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These notes are based on courses given to Masters students in Cambridge and Vienna.
Their scope is the basic theory of Schramm–Loewner evolution, together with some under-
lying and related theory for conformal maps and complex Brownian motion. The structure
of the notes is influenced by our attempt to make the material accessible to students hav-
ing a working knowledge of basic martingale theory and Itô calculus, whilst keeping the
prerequisities from complex analysis to a minimum.
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1 Planar Brownian motion

1.1 Harmonic functions

A region D ⊂ C is called a domain if it is nonempty, open and connected. A real-valued
function u defined on a domain D ⊆ C is harmonic if u is twice continuously differentiable
on D with

∆u =

(
∂2

∂x2 +
∂2

∂y2

)
u = 0

everywhere on D.
Harmonic functions are closely connected to Brownian motion. For instance, subject

to continuity up to the boundary, harmonic functions are entirely determined by their
boundary values; furthermore the unique harmonic function associated to given boundary
values can be computed using a Brownian motion on R2, namely Bt = (B1

t , B
2
t )t>0, where

B1, B2 are independent real-valued Brownian motions.

Theorem 1.1 (Kakutani’s formula). Let u be a bounded harmonic function defined on a
domain D and having a continuous extension to the closure D̄. Fix z ∈ D and let (Bt)t>0

be a complex Brownian motion starting from z. Set T (D) = inf{t > 0 : Bt 6∈ D}, and
suppose that D is regular, i.e., for z ∈ ∂D, Pz(T (D) = 0) = 1. Then

u(z) = Ez(u(BT (D))).

Proof. Suppose for now that u is the restriction to D of a C2 function on C. Denote this
function also by u. Define (Mt)t>0 by the Itô integral

Mt = u(z) +

∫ t

0

∇u(Bs) · dBs.

Then (Mt)t>0 is a continuous local martingale. By Itô’s formula, u(Bt) = Mt for all
t 6 T . Hence the stopped process MT = (MT∧t)t>0 is uniformly bounded and, by optional
stopping,

u(z) = M0 = Ez(MT ) = Ez(u(BT (D))).

For each n ∈ N, the restriction of u to Dn = {z ∈ D : dist(z, ∂D) > 1/n} has a C2

extension to C, regardless of whether u itself does. The preceding argument then shows
that u(z) = Ez(u(BT (Dn))) for all z ∈ Dn. Now T (Dn) ↑ T (D) < ∞ as n → ∞ almost
surely (since D is bounded). Since B is continuous and u extends continuously to D̄, we
obtain the desired identity by bounded convergence on letting n→∞.

In fact, the validity of Kakutani’s formula, even just in the special case where D is a
disc centred at z, turns out to be a useful characterization of harmonic functions.
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Proposition 1.2. Let D be a domain, and let u : D → R be a harmonic function on
D. Then u satisfies the following circle average property: for all z ∈ D and any r ∈
(0, d(z, ∂D)), we have

u(z) =
1

2π

∫ 2π

0

u(z + reiθ)dθ. (1)

Conversely, suppose that u : D → [0,∞] is a measurable function satisfying the circle
average property. Then, either u(z) =∞ for all z ∈ D, or u is harmonic.

Proof. Let z ∈ D and let 0 < r < d(z, ∂D). Set U = B(z, r). Then u is harmonic on U
with a continuous extension to Ū . By Kakutani’s formula,

u(z) = Ez(u(BT (U))),

where T (U) = inf{t > 0 : Bt /∈ U} is the first time B leaves U . However, rotational
invariance of Brownian motion implies that the law of BT (U) is uniformly distributed on
∂U , from which (1) follows.

Conversely, suppose that u is not identically infinite. Let z ∈ D such that u(z) < ∞.
Then for any 0 < r < d(z, ∂D), by (1), we see that u(w) < ∞ almost everywhere on
∂B(z, r) and thus (by Fubini’s theorem), almost everywhere on B(z, r). Let us show that
u coincides with a harmonic function on B(z, r/2). (The result then follows by applying
the same argument inductively for all points in B(z, r/2), eventually covering all of D
by connectedness: more precisely, if x is any other point in D, we can find by path con-
nectedness of D a path connecting x to z, and can cover this path with a finite number
of balls of some fixed radius r/2 such that the corresponding ball of radius r is con-
tained in D, showing that the function u coincides with a harmonic function at x.) Fix
a radially symmetric smooth function φ : R2 → R (where smooth means infinitely differ-
entiable in the sense of real-valued functions), such that suppφ ⊂ B(0, r/2), φ > 0 and∫
R2 φ = 1. Then, since φ is radially symmetric and u satisfies the circle average property,
u(x) = u ? φ(x) =

∫
R2 u(y)φ(x − y)dy for all x ∈ B(z, r/2). As φ is smooth and u is

measurable, the function u ? φ is therefore smooth (infinitely differentiable) in B(z, r/2).
Thus u is infinitely differentiable in B(z, r/2). We may therefore do a Taylor expansion of
u at order 2 near z, and find

u(y) = u(z)+∇u(z) · (y−z)+
1

2
∆u(z)(z−y)2 +

∑
16i 6=j62

∂2u

∂xi∂xj
(yi−zi)(yj−zj)+o(z−y)2,

where the term o(z − y)2 is uniform in B(z, r/2), say. Let us integrate this identity over
∂B(z, ε) and use the circle average property. The term of order 1

1

2πε

∫
∂B(z,ε)

∇u(z) · (y − z)dy =
1

2πε
∇u(z) ·

∫
∂B(z,ε)

(y − z)dy

vanishes by symmetry. Likewise, for 1 6 i 6= j 6 2, the integral of the term containing the
cross derivatives vanishes, because∫

∂B(z,ε)

(yi − zi)(yj − zj)dy = 0
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(consider the reflection of one coordinate, which preserves the uniform distribution on the
circle). We deduce that

u(z) = u(z) +
1

2
ε2∆u(z) + o(ε2).

The only possibility is therefore that ∆u(z) = 0. This concludes the proof.

Lecture 2: Friday 10 March
Kakutani’s formula implies immediately that a harmonic function u on a bounded

domain D, which extends continuously to D̄, cannot exceed the supremum of its values
on the boundary ∂D. Moreover, as we now show, a harmonic function cannot achieve a
maximum value on its domain, unless it is constant.

Theorem 1.3 (Maximum principle). Let u be a harmonic function defined on a domain
D. Suppose there exists a point z ∈ D such that u(w) 6 u(z) for all w ∈ D. Then u is
constant.

Proof. It will suffice to consider the case where u has a finite supremum value m, say, on
D. Consider the set D0 = {z ∈ D : u(z) = m}. Then D0 is relatively closed in D, since
u is continuous. On the other hand, if z ∈ D0, then for ε > 0 sufficiently small, the disc
B(z, ε) of radius ε and centre z is contained in D. So, by Kakutani’s formula

m = u(z) =
1

2π

∫ 2π

0

u(z + εeiθ)dθ.

Since u is continuous and bounded above by m, this implies that w ∈ D0 whenever |w−z| =
ε. Hence D0 is open. Since D is connected, D0 can only be non-empty if it is the whole of
D.

As a corollary we obtain:

Corollary 1.4. Suppose u is a harmonic function on a domain D. Then

sup
z∈D

u(z) = lim
r→0

sup
z:dist(z,∂D)=r

u(z).

Proof. Suppose without loss of generality that u is nonconstant, otherwise the result is
trivial. Let Dr = {z : dist(z, ∂D) > r}. Then u is harmonic on Dr with a continuous
extension to D̄r. By the maximum principle (Theorem 1.3), or directly from Kakutani’s
formula,

f(r) := sup
z∈D̄r

u(z) = max
z∈∂Dr

u(z).

The left hand side is clearly increasing as r decreases to zero, so the right hand side has
a limit as r → 0, let us call it `. We need to show that ` = supu. Clearly, ` 6 supu
from the definition of `. Let ε > 0 and find a point z such that u(z) > m − ε, where
m = supu. As z ∈ D, dist(z, ∂D) > 0 and we can find r > 0 such that z ∈ Dr. Thus
m− ε 6 u(z) 6 f(r) 6 `. As ε > 0 is arbitrary, we deduce ` = m, as desired.
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1.2 Conformal Invariance of Brownian motion

Let D be a domain and let f : D → C. We say that f is holomorphic (or analytic) if,
for all z0 ∈ D, f is differentiable (in the complex sense) at the point z0:

lim
|z|→0

f(z0 + z)− f(z0)

z

exists, in which case we call it f ′(z0). The notion of holomorphicity has a geometric flavour
which should be kept in mind. Namely, using a Taylor expansion, for z ∈ C with |z| small,

f(z0 + z) ≈ f(z0) + zf ′(z0). (2)

Suppose f ′(z0) 6= 0. If we write the complex number f ′(z0) as f ′(z0) = reiθ, then (2) says
that f behaves, locally around the point z0, approximately as a dilation (by a factor r)
and a rotation (with angle θ). In particular, the image of a circle of radius ε around z0

is approximately a circle of radius rε around f(z0). For the same reason the image by f
of two curves which meet at z0 with an angle θ will be two curves meeting at f(z0), with
the same angle. We say that f is conformal (hence a conformal map over a domain D
means a holomorophic function f defined on D such that f ′(z) 6= 0 for all z ∈ D).

If f is a holomorphic function on D, and u = Re(f), v = Im(f), then u, v satisfy the
Cauchy–Riemann equations: {

∂u
∂x

= ∂v
∂y

∂u
∂y

= − ∂v
∂x
.

Differentiating a second time (which turns out to be possible under the assumption that f
is holomorphic), we see that ∆u = ∆v = 0, so u and v are both harmonic on D.

Hence, if f is a bounded holomorphic on a domain D and extends continuously to D̄,
then f may be recovered from its boundary values, just as in Kakutani’s formula: for all
z ∈ D

f(z) = Ez(f(BT (D))) (3)

and we have the estimate
|f(z)| 6 sup

w∈∂D
|f(w)|.

Then a small variation on the argument for the maximum principle leads to the following
result.

Theorem 1.5 (Maximum modulus principle). Let f be a holomorphic function defined on
a domain D. Suppose there exists a point z ∈ D such that |f(w)| 6 |f(z)| for all w ∈ D.
Then f is constant.

A fundamental property of planar Brownian motion is that it is invariant under con-
formal isomorphisms (i.e., one-to-one holomorphic transformations), up to a change of
time. This property is called “conformal invariance of Brownian motion”.
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Theorem 1.6. Let D and D′ be domains and let φ : D → D′ = φ(D) be a conformal
isomorphism. Fix z ∈ D and set z′ = φ(z). Let (Bt)t>0 and (B′t)t>0 be complex Brownian
motions starting from z and z′ respectively. Set

T = inf{t > 0 : Bt 6∈ D}, T ′ = inf{t > 0 : B′t 6∈ D′}.

Set T̃ =
∫ T

0
|φ′(Bt)|2dt and define for t < T̃

τ(t) = inf

{
s > 0 :

∫ s

0

|φ′(Br)|2dr = t

}
, B̃t = φ(Bτ(t)).

Then (T̃ , (B̃t)t<T̃ ) and (T ′, (B′t)t<T ′) have the same distribution.

Figure 1: A Brownian motion stopped upon leaving the unit square, and its image under
a conformal isomorphism.

Proof. Assume for now that D is bounded and φ has a C1 extension to D̄. Then T < ∞
almost surely and we may define a continuous semimartingale1 Z and a continuous adapted
process A by setting

Zt = φ(BT∧t) + (Bt −BT∧t), At =

∫ T∧t

0

|φ′(Bs)|2ds+ (t− (T ∧ t)).

Moreover, almost surely, A is a homeomorphism of [0,∞), whose inverse is an extension
of τ . Denote the inverse homeomorphism also by τ . Write φ = u + iv, Bt = Xt + iYt and
Zt = Mt + iNt. By Itô’s formula, for t < T ,

dMt =
∂u

∂x
(Bt)dXt +

∂u

∂y
(Bt)dYt, dNt =

∂v

∂x
(Bt)dXt +

∂v

∂y
(Bt)dYt

1Here and below, where we use notions depending on a choice of filtration, such as martingale or
stopping time, unless otherwise stated, these are to be understood with respect to the natural filtration
(Ft)t>0 of (Bt)t>0.
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and so, using the Cauchy–Riemann equations,

[dMt, dMt] = |φ′(Bt)|2dt = dAt = [dNt, dNt], [dMt, dNt] = 0.

On the other hand, for t > T ,

dMt = dXt, dNt = dYt, [dMt, dMt] = dt = dAt = [dNt, dNt], [dMt, dNt] = 0.

Hence (Mt)t>0, (Nt)t>0, (M2
t −At)t>0, (N2

t −At)t>0 and (MtNt)t>0 are all continuous local
martingales. Set M̃s = Mτ(s) and Ñs = Nτ(s). Then, by optional stopping, (M̃s)s>0,

(Ñs)s>0, (M̃2
s − s)s>0, (Ñ2

s − s)s>0 and (M̃sÑs)s>0 are continuous local martingales for
the filtration (F̃s)s>0, where F̃s = Fτ(s). Define (Z̃s)s>0 by Z̃s = M̃s + iÑs. Then, by

Lévy’s characterization of Brownian motion, (Z̃s)s>0 is a complex (F̃s)s>0-Brownian motion
starting from z′ = φ(z). Now B̃t = Z̃t for t < T̃ and, since φ is a bijection, T̃ = inf{t > 0 :
Z̃t 6∈ D′}. So we have shown the claimed identity of distributions.

In the cases where D is not bounded or φ fails to have a C1 extension to D̄, choose a
sequence of bounded open sets Dn ↑ D with D̄n ⊆ D for all n. Set D′n = φ(Dn) and set

Tn = inf{t > 0 : Bt 6∈ Dn}, T ′n = inf{t > 0 : B′t 6∈ D′n}.

Set T̃n =
∫ Tn

0
|φ′(Bt)|2dt. Then T̃n ↑ T̃ and T ′n ↑ T ′ almost surely as n→∞. Since φ is C1

on D̄n, we know that (T̃n, (B̃t)t<T̃n) and (T ′n, (B
′
t)t<T ′n) have the same distribution for all n,

which implies the desired result on letting n→∞.

Note that φ(B) would be a time-change of Brownian motion even if φ was not assumed
to be one-to-one. However, in that case, stopping B at the time it leaves D might not
correspond to stopping φ(B) at the time it leaves φ(D) (i.e., it would not necessarily be
true that T̃ = inf{t > 0 : Z̃t 6∈ D′} in the above proof).

1.3 Harmonic measure

Let D be a proper domain of C. Given a point z0 ∈ D, and a Brownian motion B starting
from z0, let TD = inf{t > 0 : Bt /∈ D} be the first time that B leaves D. Suppose that
TD <∞ almost surely. (It is not hard to see this property depends only on D, and not on
z0).

The random variable BTD is an element of ∂D almost surely. By definition, the har-
monic measure in D viewed from z0, is the law of BTD .

Example 1.7. The harmonic measure in the unit disc D = D, viewed from 0, is the
uniform distribution on the unit circle ∂D.

Proof. We start with the observation that Brownian motion is rotationally invariant: that
is, if B is a Brownian motion, then eiθBt is also a Brownian motion. Consequently, if µ
denote the harmonic measure in D viewed from zero, then µ is also rotationally invariant:
that is, µ(I) = µ(eiθI) for any circular arc I ⊂ ∂D. If F (θ) = µ(Iθ), where Iθ is the

9



circular arc between 1 and eiθ for θ ∈ (0, 2π), then F (θ + θ′) = F (θ) + F (θ′) whenever
0 6 θ + θ′ 6 2π. From this and the right continuity of F it follows that F is linear, and
the result follows.

Before our next example it will be useful to review some properties of the Cauchy
distribution.

Definition 1.8. A random variable C with values in R has the Cauchy distribution, if
it has a density with respect to Lebesgue measure given by

fC(x) =
1

π(1 + x2)
;x ∈ R. (4)

Note that fC(x) = fC(−x), i.e., the law of C is symmetric about zero (C and −C have
the same law). The expectation of C is however not well defined. In order to prepare for
our next example, let us compute the Fourier transform of C.

Lemma 1.9. Let C have the Cauchy distribution. Then for any t ∈ R, E(eitC) = e−|t|.

Proof. Observe that

E(eitC) =

∫ ∞
−∞

eitx
1

π(1 + x2)
dx

= lim
R→∞

∫ R

−R
eitx

1

π(1 + x2)
dx, .

by the dominated convergence theorem. Suppose without loss of generality that t > 0. The
integral in the right hand side can be computed using the residue theorem: let γR denote
the closed contour consisting of the interval from −R to R, and the upper-half circle of
radius R. Consider the holomorphic function f(z) = eitz/[π(1 + z2)]. This has a pole of
order 1 at z = i: more precisely,

f(z) =
eitz

π(z + i)(z − i) .

Hence ∮
γR

f(z)dz = 2iπRes(f)|z=i = 2πi× e−t

2iπ
= e−t

However it is easy to check that the contribution of the upper half circle tends to zero
as R → ∞, hence E(eitC) = e−t for t > 0. By symmetry this concludes the proof of the
lemma.

Lecture 3: Friday 17 March
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Example 1.10. Let D = H be the upper half plane, and let z0 = x0 + iy0 ∈ H. Then the
harmonic measure in H viewed from z0, is the measure on R with density with respect to
Lebesgue measure given by

hH(x) =
y0

π

1

(x− x0)2 + y2
0

In other words, µ has the law of a x0 + y0C, where C has the Cauchy distribution.

Proof. There are several ways to see this, but we opt for the following simple argument.
By translation and scale invariance, we suppose without loss of generality that z0 = i, in
which case we aim to show that the harmonic measure µ is the Cauchy distribution. We do
so by identifying the Fourier transforms of the two distributions and invoking the Fourier
inversion theorem (which says that two measures with the same Fourier transform must
be identical).

We have already computed the Fourier transform of the Cauchy distribution. Let us
compute that of the harmonic measure in H viewed from z0 = i. We do so by considering
a suitable complex-valued martingale. Let t > 0, and consider the function f(z) = eitz,
which is clearly holomorphic, and bounded on H since t > 0. By Kakutani’s formula (i.e.,
by (3)),

Ez0(MT (H)) = Ez0(M0) = eitz0 = e−t.

On the other hand left hand side is simply Ei(eitBT (H)) which is the desired Fourier trans-
form. By symmetry, we deduce for all t ∈ R,

Ei(eitBT (H)) = e−|t|,

so the Fourier transform of the harmonic measure in H viewed from i is the same as that
of the Cauchy distribution (see Lemma 1.9).

A fundamental fact about harmonic measure is that they are conformally invariant.
This is a direct consequence of conformal invariance of Brownian motion, in the following
sense.

Theorem 1.11. Let f : D → D′ be a conformal isomorphism. Suppose that f extends
continuously to a continuous homeomorphism from D̄ to D̄′. Let z0 ∈ D and let µ denote
the harmonic measure in D viewed from z0. Let µ′ denote the harmonic measure in D′

viewed from z′0 = f(z0). Then
µ′ = µ ◦ f−1,

i.e., µ′ is the image of µ through the map f .

Proof. This is a direct consequence of Theorem 1.6, and the fact that the location of
particle when it first leaves a domain is independent of the time-parametrisation of the
Brownian curve.
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Example 1.12. Sometimes a conformal isomorphism between two domains can be found
explicitly (we will study this in much more detail soon). For instance, a conformal isomor-
phism from the upper half plane H to the unit disc D is given by

ψH,D(z) =
z − i
z + i

(A justification will be given later). From this, Example 1.7 and Theorem 1.11, we can get
another proof of Example 1.10.

1.4 Example: Spitzer’s law for winding of Brownian motion

Let (Bt∧T , t > 0) denote a Brownian motion, started from z0 = ε ∈ (0, 1), and stopped at
the time T = T (D) when it first leaves the unit disc. By elementary properties of planar
Brownian motion, almost surely this path does not hit zero. We may therefore uniquely
write B in polar coordinates as

Bt = r(t)eiθ(t); 0 6 t 6 T,

where r(0) = ε, θ(0) = 0, and r and θ are continuous real-valued functions on [0, T ].
The value θ(T ) is called the (topological) winding of B around zero, and bθ(T )/(2π)c
represents the net number of full turns that B makes around the origin, counted with a
sign (positive for every counterclockwise turn, negative for every clockwise turn).

What can be said about the law of θ(T ) when ε→ 0? Since the Brownian paths starts
close to zero, we expect that it may have made many turns. The following (in a slightly
different form) is Spitzer’s law.

Theorem 1.13. We have the following identity in law under Pε.

θ(T )

log(1/ε)
= C,

where C has the Cauchy distribution.

Proof. Consider the exponential map z ∈ C 7→ f(z) = ez. This maps the left half of the
plane D = {z ∈ C : Re(z) < 0} to the unit disc. The starting point z0 = ε in the unit disc
corresponds in D to starting the Brownian motion at w0 = − log 1/ε. Let (Wt)t>0 denote
a Brownian motion starting from w0, so Bt = f(Wt) is a (time-changed) Brownian motion
starting from z0. Furthermore, stopping B when it leaves D corresponds to stopping W
when it leaves D. Moreover,

θ(T ) = Im(WT (D)),

where T (D) = inf{t > 0 : Wt /∈ D} is the first time W leaves D. The result follows from
Example 1.10.
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1.5 Green’s function

Let pCt (x, y) denote the transition probability of a Brownian motion B in R2. Thus,

pCt (x, y) = (2πt)−d/2 exp(−|x− y|2/(2t)), (5)

and recall that this is nothing else but the density of the law of Bt (starting from x), with
respect to Lebesgue measure on R2. For D ⊂ R2 an open set, we define pDt (x, y) to be the
transition probability of Brownian motion, killed when leaving D, which is defined as the
density, with respect to Lebesgue measure on R2, of the law of Bt, but restricted to the
event {τD > t}. In other words, by definition, for any Borel set A in R2,

Px(Bt ∈ A, τD > t) =

∫
R2

1A(y)pDt (x, y) dy. (6)

The (almost everywhere, for a fixed t > 0 and a fixed x ∈ R2) existence of a function
satisfying (6) follows directly from the Radon–Nikodym derivative theorem, since it is
clear that if A has zero Lebesgue measure, then Px(Bt ∈ A, τD > t) 6 Px(Bt ∈ A) = 0.

By conditioning on the position at time t of Bt, it is not hard to check that pDt (x, y)
can be expressed rather simply in terms of the whole space transition probabilities in (5)
and the so-called Brownian bridge (bs)06s6t of duration t from x to y, which describes the
law of B, conditionally given B0 = x and Bt = y. Namely, if we denote by Px→y;t this law,
then we see that

Px(Bt ∈ A; τD > t) =

∫
R2

Px→y;t(bt ∈ A; τD > t)pCt (x, y) dy

=

∫
R2

1A(y)Px→y;t(τD > t)pCt (x, y) dy.

Comparing with (6), we deduce that, for every fixed t > 0 and almost every y,

pDt (x, y) = πDt (x, y)pCt (x, y); where πDt (x, y) = Px→y;t(τD > t). (7)

The right hand side is easily seen to be a jointly continuous function in t > 0 and x, y ∈ D̄,
as this is clearly satisfied by both πDt (x, y) and pCt (x, y) separately. For the full plane
transition probabilities, this is immediate from the explicit formula. For the term πDt (x, y),
the continuity is provided by the following lemma.

Lemma 1.14. The quantity πDt (x, y) is symmetric in x, y ∈ D, i.e.: πDt (x, y) = πDt (y, x).
Furthermore, it is jointly continuous in (t > 0, x ∈ D, y ∈ D).

Proof. There are various ways to construct the Brownian bridge. In one dimension, a
Brownian bridge (ωt)06t61 from 0 to 0 of duration 1 is obtained by setting

ωt = Wt − tW1, 0 6 t 6 1

where W is a standard one-dimensional Brownian motion. (That this describes the law
of W conditioned on W1 = 0 follows from the Gaussian structure of the process W .)
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Alternatively, ω can be described as a centered Gaussian process with covariance E(ωsωt) =
s ∧ t − st. We obtain a Brownian bridge in R2 from 0 to 0 of unit duration by setting
Xs = (ω1

s , ω
2
s) for 0 6 s 6 1, where ω1 and ω2 are independent one-dimensional Brownian

bridges of unit duration from 0 to 0. Finally, we obtain the law of a Brownian bridge from
x to y of duration t by Brownian scaling and translation: namely,

bs =
√
tX s

t
+ (1− s

t
)x+ s

t
y, 0 6 s 6 t. (8)

The symmetry is easy to deduce from the fact that (ωs)06s61 and (ω1−s)06s61 have the
same law (i.e., a one-dimensional standard Brownian bridge is reversible). Furthermore,
the law Px,y:t (described by (8)), viewed as a function of x, y ∈ Rd and t > 0, is clearly
jointly continuous in all three parameters (for the Prokhorov metric on path space induced
by uniform convergence). The joint continuity of πDt (x, y) follows from the portmanteau
theorem and the observation that there is probability zero for a Brownian bridge to visit
D̄ but not Dc.

The continuity of πD and pC in all three arguments defines the transition probability
function pDt (x, y) of Brownian motion killed when leaving D uniquely.

Example 1.15. If D = H is the upper half plane, then pDt (x, y) = pCt (x, y) − pCt (x, ȳ) by
the reflection principle.

Clearly, by the Markov property of Brownian motion, the transition probabilities satisfy
the Chapman–Kolmogorov equation:

pDt+s(x, y) =

∫
R2

pDt (x, z)pDs (z, y) dz. (9)

Note also immediately for future reference that, by definition of pDt (x, y) and the mono-
tone class theorem, if φ is any nonnegative Borel function, then

Ex(φ(Bt)1τD>t) =

∫
R2

φ(y)pDt (x, y) dy.

Consequently, by Fubini’s theorem,

Ex(
∫ τD

0

φ(Bs) ds) = Ex(
∫ ∞

0

φ(Bs)1τD>s ds)

=

∫ ∞
0

∫
R2

φ(y)pDs (x, y) dy ds

=

∫
R2

φ(y)(

∫ ∞
0

pDs (x, y) ds) dy. (10)

The time integral, in brackets in the above right hand side, is (up to a factor 1/2) called
the Green function:

14



Definition 1.16 (Continuous Green function). The Green function G(x, y) = GD(x, y) is
defined by

GD(x, y) =
1

2

∫ ∞
0

pDt (x, y) dt (11)

for x 6= y in D.

The factor 1/2 is for normalisation only. Intuitively, the Green function measures the
expected amount of time spent “at” a point y (i.e., near y) before exiting the domain
D. Note in particular that, combining our definition of the Green function with (10), we
obtain:

Ex(
∫ τD

0

φ(Bs) ds) =
1

2

∫
R2

GD(x, y)φ(y) dy. (12)

This agrees with our intuition that the Green function measures the expected amount of
time spent near a point y before leaving the domain D.

Remark 1.17. Different authors choose to normalise the Green function differently. Our
choice is such that (as we will soon see), GD(x, y) = −1/(2π) log |x − y| + O(1). This
is the “natural” choice from an analytic point of view, as GD is then the integral kernel
corresponding to the inverse of (minus) the Laplacian with Dirichlet boundary conditions
on D, without further normalising constants.

On the diagonal it is always the case that GD(x, x) =∞ because of the nonintegrability
of the function 1/t near t = 0. Even away from the diagonal, the function might not be
finite. Consider for instance the case where D = C, or even D = C \ {0} (in which case
the process never leaves D, so pDt (x, y) = pCt (x, y), which is not integrable because the
function 1/t is not integrable either near t = +∞). However, it is not hard to see that if
D is regular, then GD(x, y) <∞ for x 6= y. Here, regular means that ∂D 6= ∅, and starting
from any point z ∈ ∂D, Pz(τD = 0) = 1, i.e., a Brownian motion is guaranteed to leave D
immediately.

Lecture 4: Monday 20 March

Proposition 1.18. Let D be regular. Then the Green function GD satisfies GD(x, y) <∞
for all x 6= y ∈ D. Furthermore, the estimate:

GD(x, y) = − 1

2π
(1 + o(1)) log |x− y|,

holds as y → x.

Remark 1.19. It is possible to obtain more precise estimates on the behaviour of the Green
function near the diagonal. See exercises.

Proof. It is possible to see that because D is a regular domain,

pDt (x, y) 6 ct−1(log t)−2 (13)
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for some constant c = c(x, y) > 0, see Lemma 2.32 in [13] (in fact, the constant c can be
chosen uniformly depending only on the distances from x and y to the boundary.

Since this is an integrable function near t = +∞, we see that for some constant c′ > 0,

GD(x, y) 6 c′ +
1

2

∫ 1

0

pDt (x, y) dt.

Furthermore, clearly, pDt (x, y) 6 pCt (x, y), hence, writing r = |x− y|, and making a change
of variables u = r2/t,

GD(x, y) 6 c′ +

∫ 1

0

e−r
2/(2t) dt

4πt

= c′ +
1

4π

∫ ∞
r2

e−u/2
du

u

= O(1)− log(r2)

4π
= − 1

2π
log |x− y|+O(1).

This gives the desired upper bound. For the lower bound, we simply observe that πDt (x, y)→
1 as t→ 0, and truncate the infinite integral to get a lower bound of the form

GD(x, y) >
1

2

∫ ε

0

pCt (x, y)πDt (x, y) dt,

where ε is arbitrary. We conclude as above.

Proposition 1.20. Let D be regular. Then GD is symmetric: GD(x, y) = GD(y, x).
Furthermore, suppose we fix x ∈ D. Then GD(x, ·) is harmonic on D \ {x}. Finally,
GD(x, y) converges to 0 as y ∈ D converges to a point on the boundary of D.

