would

have a strict incentive to preempt C and enter first. This is because if firm B were to enter

first, not only would it earn higher monopoly profits than firm C, but also for a longer

period. Regardless of which of the inefficient firms enters first, the second entrant would

be firm A, and it would invest later in an AC subgame than in an AB subgame. Hence

the incentive to enter first is stronger for firm B than for firm C, ruling out an equilibrium

entry order C −A−B.

Appendix A: Numerical Results

In this Appendix, we use the example introduced in Section 2 to numerically identify the

range of parameter values that induce entry order B −A−B and to illustrate the welfare

implications of inefficient entry.

As in Figures 1 to 3, we fix r = 0.03 and c = 20. For a range of values of α, η and kB

for which Assumptions 1-3 are satisfied, we compute the equilibrium entry order. Table 1

shows that for some pairs (α, η), there exists a range of values of kB for which the entry

order in equilibrium is B −A−B.

An immediate observation is that this range is bounded both above and below. This

reflects the fact that an increase in kB affects the incentives of the two types of firms to be

23We thank a referee to alerting us to these implications.
24See Figure 5 in Appendix A.
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Table 1: Ranges of kB for which the equilibrium order of entry is B-A-B
η

α 0.2 0.4 0.6 0.8

0.02 ∅ ∅ ∅ ∅

0.03 ∅ ∅ ∅ (1.1031, 1.1165 )

0.04 ∅ ∅ (1.0580, 1.0718) (1.0636, 1.1336)

0.05 (1.0150, 1.0165) (1.0298, 1.0405) (1.0387, 1.0781) (1.0264, 1.1451)

0.06 (1.0118, 1.0174) (1.0204, 1.0428) (1.0193, 1.0825) (1.0000, 1.1534)

0.07 (1.0082, 1.0181) (1.0107, 1.0445) (1.0000, 1.0859) (1.0000, 1.1596)

0.08 (1.0044, 1.0186) (1.0000, 1.0458) (1.0000, 1.0885) (1.0000, 1.1646)

first in a nonmonotonic way. In particular, consider the effect of a change in kB on profit

flows, illustrated in Figure 4.
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Figure 4: The effect of kB on firms’ profits for η = 0.6, α = 0.05.

Consider firm A’s incentive to be first. An increase in kB, ceteris paribus, leaves πA(1)

unchanged and reduces both πB(2, A) and πB(3). Therefore, while the level of monopoly

profits for A is unaffected, the period of time for which A would earn them is affected in a

nontrivial way. In the ensuing BB subgame, both the duopoly and the triopoly post-entry

profits are decreased. Therefore, it is a priori unclear whether the time of second entry in

the game is brought forward, or delayed.

Next, consider the type B firms. An increase in kB reduces monopoly profits πB(1),

thus reducing a type B firm’s incentive to be first. It also affects the period of time for

which they would be earned in a nontrivial way because it increases πA(2), and reduces
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πB(2, B) and πB(3). This illustrates why the range of values of kB for which the entry

order in equilibrium is B −A−B is bounded both below and above.

We now examine the effect of inefficient entry on welfare in Figure 5. We discuss what

happens at the first vertical line, when the equilibrium order switches from A−B −B to

B−A−B. All the effects are analogous, but with the opposite sign, at the second vertical

line, when the entry order switches back to A−B −B.

Panel (a) illustrates the effect of an increase in kB on entry times. Both the first and

third entry time (represented by the bottom and the top line respectively) are continuous in

kB. The second entry time (the middle line) is discontinuous: When the equilibrium order

switches from A−B −B to B −A−B, there is a discrete jump and second entry occurs

later, because it is determined by the preemption race in an AB subgame, rather than in a

BB subgame.

Panel (b) plots producer surplus and entry costs. The decrease in total entry costs at

the first switch reflects the delay of second entry. The discontinuity in producer surplus has

exactly the same sign and the same magnitude.25 The intuition for this is the following: At

the switch point, both A− B − B and B −A− B are equilibrium entry orders, and both

A and the B firms are indifferent between being leader or follower. Hence, the discounted

sum of the revenue flows of all players minus the sum of their entry costs is the same under

both equilibria.

Observe that in the region of inefficient entry, entry times in panel (a) as well as surplus

and cost in panel (b) are nonmonotone. This is due to the fact that as kB increases

sufficiently, A switches from being a weak leader of the AB subgame, to being a strong

leader.

Panel (c) reports consumer surplus. The discontinuity at the switch point from A−B−B

to B − A − B is caused by the fact that a low-cost monopolist is replaced by a high-cost

monopolist, and moreover the monopoly period lasts longer.

Finally, panel (d) illustrates the resulting effect on overall welfare, where welfare is

calculated as the sum of consumer and producer surplus, minus total investment costs.

The discontinuity at the switch point reflects the discontinuity in consumer surplus because

producer surplus net of entry costs is continuous in this example.

25We thank a referee for alerting us to this point.
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Figure 5: The effect of kB on entry times, welfare, and its components for η = 0.6 and
α = 0.05. All welfare components are discounted at time zero at the common discount rate
r = 0.03.

Appendix B: Proofs

In this appendix we present a result (Claim 1) regarding the properties of the function

gi,m,−i (t). We then prove the results stated in the paper. Observe that, as in most pre-

emption games, equilibrium is constructed starting from the end of the game and moving

backwards. This requires the analysis of a large set of off-equilibrium path subgames which

makes a lengthy proof with several intermediate steps necessary.

Claim 1 (a) The function gi,m,−i (t) is strictly quasi-concave in t. (b) It admits a unique

global maximum in T ∗i (m,−i), defined as the solution to:

g′i,m,−i (t) = 0⇐⇒ −πi(m,−i)e
−rt − c′(t) = 0.

(c) gi,m,−i (T
∗
i (m,−i)) > 0.

Proof of Claim 1. Part (a) We prove that the function is strictly quasiconcave, by

showing that in every critical point of the function the second derivative is strictly negative.

The first derivative g′i,m,−i (t) is equal to
[
−πi(m,−i)e

−rt − c′ (t)
]
and the second derivative

g′′i,m,−i (t) is equal to
[
rπi(m,−i)e

−rt − c′′ (t)
]
. Using g′i,m,−i (t) = 0 we can rewrite g′′i,m,−i (t)
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evaluated at any critical point as

g′′i,m,−i (t) = −c
′ (t) r − c′′ (t) . (2)

By Assumption 2: ert [c′ (t) + rc (t)] < 0 and ert
[
2c′ (t) r + c (t) r2 + c′′ (t)

]
> 0. Together,

these two inequalities imply that expression (2) is negative.