Proof. The symmetry of GD is a direct consequence of Lemma 1.14. For the harmonicity,
we observe that by symmetry, GD(x, y) = u(y) = GD(y, x) for y ∈ D∗ = D\{x}. Applying
the strong Markov property of Brownian motion at the first hitting time of the sphere
∂B(y, r), where 0 < r < dist(y, ∂D∗), we get

u(y) =
1

2π

∫ 2π

0

u(y + reiθ) dθ.

Thus u satisfies the circle average property on D∗ and is thus harmonic by Proposition 1.2.
For the final point, we recall that by symmetry, pDt (x, y) = pDt (y, x). Suppose yn → b ∈ ∂D.
Then pDt (yn, x)→ pDt (b, x) by continuity. However the latter is zero since D is regular. We
conclude by an application of the dominated convergence theorem and (13).

It turns out that these properties characterise the Green function.

Proposition 1.21. Let D be a regular domain and fix x ∈ D. Suppose that φ is harmonic
in D∗ = D \ {x}, converges to 0 near the boundary, and satisfies φ(y) = −1/(2π)(1 +
o(1) log |x− y| as y → x. Then φ(y) = GD(x, y).
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Proof. Let ε > 0. Let B be a Brownian motion starting from some arbitrary y ∈ D∗, and
for ε > 0 smaller than |y − x|, let

Tε = inf{t > 0 : |Bt − x| 6 ε}.

Then set τε,D = τD ∧ Tε. Since GD(x, ·) and φ(·) are both harmonic functions in D∗, we
deduce that

Mt := GD(x,Bt∧τε,D)− φ(Bt∧τε,D)

is a martingale. It is furthermore bounded. We can thus apply the optional stopping
theorem:

Ey(M0) = Ey(MTε∧τD).

The left hand side equals GD(x, y)−φ(y). It thus suffices to show that the right hand side
converges to 0. Since GD(x, ·) and φ(·) both satisfy the same boundary conditions on ∂D,
the only contribution to the right hand side comes from the event Tε < τD. On that event,
by assumption on φ and Proposition 1.18, MTε∧τD = o(log 1/ε). Hence

GD(x, y)− φ(y) = o(log 1/ε)Py(Tε < τD).

We conclude the proof by noting that the probability in the right hand side is at most
O(1/ log(1/ε)).

An immediate corollary of the proof is the following formula:

Corollary 1.22. For a regular domain D and z0 ∈ D, we have

GD(z0, z) =
1

2π

(
− log |z − z0|+ Ez[log |BT (D) − z0|]

)
This follows since the right hand side is clearly harmonic away from z0, has zero bound-

ary conditions, and blows logarithmically with the right constant as z → z0.

We now come to a fundamental property of the Green function in two dimensions,
which is its invariance under conformal maps. In a sense this is a consequence of the
invariance of Brownian motion under conformal maps, up to a change of time. Yet the
Green function seems at first sight sensitive to the time-parametrisation of the Brownian
curve, since informally it measures the expected time spent near a point before leaving the
domain. From that perspective the result below is at first a little surprising.

Theorem 1.23 (Conformal invariance of the Green function). Let D,D′ ⊂ C be two
domains. Suppose that f : D → D′ = f(D) is a conformal isomorphism (i.e., holomorphic
and one-to-one). Then

Gf(D)(f(x), f(y)) = GD(x, y).
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Proof. The proof is a simple application of the change of variable formula. Let φ be a
smooth test function supported in D, and let x′ = f(x). Then, by (12),∫

D′
GD′(x

′, y′)φ(y′) dy′ = Ex′(
∫ τ ′

0

φ(B′s) ds)

where B′ is a Brownian motion and τ ′ is its exit time from D′ = f(D). On the other hand,
the change of variable formula applied to the left hand side gives us, letting y′ = f(y) (a
change of variable whose Jacobian derivative evaluates to dy′ = |f ′(y)|2 dy):∫

D′
GD′(x

′, y′)φ(y′) dy′ =

∫
D

GD′(f(x), f(y))φ(f(y))|f ′(y)|2 dy. (14)

Now let us compute the left hand side in a different way, using the conformal invariance of
Brownian motion discussed above. This allows us to write B′s = f(BF−1(s)); moreover, in
this correspondence one has τ ′ = F−1(τD). We apply the change of variable formula, but
now to the time parameter t = F−1(s), or (since F−1 is the inverse of F ), s = F (t). The
Jacobian derivative is thus

ds = F ′(t) dt = |f ′(Bt)|2 dt,

by definition of F and the fundamental theorem of calculus. Thus,

Ex′(
∫ τ ′

0

φ(B′s) ds) = Ex(
∫ F−1(τ)

0

φ(f(BF−1(s))) ds)

= Ex(
∫ τ

0

φ(f(Bt))|f ′(Bt)|2 dt)

=

∫
D

GD(x, y)φ(f(y))|f ′(y)|2 dy. (15)

Identifying the right hand sides of (14) and (15), since the test function φ is arbitrary, we
conclude that

GD′(f(x), f(y)))|f ′(y)|2 = GD(x, y)|f ′(y)|2

first as distributions, thus as functions. The result follows by cancelling the factors of
|f ′(y)|2 on both sides.

Remark 1.24. Having done the proof, it is now a posteriori easier explain the invariance of
the Green function under conformal maps. When we apply the change of variables spatially,
we pick up a term |T ′(y)|2 from the change of variable, because we are in dimension d = 2.
When we apply it temporally, we pick up another term |T ′(y)|2 from Itô’s formula. The fact
that these two factors match exactly is what gives the conformal invariance of the Green
function.

From this perspective the conformal invariance of the Green function is unique to the
case of dimension d = 2. In other dimensions, the Green function would not even be
invariant under scalings z 7→ rz (even though this leaves Brownian motion invariant up to
time change in any dimension).
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Example 1.25. In the unit disc D = D, if x = 0 and y ∈ D with y 6= x, then GD(0, y)
depends only on the modulus |y| of y, since GD(0, ·) is invariant under rotation (which is
a conformal map).

In fact, we can compute the Green function in the unit disc explicitly:

Proposition 1.26. We have

GD(0, y) = − 1

2π
log |y|.

Proof. This either follows from Corollary 1.22 and rotational symmetry, or the following
scale invariance argument. Set f(r) = GD(0, y) for |y| = r. We will check that for every
0 < r, s 6 1:

f(rs) = f(r) + f(s). (16)

To see this, fix 0 6 r 6 1. Then for z ∈ B(0, r),

φ(z) = GD(0, z)− f(r)

is a harmonic function in B(0, r) \ {0}, converges to 0 at the boundary of ∂B(0, r), and
satisfies φ(z) = −1/(2π)(1 + o(1)) log(1/|z|) as z → 0 by Proposition 1.18. Thus by
Proposition 1.21, φ(z) is the Green function in B(0, r). But this is scale invariant. Thus
φ(z) = f(|z|/r) by Theorem 1.23. Hence if |z| = rs, f(rs)− f(r) = f(s), which is (16).

From (16) and the continuity of f (a consequence of Proposition 1.20), we deduce that

f(r) = α log r; 0 < r 6 1,

for some α ∈ R. We deduce α = −1/(2π) by considering the behaviour near r = 0 (and
Proposition 1.18).
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Lecture 5: Friday 24 March

2 Riemann Mapping Theorem

We review the notion of conformal isomorphism of complex domains and discuss the ques-
tion of existence and uniqueness of conformal isomorphisms between proper simply con-
nected complex domains. Then we illustrate, by a simple special case, Loewner’s idea of
encoding the evolution of complex domains using a differential equation.

2.1 Statement

We shall be concerned with certain sorts of subsets of the complex plane C and mappings
between them. Recall that a set D ⊆ C is a domain if it is non-empty, open and connected.
We say that D is simply connected if every continuous map γ of the circle ∂D = {z ∈ C :
|z| = 1} into D is the restriction of a continuous map ψ of the disc D̄ = {z ∈ C : |z| 6 1}
into D. In fact it suffices that this property holds for piecewise smooth (or even polygonal)
simple loops (i.e. for every injective map γ from the circle to D).

A convenient criterion for a domain D ⊆ C to be simply connected is that its comple-
ment in the Riemann sphere C ∪ {∞} is connected. A domain is proper if it is not the
whole of C.

Example 2.1. The open unit disc D = {|z| < 1}, the open upper half-plane H = {Re(z) >
0}, and the open infinite strip S = {0 < Im(z) < 1} are all examples of proper simply
connected domains (note that in the latter case, the complement Sc is connected in C∪{∞}
but not in C). The annulus A = B(0, R) \B(0, r) is connected but not simply connected.

The following elementary property of simply connected domains will be useful in our
proof of the Riemann mapping theorem:

Lemma 2.2. Every proper simply connected domain D is regular, in the sense that if
b ∈ ∂D and T (D) = inf{t > 0 : Bt /∈ D}, then Pb(T (D) = 0) = 1.

Proof. This comes from a simple zero-one argument. Let b ∈ ∂D. Note that Dc can not
be reduced to b (otherwise D = C \ {b} and is not simply connected). Thus there exists
ζ 6= b with ζ ∈ Dc. Since Dc is connected we can find a curve (in the Riemann sphere
Ĉ = C ∪ {∞} connecting b and ζ. By cutting this curve if necessary, we see that there
exists a curve γ in C\D such that one end point is b. Let ε > 0 be such that diam(γ) > ε.
Let us now check that starting a Brownian motion from b, Pb(T (D) = 0) = 1. Note
that by Blumenthal’s zero-one law, it suffices to show that this probability is positive.
Consider the event En that the Brownian motion makes a loop in the ball Bn = B(b, 2−n)
which disconnects its center b from its boundary, before leaving this ball. Then letting
E = lim infn→∞En = ∩n>1 ∪m>n En be the event that En occurs infinitely often,

{T (D) = 0} ⊃ E,
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since if the Brownian motion makes a loop around b in Bn it is guaranteed to hit the curve
γ and thus to have left D before leaving Bn. On the other hand, by monotonicity,

Pb(E) = lim
n→∞

Pb(∪m>nEm) > lim inf
n→∞

Pb(En).

But by scale invariance, Pb(En) does not depend on n and is positive. This concludes the
proof.

Recall that a holomorphic function f on a domain D is a conformal map if f ′(z) 6= 0
for all z ∈ D. We call a bijective conformal map f : D → D′ a conformal isomorphism. In
this case, the image D′ = f(D) is also a domain and the inverse map f−1 : D′ → D is also
a conformal map. Every conformal map is locally a conformal isomorphism. The function
z 7→ ez is conformal on C but is not a conformal isomorphism on C because it is not
injective. The following result, Riemann’s mapping theorem, is fundamental to geometric
function theory as well as to SLE theory.

Theorem 2.3 (Riemann mapping theorem). Let D be a proper simply connected domain.
Then there exists a conformal isomorphism φ : D → D. In fact, given z0 ∈ D, we can find
such a conformal isomorphism such that φ(z0) = 0.

This theorem can be used to work out properties of conformally invariant objects (har-
monic measure, harmonic functions, Brownian motion, Green function) on arbitrary proper
simply connected domains from the analogous properties on given concrete simply con-
nected domains such as the upper half plane or the unit disc, where these objects are often
more concrete.

Proof. Let D be a proper simply connected domain, and z0 ∈ D. We will prove that there
is a conformal isomorphism φ sending z0 to 0 and get an “explicit” expression for φ. Let
B be a Brownian motion starting from z0, and as usual let T (D) denote the exit time of D
by B. By Lemma 2.2, we know that D is regular, i.e., if b ∈ ∂D then Pb(T (D) = 0) = 1.
We will show that we can find a conformal isomorphism sending z0 to 0. We define the
following function

u(z) = Ez[log |BT (D) − z0|],
which we already encountered in Corollary 1.22. Note that u is harmonic in all of D by
Kakutani’s formula (Theorem 1.1). Since D is simply connected, there exists a (unique up
to additive constant) harmonic function v on D such that f = u+ iv is holomorphic.

Now consider
φ(z) = (z − z0)e−f(z).

Let us check that φ satisfies the required properties. First, φ is holomorphic since f is. Let
us check that if z ∈ D then φ(z) ∈ D. To see this, recall that by the maximum modulus
principle (Theorem 1.5), the maximum modulus of the harmonic function φ is attained
on the boundary. But by Corollary 1.22, |φ(z)| = e−2πGD(z0,z). Thus as z → b ∈ ∂D,
GD(z0, z)→ 0 and |φ(z)| → 1. In particular, f(z) ∈ D for all z ∈ D.

Let us check that φ is one-to-one. For this we will use Rouché’s theorem:
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Lemma 2.4. Suppose f and g are analytic functions in a simply connected domain U .
Let N (f ;U) denote the number of zeros of f (counted with multiplicity) in U . Suppose
|f(z)| < |g(z)| for z ∈ ∂U . Then N (f ;U) = N (f + g;U).

Figure 2: Occupation measure (in two different domains) by many Brownian motions,
approximating the Green function. The level lines are the equipotentials, which describe
the Riemann map. Simulations by Oskar Koiner.

Furthermore we have N (φ;D) = 1. Indeed, ef(z) can never equal zero so the only zero
of φ, even counting multiplicity, is attained at z0. Now fix w ∈ D. Since |w| < 1 and
|φ| = 1 on ∂D, we deduce that by Rouché’s theorem that N (φ;D) = N (φ − w;D) = 1.
We deduce that φ−1(w) consists of exactly a single point. In other words, since w ∈ D was
arbitrary, we see that φ is one-to-one.

Remark 2.5. Let D be a proper simply connected domain. For a given z0 ∈ D and r > 0,
the level sets of the Green function, namely

γr = {z ∈ D : GD(z0, z) = r}
are called the equipotential curves. If we imagine that a point charge is placed at z0, this
will induce an electric potential at every point in space. We can wire the outside of Dc

to maintain the electric potential fixed (say equal to 0) on ∂D. Then γr corresponds to
the regions where the electrostatic potential is constant equal to some fixed value (this is
because in two dimensions, the electric potential induced by a point charge is proportional
to log |z0 − ·|, whereas in three dimensions it would be given by the harmonic function
1/|z0 − ·|). The conformal map constructed in the proof of the preceding theorem has the
property that it takes the equipotentials of (D, z0) to those of (D, 0), namely, concentric
circles. This corresponds to Riemann’s original intuition (the result was part of his 1851
PhD dissertation). However Riemann’s original proof was considered flawed; modern proofs
typically presented in undergraduate courses today tend to be rather different.

22



We shall discuss ways to specify a unique choice of conformal isomorphism φ : D → D
or φ : D → H in the next two sections. In general, there is no exact usable formula for φ in
terms of D. Nevertheless, we shall want to derive certain properties of φ from properties
of D. We shall see that Brownian motion provides a useful tool for this.

2.2 Möbius transformations

A Möbius transformation is any function f on C ∪ {∞} of the form

f(z) =
az + b

cz + d
(17)

where a, b, c, d ∈ C and ad − bc 6= 0. Here f(−d/c) = ∞ and f(∞) = a/c. Hence f is
nonconstant (whereas if ad− bc = 0 then f is clearly constant); in fact, it is easy to check
that f is a bijection from Ĉ = C ∪ {∞} to itself, hence f is a homeomorphism from Ĉ to
itself, and is clearly analytic on C \ {−d/c}.

Möbius transformations form a group under composition. This group is generated by
translations (z 7→ z + c for some c ∈ C), rotations (z 7→ eiθz for some θ ∈ R), scalings
(z 7→ az for some a > 0), and the inversion map z 7→ 1/z. A Möbius map transforms every
generalised circle exactly to a generalised circle (where generalised circle is either a circle or
an infinite line). This is straightforward for translations, scaling and rotations, and must
be checked by calculation for the inversion map. (Möbius maps can thus be thought of as
“perfect” conformal maps).

Example 2.6. Define the Möbius map Ψ by

Ψ(z) =
i− z
i+ z

.

Note that Ψ maps H to D, since if x ∈ R, |ψ(x)| = 1. Thus the restriction of Ψ to H is a
conformal isomorphism from H to D.

Example 2.7. A Möbius transformation f restricts to a conformal automorphism of H if
and only if we can write (17) with a, b, c, d ∈ R, and ad− bc > 0 (we may assume without
loss of generality ad− bc = 1).

To see this, note that when a, b, c, d ∈ R then f maps R to R hence H to H or −H.
Considering the image of iy we see that when ad − bc > 0 we are in the former case.
Conversely, if f is such a map then since it sends the real line to itself we must have
f(0) = b/d ∈ R, f(∞) = a/c ∈ R and f−1(0) = −b/a ∈ R and f−1(∞) = −d/c ∈ R, so
a, b, c and d are all real. The result follows.

The following lemma is a basic result of complex analysis.

Lemma 2.8 (Schwarz lemma). Let f : D → D be a holomorphic function with f(0) = 0.
Then |f(z)| 6 |z| for all z. Moreover, if |f(z)| = |z| for some z 6= 0, then f(w) = eiθw for
all w, for some θ ∈ [0, 2π).
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Proof. Let f : D → D be a holomorphic function with f(0) = 0. Consider the function
g(z) = f(z)/z. By Taylor’s theorem, g is analytic and hence holomorphic in D. Fix z ∈ D
and r ∈ (|z|, 1). Then by the maximum principle

|g(z)| 6 sup
|w|=r
|g(w)| 6 1

r
.

Letting r → 1, we get |g(z)| 6 1 and hence |f(z)| 6 |z| for all z ∈ D. If |f(z)| = |z| for
some z 6= 0, then |g(z)| = 1, say g(z) = eiθ. Then g is constant on D by the maximum
modulus principle, so f(w) = eiθw for all w ∈ D.

For θ ∈ [0, 2π) and w ∈ D, define Φθ,w on D by

Φθ,w(z) = eiθ
z − w
1− w̄z . (18)

Then Φθ,w is a conformal automorphism of D and is the restriction of a Möbius transfor-
mation to D. Indeed, for |z| = 1 one can check (by expanding the terms) that |z − w|2 =
|1− w̄z|2 and so |Φθ,w(z)| = 1.

Corollary 2.9. Let φ be a conformal automorphism of D. Set w = φ−1(0) and θ =
arg φ′(w). Then φ = Φθ,w. In particular φ is the restriction of a Möbius transformation to
D and extends to a homeomorphism of D̄.

Proof. Set f = φ ◦ Φ−1
0,w. It suffices to check that f is a rotation, i.e., f(z) = eiαz for some

α ∈ [0, 2π). Note that f is a conformal automorphism of D and f(0) = 0. Pick u ∈ D\{0}
and set v = f(u). Note that v 6= 0. Now, either |f(u)| = |v| > |u| or |f−1(v)| = |u| > |v|.
In any case, by the Schwarz lemma, either f is a rotation or f−1 is a rotation. Either way,
f is a rotation.

We now explain how Schwarz’s lemma gives us a first form of uniqueness for the Rie-
mann mapping theorem.

Corollary 2.10. Let D be a proper simply connected domain and let w ∈ D. Then there
exists a unique conformal isomorphism φ : D → D such that φ(w) = 0 and arg φ′(w) = 0.

Proof. By the Riemann mapping theorem there exists a conformal isomorphism φ0 : D →
D. Set v = φ0(w) and θ = − arg φ′0(w) and take φ = Φθ,v ◦ φ0. Then φ : D → D is a
conformal isomorphism with φ(w) = 0 and arg φ′(w) = 0. If ψ is another such conformal
isomorphism, then f = ψ ◦ φ−1 is a conformal automorphism of D with f(0) = 0 and
arg f ′(0) = 0, so f = Φ0,0 which is the identity function. Hence φ is unique.

Lecture 6: Monday 27 March
The next corollary identifies the conformal automorphisms of H fixing ∞.

Corollary 2.11. Let φ be a conformal automorphism of H. If φ(∞) = ∞, then φ(z) =
σz + µ for all z ∈ H, for some σ > 0 and µ ∈ R. If φ(∞) = ∞ and φ(0) = 0, then
φ(z) = σz for all z ∈ H, for some σ > 0.
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Proof. Set µ = φ(0) and σ = φ(1)−φ(0). Since Ψ◦φ◦Ψ−1 is a conformal automorphism of
D, and hence by Corollary 2.9 a Möbius transform. Thus φ itself is a Möbius transformation
of H, so φ(z) = (az + b)/(cz + d) for all z ∈ H, for some a, b, c, d ∈ R with ad − bc = 1,
and φ extends to a homeomorphism of Ĉ. Since φ(∞) = ∞ we must have c = 0, and we
obtain the result with µ = b/d and σ = a/d > 0.

2.3 Martin boundary

Given a simply connected domain D, the Riemann mapping theorem gives us the existence
of a conformal isomorphism from D to D. Often the behaviour of this map near the
boundary of D will be of interest to us, or the behaviour of its inverse g = f−1 near the
boundary of D. Note that there are examples (which arise frequently in practice and in
particular in these notes) of simply connected domains D such that f cannot be extended
continuously to ∂D; and examples where g = f−1 cannot be extended continuously. The
boundary behaviour of conformal isomorphisms is a topic which has been analysed in
considerable depth, and is the subject of the reference book by Pommerenke, [16]. We
will not develop the full theory here, and instead quickly develop the notion of Martin
boundary, which is a useful way of addressing some problems.

The Martin boundary is a general object of potential theory2. We shall however limit
our discussion to the case of harmonic functions in a proper simply connected complex
domain D. In this case, the Riemann mapping theorem, combined with the conformal in-
variance of harmonic functions, allows a very simple approach. Make a choice of conformal
isomorphism φ : D → D. We can define a metric dφ on D by dφ(z, z′) = |φ(z) − φ(z′)|.
Then dφ is locally equivalent to the original metric but possibly not uniformly so. Say that
a sequence (zn : n ∈ N) in D is D-Cauchy if it is Cauchy for dφ. Since every conformal
automorphism of D extends to a homeomorphism of D̄, this notion does not depend on the
choice of φ.

Definition 2.12. Write D̂ for the completion of D with respect to the metric3 and define
the Martin boundary δD = D̂ \D.

The set D̂ does not depend on the choice of φ and nor does its topology. This construc-
tion ensures that the map φ extends uniquely to a homeomorphism D̂ → D̄. It follows then
that every conformal isomorphism ψ of proper simply connected domains D → D′ has a
unique extension as a homeomorphism D̂ → D̂′. We abuse notation in writing φ(z) for the
value of this extension at points z ∈ δD. Write ∂D for the boundary of D as a subset of
C, that is the set of limit points of D in C, which in general is not identifiable with δD.
For b ∈ δD, we say that a simply connected subdomain N ⊆ D is a neighbourhood of
b in D if {z ∈ D : |z − φ(b)| < ε} ⊆ φ(N) for some ε > 0.

Example 2.13. A sequence (zn : n ∈ N) in H is H-Cauchy if either it converges in C or
|zn| → ∞ as n→∞. Thus we identify δH with R ∪ {∞}.

2See for example [5]
3This is the set of equivalence classes of D-Cauchy sequences z = (zn : n ∈ N), where z ∼ z′ if

(z1, z
′
1, z2, z

′
2, . . . ) is also a D-Cauchy sequence.
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D

ϕ

Figure 3: Two distinct points of δD and their images under ϕ.

Example 2.14. For the slit domain D = H \ (0, i] and, for z ∈ [0, i), the sequences
(z + (1 + i)/n : n ∈ N) and (z + (−1 + i)/n : n ∈ N) are D-Cauchy but are not equivalent,
so their equivalence classes z+ and z− are distinct Martin boundary points.

Example 2.15. Let D be a simply connected domain, and let z ∈ D. Consider a Brownian
motion B starting from z. Then almost surely, as t ↑ T (D) = inf{t > 0 : Bt /∈ D},
Bt → b =: B̂T ∈ δD.

This makes it possible to view the harmonic measure defined in Section 1.3 as a mea-
sure on δD instead of on ∂D. For instance, we then have conformal invariance of harmonic
measure (Theorem 1.11) without assuming that the map extends to a continuous homeo-
morphism between the closures of the two domains.

Corollary 2.16. Let D be a proper simply connected domain and let b1, b2, b3 ∈ δD, ordered
anticlockwise. Then there exists a unique conformal isomorphism φ : D → H such that
φ(b1) =∞, φ(b2) = 0 and φ(b3) = 1.

Proof. Let us start by uniqueness. Suppose that φ1, φ2 are two such conformal isomor-
phisms. Then f = φ1 ◦ φ−1

2 : H→ H is a conformal automorphism, fixing 0, 1 and ∞. By
Corollary 2.11, f(z) = σz for some σ > 0. But since f(1) = 1 we have f(z) = z or φ1 = φ2.

Now let us check existence. Let φ be a conformal isomorphism from D to H. We will
transform φ by applying successively Möbius maps until b1, b2 and b3 are mapped to their
respective targets. Let x1 = φ(b1), with x1 ∈ R ∪ {∞}. If x1 6=∞ we apply a translation
z 7→ z − x1, followed by the inversion z 7→ 1/z; in other words we let φ1 = T1 ◦ φ with
T1(z) = 1/(z − x1). Then φ1(b1) = ∞. Now we move to b2; let x2 = φ1(b2) and note
that x2 ∈ R (and in particular x2 6=∞). Consider the translation T2(z) = z − x2, and set
φ2 = T2 ◦ φ1. Then φ2(b2) = 0, and φ2(b1) = ∞. It remains to deal with b3. Since b1, b2

and b3 are ordered anticlockwise we have φ2(b3) = x3 ∈ (0,∞). Let T3(z) = z/x3, and set
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φ3 = T3 ◦φ2. Then φ3 is a conformal isomorphism from D to H, with the desired boundary
conditions.

Note that in both Corollary 2.10 and Corollary 2.16, we obtain uniqueness of the
conformal map by the imposition of three real-valued constraints. An intuitive way to
understand this is that any two conformal isomorphisms from D → H (say) differ by a
conformal automorphism from H to H. This is parameterised by four (real) parameters
a, b, c, d ∈ R but one is redundant by scaling (i.e., we can always assume ad − bc = 1
without loss of generality).

Finally, although we will not use this, we note that the boundary behaviour is somewhat
simpler if the domain D is a so-called Jordan domain. A Jordan curve is a continuous
injective map γ : ∂D → C. Say D is a Jordan domain if ∂D is the image of a Jordan
curve. It can be shown in this case that any conformal isomorphism D → D extends to a
homeomorphism D̄ → D̄, so we can identify δD with ∂D (see Theorem 2.6 in [16]).

2.4 SLE0

This section and the next are for orientation only, and do not form part of the theoretical
development. We will explain Loewner’s method for describing a particularly simple path
γ in the upper half plane, namely the straight line going from 0 to ∞ (a nicer and more
useful way of describing this path is as a geodesic connecting 0 and ∞ for the hyperbolic
metric in the upper-half plane). While the method initially appears complicated for such
a simple path, this method will generalise seamlessly to the complicated case of SLE.

Consider the (deterministic) process (γt)t>0 in the closed upper half-plane H̄ given by

γt = 2i
√
t.

This process belongs to the family of processes (SLEκ : κ ∈ [0,∞)) to which these notes
are devoted, corresponding to the parameter value κ = 0. Think of (γt)t>0 as progressively
eating away the upper half-plane so that the subdomain Ht = H \Kt remains at time t,
where Kt = γ(0, t] = {γs : s ∈ (0, t]}. There is a conformal isomorphism gt : Ht → H given
by

gt(z) =
√
z2 + 4t

which has the following asymptotic behaviour as |z| → ∞

gt(z) = z +
2t

z
+O(|z|−2).

In particular gt(z)− z → 0 as |z| → ∞. As we shall show in Proposition 3.3, there is only
one conformal isomorphism Ht → H with this last property. Thus we can think of the
family of maps (gt)t>0 as a canonical encoding of the path (γt)t>0.

Consider the vector field b on H̄ \ {0} defined by

b(z) =
2

z
=

2(x− iy)

x2 + y2
.
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Fix z ∈ H̄ \ {0} and define

ζ(z) = inf{t > 0 : γt = z} =

{
y2/4, if z = iy

∞, otherwise.

Then ζ(z) > 0, and z ∈ K̄t if and only if ζ(z) 6 t. Set zt = gt(z). Then for t < ζ(z)

żt =
2√

z2
t + 4t

= b(zt) (19)

and, if ζ(z) < ∞, then zt → 0 as t → ζ(z). Thus (gt(z) : z ∈ H̄ \ {0}, t < ζ(z)), the
conformal map characterising γ[0, t], is also the (unique) maximal flow of the vector field
b in H̄ \ {0}. By maximal we mean that (zt : t < ζ(z)) cannot be extended to a solution of
the differential equation on a longer time interval.

2.5 Loewner evolutions

Think of SLE0 as obtained via the associated flow (gt)t>0 by iterating continuously a map
gδt, which nibbles an infinitesimal piece (0, 2i

√
δt] of H near 0. Charles Loewner, in the

1920’s, studied complex domains Ht = H \ γ(0, t] for more general curves (γt)t>0, by a
similar continuous iteration of conformal maps, obtained now by considering the flow of a
time-dependent vector field H̄ of the form

b(t, z) =
2

z − ξt
, t > 0, z ∈ H.

Here, (ξt : t > 0) is a given continuous real-valued function, which is called the driving
function or Loewner transform of the curve γ. We shall study this flow in detail below,
showing that it always provides a construction of a family of domains (Ht : t > 0), and
sometimes also a path γ. Note that the flow lines (gt(z))t>0 for SLE(0) separate, left
and right, each side of the singularity at 0, with the path (γt)t>0 growing up between the
left-moving flow lines and the right-moving ones. In the general case, assuming that the
qualitative picture remains the same, when we move the singularity point ξt to the left, we
may expect that some left-moving flow lines are deflected to the right, so the curve (γt)t>0

turns to the left. Moreover, the wilder the fluctuations of (ξt)t>0, the more convoluted we
may expect the resulting path (γt)t>0 to be.

Oded Schramm, in 1999, realized that for some conjectured conformally invariant scal-
ing limits (γt)t>0 of planar random processes, with a certain spatial Markov property, the
process (ξt)t>0 would have to be a Brownian motion, of some diffusivity κ. The asso-
ciated processes (γt)t>0 were at that time totally new and have since revolutionized our
understanding of conformally invariant planar random processes.
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Lecture 7: Monday 17 April

3 Compact H-hulls and their mapping-out functions

A subset K of the upper half-plane H is called a compact H-hull if K is bounded and
H = H \K is a simply connected domain. We shall associate to K a canonical conformal
isomorphism gK : H → H, the mapping-out function of K. At the same time we associate
to K a real constant aK , which we will identify as the half-plane capacity of K. These are
all basic objects of Loewner’s theory, or more precisely of its chordal variant, where we
consider evolution of hulls in a given domain towards a chosen boundary point. We shall
see later that the theory has a property of conformal invariance which allows us to reduce
the general case to the study of the special domain H with∞ as the boundary point, which
is mathematically most tractable.

K

H = H \K

Figure 4: A compact H-hull.

3.1 Extension of conformal maps by reflection

We start by explaining how a conformal isomorphism φ : D → H can be extended analyt-
ically to suitably regular parts of the boundary ∂D. We have already seen that φ extends
continuously to the Martin boundary but now we want more regularity. The idea is to
reflect the domain across the boundary. Given a proper simply connected domain D ⊆ H,
define

D0 = {x ∈ R : D is a neighbourhood of x in H}, D∗ = D ∪D0 ∪ {z̄ : z ∈ D}.

More generally, for any open set U ⊆ D0, define

D∗U = D ∪ U ∪ {z̄ : z ∈ D}.
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As U varies, the sets D∗U are exactly the open sets which are invariant under conjugation
and whose intersection with H is D. Say that a function f ∗ : D∗U → C is reflection-invariant
if

f ∗(z̄) = f ∗(z), z ∈ D∗U .
Given a continuous function f on D, there is at most one continuous, reflection-invariant
function f ∗ on D∗U extending f . Then f ∗ is the continuous extension by reflection of f .
Such an extension f ∗ exists exactly when f has a continuous extension to D ∪ U which
is real-valued on U . Any continuous extension by reflection of a holomorphic function is
holomorphic, by an application of Morera’s theorem. This is called the Schwarz reflection
principle.

Proposition 3.1. Let D ⊆ H be a simply connected domain. Let I be a proper open subin-
terval of R with I ⊆ D0 and let x ∈ I. Then there exists a unique conformal isomorphism
φ : D → H which extends to a homeomorphism D ∪ I → H ∪ (−1, 1) taking x to 0. In
particular I is naturally identified with an interval of the Martin boundary δD. Moreover
φ extends further to a reflection-invariant conformal isomorphism φ∗ : D∗I → H∗(−1,1).

Proof (?). Note thatD∗I and H∗(−1,1) are proper simply connected domains. By the Riemann
mapping theorem, there exists a unique conformal isomorphism φ∗ : D∗I → H∗(−1,1) with

φ∗(x) = 0 and arg(φ∗)′(x) = 0. Define ρ : D∗I → H∗(−1,1) by ρ(z) = φ∗(z̄). Then ρ is

a conformal isomorphism with ρ(x) = 0 and arg ρ′(x) = 0. Hence ρ = φ∗ and so φ∗ is
reflection-invariant. Then φ∗(I) ⊆ (−1, 1) and (φ∗)−1(−1, 1) ⊆ I, so φ∗(I) = (−1, 1). Now
φ∗(D) is connected and does not meet (−1, 1). Since arg(φ∗)′(x) = 0, by considering a
neighbourhood of x, we must have φ∗(D) ⊆ H. The same argument shows that (φ∗)−1(H) ⊆
D, so φ∗(D) = H. Hence φ∗ restricts to a conformal isomorphism φ : D → H with the
required properties.

On the other hand, any map ψ with these properties has a continuous extension ψ∗ by
reflection to D∗I , which is a bijection to H∗(−1,1) and is holomorphic by the Schwarz reflection

principle. Moreover ψ∗(x) = 0, and arg(ψ∗)′(x) = 0 since ψ∗(I) = (−1, 1). Hence ψ∗ = φ∗

and so ψ = φ.

Proposition 3.2. Let D ⊆ H be a simply connected domain and let φ : D → H be a
conformal isomorphism. Suppose that φ is bounded on bounded sets. Then φ extends by
reflection to a conformal isomorphism φ∗ on D∗.

Proof (?). Fix x ∈ D0 and a bounded open interval I ⊆ D0 containing x. Write φx,I for
the conformal isomorphism obtained in Proposition 3.1. Then f = φ ◦ φ−1

x,I : H → H is a
Möbius transformation which is bounded, and hence continuous, on a neighbourhood of
(−1, 1) = φx,I(I) in H. Hence φ = f ◦φx,I extends by reflection to a conformal isomorphism
φ∗I = f ∗ ◦ φ∗x,I on D∗I . The maps φ∗I must be consistent, and hence extend to a conformal
map φ∗ on D∗. Now φ∗ can only fail to be injective on D0 but, as a conformal map, can
only fail to be injective on an open set in C. Hence φ∗ is a conformal isomorphism.
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3.2 Construction of the mapping-out function

Given any compact H-hull K, we now specify a particular conformal isomorphism g = gK :
H \ K → H. This will give us a convenient way to encode the geometry of K. We get
uniqueness by requiring that gK looks like the identity at ∞.

Theorem 3.3. Let K be a compact H-hull and set H = H \ K. There exists a unique
conformal isomorphism gK : H → H such that gK(z) − z → 0 as |z| → ∞. Moreover
gK(z)− z is bounded uniformly in z ∈ H. Moreover, for some aK ∈ R, we have

gK(z) = z +
aK
z

+O(|z|−2), |z| → ∞. (20)

Moreover gK extends by reflection to a conformal isomorphism g∗K on H∗.

The notation gK will be used throughout. The function gK takes H\K to the standard
domain H, so K no longer appears as a defect of the domain. Thus we call gK the
mapping-out function of K. The condition gK(z) − z → 0 at ∞ which makes gK unique
is sometimes called the hydrodynamic normalization. The constant aK , which we will see
later is nonnegative, will be called the half-plane capacity and is a measure of the size (seen
from infinity) of the set K.

Proof. Set D = {z : −z−1 ∈ H}. Then D ⊆ H is a simply connected domain which is
a neighbourhood of 0 in H. Choose a bounded open interval I ⊆ D0 containing 0. By
Proposition 3.1, there exists a conformal isomorphism φ : D → H which extends to a
reflection-invariant conformal isomorphism φ∗ on D∗I , with φ∗(0) = 0 and arg(φ∗)′(0) = 0.
Consider the Taylor expansion of φ∗ at 0. Since φ∗ maps I into R, the coefficients must all
be real. So, as z → 0, we have

φ∗(z) = az + bz2 + cz3 +O(|z|4)

for some a ∈ (0,∞) and b, c ∈ R. Define gK on H by gK(z) = −aφ(−z−1)−1 − (b/a). It
is a straightforward exercise to check that gK is a conformal isomorphism to H and that
gK has the claimed expansion at ∞, with aK = (b/a)2 − (c/a). In particular, gK(z) − z
is bounded near ∞. Now φ∗ is a homeomorphism of neighbourhoods of 0, so gK can only
take bounded sets to bounded sets. Hence gK(z)− z is uniformly bounded on H and, by
Proposition 3.2, gK extends by reflection to a conformal isomorphism on H∗.

Finally, if g : H → H is any conformal isomorphism such that g(z)−z → 0 as |z| → ∞,
then f = g ◦ g−1

K is a conformal automorphism of H with f(z)− z → 0 as |z| → ∞. Then
f(∞) =∞, so f(z) = σz + µ for some σ ∈ (0,∞) and µ ∈ R by Corollary 2.11, and then
f(z) = z for all z, showing that g = gK .

Example 3.4. The mapping-out function has a simple form for the half-disc D̄ ∩ H and
for the slit (0, i] = {iy : y ∈ (0, 1]}:

g D̄∩H(z) = z + 1/z, g(0,i](z) =
√
z2 + 1 = z + 1/(2z) +O(|z|−2). (21)

The first example can be checked using the fact that the image of the unit circle under the
map z 7→ z + z−1 is the segment [−2, 2] and symmetry.
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Definition 3.5. The half-plane capacity of the compact H-hull K is the quantity

hcap(K) = lim
z→∞

z(gK(z)− z) = aK .

Example 3.6. For the upper semidisc K = D̄ ∩ H, we have hcap(K) = 1, while for the
segment K = (0, i] we have hcap(K) = 1/2.

For a Brownian motion B = (Bt)t>0 starting from some z ∈ H, let T = T (H) = inf{t >
0 : Bt /∈ H} (the first hitting time of K ∪ R).

Proposition 3.7. We have

hcap(K) = lim
y→∞

yEiy[Im(BT )].

In particular hcap(K) > 0.

Proof. Fix z ∈ H and consider a complex Brownian motion (Bt)t>0 starting from z. For
t < T = T (H), gK(Bt) is a time-changed Brownian motion in the upper-half plane H,
starting from gK(z), and so converges a.s. to a random a random variable, denoted earlier
in Example 2.15 by gK(B̂T ) ∈ R, as t ↑ T (here B̂T ∈ δH, the Martin boundary). Recall
also that gK(z) − z is a bounded holomorphic function on H, by definition of gK . If we
set Mt = gK(Bt) − Bt for t < T then (Mt)t<T is therefore a bounded martingale which
converges to gK(B̂T )−BT as t→ T . Hence, by optional stopping,

gK(z)− z = Ez(gK(B̂T )−BT ). (22)

Recall also z(gK(z)− z)→ hcap(K) as z →∞. Take z = iy, hence we have

hcap(K) = lim
y→∞

iyEiy[gK(B̂T )−BT ].

On the other hand, hcap(K) is known to be real so we can take the real part on both sides.
Noting that gK(B̂T ) ∈ R by definition, we deduce that

lim
y→∞

yEiy[Im(BT )] = hcap(K)

as desired (note that the existence of the limit is a consequence of the argument).

3.3 Properties of the mapping-out function

The following scaling and translation properties may be deduced from the defining char-
acterization of the mapping-out function. The details are left as an exercise.

Proposition 3.8. Let K be a compact H-hull. Let r ∈ (0,∞) and x ∈ R. Set

rK = {rz : z ∈ K}, K + x = {z + x : z ∈ K}.
Then rK and K + x are compact H-hulls and we have

grK(z) = rgK(z/r), gK+x(z) = gK(z − x) + x.

Thus hcap(rK) = r2 hcap(K), hcap(K + x) = hcap(K).
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Lecture 8: Friday 21 April
Nested compact H-hulls K0 ⊆ K may be encoded by the composition of mapping-out

functions.

Proposition 3.9. Let K0 and K1 be compact H-hulls. Set K = K0 ∪ g−1
K0

(K1). Then K is
a compact H-hull K containing K0 and we have

gK = gK1 ◦ gK0 , hcap(K) = hcap(K0) + hcap(K1). (23)

Moreover we obtain all compact H-hulls K containing K0 in this way.

Proof. Set H0 = H\K0 and H = H\K. We can define a conformal isomorphism g : H → H
by g = gK1 ◦ gK0 . In particular H is a simply connected domain. Consider a sequence of
points (zn) in H0 with |zn| → ∞. Then gK0(zn)/zn → 1 and |gK0(zn)| → ∞. Hence there
exists N such that for all n > N we have gK0(zn) 6∈ K1 and then

zn(g(zn)− zn) = zn(gK1(gK0(zn))− gK0(zn)) + zn(gK0(zn)− zn)→ aK1 + aK0 .

Hence K is bounded and g = gK and aK = aK0 + aK1 .
On the other hand, suppose K is any compact H-hull containing K0. Define K1 =

gK0(K \K0) and H1 = gK0(H\K). Then K = K0∪ g−1
K0

(K1) and H1 = H\K1. Also, K1 is
bounded and H1 is a simply connected domain, so K1 is a compact H-hull, as required.

3.4 Boundary and continuity estimates

Recall from the proof of Proposition 3.7 (or Example 2.15) the Brownian limit B̂T (H),
which is a random variable in the Martin boundary δH. Recall also that gK extends to a
homeomorphism from δH to δH = R ∪ {∞}.

Proposition 3.10. Let S ⊆ δH be measurable. Then

lim
y→∞, x/y→0

πyPx+iy(B̂T (H) ∈ S) = Leb(gK(S)). (24)

Proof. Write gK(x + iy) = u + iv. Then u/y → 0 and v/y → 1 as y → ∞ with x/y → 0.
By conformal invariance of Brownian motion, and using the known form (Example 1.10)
for the density of harmonic measure in H, we have

Px+iy(B̂T (H) ∈ S) = Pu+iv(BT (H) ∈ gK(S)) =

∫
gK(S)

v

π((t− u)2 + v2)
dt

On multipying by πy and letting y →∞ and x/y → 0 we obtain the desired formula.

For an interval (a, b) ⊆ H0, we can take S = (a, b) and x = 0 in Proposition 3.10 to
obtain

gK(b)− gK(a) = lim
y→∞

πyPiy(BT (H) ∈ (a, b)). (25)
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On the other hand, we can also take S = δH \H0 to obtain

lim
y→∞

πyPiy(BT (H) ∈ K) = lim
y→∞

πyPiy(BT (H) 6∈ H0) = Leb(R \ gK(H0)). (26)

Here we used the fact that ∂H \ (K ∪H0) is countable for the first equality. The left hand
side is known as the capacity (simply) of the the compact H-hull K, see Section 3.6 for
additional details (it is another measure of the size of K seen from infinity).

Define
rad(K) = inf{r > 0 : K ⊆ rD̄ + x for some x ∈ R}.

Proposition 3.11. Let K be a compact H-hull and let x ∈ R. Suppose that the interval
[x,∞) does not intersect K̄. Then gK(x) > x. If also K ⊆ D and x ∈ (1,∞), then
gK(x) 6 x+ 1/x.

Proof. For b > x and y > rad(K), we have

Piy(BT (H) ∈ (x, b)) 6 Piy(BT (H) ∈ (x, b)).

Multiply by πy and let y → ∞, using Proposition 3.10, to obtain gK(b) − gK(x) 6 b − x.
Subtract b and let b→∞ to see that gK(x) > x. If K ⊆ D and x ∈ (1,∞), then also

Piy(BT (H\D̄) ∈ (x, b)) 6 Piy(BT (H) ∈ (x, b)).

Multiply by πy and let y →∞, using Proposition 3.10 again and the known form (21) of
the mapping-out function for D̄ ∩H, to obtain

(b+ 1/b)− (x+ 1/x) 6 gK(b)− gK(x).

Then subtract b and let b→∞ to see that gK(x) 6 x+ 1/x.

We already know (by definition of gK) that gK(z)− z is bounded uniformly on H; the
next result gives us a quantitative bound which will be useful later on where it will give us
the continuity of the Loewner transform. For this reason we refer to this as the continuity
estimate.

Proposition 3.12. Let K be a compact H-hull. Then

|gK(z)− z| 6 3 rad(K), z ∈ H. (27)

Proof. By a scaling and translation argument, using Proposition 3.8, it will suffice to
consider the case where K ⊆ D̄ and rad(K) = 1. Recall that by (22) we have

gK(z)− z = Ez(gK(B̂T )−BT ).

Note that {|x| > 1} ⊆ H0 and {|x| > 2} ⊆ gK({|x| > 1}). If |BT | > 1, then BT ∈ H0,
so, by Proposition 3.11, |gK(B̂T ) − BT | 6 1/|BT | 6 1. On the hand, if |BT | 6 1, then
gK(B̂T ) 6∈ gK({|x| > 1}), so |gK(B̂T )| 6 2. In any case |gK(B̂T ) − BT | 6 3. Hence
|gK(z)− z| 6 3.
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3.5 Differentiability estimate

The expansion (20) at ∞ for mapping-out functions states that, for every compact H-hull
K, there are constants C(K) <∞ and R(K) <∞ such that,∣∣∣gK(z)− z − aK

z

∣∣∣ 6 C(K)

|z|2 , |z| > R(K).

The next result strengthens this estimate, stating that, if K ⊆ D̄, then we can take
C(K) = CaK and R(K) = 2, where C < ∞ does not depend on K. This will be used to
show that the Loewner transform is differentiable.

Proposition 3.13. There is an absolute constant C < ∞ with the following properties.
For all r ∈ (0,∞) and all ξ ∈ R, for any compact H-hull K ⊆ rD̄ + ξ,∣∣∣∣gK(z)− z − aK

z − ξ

∣∣∣∣ 6 CraK
|z − ξ|2 , |z − ξ| > 2r. (28)

Proof. We shall prove the result in the case r = 1 and ξ = 0, when K ⊆ D̄. The general case
then follows by scaling and translation. We will use the following lemma about harmonic
functions,

Lemma 3.14. Let u be a harmonic function in a domain D and let z ∈ D. Then∣∣∣∣∂u∂x(z)

∣∣∣∣ 6 4‖u‖∞
π dist(z, ∂D)

.

Proof. It will suffice to show that, for all ε > 0, the estimate holds with 4 replaced by
4(1 + ε). Fix ε > 0. By scaling and translation, we reduce to the case where z = 0 and
dist(0, ∂D) = 1 + ε. Then u is continuous on D̄ so, for z ∈ D, by Kakutani’s formula,

u(z) =

∫ 2π

0

u(eiθ)hD(z, θ)dθ,

where hD(z, θ) denotes the density of harmonic measure in D, viewed from z, evaluated at
θ. Using the explicit form (given in (18)) of the Möbius map φz,0 from D to D and which
sends z to 0, it is not hard to get an exact formula for hD(z, θ): we find

hD(z, θ) =
1

2π

1− |z|2
|eiθ − z|2 =

1

2π

1− x2 − y2

(cos θ − x)2 + (sin θ − y)2
, 0 6 θ < 2π.

Differentiating this formula with respect to z, we see that ∇hD(·, θ) is bounded on a
neighbourhood of 0, uniformly in θ, with

∇hD(0, θ) =
1

π

(
cos θ
sin θ

)
.
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Hence we may differentiate under the integral sign to obtain

∇u(0) =
1

π

∫ 2π

0

u(eiθ)

(
cos θ
sin θ

)
dθ.

Then ∣∣∣∣∂u∂x(0)

∣∣∣∣ 6 ‖u‖∞π
∫ 2π

0

| cos θ|dθ =
4‖u‖∞
π

=
4(1 + ε)‖u‖∞
π dist(0, ∂D)

,

as desired.

We return to the proof of Proposition 28. Let D = H \ D̄ = {z ∈ H : |z| > 1}. Write
T = T (H) and define for θ ∈ [0, π]

a(θ) = Eeiθ(Im(BT )).

For z ∈ D, using (22) and then the strong Markov property, we have

Im(z − gK(z)) = Ez(Im(BT )) =

∫ π

0

hD(z, θ)a(θ)dθ,

where hD(z, θ) denotes the density of harmonic measure in D viewed from z, evaluated at
θ. Consider the conformal isomorphism g : D → H given by g(z) = z + z−1. Note that
g(eiθ) = 2 cos θ. Then, for z ∈ D and w = g(z),

hD(z, θ) = hH(w, 2 cos θ)
d

dθ
g(eiθ) = Im

(
1

2 cos θ − w

)
2 sin θ

π

by the chain rule. Hence

Im(z − gK(z)) =

∫ π

0

Im

(
1

2 cos θ − w

)
2 sin θ

π
a(θ)dθ.

Set

a =

∫ π

0

2 sin θ

π
a(θ)dθ. (29)

Consider the holomorphic function f on H∗ \ {0} given by

f(z) = g∗K(z)− z − a/z,

and set v(z) = Im(f(z)). Observe that there is a constant C < ∞ such that, for all
|z| > 3/2 and θ ∈ [0, π],∣∣∣∣ 1

w − 2 cos θ
− 1

z

∣∣∣∣ =
|2 cos θ − z−1|

|z||z + z−1 − 2 cos θ| 6
C

|z|2 .

and hence, for z ∈ H with |z| > 3/2,

|v(z)| 6
∫ π

0

∣∣∣∣ 1

w − 2 cos θ
− 1

z

∣∣∣∣ 2 sin θ

π
a(θ)dθ 6

Ca

|z|2 .
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Since v(z̄) = −v(z), the same bound holds without the restriction z ∈ H. Then, for |z| > 2,
we can apply Lemma 3.14 in the domain Dz = {w ∈ C : |w| > (3/4)|z|} to obtain, for a
new constant C <∞, ∣∣∣∣∂v∂x(z)

∣∣∣∣ , ∣∣∣∣∂v∂y (z)

∣∣∣∣ 6 Ca

|z|3 .

By the Cauchy–Riemann equations, the same bound holds for |f ′(z)| for all |z| > 3/2.
Now f(z)→ 0 as |z| → ∞ so, for |z| > 2 we have,

|f(z)| =
∣∣∣∣∫ ∞

1

f ′(tz)zdt

∣∣∣∣ 6 Ca

|z|2
∫ ∞

1

t−3dt =
Ca

|z|2 . (30)

Hence zf(z)→ 0 as |z| → ∞, so a = aK and (30) is the desired estimate.

Note from the proof of Proposition 3.14 the formula (29) gives us

hcap(K) =
2

π

∫ π

0

Eeiθ(Im(BT (H))) sin θdθ.

This shows in particular that hcap(K) > 0 for all non-empty compact H-hulls.
The next result is deeper, relying on Beurling’s estimate, which is proved in the ap-

pendix as Theorem A.3. It may be considered as a continuity estimate for half-plane
capacity and may be skipped on a first reading.

Proposition 3.15. (?) Suppose K ⊂ K ′ are two compact H-hulls, and that dist(z, ∂K ∪
R) 6 ε for all z ∈ ∂K ′ and some ε > 0. Then

hcap(K ′) 6 hcap(K) +
16

π
rad(K ′)3/2ε1/2.

Proof. We reduce to the case where K ′ ⊆ D by scaling and translation. Let B be a complex
Brownian motion starting from z ∈ H ′. Write T = T (H) and T ′ = T (H ′) and note that
T > T ′. By Beurling’s estimate, for z ∈ ∂K ′ and r > 0,

Pz(|BT − z| > r) 6 Pz(T > T (z + rD)) 6 2
√
ε/r

so, using the strong Markov property at T ′, for z = eiθ and θ ∈ (0, π), we have

Peiθ(|BT −BT ′ | > r) 6 2
√
ε/r.

Now | Im(BT )− Im(BT ′)| 6 |BT −BT ′| ∧ 1, so

Eeiθ | Im(BT )− Im(BT ′)| =
∫ 1

0

Peiθ(|BT −BT ′ | > r)dr 6 4
√
ε.

Then, using (29),

hcap(K ′) =

∫ π

0

Eeiθ(Im(BT ′))
2 sin θ

π
dθ

6
∫ π

0

Eeiθ(Im(BT ))
2 sin θ

π
dθ +

∫ π

0

4
√
ε

2 sin θ

π
dθ = hcap(K) +

16

π

√
ε.

This concludes the proof.
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3.6 Capacity and half-plane capacity (?)

We discuss a related notion of capacity which is sometimes useful; this may be skipped on
a first reading. Define for a compact H-hull K the capacity from ∞ in H by

cap(K) = lim
y→∞

πyPiy(BT (H) ∈ K).

The existence of this limit was shown in (26). It is clear from the definition that

cap(K) 6 cap(K ′) whenever K ⊆ K ′.

We use (26) together with known properties of mapping-out functions to obtain

cap(D̄ ∩H) = 4, cap((0, i]) = 2

and, for r ∈ (0,∞) and x ∈ R,

cap(rK) = r cap(K), cap(K + x) = cap(K).

Proposition 3.16. Let K be a compact H-hull such that K̄ is connected. Then

rad(K) 6 cap(K) 6 4 rad(K).

Proof. Set r = rad(K). Then K ⊆ rD̄ ∩ H + x for some x ∈ R. So (without using
connectedness)

cap(K) 6 cap(rD̄ ∩H + x) = 4r.

By translation and scaling we may assume that r = 1 and that there exist s ∈ (0, 1] and
c ∈ [0, 1] such that s2 + c2 = 1 and is ∈ K and either c ∈ K̄ or −c ∈ K̄. Set

K0 = (0, is], ρ(K) = {−x+ iy : x+ iy ∈ K}, σ(K) = K ∪ ρ(K).

Fix y ∈ (1,∞) and consider a complex Brownian motion B starting from iy. Note that B
cannot hit S = K0 ∪ [−c, c] without first hitting σ(K). Hence, by symmetry,

Piy(BT (H0) ∈ S) 6 2Piy(BT (H) ∈ K̄) = 2Piy(BT (H) ∈ K).

If c > 0 then gK0(±c) = ±
√
s2 + c2 = ±1, whilst if c = 0 then gK0(0±) = ±1. Hence, by

Proposition 3.10, in both cases, on multiplying by πy and letting y →∞, we obtain

2 6 2 cap(K).

Proposition 3.17. Let A and K be disjoint compact H-hulls. Then

cap(gA(K)) 6 cap(K).

Proof. Write gA(iy) = u+ iv and recall that v/y → 1 and u→ 0 as y →∞. By conformal
invariance of Brownian motion, we have

Pu+iv(B hits gA(K) before R) = Piy(B hits K before A ∪ R) 6 Piy(B hits K before R).

Now multiply by πy and let y →∞, using Proposition 3.10, to obtain the desired inequality.
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4 Chordal Loewner theory

We establish a one-to-one correspondence between continuous real-valued paths (ξt)t>0 and
increasing families (Kt)t>0 of compact H-hulls having a certain local growth property. The
null path ξt ≡ 0 corresponds to Kt = (0, 2i

√
t]. For smooth paths (ξt)t>0 starting from 0, it

is known that Kt = {γs : 0 < s 6 t} for some continuous simple path (γt)t>0 in H̄ starting
from 0 and such that γt ∈ H for all t > 0. In the absence of smoothness, the situation
can be more complicated, as we shall see later. In this chordal version of the theory, the
boundary point ∞ plays a special role as the point towards which the hulls evolve. In the
alternative radial theory, which we will not discuss, an interior point of the domain plays
this special role instead.

4.1 Local growth property and Loewner transform

Let (Kt)t>0 be a family of compact H-hulls. Say that (Kt)t>0 is increasing if Ks is strictly
contained in Kt whenever s < t. Assume that (Kt)t>0 is increasing. Set Kt+ = ∩s>tKs

and, for s < t, set Ks,t = gKs(Kt \Ks).

Definition 4.1. Say that (Kt)t>0 has the local growth property if

rad(Kt,t+h)→ 0 as h ↓ 0 uniformly on compacts in t.

This is a type of continuity condition for the growth of (Kt)t>0 but note that Kt \Ks

can be large even when Ks,t is small. See Figure 5 for an illustration.

Kt

Kt+h \Kt

gKt

Kt,t+h

ξt

Figure 5: The local growth property and the Loewner transform.

Proposition 4.2. Let (Kt)t>0 be an increasing family of compact H-hulls having the local
growth property. Then Kt+ = Kt for all t. Moreover, the map t 7→ hcap(Kt) is continuous
and strictly increasing on [0,∞). Moreover, for all t > 0 there is a unique ξt ∈ R such
that ξt ∈ Kt,t+h for all h > 0, and the process (ξt)t>0 is continuous.

Proof. Set Kt,t+ = gKt(Kt+ \Kt). For all t > 0 and h > 0, we have

hcap(Kt+h) = hcap(Kt) + hcap(Kt,t+h).

Now hcap(Kt,t+) 6 hcap(Kt,t+h) 6 rad(Kt,t+h)
2. Hence, by the local growth property,

t 7→ hcap(Kt) is continuous and hcap(Kt,t+) = 0, so Kt,t+ = ∅ and so Kt+ = Kt. On the
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other hand Kt,t+h 6= ∅ so hcap(Kt,t+h) > 0 and so t 7→ hcap(Kt) is strictly increasing on
[0,∞).

For fixed t > 0, the sets Kt,t+h are compact and decreasing in h > 0 so, using the
local growth property, they have a unique common element ξt ∈ R. For t > 0 and h > 0,
choose z ∈ Kt+2h \ Kt+h and set w = gKt(z) and w′ = gKt+h(z). Then w ∈ Kt,t+2h and
w′ ∈ Kt+h,t+2h, with w′ = gKt,t+h(w). Hence

|ξt − w| 6 2 rad(Kt,t+2h), |ξt+h − w′| 6 2 rad(Kt+h,t+2h), |w − w′| 6 3 rad(Kt,t+h)

where we used the continuity estimate (27) for the last inequality. Hence

|ξt+h − ξt| 6 2 rad(Kt+h,t+2h) + 3 rad(Kt,t+h) + 2 rad(Kt,t+h)→ 0

as h→ 0, uniformly on compacts in t.

Definition 4.3. The process (ξt)t>0 is called the Loewner transform of (Kt)t>0.

We shall see in the next two subsections that the family of compact H-hulls (Kt)t>0

can be reconstructed from its Loewner transform.
We shall sometimes be presented with a family of compact H-hulls parametrized not

by [0,∞) but by [0, T ) for some T ∈ (0,∞). The preceding definitions and results transfer
immediately to this case. The following result is left as an exercise.