Part (b) To prove that the stand-alone times are well-defined, i.e. that the function

gi,m,−i (t) admits a critical point, we prove that g′i,m,−i (t) is positive at zero and negative for

sufficiently large values of t. Assumptions 1 and 3 guarantee that gi,m,−i (t) is negative at

zero and positive at a later time. Quasiconcavity then implies that g′i,m,−i (0) > 0. Moreover,

since gi,m,−i (t) is continuous and either always increasing or single peaked, it admits a limit

as t goes to infinity. This limit must be greater than or equal to zero by assumption 3(ii).

It must also be smaller than or equal to zero because limt→+∞ gi,m,−i (t) = − limt→+∞ c (t).

Hence, the only possible candidate limit is zero. But if that is the case, since the function

is positive from some τ onwards, it must approach zero from above. Hence it must be

decreasing for t sufficiently large. We therefore conclude that the function gi,m,−i (t) admits

a critical point.

Part (c) Assumptions 1, 2 and 3 imply that gi,m,−i (t) is strictly positive for any

t ≥ T ∗i (m,−i), hence gi,m,−i (T
∗
i (m,−i)) > 0. �

Proof of Lemma 1 We show that at any decision node with calendar time τ ≥ T ∗B(3),

with any number of active firms, all firms enter immediately. First, suppose only one type B

firm is active at t. For t ≥ τ , the function gB,3 (t) represents the firm’s payoff from entering

last at time t. By assumptions 1, 2 and 3, it is strictly positive for every t larger than some

finite t′. Hence its maximum value, attained at T ∗B(3), is strictly positive. Therefore, the

firm will enter immediately. Similarly, suppose that only firm A is active at t. The function

gA,3 (t) represents the firm’s payoff from entering last at time t. It is maximized at T ∗A(3)

and by assumptions 1, 2 and 3 it is strictly positive for every t larger than T ∗A(3). It follows

that at time τ the firm will enter immediately because τ ≥ T ∗B(3) > T
∗
A(3).

Next, suppose that at τ there are two active firms. If they both enter immediately, each

receives payoff gi,3(τ). If one of the two deviates to playing WAIT at τ , the other firm

enters at τ , the game enters a subgame with one active firm, and it follows from the above

that the deviating firm enters immediately as well. Hence the deviation does not affect the

payoff and is not profitable. Similarly, if only one firm plays ENTER at τ and the other
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plays WAIT, the outcome is that both firms enter, sequentially, at τ and get payoff gi,3(τ).

The firm who initially plays WAIT has no incentive to deviate because it would not affect

its payoff. The firm who initially plays ENTER has no incentive to deviate because it would

then get either zero, or gi,3(t) for some t ≥ τ and gi,3(t) is strictly decreasing in the interval

considered. By a similar argument, in equilibrium it cannot be the case that both active

firms play WAIT at τ because each of them would be better off by deviating. The argument

for three active firms at time τ is analogous. �

Proof of Lemma 2We present a more general result that characterizes the equilibrium

outcome of the BB subgames starting at any time τ < T ∗B(3) and implies Lemma 2. It

follows immediately from our assumptions and the analysis in Fudenberg and Tirole (1985)

that, given the functions LBBB (t) and FBBB (t), there exists a point TBBB ∈ (0, T ∗B(2, A)) such

that DBBB
(
TBBB

)
= 0 and that the following result holds:

Claim 2 In any SPNE, in any BB subgame starting at time τ < T ∗B(3) there is a unique

equilibrium outcome, such that:

(i) entries take place at t2 = max
{
τ , TBBB

}
and t3 = T ∗B(3).

(ii) If τ ≤ TBBB , both B firms achieve payoff FBBB (T ∗B(3)), while if τ > TBBB payoffs for the

early and late entrant are LBBB (τ) and FBBB (τ) < LBBB (τ) respectively. �

Proof of Lemma 3. We present a more general result that characterizes the equi-

librium outcome of the AB subgames starting at any time τ < T ∗B(3) and implies Lemma

3. Consider the function DABB (t). It is strictly quasiconcave and admits a unique global

maximum in t = T ∗B(2, B) ∈ (T
∗
A(2), T

∗
B(3)) . It takes negative value at zero by assumptions

1 and 3(i), and in t = T ∗A(3) by definition of T ∗B(3). Hence, in the interval t ∈ [0, T ∗A(3)] the

following cases are possible:

Case 1 The function is negative everywhere

Case 2 The function has two (possibly coinciding) intersections with zero,
{
T 2,BB , T

2,B
B

}

such that T 2,BB ≤ T
2,B
B , and T ∗A(2) ≤ T

2,B
B

Case 3 The function has two (possibly coinciding) intersections with zero,
{
T 2,BB , T

2,B
B

}

such that T 2,BB ≤ T
2,B
B , and T 2,BB < T ∗A(2).

Therefore, the definition of TABB in the text is equivalent to the following: In case (1),

TABB ≡ +∞; in cases 2 and 3, TABB ≡ T 2,BB . The following result holds:
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Claim 3 In any SPNE, in any AB subgame starting at time τ < T ∗B(3), it holds that:

(i)If τ ≤ min
{
T ∗A(2), T

AB
B

}
, firm A enters first in the subgame, at t2 = min

{
T ∗A(2), T

AB
B

}

and firm B enters later, at t3 = T
∗
B(3)

(ii)If τ > min
{
T ∗A(2), T

AB
B

}
:

- in case 1, firm A enters first in the subgame, at t2 = τ and firm B enters later, at

t3 = T ∗B(3).

- in cases 2 and 3, for τ /∈
[
T 2,BB , T

2,B
B

]
, firm A enters first in the subgame, at t2 = τ and

firm B enters later, at t3 = T
∗
B(3), while for τ ∈

[
T 2,BB , T

2,B
B

]
either firm A enters first in

the subgame, at t2 = τ and firm B enters later, at t3 = T
∗
B(3), or firm B enters first in the

subgame, at t2 = τ and firm A enters later, at t3 = T
∗
A(3).

Proof. To prove this Claim, we first show that in our model, in an AB subgame, the

condition ∆j (yj , zj, zi) < ∆i (yi, zi, zj) in Theorem (1) in Riordan (1992) is satisfied, with

the interpretation that i = A and j = B. The equivalent of the condition ∆j (yj, zj , zi) <

∆i (yi, zi, zj) in our model, for an AB subgame, is that TABA < TABB , where TABA is defined

as the smallest value of t such that DABA (t) is null. The function DABA (t) is strictly quasi-

concave in t, strictly negative for t = 0, it has strictly positive value for t = T ∗A(3), and

admits a unique global maximum in t = T ∗A(2) < T
∗
A(3). Hence, TABA is well defined and

belongs to the interval (0, T ∗A(2)). For TABA < TABB to hold, it is sufficient that DABA (t) −

DABB (t) > 0 for every t < T ∗A(3). To see that this condition holds, notice that DABA (t) −

DABB (t) can be rewritten as

[πA(2)− πB(2, B)]

∫ T∗A(3)

t
e−rsds+ [πA(2)− πA(3)]

∫ T ∗B(3)

T ∗A(3)
e−rsds

−πB(2, B)

∫ T ∗B(3)

T ∗
A
(3)

e−rsds+ c (T ∗A(3))− c (T
∗
B(3)) .

The first two terms are positive by assumption 1(ii) and the last one by definition of T ∗B(3).

Given that TABA < TABB , condition ∆j (yj, zj , zi) < ∆i (yi, zi, zj) in Theorem (1) in Ri-

ordan (1992) is satisfied, and part (i) of the Lemma follows immediately from part (i) of

Riordan’s theorem. Moreover, part (ii) of the Lemma follows from the analysis in the Ap-

pendix of Riordan (1992), in particular from Lemma A3 and from the proof of Lemma

A4, where ∆̂1 (z1) ≥ ∆̂2 (z2) is equivalent to T ∗A(3) ≤ T ∗B(3), t
(
∆̂1 (x1)

)
is equal to

T ∗A(2), ∆2 (y2, z2, z1) < ∆̂1 (x1) ≤ ∆1 (y1, z1, z2) is equivalent to TABA < T ∗A(2) ≤ TABB ,

∆2 (y2, z2, z1) = ∆̂1 (x1) < ∆1 (y1, z1, z2) is equivalent to TABA < T ∗A(2) = TABB and
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∆2 (y2, z2, z1) > ∆̂1 (x1) is equivalent toT
∗
A(2) > T

AB
B . �

Proof of Proposition 1.

Outline of the proof.

Lemma 1 established that all firms must enter by T ∗B(3). Claim 2 characterized the

equilibrium outcome of subgames with two B firms active starting before T ∗B(3). Similarly,

Claim 3 characterized the equilibrium outcome of subgames with A and one of the B firms

active starting before T ∗B(3). Building on these results, Claim 4 proves an important neces-

sary condition: If T 1B < T
1
A, then it has to be the case that second entry takes place earlier

if the first entrant is A, than if it is a type B firm. Finally, Claims 5, 6 and 7 complete the

result establishing the equilibrium outcome of subgames with all three firms active, starting

late in the game (Claim 5), early in the game (Claim 6), and at time zero (Claim 7).

Consider subgames with three active firms starting at τ < min
{
T ∗A(2), T

AB
B , TBBB

}
. The

functions DA(·) and DB(·) as defined in section 3.3 are negative at zero by assumptions 1

and 3(i), are strictly quasiconcave, and maximized at T ∗A(1) and T
∗
B(1) > T

∗
A(1) respectively.

The following Claim holds:

Claim 4 If T 1B < T
1
A, then it has to be the case that TBBB < min

{
T ∗A(2), T

AB
B

}
.

Proof. We prove the result by contradiction. Suppose min
{
T ∗A(2), T

AB
B

}
≤ TBBB and

consider the functions DA (t) and DB (t). Both functions are strictly quasiconcave and

negative at zero. DA
(
min

{
T ∗A(2), T

AB
B

})
is strictly positive, so it has to be the case that

T 1A < min
{
T ∗A(2), T

AB
B

}
. Moreover, DB

(
min

{
T ∗A(2), T

AB
B

})
is strictly negative because the

function
[
πB(2, A)

∫ +∞
min{T ∗A(2),TABB } e

−rsds− c(t)
]
is strictly quasiconcave and maximized at

T ∗B(2, A) > T
BB
B , hence it is strictly increasing in

[
min

{
T ∗A(2), T

AB
B

}
, TBBB

]
. It follows that

either T 1B > min
{
T ∗A(2), T

AB
B

}
> T 1A, in which case the assumption T 1B < T

1
A is contradicted,

or T 1B ≤ min
{
T ∗A(2), T

AB
B

}
. For the latter case, we show that DA (t) > DB (t) for any

t < min
{
T ∗A(2), T

AB
B

}
which in turn implies that the assumption T 1B < T

1
A is contradicted.

First, notice that by Assumption (1) the first term in DA (t) is greater than the first

term in DB (t), and the second term in DA (t) is positive. Moreover,

−πB(2, A)

∫ TBBB

min{T ∗A(2),TABB }
e−rsds+ c

(
min

{
T ∗A(2), T

AB
B

})
− c

(
TBBB

)
> 0

by definition of T ∗B(2, A). We can therefore conclude that even if T 1B ≤ min
{
T ∗A(2), T

AB
B

}
,

DA (t) > DB (t) for any t < min
{
T ∗A(2), T

AB
B

}
, which in turn implies it cannot be the case
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that T 1B < T
1
A. �

We continue the proof of Proposition 1 considering subgames with three active firms

starting at τ ∈ [TBBB , T ∗B (3)).

At time τ , if all three firms are active and A enters first, it follows from Claim 2 that

the two B firms follow at τ and T ∗B(3) respectively. Payoffs are L
AB
A (τ) for A and a lottery

between LBBB (τ) and FBBB (τ) for both B firms, with LBBB (τ) > FBBB (τ).

If instead one of the B firms enters at τ , it follows from Claim 3 that if

τ ∈ [TBBB ,min
{
T ∗A(2), T

AB
B

}
), then the entry order is B −A−B , entry times are

(
τ ,min

{
T ∗A(2), T

AB
B

}
, T ∗B(3)

)
and payoffs are LB(τ), L

AB
A (min

{
T ∗A(2), T

AB
B

}
) and FABB (τ)

for the first, second and third entrant, respectively.

If instead τ ∈
[
min

{
T ∗A(2), T

AB
B

}
, T ∗B(3)

]
, then:

- in case 1, entry order is B −A−B , entry times are

(τ , τ , T ∗B(3)) and payoffs are LBBB (τ), LABA (τ) and FABB (τ) for the first, second and third

entrant, respectively.

- in cases 2 and 3, for τ /∈
[
T 2,BB , T

2,B
B

]
, entry order, entry times and payoffs are those

described for case 1, while for τ ∈
[
T 2,BB , T

2,B
B

]
either entry order, entry times and payoffs

are those described for case 1, or entry order is B−B−A, entry times are (τ , τ , T ∗A(3)) and

the payoffs are LABB (τ) for the first two entrants and FABA (τ) for A.