Proposition 4.4. Let T, T ′ ∈ (0,∞] and let τ : [0, T ′)→ [0, T ) be a homeomorphism. Let
(Kt)t∈[0,T ) be an increasing family of compact H-hulls having the local growth property and
having Loewner transform (ξt)t∈[0,T ). Set K ′t = Kτ(t) and ξ′t = ξτ(t). Then (K ′t)t∈[0,T ′) is an
increasing family of compact H-hulls having the local growth property and having Loewner
transform (ξ′t)t∈[0,T ′).

By Proposition 4.2, the map t 7→ hcap(Kt)/2 is a homeomorphism on [0, T ). On choos-
ing τ as the inverse homeomorphism we obtain a family (K ′t)t∈[0,T ′) such that hcap(K ′t) = 2t
for all t. We say in this case that (K ′t)t∈[0,T ′) is parametrized by half-plane capacity.
The 2 is standard in the literature and is present because of a relation with the radial
Loewner theory, which we will not discuss.

Lecture 9; Monday 28 April

4.2 Loewner’s differential equation

We now come to Loewner’s crucial observation: the local growth property implies that the
mapping-out functions satisfy a differential equation.

Proposition 4.5. Let (Kt)t>0 be an increasing family of compact H-hulls, satisfying the
local growth property and parametrized by half-plane capacity, and let (ξt)t>0 be its Loewner
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transform. Set gt = gKt and ζ(z) = inf{t > 0 : z ∈ Kt}. Then, for all z ∈ H, the function
(gt(z) : t ∈ [0, ζ(z))) is differentiable, and satisfies Loewner’s differential equation

ġt(z) =
2

gt(z)− ξt
. (31)

Moreover, if ζ(z) <∞, then gt(z)− ξt → 0 as t→ ζ(z).

Proof. Let 0 6 s < t < ζ(z) and set zt = gt(z). Note that hcap(Ks) + hcap(Ks,t) =
hcap(Kt), so hcap(Ks,t) = 2(t − s). Also, gKs,t(zs) = zt and Ks,t ⊆ ξs + 2 rad(Ks,t)D̄. We
apply Propositions 3.12 and 3.13 to the compact H-hull Ks,t to obtain

|zt − zs| 6 3 rad(Ks,t), (32)

so (zt)06t<ζ(z) is continuous, using the local growth property.
Now if ζ(z) < ∞, then for s < ζ(z) < t we have z ∈ Kt \ Ks, so zs ∈ Ks,t, so

|zs − ξs| 6 2 rad(Ks,t), and so by the local growth property |zs − ξs| → 0 as s→ ζ(z).
Let z ∈ H and suppose ζ > t > s, hence δ = inf{|zu− ξu| : u ∈ [0, t]} > 0 by continuity.

Choosing t > s close to enough to s such rad(Ks,t) 6 δ/8, we see that |zs−ξs| > 4 rad(Ks,t),
hence ∣∣∣∣zt − zs − 2(t− s)

zs − ξs

∣∣∣∣ 6 4C rad(Ks,t)(t− s)
|zs − ξs|2

. (33)

Then (33) and the local growth property show that (zt : t ∈ [0, ζ(z))) is differentiable with
żt = 2/(zt − ξt).

4.3 Understanding the Loewner transform

This section aims to develop understanding of how the geometry of a curve (γt)t>0 is
reflected in the Loewner transform (ξt)t>0 of the hulls (Kt)t>0 given by Kt = γ((0, t]).
Anticipating Section 4.4, where we shall see that the transform determines the hulls, this
also sheds some light on how a given choice of transform affects the geometry of any
resulting curve. Thus the section is for orientation only, and thus not part of the theoretical
development, though it is useful for the intuition.

Fix α ∈ (0, π/2) and take γ(t) = r(t)eiα, where r(t) is chosen so that hcap(Kt) = 2t.
Note that the scaling map z 7→ λz takes Ht to Hλ2t, so the mapping-out functions gt = gKt
satisfy gλ2t(z) = λgt(z/λ). Hence, by Loewner’s equation, we have ξλ2t = λξt, so ξt = cα

√
t,

where cα = ξ1. The value of cα is known, but we shall be content to see:

Proposition 4.6. We have cα > 0.

Proof. To see this, fix τ so that rad(Kτ ) = 1 and note that, given ε > 0, we can find b > 1
such that gτ (b) 6 b+ ε and gτ (−b) > −b− ε. Write δ− for the interval of δHτ from −b to
γτ and δ+ for the interval of δHτ from γτ to b. Then, for y > 1

Piy(B̂T (Hτ ) ∈ δ−) > Piy(B̂T (Hτ ) ∈ δ+).
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α

γ(t)

∂−

∂− ∂+

∂+

II∗

z

BS

Figure 6: a. ∂− and ∂+. b. If arg(BS) 6 α then BT ∈ ∂+.

This is left as an exercise (see Figure 4.3 for the main idea). Now multiply by πy and let
y →∞. By Proposition 3.10, we deduce that

gτ (γτ )− gτ (−b) > gτ (b)− gτ (γt).
Now gτ (γτ ) = ξτ = cα

√
τ , so 2cα

√
τ = 2ξτ > gτ (b) + gτ (−b) > 2ε. Since ε > 0 was

arbitrary, this implies that cα > 0. But we cannot have cα = 0, since this corresponds to
the case α = π/2. (In fact, cα is decreasing in α with cα →∞ as α→ 0.)

Note the infinite initial velocity required for the Loewner transform needed to achieve
a “turn to the right” with greater angle of turn for greater cα. For a “turn to the left”,
we take ξt = −cα

√
t. The term “driving function” is sometimes used for the Loewner

transform, which may be thought as referring not only to the fact that it drives Loewner’s
differential equation (31), but also to the fact that it is, literally, a function which indicates
how to “turn the wheel”.

4.4 Inversion of the Loewner transform

Loewner’s differential equation offers the prospect that we might recover the family of
compact H-hulls (Kt)t>0 from its Loewner transform (ξt)t>0 by solving the equation, indeed
that we might construct such a family (Kt)t>0 starting from any continuous real-valued
function (ξt)t>0. We now show this is true.

Fix a continuous real-valued function (ξt)t>0, which we call the driving function. Define
for t > 0 and z ∈ C \ {ξt}

b(t, z) =
2

z − ξt
=

2(z̄ − ξt)
|z − ξt|2

.

Note that b(t, .) is holomorphic on C \ {ξt} and, for |z − ξt|, |z′ − ξt| > 1/n,

|b(t, z)− b(t, z′)| 6 2n2|z − z′|.
The following proposition is then a straightforward application of general properties of dif-
ferential equations. For reasons that will become clear later, while we are mainly interested
in solving the differential equation in the upper half-plane, it is convenient to solve it in
the entire complex plane.
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Proposition 4.7. For all z ∈ C \ {ξ0}, there is a unique ζ(z) ∈ (0,∞] and a unique
continuous map t 7→ gt(z) : [0, ζ(z)))→ C such that, for all t ∈ [0, ζ(z)), we have gt(z) 6= ξt
and

gt(z) = z +

∫ t

0

2

gs(z)− ξs
ds (34)

and such that |gt(z) − ξt| → 0 as t → ζ(z) whenever ζ(z) < ∞. Set ζ(ξ0) = 0 and define
Ct = {z ∈ C : ζ(z) > t}. Then, for all t > 0, Ct is open, and gt : Ct → C is holomorphic.

The process (gt(z) : t ∈ [0, ζ(z))) is the maximal solution starting from z, and ζ(z) is
its lifetime. Define

Kt = {z ∈ H : ζ(z) 6 t}, Ht = {z ∈ H : ζ(z) > t} = H \Kt.

Fix z ∈ H and s 6 t < ζ(z), set ys = Im gs(z) and δ = infs6t |zs − ξs|. Then δ > 0 and
ẏs > −2ys/δ

2 so yt > e−2t/δ2y0 > 0. Hence gt(Ht) ⊆ H. Although we have defined the
functions ζ and gt on C and Ct respectively, it is convenient to agree from now on that
ζ and gt refer to the restrictions of these functions to H and Ht, except where we make
explicit reference to a larger domain. The family of maps (gt)t>0 is then called the Loewner
flow (in H) with driving function (ξt)t>0.

Proposition 4.8. The family of sets (Kt)t>0 is an increasing family of compact H-hulls
having the local growth property. Moreover hcap(Kt) = 2t and gKt = gt for all t (in
particular gt is a conformal isomorphism). Moreover the driving function (ξt)t>0 is the
Loewner transform of (Kt)t>0.

Proof. For t > 0 and z ∈ H, we have Im(b(t, z)) < 0, so given T > 0 and w ∈ H, Loewner’s
differential equation has a unique solution (zs : s ∈ [0, T ]) in H with given terminal value
zT = w. Let us check why. For 0 6 t 6 T , set ξ̂t = ξT−t and consider the reverse Loewner
equation

ẇt =
−2

wt − ξ̂t
for 0 6 t 6 T ; w0 = w. (35)

Note the − in the numerator which comes from reversing the direction of time. The vector
field b̂(t, z) = −2/(z− ξ̂t) now satisfies Im(b̂(t, w)) > 0 hence the differential equation (35)
can be solved for all times including on [0, T ]. Let z = wT and let us check that zt := wT−t
satisfies the (forward) Loewner equation, starting from z and ends in w at time T . To see
this, note that we can write

wt = w +

∫ t

0

−2

ws − ξ̂s
ds

so z = w +
∫ T

0
−2

ws−ξ̂s
ds and

zt = wT−t = z −
∫ T

T−t

−2

ws − ξ̂s
ds = z +

∫ T

0

2

zu − ξu
du

after change of variable u = T − s.
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Thus ζ(z) > T and gT (z) = w and z is the unique point in H with these properties (by
uniqueness of the Cauchy problem for the vector field b̂). Hence gT : HT → H is a bijection.
We know that gT is holomorphic by Proposition 4.7, so gT is a conformal isomorphism. In
particular HT is simply connected.

We next show that KT is bounded by obtaining some basic estimates for the Loewner
flow. Fix T > 0 and set r = supt6T |ξt − ξ0| ∨

√
T . Fix R > 4r and take z ∈ H with

|z − ξ0| > R. Define
τ = inf{t ∈ [0, ζ(z)) : |gt(z)− z| > r}.

If this set is empty we take τ = ζ(z) by convention. Note that τ could in principle
be infinity, but at least 0 < τ 6 ζ(z). Furthermore for t 6 τ and t < ζ(z) we have
|gt(z)− z| 6 r. Hence

|gt(z)− ξt| = |(gt(z)− z) + (z − ξ0) + (ξ0 − ξt)| > R− 2r,

thus ζ(z) > τ . Furthermore,

gt(z)− z =

∫ t

0

2

gs(z)− ξs
ds,

so

|gt(z)− z| 6 2t

R− 2r
6
t

r
.

If τ < T , then the first estimate implies that |gτ (z)− z| 6 τ/r < T/r 6 r, a contradiction.
Hence τ > T and then ζ(z) > T so z ∈ HT . Since we may choose R = 4r, this implies

|z − ξ0| 6 4r for all z ∈ KT (36)

so KT is bounded and hence is a compact H-hull.
Now let us check that gt = gKt and that hcap(Kt) = 2t. We also have:

z(gt(z)− z)− 2t = 2

∫ t

0

z − gs(z) + ξs
gs(z)− ξs

ds,

hence

|z(gt(z)− z)− 2t| 6 (4r + 2|ξ0|)t
R− 2r

.

By letting R → ∞ we see that z(gt(z) − z) → 2t as |z| → ∞, for all t > 0. In particular
gt(z)− z → 0 as |z| → ∞, so gt = gKt and then hcap(Kt) = 2t for all t.

It remains to prove the local growth property and identify the Loewner transform. Fix
s > 0. Define for t > 0

ξ̃t = ξs+t, H̃t = gs(Hs+t), K̃t = H \ H̃t, g̃t = gs+t ◦ g−1
s .

We can differentiate in t to see that (g̃t)t>0 is the Loewner flow driven by (ξ̃t)t>0, H̃t is the
domain of g̃t, and K̃t = gs(Ks+t \Ks) = Ks,s+t. The estimate (36) applies to give

|z − ξs| 6 4

(
sup

s6u6s+t
|ξu − ξs| ∨

√
t

)
for all z ∈ Ks,s+t. (37)

Hence (Kt)t>0 has the local growth property and has Loewner transform (ξt)t>0.
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Lecture 10: Friday 28 April

4.5 The Loewner flow on R characterizes K̄t ∩ R (?)

By Proposition 3.3, for all t > 0, the map gt : Ht → H extends to a reflection-invariant
conformal isomorphism g∗t on the reflected domainH∗t . We now show that this is exactly the
extended Loewner flow gt from Proposition 4.7. Later analysis of properties of SLE relies
on this property, while the fact that this requires proof has sometimes been overlooked.

For z ∈ C, define
ζ∗(z) = inf{t > 0 : z 6∈ H∗t }.

Proposition 4.9. We have ζ∗ = ζ on C. Moreover, H∗t = Ct and g∗t = gt on Ct for all
t > 0.

Proof. By taking complex conjugates in (34) and using uniqueness we see that ζ(z̄) = ζ(z)
on C and gt(z̄) = gt(z) for all z ∈ C and all t ∈ [0, ζ(z)). In particular Ct is invariant
under conjugation for all t, and gt : Ct → C is a holomorphic extension by reflection of its
restriction to Ht for all t. Hence Ct ⊆ H∗t and gt is the restriction of g∗t to Ct for all t.

It remains to show for t > 0 and x ∈ H0
t = H∗t ∩ R that ζ(x) > t. Note first that, for

z ∈ Ht and r < s 6 t, we have

|g∗r(z)− g∗s(z)| 6 3 rad(Kr,s) (38)

and this estimate extends to H0
t by continuity. We will show further that for x ∈ H0

t

inf
s6t
|g∗s(x)− ξs| > 0.

This then allows us to pass to the limit z → x with z ∈ Ht in (34), to see that (g∗s(x) : s 6 t)
satisfies (34), so ζ(x) > t.

Now, for x ∈ H0
t and s < t, we have g∗s(x) 6= ξs. To see this, note that x ∈ H0

s so g∗s is
conformal at x, and there is a sequence (wn) in Kt such that g∗s(wn)→ ξs; then g∗s(x) = ξs
would imply wn → x, which is impossible. The function s 7→ |g∗s(x)−ξs| is thus continuous
on [0, t] and positive on [0, t). It remains to show that it is also positive at t.

Write I for the interval of H0
t containing x. Then g∗t (I) is an open interval containing

g∗t (x). Consider the intervals

Js = ∩r∈[s,t]g
∗
r(I), s < t.

For s sufficiently close to t, by (38), Js contains a neighbourhood of g∗t (x). Hence, if
g∗t (x) = ξt, then for some s < t, we would have ξs ∈ Js, so ξs = g∗s(y) for some y ∈ H0

t ,
which we have shown is impossible.

An immediate corollary is the following characterization of the set of limit points of Kt

in R in terms of the lifetime ζ of the Loewner flow on R.

Proposition 4.10. For all x ∈ R and all t > 0, we have

x ∈ K̄t if and only if ζ(x) 6 t. (39)
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4.6 Loewner–Kufarev theorem

Write K for the set of all compact H-hulls. Fix a metric d of uniform convergence on
compacts for C(H,H). We make K into a metric space using the Carathéodory metric

dK(K1, K2) = d(g−1
K1
, g−1
K2

).

Write L for the set of increasing families of compact H-hulls (Kt)t>0 having the local
growth property and such that hcap(Kt) = 2t for all t. Then L ⊆ C([0,∞),K). We fix on
C([0,∞),K) a metric of uniform convergence on compact time intervals.

Theorem 4.11. There is a bi-adapted homeomorphism L : C([0,∞),R)→ L given by

L((ξt)t>0) = (Kt)t>0, Kt = {z ∈ H : ζ(z) 6 t}

where ζ(z) is the lifetime of the maximal solution to Loewner’s differential equation

żt = 2/(zt − ξt)

starting from z. Moreover,

K̄t ∩ R = {x ∈ R : ζ(x) 6 t}

where ζ(x) is the lifetime of the maximal solution to ẋt = 2/(xt − ξt) starting from x.
Moreover (ξt)t>0 is then the Loewner transform of (Kt)t>0, given by

{ξt} = ∩s>tKt,s, Kt,s = gKt(Ks \Kt) (40)

where gKt is the mapping-out function for Kt.

We call L the Loewner map. The proof that L and its inverse are continuous and
adapted is left as an exercise. The rest of the theorem recapitulates the results of the
preceding two sections.
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5 Schramm–Loewner evolutions

We review the arguments which led Schramm to use a Brownian motion as the driving
function in Loewner’s theory. Then we state the fundamental result of Rohde and Schramm
that associates to the resulting family of compact H-hulls a unique continuous path.

5.1 Schramm’s theorem

We say that a random variable (Kt)t>0 in L is a Schramm–Loewner evolution4 if its Loewner
transform is a Brownian motion of some diffusivity κ ∈ [0,∞). We will refer to such a
random family of compact H-hulls as an SLE(κ). The Loewner–Kufarev theorem allows us
to construct SLE(κ) as Kt = {z ∈ H : ζ(z) 6 t}, where ζ(z) is the lifetime of the maximal
solution to Loewner’s differential equation

żt = 2/(zt − ξt)

starting from z, and where (ξt)t>0 is a Brownian motion of diffusivity κ (i.e., ξt =
√
κBt

for some standard one-dimensional Brownian motion (Bt)t>0).
Schramm’s revolutionary observation was that these processes offered the unique possi-

ble scaling limits for a range of lattice-based planar random systems at criticality, such as
loop-erased random walk, Ising model, percolation and self-avoiding walk. Such limits had
been conjectured but without a candidate for the limit object. Any scaling limit is scale
invariant. In fact it was widely conjectured that there would be limit objects, associated
to some class of planar domains, with a stronger property of invariance under conformal
maps. Moreover, the local determination of certain paths in the lattice models suggested
a form of ‘domain Markov property’.

There is a natural scaling map on L. For λ ∈ (0,∞) and (Kt)t>0 ∈ L, define Kλ
t =

λKλ−2t. Recall that hcap(λKt) = λ2 hcap(Kt). We have rescaled time so that (Kλ
t )t>0 ∈ L.

We say that a random variable (Kt)t>0 in L is scale invariant if (Kλ
t )t>0 has the same

distribution as (Kt)t>0 for all λ ∈ (0,∞).
There is also a natural time-shift map on L. For s ∈ [0,∞) and (Kt)t>0 ∈ L, define

K
(s)
t = gKs(Ks+t \Ks) − ξs. Then (K

(s)
t )t>0 ∈ L. We say that a random variable (Kt)t>0

in L has the domain Markov property if (K
(s)
t )t>0 has the same distribution as (Kt)t>0 and

is independent of Fs = σ(ξr : r 6 s) for all s ∈ [0,∞).

Theorem 5.1. Let (Kt)t>0 be a random variable in L. Then (Kt)t>0 is an SLE if and only
if (Kt)t>0 is scale invariant and has the domain Markov property.

Proof. Write (ξt)t>0 for the Loewner transform of (Kt)t>0 and note that (ξt)t>0 is contin-

uous. For λ ∈ (0,∞) and s ∈ [0,∞), define ξλt = λξλ−2t and ξ
(s)
t = ξs+t − ξs. Then

(Kλ
t )t>0 has Loewner transform (ξλt )t>0 and (K

(s)
t )t>0 has Loewner transform (ξ

(s)
t )t>0.

4In Schramm’s papers, SLE stood for stochastic Loewner evolution. As usual, our default assumption
is that Brownian motion starts at 0.
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Hence (Kt)t>0 has the domain Markov property if and only if (ξt)t>0 has stationary in-
dependent increments. Also (Kt)t>0 is scale invariant if and only if the law of (ξt)t>0 is
invariant under Brownian scaling. By the Lévy–Khinchin Theorem5 , (ξt)t>0 has both these
properties if and only if it is a Brownian motion of some diffusivity κ ∈ [0,∞), that is to
say, if and only if (Kt)t>0 is an SLE.

5.2 Rohde–Schramm theorem

A continuous path (γt)t>0 in H̄ is said to generate an increasing family of compact H-
hulls (Kt)t>0 if Ht = H \ Kt is the unbounded component of H \ γ[0, t] for all t, where
γ[0, t] = {γs : s ∈ [0, t]}. Rohde and Schramm proved the following fundamental and hard
result, except for the case κ = 8, which was then added by Lawler, Schramm and Werner.
We refer to the original papers [14, 18] for the proof.

Theorem 5.2. Let (Kt)t>0 be an SLE(κ) for some κ ∈ [0,∞). Write (gt)t>0 and (ξt)t>0 for
the associated Loewner flow and transform. The map g−1

t : H→ Ht extends continuously to
H̄ for all t > 0, almost surely. Moreover, if we set γt = g−1

t (ξt), then (γt)t>0 is continuous
and generates (Kt)t>0, almost surely.

We call (γt)t>0 an SLE(κ) path, or simply an SLE(κ), allowing the notation to signal
that we mean the path rather than the hulls.

5.3 SLE as a random chord

By a two-pointed domain we mean a triple D = (D, z0, z∞), where D is a proper simply
connected planar domain and z0 and z∞ are distinct points in the Martin boundary δD.
Write D for the set of all two-pointed domains. By a conformal isomorphism of two-pointed
domains (D, z0, z∞) → (D′, z′0, z

′
∞), we mean a conformal isomorphism φ : D → D′ such

that φ(z0) = z′0 and φ(z∞) = z′∞. We call any conformal isomorphism σ : D → (H, 0,∞)
a scale for D. By Corollary 2.16, such a scale σ exists for all D ∈ D. Moreover, for all
λ ∈ (0,∞), the map z 7→ λσ(z) is also a scale for D and, by Corollary 2.11, these are all
the scales for D.

Fix D = (D, z0, z∞) ∈ D and a scale σ for D. We call a subset K ⊆ D a D-hull if
D \ K is a simply connected neighbourhood of z∞ in D. Write K(D) for the set of all
D-hulls. Note that K(H, 0,∞) is simply the set K of compact H-hulls. The Carathéodory
topology on K is scale invariant. For each choice of scale σ, the map K 7→ σ(K) is a
bijection K(D)→ K. We use this bijection to define the Carathéodory topology on K(D),
which is then independent of the choice of scale. Similarly, we extend to increasing families
of D-hulls the notion of the local growth property.

Definition 5.3. Write L(D) = L(D, σ) for the set of increasing families (Kt)t>0 of D-
hulls having the local growth property and such that hcap(σ(Kt)) = 2t for all t. We call

5From the Lévy-Khinchin representation, the only continuous Lévy processes are scaled Brownian
motions with constant drift, and the scaling invariance forces the drift to vanish.
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L(D) the set of chords in D from z0 to z∞ (parametrised by the half-plane capacity induced
by the choice of the scale σ).

The set L defined in Section 4.6 corresponds to the case D = (H, 0,∞) and σ(z) = z,
to which we default unless D ∈ D and a scale σ on D are explicitly mentioned. We use
on L(D, σ) the topology of uniform convergence on compact time intervals.

Let (Kt)t>0 ∈ L(D, σ) be a chord in D with respect to the scale σ, and for t > 0 set
Dt = D \Kt, which by definition is again a simply connected domain. There is a natural
scale on Dt inherited from σ which is simply gt, where gt = gσ(Kt) ◦ σ is the Loewner flow
(from D to H) of (Ks)s>0. We can also turn Dt into a two-pointed domain Dt by adjoining
the two Martin boundary points, zt and z∞, where zt = (gt)

−1(ξt) (here ξ = (ξs)s>0 is the
Loewner transform of (Ks)s>0), and z∞ is the target of the original chord (Ks)s>0. Then
note that (Kt+s)s>0 is a chord in Dt with respect to the scale σt := σ ◦ gt.

For κ ∈ [0,∞), we say that a random variable (Kt)t>0 in L(D, σ) is an SLE(κ) in D
of scale σ if the Loewner transform (ξt)t>0 of(σ(Kt))t>0 is a Brownian motion of diffusivity
κ. We we will write Ft = σ(ξs : s 6 t); and write µD,σ for the law of SLE(κ) in the
two-pointed domain D = (D, z0, z∞) with respect to the scale σ.

In this language the conformal invariance and domain Markov property of SLE take a
striking form, which may be used to characterise the law of SLE.

Theorem 5.4. Let (Kt, t > 0) be an SLE(κ) in the two-pointed domain D with respect
to scale σ. Let f : D → D′ be a conformal isomorphism of two-pointed domains. Then
f(Kt)t>0 is an SLE(κ) in D′ with respect to the scale σ ◦ f−1. In other words,

µD,σ ◦ f−1 = µf(D),σ◦f−1 . (41)

Furthermore, for any t > 0, given (Ks)06s6t, the conditional law of the chord (Kt+s)s>0 ∈
L(Dt, σt) is an SLE(κ) in Dt with respect to the scale σt = σ ◦ gt. In particular, for every
nonnegative Borel function F on the space L = L(H, 0,∞) of chords in H with respect to
the identity scale ι,

E[F ((gt(Kt+s))s>0)|Ft] =

∫
L
FdµH,ι. (42)

The first identity (41) encapsulates the conformal invariance of SLE, and the second
(42) encapsulates its domain (or conformal) Markov property. Using the strong Markov
property of Brownian motion, it is not hard to extend (42) to stopping times T which are
a.s. finite.

As already alluded to, these properties also characterise SLE and we get the following
result (implicit in Schramm’s original paper [20]):

Theorem 5.5. Suppose given a family µD,σ of laws for each two-pointed domain D and
scale σ, and suppose that these measures µD,σ satisfy conformal invariance in the sense of
(41), and conformal Markov property in the sense of (42). Then there exists κ > 0 such
that µD,σ is the law of SLE(κ) in D with respect to scale σ, for any two-pointed domain
D and scale σ.
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5.4 SLE and Bessel flow

We now begin an analysis of the properties of SLE. This is achieved not directly but by
establishing first some properties of the associated Loewner flow – an approach which will
recur below. A particularly important observation will be that, along the real line, the
Loewner flow reduces to the flow of Bessel processes (whose definition is explained below)
associated with a dimension d depending on κ via the relation d = 1 + 4/κ. This will be a
crucial part of the description of the phases of SLE in subsequent sections.

We first recall what is the Bessel stochastic differential equation (SDE). Fix d ∈
[1,∞), and for a standard one-dimensional Brownian motion (Bt)t>0 and x ∈ (0,∞) con-
sider the SDE on R described by

X0 = x; dXt = dBt +
d− 1

2Xt

dt; (43)

until the time τ = τ(x) where the solution X touches zero for the first time (which may be
infinite if X never touches zero). Equivalently, X is the unique stochastic process adapted
to the (augmented) filtration generated by B such that

Xt = x+Bt +

∫ t

0

d− 1

2Xs

ds

for all t < τ(x). The existence and pathwise uniqueness of solutions to this equation
is guaranteed by the classical theory of stochastic differential equations. If we want to
emphasise the dependence of the solution on the starting point x then we call X

(x)
t the

corresponding unique solution.

Example 5.6. A classical example of a process satisfying the Bessel SDE is the norm
of a d-dimensional Brownian motion. Thus suppose for now d > 1 is an integer, let
x ∈ Rd \ {0} and let B = (B1, . . . , Bd) be a d-dimensional Brownian motion, and let

Xt = ‖Bt‖ =
√

(B1
t )

2 + . . .+ (Bd
t )2. Then Xt is a Bessel process starting from ‖x‖ (apply

Itô’s formula).

In the general case, (43) makes sense even when d > 1 is not an integer (we take d > 1
for simplicity since then the drift is nonnegative). We still call d > 1 the “dimension” of the
Bessel process. As may be expected from Example 5.6, the value of d has a considerable
impact on the properties of X and in particular on whether X ever hits zero (i.e., whether
τ < ∞); the value d = 2 is (as we will soon see) critical in that sense (corresponding to
the well-known dichotomy between transience and recurrence of Brownian motion).

The notion of solution to the equation (43) can be usefully augmented by considering
the all possible solutions to this equation when we vary the starting point x ∈ (0,∞),

using the same driving Brownian motion. The family (X(x))x>0 = (X
(x)
t , t > 0)x>0, defined

outside of measure zero set for all x > 0 and t > 0 simultaneously and jointly measurable
in t > 0 and x > 0, is called the flow of solutions to the Bessel SDE (43) or, more
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simply, the Bessel flow. It is not hard to see that the flow is ordered: thus if x < y then
τ(x) 6 τ(y) and X(x) 6 X

(y)
t for all t 6 τ(x). Moreover if t < τ(x) then X

(x)
t < X

(y)
t (this

follows from solving the Bessel SDE in the reverse direction of time).

Now let us come back to SLE and explain how Bessel flows arise naturally there. Let
κ > 0 and consider the Loewner flow (gt(x) : t ∈ [0, ζ(x)), x ∈ R \ {0}) on R associated to
SLE(κ). Recall that the Loewner transform (ξt)t>0 is a Brownian motion of diffusivity κ.
Recall also that, for each x ∈ R \ {0}, for all t ∈ [0, ζ(x)), we have gt(x) 6= ξt and

gt(x) = x+

∫ t

0

2

gs(x)− ξs
ds

with gt(x)− ξt → 0 as t→ ζ(x) whenever ζ(x) <∞. Set

a =
2

κ
, d = 2a+ 1 = 1 +

4

κ
, Bt = − ξt√

κ
, τ(x) = ζ(x

√
κ)

and for t ∈ [0, τ(x)) set

Xt(x) =
gt(x
√
κ)− ξt√
κ

.

Then (Bt)t>0 is a standard Brownian motion starting from 0. Moreover, from Loewner’s
equation we that for all x ∈ R \ {0} and t ∈ [0, τ(x)), we have Xt(x) 6= 0 and

Xt(x) = x+Bt +

∫ t

0

a

Xs(x)
ds (44)

with Xt(x) → 0 as t → τ(x) whenever τ(x) < ∞. Thus (Xt(x), t > 0)x>0 is the Bessel
flow of parameter a and dimension d = 2a+ 1 = 1 + 4/κ driven by (Bt)t>0.