The following Claim holds:

Claim 5 If T 1B < T
1
A, in any SPNE of the game the outcome of subgames with three active

firms starting at τ ∈
[
TBBB , T ∗B (3)

)
is as follows:

(i) If τ ∈
[
TBBB ,min

{
T ∗A(2), T

AB
B

})
, one of the B firms enters at t1 = τ , the A firm enters

at t2 = min
{
T ∗A(2), T

AB
B

}
and the remaining B firm enters at t3 = T

∗
B (3);

(ii) If τ ∈
[
min

{
TABB , T ∗A(2

}
, T ∗B (3)

)
:

(iia) for any τ in the interval in case 1, and for any τ in the interval such that τ /∈[
T 2,BB , T

2,B
B

]
in cases 2 and 3, the unique outcome is that firm A and one of the B firms

enter at t1 = t2 = τ and the remaining B firm enters at t3 = T ∗B (3) ;

(iib) moreover, in cases 2 and 3, for τ ∈
[
T 2,BB , T

2,B
B

]
the outcome is either that firm A and

one of the B firms enter at t1 = t2 = τ and the remaining B firm enters at t3 = T
∗
B (3) , or

that both B firms enter at t1 = t2 = τ and the A firm enters at t3 = T ∗A (3).

Proof. For simplicity, we develop the proof of this Claim under the following assump-

tion: Suppose that at any time t, if a firm is indifferent between being the m-th investor
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at t and the (m + 1)-th investor, then it invests at t. It is immediate to verify that even

without this assumption the result still holds.

We divide subgames with three active firms starting at τ ∈
[
TBBB , T ∗B (3)

)
into four

classes, and derive the equilibrium outcome for each class.

• First, consider subgames with three active firms starting at τ ∈ [T ∗A(2), T
∗
B (3)) for case

1, or τ ∈
(
T
2,B
B , T ∗B (3)

)
for case 2. We prove that in equilibrium, at τ , it has to be

the case that both B firms play Enter and A plays either Enter or Wait. Assumption

4 and Claims 2 and 3 then guarantee the result.

This is an equilibrium because if firms play either of these action profiles, payoffs are

LABA (τ) for the A firm, and a lottery between LBBB (τ) and FBBB (τ) for the B firms. By Claim

2, in this interval LBBB (τ) > FBBB (τ) so no B firm has an incentive to deviate and receive

FBBB (τ) with probability one. By the same argument, there cannot be an equilibrium in

which at τ only one of the type B firms plays Enter, regardless of A’s action, because the

other one would rather deviate and play Enter. Consider now firm A. Given that both B

firms play Enter, A’s action does not affect its payoff, so A has no profitable deviation from

either profile described above.

Next, we prove that there are no other action profiles at τ compatible with equilibrium.

There cannot be an equilibrium in which only firm A plays Enter at τ , because each of the

B firms would receive a lottery between LBBB (τ) and FBBB (τ ) and would rather deviate and

play Enter at τ as well, thus receiving a similar lottery but with higher probability to obtain

L2B(τ). Moreover, there cannot be an equilibrium in which all three firms play Wait at τ . In

such an equilibrium, the first entry would happen at some time t later than τ . By Lemma

1 first entry would happen at some later t ∈ (τ , T ∗B(3)]. From the arguments presented so

far in the proof of part (ii) of this Claim, it could only be the case that the A firm and one

of the B firms enter simultaneously at t and the remaining B firm follows at T ∗B(3). Since

the function LABA (τ) is strictly quasiconcave and maximized at T ∗A(2) ≤ τ , A would then

have an incentive to deviate and preempt the rivals playing Enter at (t− ε). So, in case 1,

for τ ∈ [T ∗A(2), T
∗
B (3)) there cannot be an equilibrium in which all three firms play Wait at

τ . Hence, we can conclude that for any τ in this interval the unique equilibrium outcome

is the one described in part (iia) of the Claim.

• Second, consider subgames with three active firms starting at τ ∈
[
T 2,BB , T

2,B
B

]
We
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prove that in equilibrium all firms play Enter at τ . Assumption 4, together with

Claims 2 and 3 then guarantee the result.

This is an equilibrium because if firms play the above profile, A receives LABA (τ) with

probability 2
3 and FABA (τ) with probability 1

3 . By the proof of Claim 3, DABA (τ) = LABA (τ)−

FABA (τ) is weakly positive in [T ∗A (2) , T
∗
A (3)] , hence in the interval we are considering. It

follows that A has no incentive to deviate because it would then receive LABA (τ) or FABA (τ)

with probabilities 12 ,
1
2 . (By an analogous argument, there cannot be an equilibrium in which

at τ A plays Wait and either one or both B firms play Enter). As for the B firms, if the

above profile is played, each B firm receives LABB (τ), LBBB (τ) and FBBB (τ) with probabilities
(
1
3 ,
1
3 ,
1
3

)
while by deviating it would receive a similar lottery with probabilities

(
1
4 ,
1
4 ,
1
2

)
.

Since in this interval DABB (τ) = LABB (τ)−FABB (τ) > 0 and LBBB (τ) > FBBB (τ), the deviation

is not profitable. (By an analogous argument, there cannot be an equilibrium in which at

τ A plays Enter, and one or both of the B firms play Wait).

Finally, there cannot be an equilibrium in which all three firms play Wait at τ . In such

an equilibrium, by the argument presented above, the first entry would take place at some

later time t ≤ T
2,B
B . If in t only one or two firms plays Enter, any firm who plays Wait has

an incentive to deviate and play Enter at (t− ε) . Similarly, if in t all three firms play Enter,

each of them has an incentive to deviate and play Enter at (t− ε). Hence, we can conclude

that for any τ in this interval the unique equilibrium outcome is the one described in part

(iib) of the Claim.

• Third, for case 2, consider subgames with three active firms starting at τ ∈
[
T ∗A(2), T

2,B
B

]
.

Given part (iib) of this Claim, the equilibrium outcome of any such subgame must

be that first entry happens weakly before T 2,BB . Then, the same arguments presented

in the first part of this proof guarantee that in equilibrium, at τ both B firms play

Enter and A plays either Enter or Wait, which in turn guarantees that for any τ in

this interval the unique equilibrium outcome is the one described in part (iia) of the

Claim.

• Finally, consider subgames with three active firms starting at τ ∈
[
TBBB ,min

{
T ∗A(2), T

AB
B

})
.