In this context we note once again two simple properties. First, by considering unique-
ness of solutions in reversed time, we obtain the following monotonicity property: for
x, y ∈ (0,∞) with x < y, we have τ(x) 6 τ(y) and Xt(x) < Xt(y) for all t < τ(x). Second,
there is a scaling property. Fix λ ∈ (0,∞) and set

B̃t = λBλ−2t, τ̃(x) = λ2τ(λ−1x), X̃t(x) = λXλ−2t(λ
−1x).

Then (B̃t)t>0 is a Brownian motion. Moreover the family of processes (X̃t(x) : t ∈
[0, τ̃(x)), x ∈ R \ {0}) is the Bessel flow of parameter a driven by (B̃t)t>0, and hence
has the same distribution as (Xt(x) : t ∈ [0, τ(x)), x ∈ R \ {0}).

Lecture 11: Friday 5 May

The next proposition shows that the behaviour of the Bessel flow depends considerably
on the dimension d; in addition to the critical value d = 2 which separates transience from
recurrence and which we have already mentioned, we find an additional critical value at
d = 3/2 such that for 3/2 < d < 2 the solutions reach zero in “clumps”, whereas for
1 < d 6 3/2 the solutions from different starting points hit zero but only one at a time.
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Proposition 5.7. Let x, y ∈ (0,∞) with x < y. Then

(a) for a ∈ (0, 1/4] (equivalently 1 < d 6 3/2 and κ > 8), we have

P(τ(x) < τ(y) <∞) = 1;

(b) for a ∈ (1/4, 1/2) (equivalently 3/2 < d < 2 and 4 < κ < 8), we have

P(τ(x) <∞) = 1, P(τ(x) < τ(y)) = φ

(
y − x
y

)
where φ is given by

φ(θ) ∝
∫ θ

0

du

u2−4a(1− u)2a
, φ(1) = 1; (45)

(c) for a ∈ [1/2,∞) (equivalently d > 2 and κ 6 4, we have

P(τ(x) <∞) = 0.

Furthermore, for a ∈ (1/2,∞), we have Xt(x)→∞ as t→∞ almost surely.

Proof. Fix x > 0 and write Xt = Xt(x) and τ = τ(x). For r ∈ (0,∞) define a stopping
time

T (r) = inf{t ∈ [0, τ) : Xt = r}.
Fix r, R ∈ (0,∞) and assume that 0 < r < x < R. Write S = T (r)∧T (R) and MS for the
stopped process MS = (Mt∧S, t > 0). Note that T (r) < τ on {τ <∞}. Also, Xt > Bt + x
for all t < τ , so T (R) <∞ almost surely on {τ =∞}. In particular, S <∞ almost surely.

Assume for now that a 6= 1/2. Set Mt = X1−2a
t for t < τ . Note that MS is uniformly

bounded. By Itô’s formula

dMt = (1− 2a)X−2a
t dXt − a(1− 2a)X−2a−1

t dt = (1− 2a)X−2a
t dBt.

Hence MS is a bounded martingale and by optional stopping

x1−2a = M0 = E(MS) = r1−2aP(XS = r) +R1−2aP(XS = R).

Hence

P(XS = R) =
x1−2a − r1−2a

R1−2a − r1−2a
. (46)

Note that as r ↓ 0 we have {XS = R} ↑ {T (R) < τ} and so P(XS = R) → P(T (R) < τ).
Similarly, P(XS = r) → P(T (r) < ∞) as R → ∞. For a ∈ (0, 1/2), we can let r → 0 in
(46) to obtain

P(T (R) < τ) = (x/R)1−2a.

Then, letting R→∞, we deduce that P(τ =∞) = 0.

52



For a ∈ (1/2,∞), we consider the limit r → 0. Then (46) forces P(XS = R) → 1, so
P(T (R) < τ) = 1 for all R and hence P(τ = ∞) = 1. Let us now check that Xt → ∞.
Note that M is positive and, as a continuous local martingale, M is also a time-change
of Brownian motion. Hence Mt = X1−2a

t must converge almost surely as t → ∞, and the
total quadratic variation [M ]∞ = (2a − 1)2

∫∞
0
X−4a
t dt must be finite almost surely. This

forces Xt →∞ as t→∞ almost surely (since the limit of Xt is known to exist in [0,∞]).
In the case a = 1/2, we instead set Mt = logXt and argue as above to obtain

log x = P(XS = r) log r + P(XS = R) logR.

The same argument as for a ∈ (1/2,∞) can then be used to see that P(τ =∞) = 1.
Assume from now on that a ∈ (0, 1/2). It remains to show for 0 < x < y that

P(τ < τ(y)) =

{
1, if a 6 1/4

φ(y−x
y

), if a > 1/4.

Define for θ ∈ [0, 1]

χ(θ) =

∫ 1

θ

du

u2−4a(1− u)2a
.

Note that χ is continuous on [0, 1] as a map into [0,∞], with χ(0) <∞ for a ∈ (1/4, 1/2)
and χ(0) =∞ for a ∈ (0, 1/4]. Note also that χ is C2 on (0, 1), with

χ′′(θ) + 2

(
1− 2a

θ
− a

1− θ

)
χ′(θ) = 0. (47)

Fix y > x and write Yt = Xt(y). For t < τ , define Rt = Yt−Xt, θt = Rt/Yt and Nt = χ(θt).
By Itô’s formula

dRt = dYt − dXt

= −aRtdt

XtYt
,

d(
1

Yt
) = −dYt

Y 2
t

+
1

Y 3
t

d[Y ]t

= −dBt

Y 2
t

+
1− a
Y 3
t

dt.

Therefore,

dθt = d(
Rt

Yt
) = Rtd(

1

Yt
) +

1

Yt
dRt + d[

1

Yt
, Rt]

= −Rt

Y 2
t

dBt +
Rt

Y 3
t

(1− a)dt− aRt

XtY 2
t

dt (as R is of finite variation)

= − θt
Yt
dBt +

θt
Yt

(
(1− a)

Yt
− a

Xt

)dt

= − θt
Yt
dBt +

(
θt
Yt

)2(
1− 2a

θt
− a

1− θt

)
dt
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so using again Itô’s formula and the differential equation (47) satisfied by χ we finally find

dNt = χ′(θt)dθt +
1

2
χ′′(θt)d[θt] = −χ

′(θt)θtdBt

Yt
.

Hence (Nt : t < τ) is a local martingale. Now N is non-negative and is a time-change
of Brownian motion, so Nt must converge to some limit as t → τ . Since χ is strictly
decreasing, it follows that θt converges to some limit θτ as t→ τ .

Let us check that θτ is either 1 (when τ < τ(y)) or 0 (when τ = τ(y)). Suppose first
that τ < τ(y). Then θτ = 1 so Nτ = 0. Conversely suppose that τ = τ(y), and let us
check that almost surely on that event we have θτ = 0. Indeed, since N is a continuous
nonnegative martingale, it converges a.s. hence note that we necessarily have [N ]τ < ∞
almost surely. This quadratic variation can be evaluated as

[N ]t =

∫ t

0

χ′(θs)
2θ2
s

Y 2
s

ds.

Let A be the event A = {τ = τ(y)} ∩ {θτ > 0} and let us show P(A) = 0. On A, we have
θs → θτ > 0 and χ′(θs)→ χ′(θτ ) > 0 as s ↑ τ so we also have∫ τ(y)

0

ds

Y 2
s

<∞.

Now consider the random variables

A(y) =

∫ τ(y)

0

1

Y 2
t

dt, An(y) =

∫ T (2−ny)

T (2−n+1y)

1

Y 2
t

dt, n > 1,

where T (r) = inf{t > 0 : Yt = r} (as before, although we had used X instead of Y ). By the
strong Markov property (of the driving Brownian motion), the random variables (An(y) :
n ∈ N) are independent. By the scaling property, they all have the same distribution.
Hence, since A1(y) > 0 almost surely, we must have A(y) =

∑
nAn(y) = ∞ almost

surely, by the strong law of large numbers. This means that A is contained in an event of
probability zero, as desired. We conclude that if τ = τy then θτ = 0, a.s..

In the case a ∈ (0, 1/4], τ = τy would thus imply that Nt = χ(θt) → ∞ as t ↑ τ , a
contradiction, so P(τ < τ(y)) = 1. On the other hand, for a ∈ (1/4, 1/2), the process N τ

is a bounded martingale so by optional stopping

χ

(
y − x
y

)
= N0 = E(Nτ ) = χ(0)P(τ = τ(y)).

This concludes the proof.

Lecture 12 Monday 8 May
A variation of the calculation for P(τ(x) < τ(y)) allows us to compute P(τ(x) < τ(−y)).
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Proposition 5.8. Let x, y ∈ (0,∞). Then for a ∈ (0, 1/2) we have

P(τ(x) < τ(−y)) = ψ

(
y

x+ y

)
where ψ is given by

ψ(θ) ∝
∫ θ

0

du

u2a(1− u)2a
, ψ(1) = 1. (48)

Proof. Note that ψ is continuous and increasing on [0, 1] with ψ(0) = 0 and ψ(1) = 1. Also
ψ is C2 on (0, 1) with

ψ′′(θ) + 2a

(
1

θ
− 1

1− θ

)
ψ′(θ) = 0.

Write Xt = Xt(x) and Yt = −Xt(−y) and set T = τ(x)∧τ(−y). For t 6 T set Rt = Xt+Yt
and θt = Yt/Rt. By Itô’s formula, for t 6 T ,

dRt =
aRt

XtYt
dt,

in particular t 7→ Rt is increasing. Thus either τ(x) < τ(−y), or τ(−y) < τ(x) (but we
cannot have τ(x) = τ(−y); this can also be seen geometrically directly by considering the
Loewner evolution).

Define a process Q = (Qt)t>0 by setting Qt = ψ(θT∧t). Then Q is continuous and
uniformly bounded. Note that θT = 1 if τ(x) < τ(−y) and θT = 0 if τ(−y) < τ(x), and
that QT = θT . By Itô’s formula, for t 6 T ,

dθt =
a

R2
t

(
1

θt
− 1

1− θt

)
dt− dBt

Rt

so

dQt = ψ′(θt)dθt +
1

2
ψ′′(θt)d[θt] = −ψ

′(θt)dBt

Rt

.

Hence Q is a bounded martingale. By optional stopping

P(τ(x) < τ(−y)) = P(θT = 1) = E(QT ) = Q0 = ψ(θ0) = ψ

(
y

x+ y

)
.

This concludes the proof.

5.5 Hitting probabilities for SLE(κ) on the real line

We translate the results for the Bessel flow back in terms of the path γ of an SLE(κ).

Proposition 5.9. Let γ be an SLE(κ). Then

(a) for κ ∈ (0, 4], we have γ[0,∞) ∩ R = {0} almost surely;
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(b) for κ ∈ (4, 8) and all x, y ∈ (0,∞), γ hits both [x,∞) and (−∞,−y] almost surely,
and

P(γ hits [x, x+ y)) = φ

(
y

x+ y

)
, P(γ hits [x,∞) before (−∞,−y]) = ψ

(
y

x+ y

)
where φ and ψ are given by (45) and (48) respectively;

(c) for κ ∈ [8,∞), we have R ⊆ γ[0,∞) almost surely.

Proof. Fix x, y ∈ (0,∞) and t > 0. If γ[0, t] ∩ [x,∞) = ∅ then by compactness there is a
neighbourhood of [x,∞) in H disjoint from γ[0, t] which is then contained in Ht, so x 6∈ K̄t,
and so ζ(x) > t by Proposition 4.10. On the other hand, if γs ∈ [x,∞) for some s ∈ [0, t],
then γs ∈ K̄t so ζ(x) 6 ζ(γs) 6 t, also by Proposition 4.10. Hence

{γ[0, t] hits [x,∞)} = {ζ(x) 6 t}, {γ hits [x, x+ y)} = {ζ(x) < ζ(x+ y)}.

Recall that ζ(x) = τ(x/
√
κ), where τ is the lifetime of the Bessel flow of parameter a = 2/κ.

Thus

{γ hits [x,∞)} = {τ(x/
√
κ) <∞}, {γ hits [x, x+ y)} = {τ(x/

√
κ) < τ((x+ y)/

√
κ)}

and similarly

{γ hits [x,∞) before (−∞,−y]} = {τ(x/
√
κ) < τ(−y/√κ)}.

Hence, from Proposition 5.7 we deduce:

(a) if κ ∈ (0, 4] then a ∈ [1/2,∞), so P(γ hits [x,∞)) = 0;

(b) if κ ∈ (4, 8) then a ∈ (1/4, 1/2), so

P(γ hits [x,∞)) = 1, P(γ hits [x, x+ y)) = φ

(
y

x+ y

)
and

P(γ hits [x,∞) before (−∞,−y]) = ψ

(
y

x+ y

)
;

(c) if κ ∈ [8,∞) then a ∈ (0, 1/4), so P(γ hits [x, x+ y)) = 1.

Hence, in case (a),

P(γ hits R \ {0}) = lim
n→∞

P(γ hits (−∞,−1/n] ∪ [1/n,∞)) = 0

and, in case (c), we see that, almost surely, for all rationals x, y ∈ (0,∞), we have γt ∈
[x, x+ y) for some t > 0. Since γ is continuous, this implies that [0,∞) ⊆ γ[0,∞) almost
surely, and then R ⊆ γ[0,∞) almost surely by symmetry.
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5.6 Phases of SLE

Recall that one can scale a standard Brownian motion, either in time or space, to obtain
a Brownian motion of any diffusivity. Thus “all Brownian motions look the same”. In
contrast, as the parameter κ is varied, SLE(κ) runs through three phases where it exhibits
markedly different behaviour. The following results are proved in [14]. We will present
proofs below for some of the easier cases.

Theorem 5.10. Let (γt)t>0 be an SLE. Then |γt| → ∞ as t→∞, almost surely.

Theorem 5.11. Let (γt)t>0 be an SLE(κ). Then

(a) for κ ∈ [0, 4], (γt)t>0 is a simple path almost surely;

(b) for κ ∈ (4, 8), ∪t>0Kt = H almost surely, but for each given z ∈ H̄ \ {0}, (γt)t>0 does
not hit z almost surely;

(c) for κ ∈ [8,∞), γ[0,∞) = H̄ almost surely.

The behaviour in case (b) is called swallowing, while in (c) we see that (γt)t>0 is a
space-filling curve. We already saw in Proposition 5.9 that R ⊆ γ[0,∞) almost surely
when κ ∈ [8,∞) but will not prove the stronger statement (c) in these notes.

Using Proposition 5.9 and the form of the function φ introduced from Proposition 5.7
it is not hard to formulate a guess for the so-called Hausdorff dimension (or in fact
Minkowski dimension, to be more precise) of the intersection of the SLE trace with the
real line.

Example 5.12. Let γ be an SLE(κ) curve with κ ∈ (4, 8). Fix x ∈ (0, 1) and ε > 0,
and break the interval I = (x, 1) into intervals of size ε, so Ii = [x + iε, x + (i + 1)ε), for
i = 0, . . . , b(1−x)/εc. Let Nε = #{i : Ii∩γ[0,∞) 6= ∅} denote the number of such intervals
hit by the SLE curve.

Then

E(Nε) � ε−h, where h = 2− 8

κ
∈ (0, 1).

This suggests that dim(γ[0,∞) ∩ R) = h = 2 − 8/κ, a.s. This result was proved by
Alberts and Sheffield [1]; the above observation essentially provides the upper bound in this
result; a complementary lower bound is obtained from a second moment argument which
requires controlling the probability that the SLE curves intersects two such intervals. This
should be compared with a celebrated result of Beffara [2], which states that the dimension
of the SLE trace in H is given by min(1 + κ/8, 2):

dim(γ[0,∞)) = min(1 + κ/8, 2),

almost surely. This result is however much harder to prove.
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5.7 Simple phase

Proposition 5.13. Let (γt)t>0 be an SLE(κ), with κ ∈ (0, 4]. Then (γt)t>0 is a simple
path almost surely.

Proof. Recall the notation Ks,s+t = gs(Ks+t \Ks) and K
(s)
t = Ks,s+t − ξs. By the domain

Markov property, (K
(s)
t )t>0 is an SLE(κ). By the Rohde–Schramm theorem, almost surely,

for all rational s > 0 and all t > 0, g−1
Ks,s+t

extends continuously to H̄ and g−1
Ks,s+t

(z) →
γ

(s)
t + ξs as z → ξs+t with z ∈ H. Let E be the event that for all such s > Q ∩ [0,∞) and

for all t > 0, γ
(s)
t ∈ H. Then by Proposition 5.9, since κ 6 4, E has probability 1.

Let us suppose that E holds and fix 0 6 r < r′ arbitrary; let us show that γr 6= γr′ .
Since hcap(Kt) = 2t for all t > 0, almost surely, there is no non-degenerate interval

on which (γt)t>0 is constant. Therefore (using the continuity of γ) we can find a rational

s ∈ (r, r′) such that γs 6= γr. Take t = r′ − s > 0. Thus γ
(s)
t ∈ H on the event E. Hence,

by Rohde–Schramm again,

γs+t = lim
z→ξs+t,z∈H

g−1
s (g−1

Ks,s+t
(z)) = g−1

s (γ
(s)
t + ξs).

so γr′ ∈ Hs ⊆ Hr and therefore γr′ 6= γr, as desired.

Lemma 5.14. Let (γt)t>0 be a simple path in H ∪ {0} starting from 0. Write (ξt)t>0

and (gt)t>0 for the Loewner transform and flow associated to (γ(0, t])t>0, as usual. Fix
r ∈ (0, 1), set τ = inf{t > 0 : |γt − 1| = r} and suppose that τ <∞. Then

|gτ (1)− ξτ | 6 r.

Proof. Write γτ = a + ib and consider the line segments I = (a, a + ib] and J = [a ∧ 1, 1].
Now gτ extends continuously to R\{0} and to γτ , with gτ (γτ ) = ξτ . So the image gτ (I∪J) is
a continuous path in H̄ joining ξτ and [gτ (1),∞). So, by conformal invariance of Brownian
motion,

Pgτ (iy)(BT (H) ∈ [ξτ , gτ (1)]) 6 Pgτ (iy)(BT (H\gτ (I)) ∈ gτ (I ∪ J))

= Piy(BT (Hτ\I) ∈ I ∪ J) 6 Piy(B̂T (H\I) ∈ I+ ∪ J)

where I+ denotes the right side of I. Note that gI(a + ib) = a and gI(a+) = a + b, and
gI(1) = a+ r when a 6 1, so Leb(gI(I

+ ∪ J)) 6 r. Recall that gτ (iy)− iy → 0 as y →∞.
Then, by Proposition 3.10, on multiplying by πy and letting y →∞, we obtain the desired
estimate.

Proposition 5.15. Let γ be an SLE(κ), with κ ∈ (0, 4). Then |γt| → ∞ as t→∞, almost
surely.

Proof. By Proposition 5.7, we know that inft>0(gt(1) − ξt) > 0 almost surely. So, by
the lemma, we must have, inft>0 |γt − 1| > 0 almost surely. We know that g1 extends
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continuously to R \ {0} and that γ1 ∈ H. Set a± = limx↓0 g1(±x). Then a− < ξ1 =

g1(γ1) < a+. Set r± = inft>0 |γ(1)
t + ξ1 − a±| and set

N± = {z ∈ H1 : |g1(z)− a±| < r±}, N = N− ∪ γ(0, 1] ∪N+.

Then γt 6∈ N for all t > 0. By scaling and the Markov property, r± > 0 almost surely.
Since [0, 1]∪ γ(0, 1] and [−1, 0]∪ γ(0, 1] are simple paths, N is a neighbourhood of 0 in H.
Then lim inft→∞ |γt| is almost surely positive, and hence infinite, by scaling.

5.8 Swallowing phase

Proposition 5.16. Let (γt)t>0 be an SLE(κ), with κ ∈ (4, 8). Then (γt)t>0 is not a simple
curve, nor a space-filling curve, almost surely.

Proof. By Lemma 5.7, for any x > 0,

P(γ hits [x,∞)) = 1,

and

P(γ hits [x, y]) = P(ζ(x) < ζ(y)) = φ

(
y − x
y

)
∈ (0, 1).

Hence γζ(x) ∈ (x,∞) almost surely. Moreover, for y > x, we have {γζ(x) < y} = {ζ(y) >
ζ(x)} and {γζ(x) > y} = {ζ(y) = ζ(x)} and both events have positive probability. In
particular, we see that γ hits any given interval in R of positive length with positive
probability. Now if S1 is the set of all limit points of g1(∂K1 ∩H), then S1 is an interval of
positive length containing ξ1. Thus we can find a subinterval I ⊂ S1 such that d(ξ1, I) > 0.
Then by the above observation g1(γ(1,∞)) ∩ I is nonempty with positive probability. On
the other hand, some topological considerations show that ∂K1 ∩ H ⊆ γ[0, 1], so γ has
double points with positive probability and hence almost surely by a zero-one argument
(see below).

On the other hand, on {γζ(x) > y}, there is a neighbourhood of [x, y] in H which does
not meet γ and dist([x, y], Hζ(x)) > 0. In particular, γ is not space-filling, with positive
probability, and then almost surely.

Here is an elaboration of the zero-one argument for double points. Define, for t > 0,
At = {γs = γs′ for some distinct s, s′ ∈ [0, t]}. Then the sets At are non-decreasing in t
and all have the same probability, p say, by scaling. But then p = P(∩tAt) and ∩tAt ∈ F0+,
where F0+ = ∩t>0 σ(ξs : s 6 t). But, by Blumenthal’s zero-one law, F0+ contains only null
sets and their complements. Hence p ∈ {0, 1}.

Proposition 5.17. Let (γt)t>0 be an SLE(κ), with κ ∈ (4, 8). Then dist(0, Ht) → ∞, in
particular |γt| → ∞, as t→∞, almost surely.

Proof. The set S of limit points of gζ(1)(z) as z → 0, z ∈ H is a compact (possibly empty)
subset of (−∞, ξζ(1)). Pick y < inf S. With positive probability, dist(S, gζ(1)(Hζ(y))) > 0,
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so dist(0, Hζ(y)) > 0, so P(dist(0, Ht) > 0) = δ for some t > 0 and δ > 0. This extends to
all t by scaling, with the same δ. So P(dist(0, Ht) > 0 for all t > 0) = δ and then δ = 1 by
a zero-one argument. Finally dist(0, Ht) is non-decreasing and, for all r <∞, as t→∞,

P(dist(0, Ht) 6 r) = P(dist(0, H1) 6 r/
√
t)→ 0.
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6 Locality and restriction

6.1 Conformal transformations of Loewner evolutions

A conformal isomorphism φ of initial domains in H takes one family of compact H-hulls
(Kt)t>0 to another (φ(Kt))t<T , defined up to the time T when (Kt)t>0 leaves the initial
domain. We show that the local growth property is preserved under such a transformation,
and obtain formulae for the half-plane capacity and Loewner transform of (φ(Kt))t<T .

6.1.1 Initial domains

By an initial domain (in H) we mean a set N∪I where N ⊆ H is a simply connected domain
and I ⊆ R is an open interval, such that N is a neighbourhood of I in H. Thus I ⊆ N0

in the notation of Section 3.2. An isomorphism of initial domains is a homeomorphism
φ : N∪I → Ñ∪ Ĩ which restricts to a conformal isomorphism N → Ñ . By Proposition 3.1,
if I 6= R 6= Ĩ, then, given points x ∈ I and x̃ ∈ Ĩ, there is a unique such isomorphism with
φ(x) = x̃, which then extends to a reflection-invariant conformal isomorphism φ∗ : N∗I →
Ñ∗
Ĩ
. In this section, we suppose given an isomorphism of initial domains φ : N ∪ I → Ñ ∪ Ĩ

and a compact H-hull K with K̄ ⊆ N ∪ I. Write I = (x−, x+). Define

K̃ = φ(K), H̃ = H \ K̃, NK = gK(N \K), IK = (g∗K(x−), g∗K(x+)).

Note that H̃ is not the image of H = H \K under φ, nor is IK the image of I under g∗K .
Nevertheless, we now show that H̃ is simply connected and NK is a neighbourhood of IK
in H. You are advised to sketch an example as you follow the results in this section. The
proofs could be skipped in a first reading.

Proposition 6.1. The set K̃ is a compact H-hull with ¯̃K ⊆ Ñ ∪ Ĩ and the set NK ∪ IK is
an initial domain.

Proof (?). Since φ∗ is a homeomorphism and K̄ ⊆ N ∪ I, we have ¯̃K = φ∗(K̄) ⊆ Ñ ∪ Ĩ.
Since K̄ is compact, this also shows that K̃ is bounded.

Pick x ∈ I and consider the conformal isomorphism ψ : D → N∗I such that ψ(0) = x
and ψ′(0) > 0. Fix r ∈ (0, 1) and for θ ∈ [0, π] define p(θ) = ψ(reiθ). Then p = (p(θ) : θ ∈
(0, π)) is a simple curve in N and p(0), p(π) ∈ I. We can and do choose r so that p(θ) ∈ H∗
for all θ ∈ [0, π]. Then φ(p) and gK(p) are simple curves in H which each disconnect H
in two components. Write D0 for the bounded component of H \ gK(p) and D1 for the
unbounded component of H \ φ(p). Then D1 ∪ φ(p) is simply connected and D1 ⊆ H̃.
On the other hand D0 ∪ gK(p) is also simply connected and φ ◦ g−1

K is a homeomorphism
D0 ∪ gK(p)→ H̃ \D1. Hence H̃ = φ(g−1

K (D0)) ∪ φ(p) ∪D1 is simply connected.
Finally, given y−, y+ ∈ I \ K̄ with y− < y+ we can choose r so that p(0) > y+ and

p(π) < y−. Then D0 is a neighbourhood of (g∗K(y−), g∗K(y+)) in H. But D0 ⊆ NK . Hence
NK is a neighbourhood of IK in H.
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Define ÑK̃ and ĨK̃ analogously to NK and IK and define φK : NK → ÑK̃ by

φK = gK̃ ◦ φ ◦ g−1
K .

Proposition 6.2. The map φK extends to an isomorphism NK ∪ IK → ÑK̃ ∪ ĨK̃ of initial
domains.

Proof (?). Write I− and I+ for the leftmost and rightmost component intervals of the open
set I \K̄ ⊆ R. Set J± = g∗K(I±) and J = J−∪J+. Define similarly J̃± and J̃ starting from
Ĩ and K̃. Then J ⊆ IK and IK \J is a compact subset of IK . A similar statement holds for
J̃ and ĨK̃ . Define ψ : (NK)∗J → (ÑK̃)∗

J̃
by ψ = g∗

K̃
◦ φ∗ ◦ (g∗K)−1. Then ψ is a holomorphic

extension of φK which takes J− to J̃− and J+ to J̃+. Since NK is a neighbourhood of IK

in H, we have IK ⊆ N̂K by Proposition 3.1, and similarly ĨK̃ ⊆ ˆ̃N K̃ . Write φ̂K for the

extension of φK as a homeomorphism N̂K → ˆ̃N K̃ . Then φ̂K = ψ on J , so we must have

φ̂K(IK) = ĨK̃ , and so φ extends to a homeomorphism NK ∪ IK → ÑK̃ ∪ ĨK̃ as required.

Recall from Proposition 3.8 the scaling property hcap(rK) = r2 hcap(K). This makes
it plausible, for a conformal isomorphism φ of some initial domain N ∪ I and for a small
hull K near ξ ∈ I, that φ′(ξ)2 hcap(K) is a good approximation for hcap(φ(K)). We now
prove such an estimate, in a normalized form.

Proposition 6.3. There is an absolute constant C < ∞ with the following property. Let
φ : N ∪ I → Ñ ∪ Ĩ be an isomorphism of initial domains. Assume that 0 ∈ I and φ(0) = 0
and φ′(0) = 1. Let K ⊆ N be a compact H-hull. Suppose that for some 0 < r < ε < R <∞
we have

K ∪ φ(K) ⊆ rD, (εD) ∩H ⊆ N ∪ Ñ ⊆ RD.

Then

1− CrR/ε2 6
hcap(φ(K))

hcap(K)
6 1 + CrR/ε2.

Proof (?). It will suffice to prove the upper bound. The lower bound then follows by
interchanging the roles of N ∪ I and Ñ ∪ Ĩ. Recall the formula (29), valid for K ⊆ D,

hcap(K) =

∫ π

0

Eeiθ(ImBT (H))
2 sin θ

π
dθ.

Fix α > 1. Since K ⊆ rD, we can apply this to σ−1K for σ ∈ [r, αr] and use the scale
invariance of Brownian motion to obtain

σ hcap(K) =

∫ π

0

Eσeiθ(ImBT (H))
2σ sin θ

π
σdθ.

Next, integrate over σ to obtain

(α2 − 1)r2

2
hcap(K) =

∫
S(r,αr)

Ez(ImBT (H))
2 Im z

π
A(dz), (49)
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where A(dz) denotes area measure and S(r, αr) is the half-annulus {z ∈ H : r 6 |z| 6 αr}.
Set ψ = φ−1. By conformal invariance of Brownian motion,

Ew(ImBT (H̃)) = Eψ(w)(Imφ(BT (H))).

Apply the identity (49) to φ(K), replacing r by ρ > r and taking α = 2 to obtain

3ρ2

2
hcap(φ(K)) =

∫
S(ρ,2ρ)

Eψ(w)(Imφ(BT (H)))
2 Imw

π
A(dw)

=

∫
ψ(S(ρ,2ρ))

Ez(Imφ(BT (H)))
2 Imφ(z)

π
|φ′(z)|2A(dz) (50)

where we made the change of variable z = ψ(w) for the second equality.
We apply Cauchy’s integral formula to φ∗ and ψ∗ to see that, for |z| 6 1/2, we have

|φ′′(z)| 6 8R and |ψ′′(z)| 6 8R. Then, by Taylor’s theorem, using φ(0) = ψ(0) = 0,
φ′(0) = ψ′(0) = 1 and the fact that φ is real on I, we obtain for |z| 6 1/2

|φ′(z)| 6 1 + 8R|z|, Imφ(z) 6 (1 + 16|z|R) Im z, |ψ(z)− z| 6 4R|z|2.

Assume that 48rR 6 1 and take α = 2(1 + 48rR) then α 6 4. Note that r 6 2r− 4R(2r)2.
Set ρ = inf{s > r : r = s − 4Rs2}. Then ρ 6 2r 6 1/4. Hence, for z ∈ S(ρ, 2ρ), we
have |ψ(z)| > ρ − 4Rρ2 = r and |ψ(z)| 6 2ρ + 16Rρ2 = 2r + 24Rρ2 6 αr 6 4r 6 1/2 so
ψ(S(ρ, 2ρ)) ⊆ S(r, αr). A comparison of (49) and (50) then yields

hcap(φ(K)) 6 (1 + 16rR)(1 + 64rR)(1 + 32rR)2(1 + 192rR) hcap(K)

which in turns yields the claimed estimate for a suitable choice of the constant C.

More generally, for any isomorphism of initial domains φ : N ∪ I → Ñ ∪ Ĩ, any ξ ∈ I,
and any compact H-hull K ⊆ N , the preceding estimate can be applied to the map
φ̄(z) = φ′(ξ)−1(φ(z + ξ)− φ(ξ)) to obtain the estimate

(1− C̄rR/ε2)φ′(ξ)2 hcap(K) 6 hcap(φ(K)) 6 (1 + C̄rR/ε2)φ′(ξ)2 hcap(K) (51)

where C̄ = C max{φ′(ξ)2, φ′(ξ)−2}, whenever K ⊆ ξ + rD and φ(K) ⊆ φ(ξ) + rD and

ξ + (εD) ∩ H̄ ⊆ N ∪ I ⊆ ξ +RD, φ(ξ) + (εD) ∩ H̄ ⊆ Ñ ∪ Ĩ ⊆ φ(ξ) +RD.

The details are left as an exercise.

6.1.2 Loewner evolution and isomorphisms of initial domains

Let (Kt)t>0 be an increasing family of compact H-hulls with the local growth property.
Write (ξt)t>0 for the Loewner transform of (Kt)t>0. Let N ∪I and Ñ ∪ Ĩ be initial domains,
with ξ0 ∈ I and let φ : N∪I → Ñ∪ Ĩ be an isomorphism. Set T = inf{t > 0 : K̄t 6⊆ N∪I}.
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For t < T , we consider the compact H-hull K̃t = φ(Kt) and other associated objects, as in
the preceding section, writing now

gt = gKt , g̃t = gK̃t , φt = φKt = g̃t ◦ φ ◦ g−1
t , ξ̃t = φt(ξt)

and
Nt = NKt , It = IKt , Ñt = ÑK̃t

, Ĩt = ĨK̃t .

Proposition 6.4. The increasing family of compact H-hulls (K̃t)t<T has the local growth
property and has Loewner transform (ξ̃t)t<T .

Proof (?). Fix t0 ∈ [0, T ). Let ψ be as in the proof of Proposition 6.1 and choose r ∈ (0, 1)
so that Kt0 ⊆ ψ(rD). It will suffice to prove the proposition with N ∪ I replaced by
ψ(rD ∩ H̄), which is the bounded component of H̄ \ {ψ(reiθ) : θ ∈ [0, π]}, and with φ
replaced by its restriction to ψ(rD ∩ H̄). Hence we may assume without loss that N ∪ I
is the the bounded component of H̄ \ p, for some simple curve p = (p(θ) : θ ∈ [0, π]) with
p(0), p(π) ∈ R and p(θ) ∈ H for all θ ∈ (0, π), and that φ extends to a homeomorphism

N̄ → ¯̃N .
For t 6 t0 and z, z′ ∈ N \Kt, we have

|gt(z)− gt(z′)| 6 |gt(z)− z|+ |z − z′|+ |z′ − gt(z′)| 6 6 rad(Kt) + 2 rad(N) 6 8 rad(N).

Hence, using a similar estimate for Ñ and reflection symmetry, we have6

N∗t ⊆ ξt +RD, Ñ∗t ⊆ ξ̃t +RD. (52)

where R = 8 max{rad(N), rad(Ñ)} <∞. The maps

(t, θ) 7→ |g∗t (p(θ))− ξt|, (t, θ) 7→ |g̃∗t (φ(p(θ)))− ξ̃t|

are continuous and positive on [0, t0]× [0, π], hence are bounded below, by ε > 0 say. Then,
for all t 6 t0, we have

ξt + εD ⊆ N∗t , ξ̃t + εD ⊆ Ñ∗t . (53)

Since φ∗t : N∗t → Ñ∗t is a conformal isomorphism, it follows by Cauchy’s integral formula
that

|φ′t(z)| 6 2R/ε, z ∈ ξt + (ε/2)D ∩H. (54)

Now, for all r ∈ (0, ε/2], we can find h > 0 such that, for all t 6 t0, we have

Kt,t+h ⊆ ξt + rD (55)

and then, setting ρ = 2R/ε,

K̃t,t+h = φt(Kt,t+h) ⊆ ξ̃t + ρrD. (56)

Hence (K̃t)t6t0 has the local growth property and has Loewner transform (ξ̃t)t6t0 .
6Only one of the two inclusions in (52) and one of those in (53) are used in this proof. We shall need

all of them for the proof of Proposition 6.5.
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Proposition 6.5. For all t ∈ [0, T ), we have7

hcap(K̃t) =

∫ t

0

φ′s(ξs)
2d(hcap(Ks)). (57)

Proof (?). Fix t0 ∈ [0, T ) and follow the same reduction as in Proposition 6.4, introducing
constants R, ε and ρ = 2R/ε. For t 6 t0, from (54), we see that |φ′t(ξt)| 6 ρ. On the
other hand, by considering the inverse map ψ∗t : Ñ∗t → N∗t , we obtain similarly |φ′t(ξt)| =
|ψ′t(ξ̃t)|−1 > 1/ρ. Given δ ∈ (0, 1], choose r > 0 so that CrRρ3 6 ε2δ. There exists an
h > 0 such that, for all t 6 t0,

Kt,t+h ⊆ ξt + rD.

Then, using the estimates (52), (53), (55) and (56), for s ∈ (0, h), we can apply the estimate
(51) to the isomorphism φt : Nt ∪ It → Ñt ∪ Ĩt and the compact H-hull Kt,t+s to obtain

(1− δ)φ′t(ξt)2 hcap(Kt,t+s) 6 hcap(K̃t,t+s) 6 (1 + δ)φ′t(ξt)
2 hcap(Kt,t+s).

Now, for all n ∈ N, setting s = t0/n, we have

hcap(K̃t0) =
n−1∑
j=0

hcap(K̃js,(j+1)s).

For n > t0/h, we can apply the bounds just obtained with t = js and sum over j to obtain

(1− δ)
n−1∑
j=0

φ′js(ξjs)
2 hcap(Kjs,(j+1)s) 6 hcap(K̃t0) 6 (1 + δ)

n−1∑
j=0

φ′js(ξjs)
2 hcap(Kjs,(j+1)s).

Let n→∞ and then δ → 0 to obtain the claimed identity.

Lecture 13 from Friday 12 May

Proposition 6.6. The set S = {(t, z) : t ∈ [0, T ), z ∈ Nt ∪ It} is open in [0,∞)× H̄. The
function (t, z) 7→ φt(z) on S is differentiable in t for all z, with derivative given by

φ̇t(z) =
2φ′t(ξt)

2

φt(z)− φt(ξt)
− φ′t(z)

2

z − ξt
, z ∈ Nt ∪ It \ {ξt} (58)

and
φ̇t(ξt) = −3φ′′t (ξt). (59)

7A shorter proof of this formula is possible using Proposition 3.15 to compare hcap(K̃t,t+h) and
hcap(φ′t(ξt)Kt,t+h), provided rad(Kt,t+h)5/2/ hcap(Kt,t+h) → 0 as h → 0 uniformly on compacts in t.
The estimate (37) shows this condition holds provided (ξt)t>0 is Hölder of exponent greater than 2/5,
so this covers the case of SLE. We have given the longer argument to avoid any spurious condition and
because it is also more elementary, in that it does not rely on Beurling’s estimate, used for Proposition
3.15.
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Moreover, φ̇t is holomorphic on Nt ∪ It, with derivative given by

φ̇′t(z) = 2

(
− φ′t(ξt)

2φ′t(z)

(φt(z)− φt(ξt))2
+

φ′t(z)

(z − ξt)2
− φ′′t (z)

z − ξt

)
, z ∈ Nt ∪ It \ {ξt} (60)

and

φ̇′t(ξt) =
1

2

φ′′t (ξt)
2

φ′t(ξt)
− 4

3
φ′′′t (ξt). (61)

Proof. By Propositions 4.11 and 6.2, when reparametrized by hcap, (g̃t)t<T satisfies Loewner’s
equation driven by (ξ̃t)t<T . So, by Proposition 6.5, we obtain

˙̃gt(z) = 2φ′t(ξt)
2/(g̃t(z)− ξ̃t), z ∈ H̃t.

Set ft = g−1
t and differentiate the equation ft(gt(z)) = z in t to obtain

ḟt(z) = −2f ′t(z)/(z − ξt), z ∈ H.

For z ∈ Nt we have φt(z) = g̃t(φ(ft(z))). By the chain rule, for t ∈ [0, T ) and z ∈ Nt, we
see that φt(z) is differentiable in t, with derivative given by (58), which is then holomorphic
in z with derivative given by (60). Note that the functions on the right hand sides of (58)
and (60) are continuous in z ∈ Nt∪It \{ξt}. It is straightforward to check using l’Hôpital’s
rule that they extend continuously to ξt with the values given in (59) and (61). Then for
x ∈ It and z ∈ Nt, the functions φs(z) and φ̇s(z) and φ̇′s(z) converge as z → x locally
uniformly for s near t. The result follows by standard arguments.

6.2 SLE(6), locality and percolation

6.2.1 Locality of SLE(6)

SLE(6) has a special invariance property called locality which can be understood informally
as meaning that, in its general formulation as a measure on chords in (D, z0, z1), it does
not know what domain it is in beyond the fact that, each time it hits the boundary δD, it
turns towards its endpoint z1, as it must do in order to satisfy the non-crossing property.
By Smirnov’s theorem SLE(6) is the scaling limit of critical site percolation on the planar
hexagonal lattice. Thus, if the upper half-plane is tiled with yellow and blue hexagons,
with the colours at each site independent and equally likely, and if we place blue hexagons
along the positive real axis and yellow ones along the negative real axis, then the unique
blue/yellow interface joining 0 and ∞ converges weakly to an SLE(6) in the limit of small
lattice spacing. The lattice model has its own obvious locality property, so the fact that
locality implies κ = 6 for SLE was an early clue towards Smirnov’s result.

Theorem 6.7. Let φ : N ∪ I → Ñ ∪ Ĩ be an isomorphism of initial domains with 0 ∈ I
and 0 = φ(0) ∈ Ĩ. Let (γt)t>0 be an SLE(κ) or some κ > 0. Set

T = inf{t > 0 : γt 6∈ N ∪ I}, T̃ = inf{t > 0 : γt 6∈ Ñ ∪ Ĩ}.
Then (φ(γt))t<T in its canonical reparametrization has the same distribution as (γt)t<T̃ if
and only if φ(z) = σz + c for some σ > 0, c ∈ R, or κ = 6.
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Proof. Suppose φ is not of the form σz+c for any σ > 0, c ∈ R. Write (Kt)t>0 for the family
of compact H-hulls generated by (γt)t>0 and write (ξt)t>0 for its Loewner transform, which
is a Brownian motion of diffusivity κ. For t < T , set K̃t = φ(Kt) and φt = gK̃t ◦φ◦ (gKt)

−1.

By Propositions 6.2 and 6.5, (K̃t)t<T is a family of compact H-hulls having the local growth
property, whose Loewner transform (ξ̃t)t<T and half-plane capacity are given by

ξ̃t = φt(ξt), hcap(K̃t) = 2

∫ t

0

φ′s(ξs)
2ds.

The set S0 = {(t, x) : t ∈ [0, T ), x ∈ IKt} is open in [0,∞) × R and ξt ∈ IKt for all
t < T . By Proposition 6.6, the adapted random map (t, x) 7→ φt(x) : S0 → R is C1,2 with
φ̇t(ξt) = −3φ′′t (ξt) for all t < T . By the generalized Itô formula, we have

dξ̃t = φ̇t(ξt)dt+ φ′t(ξt)dξt +
1

2
φ′′t (ξt)d[ξ]t.

Since d[ξ]t = κdt,

dξ̃t = (
κ

2
− 3)φ′′t (ξt)dt+ φ′t(ξt)dξt.

Hence (ξ̃)t<T is a local martingale if and only if κ = 6 (else φ′′ = 0 on some nontriv-
ial interval of the real line where it is analytic, which contradicts our asumption on φ).
Furthermore in that case, we see that its quadratic variation is [ξ̃]t = 3 hcap(K̃t). The
canonical reparametrization (K̃τ(s))s<S of (K̃t)t<T and its Loewner transform (ηs)s<S are
given by

hcap(K̃τ(s)) = 2s, hcap(K̃T ) = 2S, ηs = ξ̃τ(s).

Now (by optional stopping) (ηs)s<S is a continuous local martingale (in its own filtration)
and its quadratic variation is given by [η]s = [ξ̃]τ(s) = 6s. Hence, by Lévy’s characterization,
(ηs)s<S extends8 to a Brownian motion (ηs)s>0 of diffusivity 6. Write γ̃ for the SLE(6)
driven by (ηs)s>0, then φ(γτ(s)) = γ̃s for s < S and S = inf{s > 0 : γ̃s 6∈ Ñ ∪ Ĩ}. Hence
(φ(γτ(s)))s<S and (γs)s<T̃ have the same distribution as required.

The significance of the above result is perhaps easier to appreciate when we consider
SLE(6) as a random chord in a general two pointed domain D = (D, z0, z1) as in Section
5.3. By an initial domain N ∪ I in such a two-pointed domain D = (D, z0, z1) we mean a
simply connected subdomain N ⊆ D along with an interval I of δD \ {z1} containing z0

such that N is a neighbourhood of I in D.
If we choose a scale σ from (D, z0, z1) to (H, 0,∞) (which we recall is just a conformal

isomorphism from D to H mapping z0 to 0 and z1 to ∞), then σ(N) ∪ σ(I) is an initial
domain in (H, 0,∞), which is just an initial domain in H in the sense of Section 6.1.1 such
that 0 ∈ σ(I). We can now give a precise version of the informal account of locality which
began this section.

8We know that T <∞ almost surely, so we can do this here without extending the probability space,
using (ξT+t − ξT )t>0.
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Corollary 6.8. Suppose that the two-pointed domains D = (D, z0, z1) and D̃ = (D̃, z̃0, z̃1)
sharing an initial domain N0 ∪ I0, and such that z0 = z̃0. Fix two scales σ and σ̃ on D
and D̃ respectively.

Let γ be an SLE(6) in D with respect to scale σ and let γ̃ be an SLE(6) in D̃ with
respect to scale σ̃. Let

T = inf{t > 0 : γt 6∈ N0 ∪ I0}, T̃ = inf{t > 0 : γ̃t 6∈ N0 ∪ I0}.

Then (γt)t<T and (γ̃t)t<T̃ have the same distribution.

Proof. Set ψ = σ̃−1 ◦ σ. Then ψ is a conformal isomorphism mapping D to D̃ and z0 to
z̃0 = z0, z1 to z̃1. Furthermore if we write φ = ψ|N0∪I0 then φ maps N0 ∪ I0 to Ñ0 ∪ Ĩ0,
where Ñ0 = ψ(N0) and Ĩ0 = ψ(I0). In fact φ is an isomorphism of initial domains.

By definition of SLE(κ) as a random chord with respect to scales σ and σ̃, if γ = (γt)t>0

is an SLE(κ) in (D, z0, z1) with respect to scale σ, then γ̃t = (ψ(γt))t>0 is an SLE(κ) in
(D̃, z0, z̃1) with respect to scale σ̃. The question is therefore whether φ(γt)t<T has the same
law as (γt)t<T . Since φ is an isomorphism of initial domains, this is indeed the case by
Theorem 6.7.

6.2.2 SLE(6) in an equilateral triangle

While physicists investigated critical percolation using nonrigorous methods, Cardy estab-
lished a formula for the limiting crossing probabilities of a rectangle: that is, given L > 0,
Cardy’s formula gave a concrete prediction for the limiting probability p(L) (as the mesh
size tends to zero) that there exists a path of a single colour crossing from left to right a
rectangle RL = (0, L)× (0, 1).

Carleson observed that, assuming conformal invariance, this formula became consid-
erably simpler on a triangle ∆ with vertices (a, b, c) where a = 0, b = 1 and c = eiπ/3 .
Namely, the limiting probability q(x) to observe a crossing between (a, c) and (b, b+x(c−b))
is just q(x) = x. (Note that, if we denote by d the point d = b + x(c − b) = 1 + xe2iπ/3,
there is a single L > 0 such that if R is the rectangle RL = (0, L)× (0, 1), and if ψ is the
unique conformal map sending from ∆ to R and mapping a to i, b to 0, and c to L + i,
then ψ also maps d to L. The assumption of conformal invariance forces p(L) = q(x); thus
Carleson’s version of Cardy’s formula, namely q(x) = x, comes from the explicit form of
p(L) and that of the conformal map sending RL to ∆.)

If we imagine that the side (a, c) consists of blue hexagons and the side (a, b) of yellow
hexagons, the formula can be rephrased in terms of hitting probability for the interface
starting from a which keeps blue hexagons on its left and yellow hexagons on its right:
namely, the probability it hits the side (b, c) below the point (c, b+x(c−b)) should converge
to x. The corresponding formula can be stated as a theorem directly for SLE(6). In turn,
since Smirnov proved that Cardy’s formula holds in the limit for critical percolation, this
provides another way of identifying SLE(6) as the unique possible limit for the scaling limit
of cluster interface exploration process in critical percolation (and indeed can be used to
prove this fact).
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a b

c

Figure 7: Cardy’s formula in an equilateral triangle: the probability of the crossing event in
the figure (i.e., to find a connected path of blue hexagons between (a, c) and (b, b+xe2iπ/3))
converges to x in the limit of fine mesh size.

Lecture 14: Monday 15 May
Let ∆ be the equilateral triangle with vertices a = 0, b = 1, c = eiπ/3.

Theorem 6.9. Let γ be SLE(6) in (∆, 0, 1), with respect to some arbitrary scale σ. Then
the point X at which γ hits the edge [b, c] = [1, eπi/3] is uniformly distributed.

Proof. Note that the law of the position X does not depend on the choice of scale σ, since
changing σ just changes the time parameterisation of the curve.

A conformal map sending (H, 0, 1,∞) to (∆, 0, 1, eπi/3) is known explicitly in complex
analysis, and is given by the so-called Schwarz–Christoffel transformation

f(z) = c

∫ z

0

dw

w2/3(1− w)2/3
, c =

Γ(2/3)

Γ(1/3)2
.

(To understand this formula consider how the argument of f changes close to the real line,
especially near w = 0 and 1.) Consider the map z 7→ ϕ(z) = 1/(1−z). This is a conformal
automorphism which cyclically permutes 0, 1,∞. The map z 7→ g(z) = 1 + e2iπ/3z is a
conformal automorphism of ∆ which cyclically permutes a, b, c. Thus

f(ϕ(z)) = g(f(z)),

by uniqueness of the Riemann map. Thus, composing by ϕ−1(z) = (z − 1)/z, we deduce

f(z) = 1 + e2iπ/3f((z − 1)/z)

for all z ∈ H. This identity extends by continuity when z → x ∈ R.
Let x ∈ (0, 1) and choose y > 0 so that f(y/(1 + y)) = x. Then, by conformal

invariance and Proposition 5.9 (letting φ be the function giving the hitting probabilities in
that proposition),

P(X ∈ [1, 1 + xe2iπ/3]) = P(SLE(6) in (H, 0,∞) hits [1, 1 + y]) = φ

(
y

1 + y

)
= x.

Thus X is uniform on [1, eiπ/3].
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Figure 8: Simulation of a Brownian excursion (by Lawler–Schramm–Werner [11])

6.3 SLE(8/3) and restriction

6.3.1 Brownian excursion in the upper half-plane

Let z = x + iy ∈ H̄. Let (Xt)t>0 be a Brownian motion in R, starting from x. Let
(Wt)t>0 be a Brownian motion in R3, starting from (y, 0, 0), and independent of (Xt)t>0.
Set Rt = |Wt|. Then (Rt)t>0 is a Bessel process of dimension 3 starting from y. Set
Et = Xt + iRt. Thus E satisfies the stochastic differential equation:

dEt = dZt + i
1

Im(Et)
dt

where Z is a complex Brownian motion.
The process (Et : t > 0) is called a Brownian excursion in H starting from z, and can

be thought of (as we will see below) as a planar Brownian motion starting at z = 0 at time
t = 0, conditioned to remain in H for all t > 0 (even more appropriately, we can think of it
as a Brownian motion starting from 0, and conditioned to enter H immediately and leave
H via ∞).

Whilst this process is of interest in its own right, we introduce it here primarily as a
means to study SLE(8/3), in particular using the following formula for the derivative of
the mapping-out function. For a compact H-hull A with 0 6∈ Ā, we write φA for the shifted
mapping-out function, given by

φA(z) = gA(z)− gA(0). (62)

Proposition 6.10. Let A be a compact H-hull with 0 6∈ Ā. Let (Et)t>0 be a Brownian
excursion in H starting from 0. Then

P0((Et)t>0 does not hit A) = φ′A(0).

Proof. Let (Zt)t>0 be a complex Brownian motion starting from z = x + iy ∈ H. Let
(Et)t>0 be a Brownian excursion in H, also starting from z. Write Zt = Xt + iYt, and
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suppose it is defined on some probability space (Ω,F ,P), let (Ft)t>0 denote the associated
filtration. Define for r > 0

Tr = inf{t > 0 : Yt = r}, Sr = inf{t > 0 : ImEt = r}.
Lemma 6.11. Suppose r > y. Define a new measure on (Ω,FTr∧T0) by setting

dP̃
dP

=
YT0∧Tr
y

=
r

y
1{Tr<T0}. (63)

Then P̃ is a probability measure. Under P̃, (Zt)06t6T0∧Tr has the law of a Brownian motion
conditioned so that Tr < T0. Furthermore this coincides with the law of (Et)06t6Sr starting
from z = x+ iy.

Proof. The second equality in (63) is obvious since if T0 < Tr then YT0∧Tr = 0, so only
its complement contributes to the Radon-Nikodym derivative YT0∧Tr/y, in which case it is
equal to r/y. To see that P̃ is a probability measure, simply note that

EP(
YT0∧Tr
y

) =
r

y
P(Tr < T0) = 1

by the standard gambler’s ruin estimate for one-dimensional Brownian motion. Hence P̃
has total mass equal to one and is thus a probability measure on (Ω,F). This also makes
it clear that P̃ is the law of Z conditioned so that Tr < T0; in particular, P̃(Tr < T0) = 1.

Set Mt = y−1YT0∧Tr∧t. Then (Mt)t>0 is a bounded non-negative P−martingale with
M0 = 1 and with final value y−1YT0∧Tr = (r/y)1{T0>Tr}. Consequently the Radon-Nikodym

derivative of the restriction P̃|Ft with respect to P|Ft coincides with Mt.
Under P̃, the processes (Xt)t>0 and (Yt)t>0 remain independent and (Xt)t>0 is a Brow-

nian motion. It remains to identify the law of Y (under P̃), which we do using Girsanov’s
theorem. To do so, note that M is the exponential martingale M = E(N) associated to
the local martingale dNt = dMt/Mt with N0 = 0; that is, Mt = exp(Nt − 1

2
[N ]t). Thus if

we define a process (Bt)t>0 by

dBt = dYt − d[Y,N ]t

= dYt −M−1
t d[M,Y ]t

= dYt − 1{t6Tr}Y
−1
t dt, B0 = 0, (64)

we deduce from Girsanov’s theorem that, under P̃, (Bt)t>0 is a local martingale and hence,
having the same quadratic variation as (Yt)t>0, is a Brownian motion, by Lévy’s charac-
terization. Rewriting the equation (64) defining B differently we have

dYt = dBt + 1{t6Tr}Y
−1
t dt,

where B is a Brownian motion starting from 0 under P̃. This is the same stochastic
differential equation as that of the three-dimensional Bessel process (Rt)t6Tr .

By the Yamada–Watanabe theorem (Yt)06t6Tr under P̃ has the same law as (Im(Et))06t6Tr

under P. So (Xt+iỸt)06t6Tr under P̃ has the same law as (Et)06t6Sr under P. Hence (Zt)t6Tr
under P̃ has the same law as (Et)t6Sr under P. This concludes the proof of Lemma 6.11.
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A

φA

{w :Im(w) = r}

{w :Im(w) = r − c}

{w :Im(w) = r + c}

Figure 9: Proof of Proposition 6.10.

Now let us return to the proof of Proposition 6.10. Suppose z ∈ H \ A and set

pr(z) = Pz((Et)t6Sr does not hit A).

Then

pr(z) = P̃z((Zt)t6Tr does not hit A) = Ez(y−1YT0∧Tr1{TA>Tr}) = (r/y)Pz(Tr < T0 ∧ TA),

where TA = inf{t > 0 : Zt ∈ A}. Now gA(w) − w → 0 as |w| → ∞ and in fact by
Proposition 3.12, we know that |gA(w)− w| 6 3 rad(A). Hence

| Im gA(w)− r| 6 c = 3 rad(A) whenever Im(w) = r

and hence, by conformal invariance of Brownian motion and the gambler’s ruin formula
for one-dimensional Brownian motion,

Im gA(z)

r + c
= PgA(z)(Tr+c < T0) 6 Pz(Tr < T0 ∧ TA) 6 PgA(z)(Tr−c < T0) =

Im gA(z)

r − c .

So
Pz((Et)t>0 does not hit A) = lim

r→∞
pr(z) = Im gA(z)/y.

Note that Im gA(z)/y → g′A(0) > 0 as z → 0 in H. Take now z = 0, fix ε > 0 with
A ∩ εD = ∅, and set

S = inf{t > 0 : |Et| = ε},
then |ES| = ε and ImES > 0 almost surely. Hence, by the strong Markov property of
(Et)t>0 and bounded convergence, as ε→ 0,

P0((Et)t>0 does not hit A) = E(Im gA(ES)/ Im(ES))→ g′A(0) = φ′A(0),

which concludes the proof.
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6.3.2 Restriction measures

Lecture 15 from Friday 19 May
We shift attention from compact H-hulls to a different class of subsets in H. A filling is

any connected set K in H having 0 and ∞ as limit points in Ĥ and such that H \K is the
union of two simply connected domains D− and D+ which are neighbourhoods of (−∞, 0)
and (0,∞) in H respectively. Write S for the set of all such fillings.

Let us introduce a suitable σ-algebra on the set of fillings. Write N for the set of simply
connected domains which are neighbourhoods of both 0 and ∞ in H. For D ∈ N , define
SD = {K ∈ S : K ⊆ D}. Set A = {SD : D ∈ N} and write S for the σ-algebra on S
generated by A.

Definition 6.12. A random filling K is an (S,S)-random variable.

Example 6.13. Given a Brownian excursion (Et)t>0, consider the set K which is the
union of K0 = {Et : t ∈ (0,∞)} and all the bounded components of H \K0. (In words, we
“fill all the holes” of E).

Then the sets {K ⊆ D} for D ∈ N are all measurable. Hence K is a random filling.

By definition of the σ-algebra on S and a π-system argument, the law of a random
filling is entirely determined by probabilities P(K ∈ SD) for D ∈ N . In other words,
it is determined by P(K ∩ A = ∅) for A an arbitrary compact H-hull such that 0 /∈ Ā
(write Q0 for the set of such hulls). Recall from (62) that given A ∈ Q0, we denote
φA(z) = gA(z)− gA(0).

Definition 6.14. Let α > 0. A random filling K (or rather its law) is called a restriction
measure of exponent α if there exists α > 0 such that P(K ∩ A = ∅) = φ′A(0)α for any
A ∈ Q0.

Note that if a restriction measure of exponent α exists, its law is unique.

Example 6.15. By Proposition 6.10, the law of a Brownian excursion is a restriction
measure with exponent α = 1.

The reason we care about restriction measures is because of the following lemma.

Lemma 6.16. Let K be sampled from a restriction measure with exponent α > 0. Let
A ∈ Q0. Then conditionally on K ∩ A = ∅, the law of φA(K) is again a restriction
measure with exponent α (and so has the same law as the unconditional law of K).

Proof. Fix B ∈ Q0. Then

P(K ∩ A = ∅, φA(K) ∩B = ∅) = P(K
⋂

(A ∪ φ−1
A (B)) = ∅)

= φ′
Ã

(0)α
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where Ã = A ∪ φ−1
A (B), since K is a restriction measure with exponent α > 0. However,

φÃ = φB ◦ φA so φ′
Ã

(0) = φ′B(0)φ′A(0) (as φA(0) = 0). Therefore

P(K ∩ A = ∅, φA(K) ∩B = ∅) = φ′B(0)αφ′A(0)α

= P(K ∩ A = ∅)φ′B(0)α.