We prove that in equilibrium, at τ , it has to be the case that the B firms play Enter

and the A firm plays Wait. Then, Assumption 4, together with Claim 3, guarantees

the result.
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This is an equilibrium because if firms play the prescribed actions, A’s payoff is

πA(2)

∫ T ∗B(3)

min{T ∗A(2),TABB }
e−rsds+ πA(3)

∫ ∞

T ∗B(3)
e−rsds− c(min

{
T ∗A(2), T

AB
B

}
) (3)

and the B firms receive a lottery between

πB(1)

∫ min{T ∗A(2),T
AB
B }

τ
e−rsds+πB(2, A)

∫ T∗B(3)

min{T ∗A(2),T
AB
B }

e−rsds+πB(3)

∫ ∞

T ∗B(3)
e−rsds−c(τ).

(4)

and FBBB (τ) = FABB (τ ) with probabilities
(
1
2 ,
1
2

)
By Assumption 1, expression (4) is larger

than LBBB (τ) which is turn larger that FBBB (τ). Therefore, no B firm has an incentive to

deviate and receive FBBB (τ) with probability 1. By the same argument, there cannot be an

equilibrium in which at τ only one B firm plays Enter.

As for firm A, by deviating it would receive a lottery between expression (3) and LABA (τ).

It is easy to verify that this deviation is not profitable, using the fact that the function

πA(2)

∫ T ∗B(3)

t
e−rsds+ πA(3)

∫ +∞

T ∗B(3)
e−rsds− c(t)

is strictly quasiconcave and maximized at T ∗A(2) > τ . By an identical argument, a strategy

profile in which the A firm and one or two B firms play Enter at τ , cannot be an equilibrium,

since A would want to deviate and play Wait.

Finally, we prove that a profile in which all three firms play Wait at τ cannot be part

of an equilibrium. By part (ii), first entry would then take place at some later time t ≤

min
{
T ∗A(2), T

AB
B

}
. In t, it holds that

πB(1)

∫ min{T ∗A(2),TABB }

t
e−rsds+ πB(2, A)

∫ T ∗B(3)

min{T ∗A(2),TABB }
e−rsds

+πB(3)

∫ ∞

T ∗B(3)
e−rsds− c(t)> LBBB (t) > FBBB (t).

Suppose at time t only the two B firms play Enter. By continuity, regardless of what A

plays at t, each of the B firms has a strict incentive to preempt the rival and enter at time

(t− ε). Similarly, if at time t only one of the B firm plays Enter, then the other B firm has

an incentive to preempt and enter at time (t− ε). Finally, if at time t only the A firm plays

Enter, then each B firm has an incentive to preempt and enter at time (t − ε). Therefore,
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there cannot be an equilibrium of the subgame starting at τ in which the first entry happens

later than τ . �

The next Claim analyzes subgames with three active firms starting at τ ∈ [0, TBBB ).

Consider again the functionsDA(t) andDB(t). Evaluated at TBBB , DB(·) is positive, because

DB(T
BB
B ) = [πB(1)− πB(2, A)]

∫ min{T ∗A(2),T
AB
B }

TBBB

e−rsds > 0

by Assumption (1). It follows that there exists one and only one point T 1B ∈
(
0, TBBB

)
such

that DB(T
1
B) = 0. Conversely, DA(t) evaluated at TBBB is equal to

DA(T
BB
B ) = πA(2)

∫ min{T ∗A(2),T
AB
B }

TBB
B

e−rsds− c(TBBB ) + c
(
min

{
T ∗A(2), T

AB
B

})
< 0

which is negative because the function

πA(2)

∫ min{T ∗A(2),TABB }

t
e−rsds− c(t)

is strictly quasiconcave, maximized at T ∗A(2), hence strictly increasing for t ∈
[
TBBB ,min

{
T ∗A(2), T

AB
B

}]
.

It follows that two cases are possible:

Case a DA(t) < 0 ∀t ∈
[
0, TBBB

]
, and T 1A = +∞;

Case b There exist two points, T 1A and T
1
A , with 0 < T 1A ≤ T

1
A < T

BB
B , in which

DA(t) is null, and T
1
A = T

1
A.

Given the assumption T 1B ≤ T
1
A, the following Claim holds:

Claim 6 If T 1B < T
1
A, in any SPNE of the game the outcome of subgames with three active

firms starting at τ ∈ [0, TBBB ) is as follows:

(i) If τ ≤ T 1B one of the B firms enters at t1 = T 1B, the A firm enters at t2 = min
{
T ∗A(2), T

AB
B

}

and the remaining B firm enters at t3 = T
∗
B (3)

(ii) If τ ∈ (T 1B, T
BB
B ) :

(iia) for any τ in the interval in case a, and for any τ in the interval such that τ /∈
[
T 1A, T

1
A

]

in case b, the unique outcome is that one of the B firms enters at t1 = τ , the A firm enters

at t2 = min
{
T ∗A(2), T

AB
B

}
and the remaining B firm enters at t3 = T ∗B (3)

(iib) moreover, in case b, for τ ∈
[
T 1A, T

1
A

]
the outcome is either as in (iia), or that firm

A enters at t1 = τ and the B firms enter at t2 = T
BB
B and t3 = T

∗
B (3) respectively.
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Proof. We divide subgames with three active firms starting at τ ∈ [0, TBBB ) into four

classes, and derive the equilibrium outcome for each class.

• First, consider subgames with three active firms starting at τ ∈ [T 1B, T
BB
B ) for case a,

or τ ∈ (T
1
A, T

BB
B ) for case b. We prove that in equilibrium, at τ , it has to be the case

that A plays Wait, and the B firms play Enter.

This is an equilibrium because if firms play the above profile, A receives FA(τ) and each

B firm a lottery between LB(τ) and FB(τ). By deviating, A would receive LA(τ) with

positive probability and a B firm would receive FB(τ). Then, the fact that DA(τ) < 0

and DB(τ) > 0 guarantees that no firm has an incentive to deviate. There cannot be an

equilibrium in which firm A and one of the B firms play Wait, and the other B firm plays

Enter, because the B firm which plays Wait would rather deviate and play Enter, thus

exchanging FB(τ) for a lottery between LB(τ) and FB(τ). There cannot be an equilibrium

in which the A firm and at least one of the B firms play Enter, because the A firm would

then receive a lottery between LA(τ) and FA(τ) and would rather deviate and receive FA(τ).

There cannot be an equilibrium in which the A firm plays Enter and both B firms play

Wait, because both B firms would receive FB(τ) and would rather deviate and receive a

lottery between LB(τ) and FB(τ). Finally, there cannot be an equilibrium in which all

three firms play Wait at τ . In such an equilibrium, by Claim 5 first entry would take place

at some later time t ≤ TBBB . But this cannot be part of an equilibrium, because at t one of

the following action profiles would have to be played:

- A plays Enter and either one or both B firms play Enter: then the A firm would rather

deviate and play Wait.~

- A plays Enter and both B firms play Wait: then each B firm would rather deviate and

play Enter

- A plays Wait and either one or both B firms play Enter: then each B firm would rather

deviate and play Enter at (t− ε) .

Hence, we can conclude that for any τ in this interval the unique equilibrium outcome

is the one described in part (iia) of the Claim.

• Second for case b, consider any subgame with three active firms starting at τ ∈[
T 1A, T

1
A

]
. We prove that in equilibrium all firms play Enter at τ .
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This is an equilibrium because if firms play the above profile, each firm i receives a

lottery between Li(τ) and Fi(τ), and the fact that in this intervalDA(τ) > 0 and DB(τ) > 0

guarantees that there are no profitable deviations. Similarly, this fact guarantees that there

cannot be an equilibrium in which either one or two firms only play Enter at τ , because in

that case there is at least one firm which plays Wait and has an incentive to deviate and

play Enter. Finally, there cannot be an equilibrium in which all three firms play Wait at

τ . In such an equilibrium, by the argument presented above first entry would happen at

some later time t ≤ T
1
A. If at t only one or two firms plays Enter, any firm who plays Wait

has an incentive to deviate and play Enter at (t− ε). Similarly, if in t all three firms play

Enter, each of them has an incentive to deviate and play Enter at (t− ε). Hence, we can

conclude that for any τ in this interval the unique equilibrium outcome is the one described

in part (iiib) of the Claim.

• Third, for case b, consider any subgame with three active firms starting at τ ∈
[
T 1B, T

1
A

)
. Given part (iib), the equilibrium outcome of any such subgame must be

that first entry happens weakly before T 1A, then the same arguments presented in the

first part of this proof guarantee that in equilibrium, at τ , the A firm plays Wait and

the B firms play Enter, which in turn guarantees that for any τ in this interval the

unique equilibrium outcome is the one described in part (iiia) of the Claim.

• Finally, consider subgames with three active firms starting at τ ≤ T 1B. We prove that

in equilibrium all firms play Wait for any t ∈ [τ , T 1B).

This is an equilibrium because if they do so, the outcome is the one described in part

(i) of the Claim and firm i receives payoff Fi(τ). (Notice that each B firm receives a lottery

between LB(T
1
B) = FB(T

1
B), and by definition of T 1B, and FB(τ) = FB(T

1
B)). The fact

that in this interval DA(τ) < 0 and DB(τ) < 0 guarantees that there are no profitable

deviations. By the same argument, there cannot be an equilibrium in which any number of

firms plays Enter at τ , because then there would be at least one firm receiving Li(τ) with

positive probability, and this firm would rather deviate and receive Fi(τ) with probability

one. Hence, we can conclude that for any τ in this interval the unique equilibrium outcome

is the one described in part (i) of the Claim. �

The following Claim, which is an immediate implication of Claim 6, concludes the proof

of Proposition 1
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Claim 7 The unique SPNE outcome of the game is that one of the B firms enters at

t1 = T
1
B, the A firm enters at t2 = min

{
T ∗A(2), T

AB
B

}
and the remaining B firm enters at

t3 = T
∗
B (3).�

Proof of Proposition 2

Part (a).

The proof consists of 3 steps. Step 1 proves that in the limit case with symmetric

duopoly profits and asymmetric triopoly profits, TBBB < min
{
T ∗A(2), T

AB
B

}
. Notice that

symmetric duopoly profits violate assumption 1(ii). Step 2 proves that by continuity there

exist sets of duopoly and triopoly profits satisfying assumption 1(ii) such that TBBB <

min
{
T ∗A(2), T

AB
B

}
. Step 3 proves that for any set of duopoly and triopoly profits such that

TBBB < min
{
T ∗A(2), T

AB
B

}
there also exist monopoly profits satisfying assumption 1(ii) such

that T 1B < T
1
A. Given these three steps, we can conclude that there exist profit structures

satisfying assumption 1(ii) and such that T 1B < T
1
A. Proposition 1 then implies that for

these profit structures the equilibrium entry order is B −A−B.

Step 1. For any vector of duopoly and triopoly profits (πA (2) , πB (2, B) , πB (2, A) , πA (3) , πB (3))

such that: πA (2) = πB (2, B) = πB (2, A), πA (3) > πB (3), πA (2) > πA (3) and πB (2, B) =

πB (2, A) > πB (3), it holds that T
BB
B < min

{
T ∗A(2), T

AB
B

}
. Notice that these profits violate

assumption 1(ii). We prove that TBBB < min
{
T ∗A(2), T

AB
B

}
starting from the observation

that for any such vector DBBB (t) > DABB (t), hence TBBB < TABB . Moreover, it follows from

Fudenberg and Tirole (1985) that TBBB < T ∗B(2, A). Since πA(2) = πB(2, A) implies T ∗A(2) =

T ∗B(2, A), it follows that T
BB
B < T ∗A(2). Therefore, it holds that T

BB
B < min

{
T ∗A(2), T

AB
B

}
.

Step 2. There exist profits (πA (2) , πB (2, B) , πB (2, A) , πA (3) , πB (3)) that satisfy:

πA (2) > πB (2, B) > πB (2, A), πA (3) > πB (3), πA (2) > πA (3) and πB (2, B) > πB (2, A) >

πB (3) and are such that TBBB < min
{
T ∗A(2), T

AB
B

}
. We prove this starting from the ob-

servation that TBBB is a continuous function of πB (2, A) and T
∗
A(2) is continuous in πA (2).

Moreover, if TABB is finite, it is continuous in πB(2, B), otherwise, it is unaffected by suffi-

ciently small changes in πB(2, B). The result then holds by continuity.

Step 3. Given any set of duopoly and triopoly profits such that TBBB < min
{
T ∗A(2), T

AB
B

}
,

there also exist monopoly profits satisfying assumption 1, and in particular such that

πA (1) > πB (1), πA (1) > πA (2) and πB (1) > πB (2, B), for which T 1B < T 1A. To

prove this, consider a profit structure that satisfies assumption 1 and for which TBBB <

min
{
T ∗A(2), T

AB
B

}
. Existence of such a π is guaranteed by step 2. Observe that DB (t) has
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at least one intersection with zero because it is negative at t = 0 and it is positive at TBBB .

Next, consider the difference between the functions DB(t) and DA(t). We show that for

πB(1)− πA(1) positive but sufficiently small, it is positive.