Thus dividing by P(K ∩ A = ∅), we get

P(φA(K) ∩B = ∅|K ∩ A = ∅) = φ′B(0)α,

as desired for a restriction measure of exponent α.

We say that restriction samples enjoy the restriction property.

6.3.3 Restriction property of SLE(8/3)

We first show that the law of SLE(8/3) is a restriction measure.

Theorem 6.17. The law of SLE(8/3) is a restriction measure with exponent α = 5/8. In
other words, let A be a compact H-hull with 0 6∈ Ā. Let (γt)t>0 be an SLE(8/3). Then

P((γt)t>0 does not hit A) = φ′A(0)5/8.

Proof. Set Kt = {γs : s ∈ (0, t]} and T = inf{t > 0 : γt ∈ A}. The Loewner transform
(ξt)t>0 of (Kt)t>0 is a Brownian motion of diffusivity κ = 8/3. For t < T , set K̃t = φA(Kt)
and φt = gK̃t ◦ φA ◦ (gKt)

−1. Then φt : H \ gKt(A) → H is a conformal isomorphism and
φt(z)− z + gA(0)→ 0 as |z| → ∞, so φt is a shift of the mapping-out function for gKt(A).
Set Σt = φ′t(ξt). The set S0 = {(t, x) : t ∈ [0, T ), x ∈ IKt} is open in [0,∞)×R and ξt ∈ IKt
for all t < T . By Proposition 6.6, the adapted random map (t, x) 7→ φ′t(x) : S0 → R is C1,2

and

φ̇′t(ξt) =
1

2

φ′′t (ξt)
2

φ′t(ξt)
− 4

3
φ′′′t (ξt)

for all t < T . By the generalized Itô formula, we have

dΣt = φ̇′t(ξt)dt+ φ′′t (ξt)dξt +
1

2
φ′′′t (ξt)d[ξ]t.

Since d[ξ]t = κdt, this simplifies to give

dΣt = φ′′t (ξt)dξt +
1

2

φ′′t (ξt)
2

φ′t(ξt)
dt.

Fix α ∈ (0, 1] and set Mt = Σα
t . By Itô’s formula,

dMt = αΣα−1
t dΣt +

1

2
α(α− 1)Σα−2

t dΣtdΣt = αMtdYt,
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where

dYt =
dΣt

Σt

+
1

2
(α− 1)

φ′′t (ξt)
2

Σ2
t

κdt =
φ′′t (ξt)

Σt

dξt +
1

2
(1 + (α− 1)κ)

φ′′t (ξt)
2

Σ2
t

dt.

We choose α = 5/8 so the final term vanishes. Then (Yt)t<T and hence also (Mt)t<T is a
continuous local martingale.

By Proposition 6.10, conditional on γ, we have

φ′t(ξt) = Pξt((Es)s>0 does not hit gKt(A)). (65)

In particular Mt ∈ [0, 1] for all t < T , so Mt has an almost sure limit, MT say, as t ↑ T
and then by optional stopping

E(MT ) = M0 = φ′A(0)5/8.

We shall show that MT = 1{T=∞} almost surely, so P(T = ∞) = E(MT ) = φ′A(0)5/8, as
required.

Consider first the case where T =∞. We want to show that

lim
t→∞

Pξt((Es)s>0 hits gKt(A)) = 0.

There exist connected compact H-hulls A− and A+ such that A ⊆ A−∪A+ and which (γt)t>0

does not hit. Hence we may reduce to the case where A is connected. By Propositions
3.17 and 3.16, we have

rad(gt(A)) 6 cap(gt(A)) 6 cap(A) 6 4 rad(A).

Fix x ∈ Ā∩R. By Proposition 5.7, we have |gt(x)− ξt| → ∞ as t→∞. Hence, as t→∞,

Pξt((Es)s>0 hits gKt(A)) 6 P0((Es)s>0 hits gKt(x)− ξt + 8rD̄)→ 0.

Consider now the case where T < ∞. Write A0 for the component of A containing
γT and assume for now that the boundary of A0 in H may be parametrized as a simple
smooth curve (β(u) : u ∈ R), with β(0) = γT . By symmetry it will suffice to consider the
case where A0 is based on (0,∞). Write Ao0 for the interior of A0. Then

lim
t↑T

Pξt((Es)s>0 hits gKt(A0)) > PξT ((Es)s>0 hits gKT (Ao0)).

We will need the following symmetry estimate.

Lemma 6.18. Let β : R → C be a simple curve, differentiable at 0 with β(0) = 0 and
β̇(0) 6= 0. Set A = β((−∞, 0]) and D = D \ A, and assume that D is simply connected.
Write A± for the left and right sides of A∩D in δD. Then (using the notation B̂T (D) from
Section 2.3)

lim
t↓0

Pβt(B̂T (D) ∈ A+) = lim
t↓0

Pβt(B̂T (D) ∈ A−) = 1/2.
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A0
β(u);u > 0

γ γT = β(0)

gT

ξT

λ+ = {gT (β(u));u > 0}

gT (A0)β(u);u < 0

arg (z − ξT ) = π/3

λ+

λ−

λ− = {gT (β(−u));u > 0}

arg (z − ξT ) = 2π/3

Figure 10: Proof of Proposition 6.10.

Proof. By rotation invariance, it will suffice to consider the case where β̇(0) ∈ (0,∞).
For r ∈ (0, 1], set τ(r) = inf{t > 0 : |β(−t)| = r}. We deduce from the hypothesis
that D is simply connected that τ(1) < ∞ and |γ(−t)| > 1 for all t > τ(1). Given
ε > 0, there exists r0 ∈ (0, 1] such that, for all t ∈ (0, τ(r0)), we have | arg β(t)| 6 ε
and | arg β(−t) − π| 6 ε. Then there exists r ∈ (0, r0) such that |γ(−t)| > r for all
t ∈ [τ(r0), τ(1)). Define A(r) = β((−τ(r), 0]) and D(r) = (rD) \ A(r). Then D(r) is
simply connected. Write A+(r) for the right side of A(r) in δD(r). Then, for t ∈ (0, r),

Pβt(B̂T (D) ∈ A+) > Pβt(B̂T (D(r)) ∈ A+(r))

and

lim inf
t↓0

Pβt(B̂T (D(r)) ∈ A+(r)) > Pe−2iε(B hits (−∞, 0] from above) =
1

2
− ε

π

where we used a scaling argument for the inequality and the fact that arg(B) is a local
martingale for the equality. By symmetry, and since ε > 0 was arbitrary, this proves the
result.

As a consequence of Lemma 6.18, we deduce

lim inf
u↓0

Pβ(u)((Bs)s>0 hits γ(0, T ] on the left side) > 1/2.

Hence, by conformal invariance,

lim inf
u↓0

PgT (β(u))((Bs)s>0 hits R to the left of ξT ) > 1/2.

and so, since 1/3 < 1/2,

lim inf
u↓0

arg(gT (β(u))− ξT ) > π/3.

That is to say, if λ+ is the curve λ+(u) = gT (β(u)) for u > 0 then we can choose ε > 0
small enough that λ+[0, ε] is above (to the left of) the ray {z : arg(z − ξT ) = π/3}, see
Figure 10.

76



For the same reasons,
lim sup

u↑0
arg(gT (β(u)) 6 2π/3,

i.e. if λ− denotes the curve λ−(u) = gT (β(−u)) for u > 0 then λ−[0, ε] lies to the right of
the ray {z : arg(z − ξT ) = 2π/3} for small enough ε > 0. We deduce that

PξT ((Es)s>0 hits gKT (Ao0)) > P0(Ω+ ∩ Ω−) (66)

where

Ω+ = ∩n∈N{arg(Es) ∈ (0, π/3) for some s ∈ (0, 1/n)};
Ω− = ∩n∈N{arg(Es) ∈ (2π/3, π) for some s ∈ (0, 1/n)}; .

Indeed consider a time tn 6 1/n such that arg(zn) 6 π/3 where zn = Etn . Then (if n is
large enough) zn lies to the right of λ+. If zn lies to the left λ− then zn lies in between
λ+ and λ− so is in gT (A0). If however zn also lies to the right of λ−, then consider a time
sn < tn 6 1/n such that arg(wn) > 2π/3 where wn = Esn . Then by continuity E[sn, tn]
intersects λ− and hence intersects gT (A0) too since gT (A0) is smooth near that intersection.
Altogether, (66) holds.

To conclude (in the case where A is smooth) it therefore suffices to prove that P0(Ω+ ∩
Ω−) = 1. Recall the representation Es = Xs + i|Ws|, where (Xs)s>0 and (Ws)s>0 are
Brownian motions in R and R3 respectively. Then, by a scaling argument, P0(Ω+) > 0 and
so P0(Ω+) = 1 by Blumenthal’s zero-one law. Therefore P0(Ω+ ∩O−) = 1.

For general A, there is a sequence of compact H-hulls An ↓ A such that the boundary
in H of every component of every An is a simple smooth curve. Then, using Proposition
6.10,

P((γt)t>0 does not hit An) = P((Et)t>0 does not hit An)5/8

for all n. On letting n→∞ and using Proposition 6.10 again, we obtain the desired result
for A.

The proposition just proved shows that the SLE(8/3) enjoys the restriction property.
Using general considerations and Lemma 6.16, this can be used to show the following result:

Theorem 6.19. Let A be a compact H-hull with 0 6∈ Ā. Let (γt)t>0 be an SLE(8/3). Then,
conditional on the event {(γt)t>0 does not hit A}, the process (φA(γt))t>0 in its canonical
reparametrization is also an SLE(8/3).

Proof of Theorem 6.19. Let SAc = {(γt)t>0 does not hit A}. Theorem 6.17 and Lemma
6.16 imply that, conditional on the event SAc , the law of (φA(γt))t>0 is identical to that of
an SLE(8/3), when both are viewed as random fillings.

Write S0 for the set of fillings in H of the form K = {γt : t ∈ (0,∞)}, where (γt)t>0 is
a simple path in H̄ parametrized so that hcap(γ(0, t]) = 2t for all t. It is straightforward
to see that S0 is S-measurable and we shall show also that the map θ : S0 → C([0,∞), H̄)
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given by θ(K) = γ is S-measurable. For (γt)t>0 an SLE(8/3) and K = {γt : t ∈ (0,∞)},
for A a compact H-hull with 0 6∈ Ā and D = H \ A, we have

{(γt)t>0 does not hit A} = {K ⊆ D}
and on this event the canonical reparametrization (γ̃t)t>0 of (φA(γt))t>0 is given by θ(φA(K)).
Then, for B a measurable set in C([0,∞), H̄), the set θ−1(B) is S-measurable and we obtain

P((γ̃t)t>0 ∈ B|{(γt)t>0 does not hit A})
= P(φA(K) ∈ θ−1(B)|K ⊆ D) = P(K ∈ θ−1(B)) = P((γt)t>0 ∈ B).

We now complete the proof of the theorem by showing the measurability of the map θ.
For n > 0, write Ln for the dyadic lattice 2−n{j + ik : j ∈ Z, k ∈ Z+}. For each p ∈ Ln,
consider the set Q = Q(p) = p + {x + iy : x, y ∈ [0, 2−n]} and write NQ for the countable
set of domains D = H \ A ∈ N where A = A− ∪ A+ and A− and A+ are disjoint simple
paths which are unions of horizontal and vertical dyadic line segments, and which together
with some boundary interval I(D) of Q and some interval of R containing 0, form a simple
closed curve in H \Q. For D ∈ NQ, write K(D) for the hull whose boundary in H consists
of A− ∪ A+ ∪ I(D). For K ∈ S0, set γ = θ(K) and define

τQ(K) = inf{t > 0 : γt ∈ Q}, hQ(K) = hcap(γ(0, τQ(K)]), eQ(K) = γτQ(K).

By Proposition 3.15, given t > 0, we have hQ(K) < t if and only if K ⊆ D for some D ∈ NQ
with hcap(K(D)) < t. Also, given an open boundary interval I of Q, we have eQ(K) ∈ I
if and only if K ⊆ D for some D ∈ NQ with I(D) ⊆ I. Hence hQ : S0 → [0,∞] and
eQ : S0 → H̄ are both S-measurable. For each n > 0, choose an enumeration (pm : m > 0)
of Ln so that so that hm = hQ(pm)(K) is non-decreasing in m and set em = eQ(pm)(K).

Note that if hm = hm′ then em = em′ . Set hm = 2tm. Define a path (θ
(n)
t (K))t>0 by linear

interpolation of ((tm, em) : m > 0). Then θ(n) : S0 → C([0,∞), H̄) is measurable for all

n. Now θt(K) = θ
(n)
t (K) for all t ∈ T (n) = {tm : m > 0} and, since θ(K) is simple,

∪nM(n) is dense in [0,∞). Hence, by uniform continuity, the paths θ(n)(K) converge to
θ(K) uniformly on compacts, so θ is also measurable, as required.

Another corollary of Theorem 6.17 is the following remarkable identity. Suppose α is a
nonnegative integer and A is a compact H-hull such that 0 /∈ Ā ∩ R. Then Φ′A(0)α is the
probability that α independent Brownian excursions avoid A, by Proposition 6.10. Hence
this is the probability that the hull generated by α independent Brownian excursions does
not intersect A. Thus one way to informally interpret the result of Theorem 6.17 is to say
that the SLE(8/3) chord can be thought of as 5/8 of a Brownian excursion. More precisely,
we have the following result as an immediate corollary to Proposition 6.10 and Theorem
6.17:

Theorem 6.20. The compact hull generated by 8 independent SLE(8/3) chords and the
compact hull generated by 5 independent Brownian excursions have the same distribution.

One of the particularly striking aspects of this result is that the curves themselves
(SLE(8/3) and Brownian excursions) are very different from one another.
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Figure 11: A random walk and its loop-erasure (picture F. Viklund).

Lecture 16: Friday 26 May

7 Loop-erased random walk

Suppose G is a finite graph. Let a be a vertex and U be a set of vertices; suppose that
TU < ∞, Pa-a.s, where Pa denotes the law of simple random walk (Γn)n>0 on G starting
from a, and TU the hitting time of U for that walk.

Definition 7.1. A loop-erased random walk from a to U is the process obtained from
(Γn)06n6TU by chronologically erasing the loops from Γ. More precisely, the loop-erasure
β = (β0, . . . , β`) is defined inductively as follows: β0 = a. If βn ∈ U then n = `, else
βn+1 = ΓL, where L = 1 + max{m 6 TU : Γ(m) = βn}.

From the definition, a loop-erased random walk (LERW) is a random simple curve
starting from a and ending in U . They were introduced by Lawler [12] initially as a tractable
toy model for self-avoiding walk. It turns out that (especially in low dimensions such as d =
2 which will be the case of interest here) LERW and self-avoiding walks are quite different
models; yet LERW is central to many other models of statistical mechanics, including in
particular the Uniform Spanning Tree to which it is related via a fundamental relation
known as Wilson’s algorithm.
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Using another connection to a model of statistical mechanics known as the dimer
model, Kenyon [9, 10] was the first to give proofs of results for LERW in two dimensions
consistent with the conformal invariance prediction. Notably, he showed that the limit-
ing (rescaled) probability that a given edge belongs to the loop-erasure is asymptotically
conformally invariant, and he showed that the expected length ` of the path is n5/4+o(1) as
n→∞.

In his original article introducing SLE, Schramm [20] predicted convergence of planar
LERW to SLE(2). This was confirmed in the landmark result [14] by Lawler, Schramm and
Werner. In this section we give arguments which single out SLE(2) as the only plausible
candidate for the scaling limit (these arguments are different from the original line of
reasoning of Schramm, who instead relied on the connection with the dimer model and
Kenyon’s results).

7.1 Discrete lemmas

We start with a few background lemmas on LERW which will be useful in identifying
martingales. From now on we suppose given a simply connected, bounded domain D.
Given a small δ > 0, we associate a graph G = Gδ to D as follows. First, we define the
“internal” vertices V 0 to be V 0 = D ∩ δZ2. Given two internal vertices u, v ∈ V 0, say that
there is an edge e = (u, v) if and only if u and v are neighbours in δZ2 and the straight
segment [u, v] is completely contained in D. In addition, given an internal vertex v ∈ V 0, if
a straight segment of length δ starting from v encounters ∂D, then we identify this portion
of segment to a vertex and call it a boundary vertex u. We call U the set of boundary
vertices. We may now define the graph G: we define its vertex set V to be V = V 0 ∪ U .
The edge set of G is as described above between internal vertices u, v ∈ V 0. In addition,
given a boundary vertex u ∈ U and an internal vertex v ∈ V 0 we put an edge between u
and v if u is identified with the edge emanating from v encountering ∂D.

Note that the resulting graph G is a finite graph (since D is bounded) and TU < ∞
a.s. for any starting point a ∈ V . The first lemma below says that it doesn’t matter if the
loops are erased in the forward or backward direction.

Lemma 7.2. Let Γ be a random walk from a, stopped at the time T = TU when it hits U .
Let β denote the loop-erasure of Γ, and let γ denote the loop-erasure of the time-reversal
Γ̂ = (ΓT ,ΓT−1, . . . ,Γ0). Then γ has the same law as the time-reversal of β.

The same result holds when we condition on ΓT = u ∈ U .

Note that deterministically it is not always the case that a path and its time-reversal
produce the same loop-erasure. Instead this is proved by summing over all paths [s0, . . . , sn]
which might produce a given [γ0, . . . , γ`] as a loop-erasure, and noticing that there is a way
of rerouting the loops of [s0, . . . , sn] to obtain a new path [s′0, . . . , s

′
n] in such a way that

the antichronological loop-erasure of s′ produces the same simple path γ.
It turns out that the antichronological loop-erasure is easier to handle. In the rest of

this section we fix a ∈ V 0 and have in mind the situation where a is a neighbour of some
boundary vertex. We also fix u ∈ U , and consider a random walk Γ = [Γ0, . . . ,ΓT ] starting
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from a, conditioned so that ΓT = u. We also consider the loop-erasure γ = [γ0, . . . , γ`] of
its time reversal Γ̂, so that γ0 = u and γ` = a.

Note that if nj = inf{m >: Γm = γj} then nj is not a stopping time. However, fix j > 0
and vertices (u0, . . . , uj) such that the event E = {[γ0, . . . , γj] = [u0, . . . , uj]} has positive
probability (in particular, u0 ∈ U is a boundary vertex, and u1, . . . , uj ∈ V 0 are internal
vertices). Set Dj to be the “slit domain” Dj = V 0 \ {u0, . . . , uj}.

For j > 0 and v ∈ Dj, consider a walk Γ starting from v, and let Tj = inf{n > 0 : Γn /∈
Dj}. (Thus T0 is the first hitting time of the boundary U).

Lemma 7.3. Fix j > 0 and vertices (u0, . . . , uj) such that the event E = {[γ0, . . . , γj] =
[u0, . . . , uj]} has positive probability. Then E can be written as

E =

{
ΓTj = uj, ΓTj−1

= uj−1, . . . , ΓT1 = u1, ΓT0 = u0

ΓTj−1−1 = uj, ΓTj−2−1 = uj−1, . . . , ΓT0−1 = u1

}
.

Proof. Let E ′ be the event above. E ′ ensures that the walk Γ leaves Dj via uj at time Tj. It
then makes loop(s) based at uj, until Tj−1− 1 (so these loops cannot touch [uj−1, . . . , u0]),

then moves to uj−1, and so on and so forth. Let Γ̂ denote the time-reversal of Γ[0, T0].

Thus Γ̂n = ΓT0−n for 0 6 n 6 T0. Let n̂ = T0 − n.
Then it is easy to check (e.g. by induction) that the event E ′ corresponds to the

following in terms of the time-reversal: first, Γ̂0 = u0, moreover for each 0 6 i 6 j, the
last visit by Γ̂ to [u0, . . . , ui] is at time T̂i, when Γ̂T̂i = ui; after that (if i < j) Γ̂ moves to

ui+1, i.e., Γ̂T̂i+1 = ui+1 and Γ̂ never returns to [u0, . . . , ui].
Using the definition of loop-erased random walk (Definition 7.1) it is therefore clear

that these conditions ensure (indeed, are equivalent to) [u0, . . . uj] = [γ0, . . . , γj].

Now let
HDj(v, u) = Pv(ΓTj = u)

be the (discrete) harmonic measure in Dj viewed from v. A corollary from the above
lemma is the following simple observation.

Corollary 7.4. Fix j > 0 and [u0, . . . , uj] such that Pa([γ0, . . . , γj] = [u0, . . . , uj]) > 0.
Then the same holds under Pv for any other v ∈ Dj. Furthermore,

Fv([u0, . . . , uj]) :=
Pv([γ0, . . . , γj] = [u0, . . . , uj])

Pa([γ0, . . . , γj] = [u0, . . . , uj])

satisfies

Fv([u0, . . . , uj]) =
HDj(v, uj)

HDj(a, uj)
. (67)

We can now identify the desired “martingale observable”:
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Lemma 7.5. Fix a ∈ V 0. Let (γn)n>0 be the (antichronological) loop-erasure of a random
walk (Γn)06n6TU . Fix any other vertex v ∈ V 0, and let Λ = Λv = inf{n > 0 : γn ∈ {a, v}}
be the hitting time of a or v by the loop-erased walk. Then the process

M = M v = (M v
n)06n6Λv ; where M v

n = Fv([γ0, . . . , γn]) for 0 6 n 6 Λv (68)

is a martingale.

Proof. The lemma is immediate from general considerations on Radon–Nikodym deriva-
tives. Suppose that (Ω,F) is a measurable space with a filtration (Fn)n>0, and suppose
that P and Q are two probability measures such that Q|Fn is absolutely continuous with
respect to P|Fn for each n. Let

Mn =
dQ|Fn
dP|Fn

be the Radon–Nikodym derivative of Q with respect to P on Fn. In other words, Mn is
Fn-measurable and for any A ∈ Fn, EQ(1A) = EP(1AMn). Then Mn is a P-martingale
with respect to the filtration Fn: indeed, (Mn)n>0 is adapted by definition, Mn > 0 and
EP(Mn) = 1 so Mn is integrable, and for any A ∈ Fn, since A ∈ Fn ⊂ Fn+1,

EP(Mn+11A) = EQ(1A) = EP(1AMn)

so E(Mn+1|Fn) = Mn since A ∈ Fn is arbitrary.
The definition of Fv in Corollary 7.4 means that Fv([γ0, . . . , γj]) is the Radon–Nikodym

derivative of the law of the (antichronological) loop-erasure of a random walk started from
v, compared to the law of that same loop-erasure but started from a. Therefore M is a
Pa-martingale with respect to the filtration generated by (γ0, . . . , γΛv).

7.2 The Poisson kernel ratio

Let D be a simply connected domain. Let a ∈ D and z ∈ D; let b ∈ D be point on
boundary of D and suppose for now that ∂D is smooth near b. Hence if HD(z; ·) denotes
the (continuous) harmonic measure in D viewed from z, then HD(z, ·) has a density with
respect to arclength measure on ∂D. This density (call it hD(z, ·)) is sometimes called the
Poisson kernel in D viewed from z.

Let

FD,a,b(z) =
hD(z, b)

hD(a, b)
(69)

be the ratio of Poisson kernels at b viewed from z vs. a. Then FD,a,b(z) should be viewed
as a continuum analogue of the quantity defined in (67).

While the Poisson kernel is not well behaved under conformal transformation (indeed,
even the Poisson kernel itself is only well defined when ∂D is smooth near b), we will see
however that the ratio of Poisson kernels FD,a,b(z) is conformally invariant whenever it is
defined.
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Lemma 7.6. Let φ : D → D′ be a conformal isomorphism. Let a, z ∈ D and b ∈ ∂D;
suppose that ∂D is smooth near b and φ extends to a diffeomorphism in a neighbourhood
of b. Set a′ = φ(a), z′ = φ(z), b′ = φ(b). Then ∂D′ is smooth near b′, and

FD,a,b(z) = FD′,a′,b′(z
′).

Proof. By definition

hD(z, b) = lim
I⊂∂D,I↓b

HD(z; I)

|I| ; hD′(z
′, b′) = lim

I′⊂∂D′,I′↓b′
HD′(z

′; I ′)

|I ′|

Set I ′ = φ(I) and suppose I ↓ b. When we apply the conformal isomorphism φ, we have
by conformal invariance HD(z, I) = HD′(z

′, φ(I)). We also have that |φ(I)| ∼ k|I| as I ↓ b,
where k = ‖(Dφ)u‖, u is the unit vector describing the direction of ∂D near b, and Dφ is
the Jacobian matrix of φ at b. Thus

khD(z, b) = hD′(z
′, b′).

This is true for all z including also for z = a. Thus taking ratios, we obtain

hD(z, b)

hD(a, b)
=
hD′(z

′, b′)

hD′(a′, b′)
,

as desired.

As a result, the ratio of Poisson kernels FD,a,b(z) can be defined even when D is not
smooth near b, and b is instead just a point on the Martin boundary. Indeed, let φ denote
any conformal map from D to H. Then we define

FD,a,b(z) = FH,a′,b′(z
′)

where a′ = φ(a), z′ = φ(z), and b′ is the point of R identified with b under φ. This definition
coincides with the earlier one in case of a smooth domain.

7.3 Identification of SLE(2) as scaling limit

Let D be simply connected domain, and let γδ denote the (antichronological) loop-erasure
of a random walk Γ starting a vertex aδ such that aδ → a ∈ ∂D as δ → 0, and conditioned
to to touch the boundary U at uδ. Let us also assume that uδ → u ∈ ∂D as the mesh size
δ → 0.

When the mesh size δ tends to zero, we expect that γδ will converge to a curve γ from
u to a. We will want to identify this curve as an SLE(κ) curve for some parameter κ to be
identified. Fix a conformal isomorphism φ from D to H, sending u to 0 and a to ∞ (i.e.,
φ is a choice of scale for the two-pointed domain D = (D, u, a)).

Let (ξt)t>0 be the driving function of the curve (φ(γt))t>0 in H from 0 to∞, (reparametrised
by half-plane capacity), and let gt denote the associated Loewner flow. As a consequence
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of the conformal invariance of Poisson kernel ratio and the fact that this Poisson kernel
ratio defines a martingale at the discrete level via Lemma 7.5, we expect that for every
z ∈ H, (M z)06t6ζ(z) is a martingale, where

M z
t = hH(gt(z), ξt); 0 6 t 6 ζ(z). (70)

To see (70), note that if the target of the loop-erasure was a point a ∈ H, then we
would expect

Ma,z
t :=

hHt(z, γt)

hHt(a, γt)

to give a martingale. Applying the conformal isomorphism, gt, we have

Ma,z
t =

hH(gt(z), ξt)

hH(gt(a), ξt)
.

We deduce that also hH(a, 0)Ma,z
t is martingale for every a ∈ H. Letting a→∞ and using

the fact that for every t > 0,
hH(a, 0)

hH(gt(a), ξt)
→ 1

as a→∞ (itself a consequence of the fact that gt(a)−a→ 0, and the form of hH computed
explicitly in Example 1.10), we deduce that M z should be a martingale. This explains (70).

Proposition 7.7. Let (γt)t>0 be an SLE(κ) in H. For z ∈ H, set

M z
t = hH(gt(z), ξt); 0 6 t < ζ(z).

Then M z is a local martingale if and only if κ = 2.

Proof. We recall that if z = x+ iy, then by Example 1.10,

hH(z, x0) =
y

π[(x− x0)2 + y2]
=
−1

π
Im

(
1

z − x0

)
. (71)

Set Zt = gt(z)− ξt, so M z is a martingale for all z if and only if

Nt = Im

(
1

Zt

)
is a martingale. By Loewner’s equation,

dZt = ġt(z)dt− dξt
=

2

Zt
dt− dξt,
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so by Itô’s formula,

dNt = Im

(
−dZt
Z2
t

+
1

2

2d[Z]t
Z3
t

)
= Im

(
dξt
Z2
t

− 2

Z3
t

dt+
κ

Z3
t

dt

)
= Im

(
1

Z2
t

)
dξt + Im

(
1

Z3
t

)
(κ− 2)dt.

The first term gives a local martingale, and the second one is of finite variation, so M is a
local martingale if and only if κ = 2.
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8 SLE(4) and the Gaussian free field

We define the planar Gaussian free field and review some of its properties. Then we prove
a relation with SLE(4) due to Schramm and Sheffield which suggests that SLE(4) can be
interpreted as a fracture line of this Gaussian process. Since the free field is distribution-
valued, we begin with a quick review of some classical material on function spaces and
distributions.

8.1 Conformal invariance of function spaces

Let D be a domain. A test-function on D is an infinitely differentiable function on D
which is supported on some compact subset of D. The set of all such test-functions is
denoted D(D). The set D(D) is made into a locally convex topological vector space9 in
which convergence is characterized as follows. A sequence fn → 0 in D(D) if and only
if there is a compact set K ⊆ D such that supp fn ⊆ K for all n and fn and all its
derivatives converge to 0 uniformly on D. A continuous linear map u : D(D)→ R is called
a distribution10 on D. Thus, the set of distributions on D is the dual space of D(D). It is
denoted by D′(D) and is given the weak-∗ topology. Thus un → u in D′(D) if and only if
un(ρ) → u(ρ) for all ρ ∈ D(D). In this context, we think of each ρ ∈ D(D) as specifying
a suitably regular signed measure on D, given by ρ(x)dx, and of each u ∈ D′(D) as a
generalized function on D, which can be viewed through its ‘averages’ u(ρ) with respect to
test-functions. We will freely identify ρ with the signed measure ρ(x)dx. Note that, since
D(D) is separable, the Borel σ-algebra on D′(D) is generated by the coordinate functions
u 7→ u(ρ). We specialize from this point on to the planar case, where we note the following
result.