DB(t)−DA(t) =

[πB(1)− πA(1)]

∫ TBBB

t
e−rsds+ [πB(1)− πB(2, A)]

∫ min{T ∗A(2),T
AB
B }

TBBB

e−rsds

−πA(2)

∫ min{T ∗A(2),T
AB
B }

TBBB

e−rsds+
[
c
(
TBBB

)
− c

(
min

{
T ∗A(2), T

AB
B

})]
.

The first term is negative, and vanishes for πA(1) − πB(1) positive but sufficiently small.

The second term is strictly positive. The expression in the third line is strictly positive by

definition of T ∗A (2). To see this, notice that

πA(2)

∫ min{T∗A(2),TABB }

TBBB

e−rsds−
[
c
(
TBBB

)
− c

(
min

{
T ∗A(2), T

AB
B

})]

= πA(2)

∫ +∞

TBBB

e−rsds− c
(
TBBB

)
−

[
πA(2)

∫ +∞

TBBB

e−rsds− c
(
min

{
T ∗A(2), T

AB
B

})
]

and the function πA(2)
∫ +∞
t e−rsds−c (t)) is strictly increasing for t < T ∗A (2), hence also in

the interval from TBBB to min
{
T ∗A(2), T

AB
B

}
. Therefore, we can conclude that for πA(1)−

πB(1) positive but sufficiently small, it holds that DB(t)−DA(t) > 0, hence T
1
B < T

1
A.

Part (b).

Let π̂ be a profit structure that satisfies the model assumptions and induces B−A−B

as the unique equilibrium entry order. Denote by T̂ 1B and T̂ 1A the associated values of T 1B

and T 1A. The proof consists of two steps. Step 1 proves that T̂ 1B < T̂
1
A. Step 2 proves that

for any profit structure satisfying inequalities (i) to (vi), it holds that T 1B < T̂
1
B < T̂

1
A ≤T

1
A,

and hence by Proposition 1 the equilibrium entry order B −A−B is preserved.

Step 1. It has to be the case that T̂ 1B < T̂
1
A because for any profit structure satisfying

the model assumptions, T 1B < T
1
A is a necessary condition to guarantee that the unique

equilibrium entry order is B − A−B. We prove the latter statement by contradiction. If

T 1A < T
1
B, a type B firm cannot be the first entrant in equilibrium. If that were the case, it

would have to be true that DB (t1) ≥ 0. But this implies that A could profitably deviate by

entering at t1−ε. If T
1
A = T

1
B <∞, it is an immediate extension of the proof of Proposition

1 that there are two possible equilibrium outcomes, one with entry order B−A−B and entry
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times t1 = T
1
B, t2 =min

{
T ∗A(2), T

AB
B

}
, t3 = T

∗
B(3), and one with entry order A−B−B and

entry times t1 = T
1
A, t2 =T

BB
B , t3 = T

∗
B(3). Finally, the case T

1
A = T

1
B =∞ cannot occur for

any profit structure. If min
{
T ∗A(2), T

AB
B

}
≤ TBBB , then DA

(
min

{
T ∗A(2), T

AB
B

})
is strictly

positive, hence T 1A is finite. If instead min
{
T ∗A(2), T

AB
B

}
> TBBB , then DB

(
TBBB

)
> 0 and

T 1B is finite.

Step 2. Step 1 proves that T̂ 1B < T̂
1
A. Consider a profit structure π that satisfies the

model assumptions as well as inequalities (i) to (vi). We now prove that the values of T 1B

and T 1A associated to this profit structure satisfy T 1B ≤T̂
1
B and T 1A ≥ T̂

1
A, hence T

1
B < T

1
A

and by Proposition 1 the equilibrium entry order B − A − B is preserved. We first prove

that profit inequalities (i) to (vi) imply T 1B ≤T̂
1
B. Then, we prove that they imply T 1A ≥

T̂ 1A. The roman numbers (i) to (vi) below refer to the conditions of the proposition.

For any finite T 1B, the sign of
dT 1B

dπi(m,−i)
is given by the implicit function theorem:

dT 1B
dπi(m,−i)

= −
dDB (·) /dπi(m,−i)

dDB (·) /dt
= −

dDB (·) /dπi(m,−i)

−πB (1) e
−rT 1

B − c′
(
T 1B
) . (5)

The denominator is positive because T 1B < T
∗
B (1). For the numerator, observe that

dDB(·)
dπA(1)

= 0 and dDB(·)
dπB(1)

=
∫min{T ∗A(2),TABB }
T 1
B

e−rsds ≥ 0. Hence:

(i) expression (5) is null for πi(m,−i) = πA (1) and

(iv) nonpositive for πi(m,−i) = πB (1). Moreover:

dDB (·)

dπi(m,−i)
=

∂DB (·)

∂πi(m,−i)
+

∂DB (·)

∂min
{
T ∗A(2), T

AB
B

} ∂min
{
T ∗A(2), T

AB
B

}

∂πi(m,−i)
+
∂DB (·)

∂TBBB

∂TBBB
∂πi(m,−i)

.

(6)

Notice that ∂DB(·)

∂min{T ∗A(2),TABB }
= [πB (1)− πB (2, A)] e

−rmin{T ∗A(2),TABB } > 0 by assumption

1 and ∂DB(·)

∂TBBB

= πB (2, A) e
−rTBBB + c′

(
TBBB

)
< 0 because TBBB < T ∗B (2, A).

(ii) For πi(m,−i) = πB (2, A), expression (5) is negative because expression (6) is equal

to:
∫ TBBB

min{T ∗A(2),TABB }
e−rsds+

[
πB (2, A) e

−rTBBB + c′
(
TBBB

)]
∫ T∗B(3)
TBB
B

e−rsds

πB(2,A)e
−rTBB

B +c′(TBBB )
which can

be simplified as
∫ T ∗B(3)
min{T ∗A(2),TABB }

e−rsds > 0.

(iii) For πi(m,−i) = πB (3), expression (5) is nonnegative because expression (6) is non-

positive. In particular, the first term in expression (6) null. The second term is nonpositive

because
∂T ∗A(2)
∂πB(3)

is null and
∂TABB
∂πB(3)

= −

[
e−rT

∗
A(3)−e−rT

∗
B(3)

]
/r+

[
πB(3)·e

−rT∗B(3)+c′(T ∗B(3)
]
·
∂T∗B(3)

∂πB(3)

−πB(2,B)e
−rTAB

B −c′(TABB )
< 0.
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The inequality holds because the first term in the numerator is positive, as T ∗A(3) < T
∗
B(3),

and the second term is null by definition of T ∗B(3).

Finally, the last term in expression (6) is negative because
∂TBBB

∂πB(3)
=

∂TBBB

∂T ∗B(3)
·
∂T ∗B(3)
∂πB(3)

=

−
πB(2,A)e

−rT∗B(3)+c′(T∗B(3))

−πB(2,A)e
−rTBB

B −c′(TBBB )
·
∂T ∗B(3)
∂πB(3)

> 0 where the inequality holds because
∂T ∗B(3)
∂πB(3)

< 0, and

both the numerator and the denominator of
∂TBBB

∂T ∗B(3)
are positive because T ∗B(3) > T

∗
B (2, A)

and TBBB < T ∗B (2, A).

(v) For πi(m,−i) = πA (2), expression (5) is nonnegative because expression (6) is non-

positive. In particular, the first term in expression (6) null. The second term is nonpositive

because
∂T ∗A(2)
∂πA(2)

< 0 and
∂TABB
∂πA(2)

is null. Finally, the last term is null because
∂TBBB

∂πA(2)
= 0,

since
∂DBB

B (·)

∂πA(2)
= 0.

(vi) For πi(m,−i) = πB (2, B), expression (5) is nonnegative because expression (6) is

nonpositive. In particular, the first term and the last term in expression (6) are null. The

second term is nonpositive because
∂T ∗A(2)

∂πB(2,B)
is null and

∂TABB
∂πB(2,B)

= −

[
e−rT

AB
B −e−rT

∗
A(3)

]
/r

−πB(2,B)e
−rTAB

B −c′(TABB )
<

0 because both the numerator and the denominator are positive, as TABB ≤ T ∗A(3) and

TABB < T ∗B(2, B).

We conclude that since T̂ 1B is finite and
dT 1B

dπi(m,−i)
is null for πi(m,−i) = πA (1), nonposi-

tive for πi(m,−i) ∈ {πB (1) , πB (2, A)} and nonnegative for πi(m,−i) ∈ {πB (3) , πA (2) , πB (2, B)},

then for any profit structure that satisfies inequalities (i) to (vi) it holds that T 1B ≤T̂
1
B.

Next, consider T 1A. If it is finite, we can find the sign of
dT1A

dπi(m,−i)
using the implicit

function theorem:

dT 1A
dπi(m,−i)

= −
dDA (·) /dπi(m,−i)

dDA (·) /dt
= −

dDA (·) /dπi(m,−i)

−πA (1) e
−rT 1A − c′

(
T 1A
) . (7)

The denominator of expression (7) is positive, because T 1A < T
∗
A (1). For the numerator,

observe that dDA(·)
dπB(1)

= 0 and dDA(·)
dπA(1)

=
∫ TBBB

T 1A
e−rsds ≥ 0. Hence:

(i) expression (7) is nonpositive for πi(m,−i) = πA (1) and

(iv) null for πi(m,−i) = πB (1). Moreover:

dDA (·)

dπi(m,−i)
=

∂DA (·)

∂πi(m,−i)
+

∂DA (·)

∂min
{
T ∗A(2), T

AB
B

} ∂min
{
T ∗A(2), T

AB
B

}

∂πi(m,−i)
+
∂DA (·)

∂TBBB

∂TBBB
∂πi(m,−i)

.

(8)
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Notice that ∂DA

∂min{T ∗A(2),T
AB
B }

= πA (2) e
−rmin{T ∗A(2),T

AB
B } + c′

(
min

{
T ∗A(2), T

AB
B

})
≤ 0

because min
{
T ∗A(2), T

AB
B

}
≤T ∗A(2), and

∂DA(·)

∂TBBB

= [πA (1)− πA (2)] e
−rTBBB > 0.

(ii) For πi(m,−i) = πB (2, A), expression (7) is positive because expression (8) is nega-

tive. In particular, the first term in expression (8) is null. The second is also null because
∂min{T ∗A(2),T

AB
B }

∂πB(2,A)
is null. The third term in (8) is negative because

∂TBBB

∂πB(2,A)
< 0 as shown

above.

(iii) For πi(m,−i) = πB (3), expression (7) is nonpositive because expression (8) is non-

negative. In particular, the first term expression (8) is null. The second term is nonnegative

because
∂T ∗A(2)
∂πB(3)

is null and
∂TABB
∂πB(3)

= −

[
e−rT

∗
A(3)−e−rT

∗
B(3)

]
/r+

[
πB(3)·e

−rT∗B(3)+c′(T ∗B(3)
]
·
∂T∗B(3)

∂πB(3)

−πB(2,B)e
−rTAB

B −c′(TABB )
< 0.

The inequality holds because the first term in the numerator is positive, as T ∗A(3) < T
∗
B(3),

and the second term is null by definition of T ∗B(3). Finally, the last term of expression (8)

is nonnegative because
∂TBBB

∂πB(3)
> 0 as shown above.

(v) For πi(m,−i) = πA (2), expression (7) is nonpositive because expression (8) is

nonnegative. In particular, the first term in (8) is ∂DA(·)
∂πA(2)

=
∫min{T ∗A(2),TABB }
TBBB

e−rsds > 0.

The second term is nonnegative because ∂DA
∂min{T ∗A(2),TABB }

< 0 and
∂min{T ∗A(2),TABB }

∂πA(2)
≤ 0

as shown above. The last term is null because
∂TBBB

∂πA(2)
= 0 as shown above.

(vi) For πi(m,−i) = πB (2, B), expression (7) is nonpositive because expression (8) is

nonnegative. In particular, the first term in expression (8) is null. The second term is

nonnegative because
∂min{T ∗A(2),TABB }

∂πB(2,B)
≤ 0 as shown above.

We conclude that if T̂ 1A is finite, then for any profit structure that satisfies inequalities

(i) to (vi) it holds that T 1A ≥ T̂
1
A, because

dT 1A
dπi(m,−i)

is null for πi(m,−i) = πB (1), nonpos-

itive for πi(m,−i) ∈ {πA (1) , πA (2) , πB (2, B) , πB (3)} and nonnegative for πi(m,−i) =

πB (2, A).

Suppose instead that T̂ 1A is not finite. We observe that by definition of T 1A any change

in a profit parameter that decreases DA (·) leaves T
1
A = ∞. Then, for any profit structure

that satisfies inequalities (i) to (vi) it holds that T 1A= ∞, because dDA(·)
dπi(m,−i)

is null for

πi(m,−i) = πB (1), nonnegative for πi(m,−i) ∈ {πA (1) , πA (2) , πB (2, B) , πB (3)} and

nonpositive for πi(m,−i) = πB (2, A).�
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