Proposition 8.1. Let φ : D0 → D be a conformal isomorphism of planar domains.

(a) The map f 7→ f ◦ φ−1 is a linear homeomorphism D(D0)→ D(D).

(b) For ρ ∈ D(D), the image measure of ρ(x)dx by φ−1 is given by ρ0(x)dx, where
ρ0 = (ρ ◦ φ)|φ′|2, and the map ρ 7→ ρ0 is a linear homeomorphism D(D)→ D(D0).

(c) For u0 ∈ D′(D0), consider the distribution u on D given by u(ρ) = u0(ρ0). The map
u0 7→ u is a linear homeomorphism D′(D0)→ D′(D).

The proof, which is left as an exercise, rests on the fact that φ and all its derivatives
are bounded on compact subsets of D0, and φ−1 and all its derivatives are bounded on

9See [19] for more details.
10This conflicts with the usage of distribution to mean the law of a random variable but is standard and

should not cause confusion.
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compact subsets of D. We use for the second assertion the Jacobian formula∫
D

f(φ−1(x))ρ(x)dx =

∫
D0

f(y)ρ(φ(y))|φ′(y)|2dy.

In (c), in the case where u0 is a function, then u is also a function, given by u = u0◦φ−1.
We will continue to write u0 ◦ φ−1 to signify u, even when u0 is a distribution and the
composition cannot be understood literally.

Let D be a proper simply connected domain. The Green function (GD(x, y) : x, y ∈
D) was introduced in Section 1.5 and more specifically in Definition 1.16; we showed in
Proposition 1.18 that for a regular domain we have GD(x, y) <∞ for all x 6= y ∈ D. Write
M+

D for the set of Borel nonnegative measures µ on D having finite (logarithmic) energy

ED(µ) =

∫
D2

GD(x, y)µ(dx)µ(dy). (72)

We will also write MD for the set of signed Borel measures µ = µ+ − µ− where µ+, µ− ∈
M+

D. The energy has a conformal invariance property which it inherits from the Green
function. The proof is left as an exercise.

Proposition 8.2. Let φ : D0 → D be a conformal isomorphism of proper simply connected
domains. Let µ0 be a Borel measure on D0 and write µ for the image measure µ0 ◦ φ−1 on
D. Then

ED(µ) = ED0(µ0).

8.2 Gaussian free field

Let us turn to the definition of the Gaussian free field (as a stochastic process, in the
terminology of [3]). Recall that if I is an index set, a stochastic process indexed
by I is just a collection of random variables (Xi)i∈I , defined on some given probability
space. The law of the process is a measure on RI , endowed with the product topology. It
is uniquely characterised by its finite-dimensional marginals, via Kolmogorov’s extension
theorem.

Given n > 1, a random vector X = (Xi)16i6n is called Gaussian if any linear com-
bination of its entries is real Gaussian; i.e., if 〈λ,X〉 is a real Gaussian random variable.
The law of X is entirely specifed by its mean vector µ = E(X) ∈ Rn, i.e., µi = E(Xi)
for each 1 6 i 6 n, and its covariance matrix Σ ∈ M(Rn) given by Σi,j = Cov(Xi, Xj),
1 6 i, j 6 n. Conversely, given a vector µ ∈ Rn and a symmetric, nonnegative11 matrix
Σ ∈ M(Rn), there exists a (unique) law on Rn which is that of a Gaussian vector with
mean µ and covariance matrix Σ.

Fix a set I and suppose we are given a function C : I × I → R, symmetric non-
negative in the sense that for every n > 1, every t1, . . . , tn ∈ I, and every λ1, . . . , λn,

11Here nonnegative is in the sense of matrices, i.e.,
∑

i,j λiλjΣi,j > 0 for each λ ∈ Rn, or equivalently
the eigenvalues of Σ are all nonnegative.

87



∑n
i,j=1 λiλjC(ti, tj) > 0. Then associated to this function C we can define a centered

Gaussian vector (Xt1 , . . . , Xtn) with covariance matrix Σi,j = C(ti, tj). The resulting laws
are automatically consistent in the sense of Kolmogorov as the parameter t1, . . . , tn ∈ I and
n > 1 are varied, so by Kolmogorov’s extension theorem the function C defines a unique
law on RI of a stochastic process (Xt)t∈I indexed by I such that the restriction of (Xt)t∈I
to the n-tuple of indices t1, . . . , tn ∈ I gives us a centered Gaussian vector (Xt1 , . . . , Xtn)
with the above covariance matrix. The process (Xt)t∈I is called the (centered) Gaussian
stochastic process on I with covariance function C. Given a real-valued function
(µ(t), t ∈ I) we can also define a Gaussian stochastic process on I with mean function
µ and covariance function (C(s, t))s,t∈I simply by shifting the previous centred stochastic
process by µ(t) at each t ∈ I.

Let D be a regular planar domain (where regular is in the sense of Section 1.5; i.e.,
starting from any point on the boundary of D, a Brownian motion would leave D almost
surely instantaneously). We will define the Gaussian free field in D (with zero boundary
conditions) as a centered Gaussian stochastic process indexed by the set MD of (signed)
Borel measures with finite logarithmic energy (see (72)). Essentially, our definition will be
that the Gaussian free field on D with zero boundary conditions is the centered Gaussian
stochastic process (Γρ)ρ∈MD

indexed by MD such that for ρ1, ρ2 ∈MD we have

Cov(Γρ1 ,Γρ2) = ED(ρ1, ρ2) :=

∫
D2

GD(x, y)ρ1(dx)ρ2(dy).

However in order to do so a few things need to be checked:

• ED(ρ1, ρ2) is well defined assuming only that ρ1, ρ2 ∈MD. In fact this is not obvious
even if we assume ρ1, ρ2 ∈M+

D.

• The function ED(·, ·) is symmetric nonnegative onM2
D (so is a valid covariance func-

tion).

These properties are however relatively easy to prove, as seen below (see also Section
1.3 of [3] where they were to our knowledge first discussed).

Lemma 8.3. If ρ1, ρ2 ∈M+
D then ED(ρ1, ρ2) <∞. Furthermore ρ1 + ρ2 ∈M+

D.

Proof. By the Chapman–Kolmogorov equations (9) we have

pDt (x, y) =

∫
D

pDt/2(x, z)pDt/2(z, y)dz,

so

GD(x, y) =

∫
D

dz

∫ ∞
0

pDu (x, z)pDu (y, z)du.
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(Note that there is no factor 1/2 on account of the change of variable t/2 = u.) Conse-
quently, if ρ1 ∈M+

D and ρ2 ∈M+
D are arbitrary,

ED(ρ1, ρ2) =

∫
D2

GD(x, y)ρ1(dx)ρ2(dy)

=

∫
D

dz

∫ ∞
0

∫
D2

ρ1(dx)ρ2(dy)pDu (x, z)pDu (y, z)du

=

∫
D

dz

∫ ∞
0

(∫
D

ρ1(dx)pDu (x, z)

)
×
(∫

D

ρ2(dx)pDu (x, z)

)
du. (73)

In particular, if ρ1 = ρ2 ∈M+
D then

ED(ρ, ρ) =

∫
D

dz

∫ ∞
0

(∫
D

ρ(dx)pDu (x, z)

)2

du, (74)

for any ρ ∈ M+
D. Hence using the inequality 2ab 6 a2 + b2, valid for any real numbers a

and b, we deduce that ED(ρ1, ρ2) <∞ whenever ρ1, ρ2 ∈M+
D.

Now let us check that ρ1+ρ2 ∈M+
D. A priori ED(ρ1+ρ2) = ED(ρ1)+2ED(ρ1, ρ2)+ED(ρ2).

This is an equality between terms which are positive but might be infinite. Nevertheless,
from what we have just seen if ρ1, ρ2 ∈ M+

D all three terms on the right hand side are
finite. Thus the left hand side is finite too and the lemma is proved.

Lemma 8.3 allows us to extend the notion of energy ED(ρ1, ρ2) onto M2
D and not just

(M+
D)2; writing ρi = ρ+

i − ρ−i for i = 1, 2 we then have

ED(ρ1, ρ2) = ED(ρ+
1 , ρ

+
2 ) + ED(ρ−1 , ρ

−
2 )− ED(ρ+

1 , ρ
−
2 )− ED(ρ−1 , ρ

+
2 );

where the finiteness of all four terms on the right hand side comes from Lemma 8.3. Note
furthermore thatMD

0 is then a vector space (again by Lemma 8.3) and then ED is a bilinear
form on MD

0 .

Lemma 8.4. The bilinear form ED is symmetric and nonnegative on M2
D. That is, for

every n > 1 and every ρ1, . . . , ρn ∈MD, for every λ1, . . . , λn ∈ R,

n∑
i,j=1

λiλjED(ρi, ρj) > 0.

In particular ED is a valid covariance function for a Gaussian stochastic process on MD.

Proof. Since ED is a bilinear form, we have:

n∑
i,j=1

λiλjED(ρi, ρj) = ED(ρ)

where

ρ =
n∑
i=1

λiρi ∈MD.

The desired nonnegativity therefore follows directly from (74).
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By Lemma 8.4 the following definition is therefore meaningful:

Definition 8.5. Let D be a regular domain. The Gaussian free field in D with zero
(or Dirichlet) boundary conditions is the centered Gaussian stochastic process (Γρ)ρ∈MD

indexed by MD with covariance function the bilinear form ED(·, ·) on M2
D.

Furthermore, suppose D is a simply connected domain and let f be a bounded measurable
function f on the Martin boundary δD of D. Then the Gaussian free field with boundary
conditions f is the law of a Gaussian stochastic process with same covariance as above,
and mean function ū given by (ū, ρ) =

∫
D
u(x)ρ(dx) where u is the harmonic extension of

f to D, i.e., u(x) = Ex(f(BT )). In other words, we have Γ = Γ0 + u, where Γ0 has zero
boundary conditions and u is as above.

If no boundary conditions are specified then we always mean zero boundary conditions.
In the following we write GFF for Gaussian free field. Let Γ be a zero boundary conditions
GFF with boundary conditions f . Because ED is a bilinear form, it is in fact not hard to
see that (Γρ)ρ∈MD

is a.s. linear in ρ ∈MD: more precisely:

Lemma 8.6. Let ρ1, ρ2 ∈MD and λ, µ ∈ R. Then Γλρ1+µρ2 = λΓρ1 + µΓρ2, a.s.

The proof, left to the reader, consists in checking that the variance of the difference
is zero. The linearity relation of Lemma 8.6 makes it sensible to abuse of notations, and
denote

(Γ, ρ) := Γρ

as if Γ was a random distribution. In fact, it is possible to show that the restriction
of h to D′(D) coincides as a stochastic process with a random distribution (in fact, a
random series which converges in a Sobolev space of negative index, see Chapter 1.4 in [3];
however this fact will not be needed in what follows). In any case note that Γ may not be
evaluated pointwise (because ρ = δx does not lie in MD), however it may be integrated
against smooth, compactly supported test functions ρ ∈ D0(D). In fact the integral of
Γ against relatively more singular measures is well defined: for instance, the integral of
Γ along a segment or a circle are all well-defined, since the Lebesgue measure on such a
one-dimensional smooth curve is an element of MD (indeed, this boils down to the fact
that the divergence of the Green function is only logarithmic, and the fact that in one
dimension

∫ 1

0
log(r−1)dr <∞.

The Gaussian free field inherits from the energy and harmonic measure a property of
conformal invariance. The proof is left as an exercise.

Proposition 8.7. Let φ : D → D′ be a conformal isomorphism of regular domains. Sup-
pose that Γ is a Gaussian free field on D with zero boundary values. Then Γ ◦ φ−1 is a
Gaussian free field on D′ with zero boundary values.

Suppose now that D is simply connected, and that Γ is a Gaussian free field on D with
boundary value f . Then Γ◦φ−1 is a Gaussian free field on D′ with boundary value f ◦φ−1.
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The Gaussian free field has the following Markov property; this is not the most general
statement possible but will be sufficient for our purposes (e.g., U does not in general need
to be a simply connected subdomain).

Proposition 8.8. Let U be a simply connected subdomain of a proper simply connected
domain D. Let ΓD be a Gaussian free field (with zero boundary conditions) on D. Then
ΓD has an almost surely unique decomposition ΓD = ΓU + Φ such that:

• ΓU ,Φ are independent;

• ΓU is a Gaussian free on U (with zero boundary conditions), and is extended to be
zero outside of U ;

• The restriction of Φ to U coincides with a harmonic function u, i.e., almost surely
there exists a harmonic function u such that (Φ, ρ) = (u, ρ) for all ρ ∈ D(U) almost
surely.

Remark 8.9. If U c has a nonempty interior V , then since ΓU is identically zero outside
of U , Φ|V coincides with (ΓD)|V . In other words, Φ encodes all the information about ΓD
outside of U . Inside U , Φ is harmonic so may be viewed as the harmonic extension of
the boundary values determined by the restriction of ΓD to V . It is in this sense that the
above may be viewed as a spatial or domain Markov property: when we condition on the
restriction of ΓD to V (call FV the corresponding σ-algebra), the conditional law inside
U can be decomposed as the sum of two independent terms: the harmonic term Φ, which
is determined only by the “boundary values” of ΓD, and which gives us the conditional
expectation of ΓD given FV , and an independent fluctuation term ΓU which happens to
have the law of a GFF with zero boundary conditions in U . Note that in the end, for
the description of the conditional law of the restriction of ΓD to U given FV , only the
information about the “boundary values” of ΓD along ∂U are relevant.

Proof. In [3] the proof of this Markov property is based on the random series representation
of ΓD and a Hilbertian decomposition of a certain Sobolev space.

We offer here a different and more pedestrian proof. Since U is simply connected we
can approximate it by smooth simply connected subdomains; hence we can without loss of
generality assume that U is analytic, i.e., U is the image of the unit disc by a map which
is an analytic in a neighbourhood of the unit disc. Then V = D \ Ū is open.

For x ∈ D, let B be a Brownian motion starting from x, and let T = inf{t > 0 : Bt /∈
U}. Let Hx denote the law of BT , so that if x /∈ U , then Hx = δx, while if x ∈ U , Hx

is simply the harmonic measure on δU = ∂U (since U is analytic) viewed from x. Note
that since ∂U is smooth, if x ∈ U , Hx is absolutely continuous with respect to Lebesgue
measure on ∂U and hence Hx has finite logarithmic energy, i.e., Hx ∈MD.

Furthermore, given a test function f ∈ D(U), if we define ρf (dw) =
∫
x∈U f(x)Hx(dw)

then for the same reason ρf ∈MD.
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Lemma 8.10. For x, y ∈ D let

fU(x, y) =

∫∫
z,w

GD(z, w)Hx(dz)Hy(dw).

(Note that if x, y ∈ U then the domain of integration is really z, w ∈ ∂U .) Then for all
x, y ∈ D we have

GD(x, y) = GU(x, y) + fU(x, y).

(Here we extend GU(x, y) to be zero if at least one of x or y are in D \ U).

Proof of Lemma 8.10. If both x, y /∈ U there is nothing to prove. Suppose that x ∈ U ,
say. We can rewrite fU(x, y) using two independent Brownian motions B and B′ starting
from x and y respectively, in the form

fU(x, y) = Ex,y[GD(BT , B
′
T ′)],

where T and T ′ are the respective exit times from U . It is then easy to check that fU(x, y)
satisfies the mean value property so by Proposition 1.2 is harmonic in each variable over
all U (including at y = x). If we consider the difference g(y) = GD(x, y)− fU(x, y), viewed
as a function of the variable y ∈ U \ {x}. Then it is clear that gy is harmonic in U \ {x},
tends to zero at ∂U , and g(y) = −(2π)−1 log |x− y|+O(1) as y → x. By Proposition 1.21
we see that g(y) = GU(x, y) over y ∈ U as desired. It is not hard to see this also holds for
y /∈ U using harmonicity of GD(·, y) in all of U in that case.

We return to the proof of Proposition 8.8. For a test function f ∈ D(U) set ρf =∫
x∈U f(x)Hx(dw) and note that ρf ∈MD as mentioned above. Define

(Φ, f) = (ΓD, ρf ),

and note that Φ is a centered Gaussian stochastic process (for now indexed by test functions
f ∈ D(U)) and that

Var(Φ, f) = ED(ρf , ρf ) =

∫∫
GD(z, w)ρf (dz)ρf (dw)

=

∫∫
z,w

∫∫
x,y

GD(z, w)f(x)Hx(dz)dxf(y)Hy(dw)dy

=

∫∫
x,y

f(x)f(y)fU(x, y)dxdy.

In particular when plugging Var(Φ,∆f) = 0 by integration by part, and hence (Φ,∆f) = 0
a.s. Elliptic regularity arguments going beyond the scope of these notes imply that Φ
coincides with the restriction to U of a harmonic function on U . In particular (Φ, ρ) is
defined for arbitrary ρ ∈ MU and in fact, as can be checked, for all ρ ∈ MD. Let ΓU be
independent from Φ and have the law of a Gaussian free field on U . Let Γ̃ = ΓU + Φ. We
aim to show that Γ̃ is has the law of a Gaussian free field in D. Note that it is a.s. linear,
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and a Gaussian process indexed by MD. To conclude it therefore suffices to check that
Var((Γ̃, ρ)) = Var((ΓD, ρ)) for all ρ ∈MD.

We have for such ρ ∈MU , using Lemma 8.10:

Var(ΓD, ρ) = ED(ρ, ρ) =

∫∫
GD(x, y)ρ(dx)ρ(dy)

=

∫∫
[GU(x, y) + fU(x, y)]ρ(dx)ρ(dy)

= Var(ΓU , ρ) + Var(Φ, ρ)

= Var(ΓU + Φ, ρ) = Var(Γ̃, ρ)

as desired.

8.3 Angle martingales for SLE(4)

Lecture 19, Friday 16 June
We study a family of martingales for SLE(4) and their relation to the Green function.

Then by integrating with respect to a test-function we obtain a splitting identity for the
characteristic function of a certain Gaussian free field in H.

Define s0 on δH by s0(±x) = ±1 for x ∈ (0,∞) and s0(0) = s0(∞) = 0. Write σ0 for
the harmonic extension of s0 in H. Then (writing hH(z, dx) for the harmonic measure in
H viewed from z),

σ0(z) =

∫
δH
s0(x)hH(z, dx) = 1− (2/π) arg(z), z ∈ H.

Let γ be an SLE(4). Write (gt(z) : z ∈ H, t < ζ(z)) and (ξt)t>0 for the associated Loewner
flow and Loewner tranform and set Ht = {z ∈ H : t < ζ(z)}. Define st(x) = s0(gt(x)− ξt)
for x ∈ δHt. The harmonic extension σt of st in Ht is then given by σt(z) = σ0(gt(z)− ξt).

Lemma 8.11. For all z ∈ H, the process (σt(z) : t < ζ(z)) is a continuous local martingale
and ζ(z) =∞ almost surely. Moreover, for all w ∈ H \ {z},

d[σt(z), σt(w)] =
16

π2
Im

(
1

gt(z)− ξt

)
Im

(
1

gt(w)− ξt

)
dt.

Proof. Write Zt = gt(z) − ξt and Wt = gt(w) − ξt. From Loewner’s equation, we have
dZt = (2/Zt)dt− dξt for t < ζ(z). Then, by Itô’s formula,

d logZt =
dZt
Zt
− d[Z]t

2Z2
t

= −dξt
Zt

+
(

2− κ

2

) dt

Z2
t

.

Since κ = 4, this shows that the real and imaginary parts of (logZt : t < ζ(z)) are
continuous local martingales. Now Zt → 0 as t → ζ(z) when ζ(z) < ∞, so log |Zt| =
Re logZt → −∞. This is impossible for a continuous local martingale, so ζ(z) = ∞
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almost surely. Also σt(z) = 1 − (2/π) Im logZt, so (σt(z) : t < ζ(z)) is a continuous local
martingale, with

dσt(z) =
2

π
Im

(
1

Zt

)
dξt. (75)

Then, for t < ζ(z) ∧ ζ(w),

d[σt(z)σt(w)] =
4

π2
Im

(
1

Zt

)
Im

(
1

Wt

)
d[ξ]t.

Since d[ξ]t = 4dt, this concludes the lemma.

Remark 8.12. In (75), the expression of the martingale dσt(z) involves the density of
harmonic measure in H (i.e., the Poisson kernel) viewed from Zt at zero (recall that
hH(z, dx) = (−1/π) Im(1/(z − x)), an observation already used in (71), see Example 1.10
for the derivation). Heuristically, this can be understood from the fact that in order to find
a change in the value of σt(z) between times t and t + dt, the Brownian motion starting
from Zt = gt(z)− ξt must touch the real line in an interval of size |dξt| near zero, which is
where the boundary conditions for σ0 (or s0) change; the amplitude of the change is then
of size 2, which explains the factor 2/π in (75).

We now show that the above quadratic covariation between σt(z) and σt(w) is related
to the Green function

Lemma 8.13 (Hadamard’s identity). With the same notations as above,

d[σt(z), σt(w)] = −(8/π)dGHt(z, w) : t < ζ(z) ∧ ζ(w)

Proof. By conformal invariance of the Green function, for t < ζ(z) ∧ ζ(w),

GHt(z, w) = GH(gt(z), gt(w)) =
1

2π
log

∣∣∣∣Zt − W̄t

Zt −Wt

∣∣∣∣ .
Now d(Zt −Wt) = 2(Wt − Zt)dt/(ZtWt), so

d log(Zt −Wt) =
−2dt

ZtWt

, d log(Zt − W̄t) =
−2dt

ZtW̄t

so

dGHt(z, w) = dRe

(
1

2π
log

(
Zt − W̄t

Zt −Wt

))
= Re

(
1

πZt

(
1

Wt

− 1

W̄t

))
dt = − 2

π
Im

(
1

Zt

)
Im

(
1

Wt

)
dt.

Hence d[σt(z), σt(w)] = −(8/π)dGHt(z, w), as desired.
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Remark 8.14. Note that Im(1/Zt) < 0 so dGHt(x, y) < 0 (in particular GHt(z, w) is
of finite variation). This can be seen from the fact that the domains Ht are monotone
decreasing in t; so that if t1 6 t2 and we write Hi = Hti we have H2 ⊂ H1 and for all
s > 0, pH2

s (x, y) 6 pH1
s (x, y) for all x, y ∈ H2, hence GH2(x, y) 6 GH1(x, y).

The fact that dGHt(z, w) involves the product of the Poisson kernel in H viewed from
Zt and Wt at 0 can be understood heuristically as follows. GHt(z, w) counts the time spent
at w by all trajectories starting from z and remaining in Ht. When t increases by a small
amount dt, the trajectories that are lost are those that go through the small portion of the
curve that is added between t and t+ dt. After mapping out, these are the trajectories that
go from Zt to Wt via (approximately) 0 in the upper-half plane. Such trajectories can be
factored out into a portion from Zt to 0 and another one from Wt to 0.

The identity

dGHt(z, w) = − 2

π
Im

(
1

Zt

)
Im

(
1

Wt

)
dt

first appeared in a paper by Makarov and Smirnov [?] and is called by them Hadamard’s
identity.

Proposition 8.15. Set λ =
√
π/8 and γ∗ = γ[0,∞]. Write D− and D+ for the left and

right components of H \ γ∗. Then, for all ρ ∈ D(H), we have

exp

{
iλHH(s0, ρ)− EH(ρ)

2

}
= E

(
exp

{
iλρ(D+)− ED+(ρ)

2

}
exp

{
−iλρ(D−)− ED−(ρ)

2

})
,

where HH(s0, ρ) = (σ0, ρ) =
∫
z∈H ρ(z)σ0(z)dz.

Proof. The martingale σt(z), t < ζ(z) is bounded and so has a limit at t→ ζ(z). Note that
this allows us (for a fixed z ∈ H) to extend its definition up to and including t = ζ(z).

Fix ρ ∈ D(H) and set

Mt =

∫
H\γ∗

λσt(z)ρ(z)dz.

For z ∈ H\γ∗, the map t 7→ σt(z) is continuous on [0,∞) and |σt(z)| 6 1 so, by dominated
convergence, t 7→Mt is continuous on [0,∞), almost surely.

Furthermore, for all z ∈ H, we have ζ(z) = ∞ almost surely, hence z ∈ H \ γ∗ almost
surely. Thus (by Fubini’s theorem) the trace γ∗ = {z ∈ H : ζ(z) < ∞} has zero planar
Lebesgue measure almost surely.

It follows from Fubini’s theorem that M is a martingale: indeed, for s 6 t and A ∈ Fs,

E(Mt1A) =

∫
H
E(1{ζ(z)=∞}λσt(z)1A)ρ(z)dz =

∫
H
E(λσs(z)1A)ρ(z)dz = E(Ms1A).

since σt(z) is a martingale by Lemma 8.11.
Its quadratic variation may be identified by Hadamard’s identity (Lemma 8.13): we

guess

d[M ]t = λ2

∫∫
ρ(z)ρ(w)d[σt(z), σt(w)]dzdw = −dEHt(ρ) (76)
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using the value of λ =
√
π/8 and the definition of the logarithmic energy. To justify (76),

we use again Fubini’s theorem (using again that ζ(z) =∞ almost surely for a fixed z ∈ H)
as follows:

E((M2
t + EHt(ρ))1A) =

∫
H2

E((λ2σt(z)σt(w) +GHt(z, w))1A)ρ(z)ρ(w)dzdw

=

∫
H2

E((λ2σs(z)σs(w) +GHs(z, w))1A)ρ(z)ρ(w)dzdw = E((M2
s + EHs(ρ))1A).

Hence (Mt : t > 0) and (M2
t +EHt(ρ) : t > 0) are continuous martingales. Thus (Mt : t > 0)

has quadratic variation process [M ]t = EH(ρ) − EHt(ρ). Set Et = exp {iMt − EHt(ρ)/2}.
By Itô’s formula, (Et : t > 0) is a local martingale, which is moreover bounded. So

E (exp {iMt − EHt(ρ)/2}) = E(Et) = E(E0) = exp {iM0 − EH(ρ)/2} . (77)

Now, we know that γt →∞ as t→∞ almost surely, so σt → ±1 on D±, and so

Mt → λρ(D+)− λρ(D−).

Also, GHt → GD± on D± ×D± and GHt → 0 on D± ×D∓ almost surely, so

EHt(ρ)→ ED−(ρ) + ED+(ρ).

On letting t→∞ in (77), using bounded convergence, we obtain the claimed identity.

8.4 Schramm–Sheffield theorem

Proposition 8.15 can be interpreted in terms of the characteristic functions of certain
Gaussian free fields, and then implies immediately the following result of Schramm and
Sheffield, which expresses an identity in law for the corresponding fields.

Theorem 8.16. Let γ be an SLE(4) and let D− and D+ be the left and right components
of H \ γ∗. Conditional on γ, let Γ− and Γ+ be independent Gaussian free fields with zero
boundary values, on D− and D+ respectively. Write Γ̄± for their extensions as random
variables in D′(H). Set λ =

√
π/8 and define

Γ = (Γ̄+ + λ1D+)− (Γ̄− + λ1D−)

Then Γ is a Gaussian free field on H with boundary values −λ and λ on the left and right
half-lines respectively.

In other words, Theorem 8.16 above, which is due to Schramm and Sheffield [22], shows
the existence of a coupling between a Gaussian free field Γ on H with boundary values
±λ on the real line, and a curve γ with the law of an SLE(4) such that the values of Γ to
the left of γ are −λ, and to the right of γ, +λ; it is in this sense that γ can be viewed as
a level line of the field Γ. In fact, it can be shown [22, 8] that γ is a measurable function
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Figure 12: Coupling between Gaussian free field and SLE(4). Picture courtesy of S.
Sheffield.

of the field Γ, as one would expect of a curve describing the level line of a field. However,
the argument to show this property is significantly more subtle than the proof of Theorem
8.16.

Augmenting this intuition, Schramm and Sheffield [21] showed (in fact before [22]) the
remarkable result that a level line of the discrete Gaussian free field on the triangular
lattice with boundary conditions ±λ converge to SLE(4).

Before giving the proof of Theorem 8.16, here is a motivating argument, which is not
rigorous. ‘Suppose we can find a simple chord γ = (γt : t > 0) in (H, 0,∞), parametrized
by half-plane capacity, along which there is a cliff in Γ, with value λ to the right and
−λ to the left. Indeed, suppose we can find γ without looking at the values of Γ away
from the cliff. Then, by the Markov property and conformal invariance of the free field,
conditional on Ft = σ(γs : s 6 t), g̃t(Γ|Ht) has the original distribution of Γ, and so γ
has the domain Markov property. Moreover, by conformal invariance of the free field, γ
is also scale invariant, so γ is an SLE(κ) for some κ ∈ [0,∞). Consider the function
φt(z) = E(Γ(z)|Ft). Then for fixed t, φt must be the harmonic extension in Ht of the
boundary values of Γ on δHt. Thus φt = λσt(z). Now (φt(z) : t < ζ(z)) appears to be
a martingale. Hence, as we saw in the proof of Proposition 8.11, we must have κ = 4.’
Note that the theorem turns the construction backwards and does not state that γ is a
measurable function of Γ.

Proof of Theorem 8.16. By Proposition 8.15, for all ρ ∈ D(H),

E(exp{iΓ(ρ)}) = exp {iHH(λs0, ρ)− EH(ρ)/2}
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so Γ(ρ) is Gaussian of mean HH(λs0, ρ) and variance EH(ρ) by uniqueness of characteristic
functions, and so Γ is a Gaussian free field on H with boundary value λs0, as required.

Using the linearity in ρ of HH(λs0, ρ) and the bilinearity in ρ of EH(ρ) we deduce that
the finite-dimensional distributions of (Γ(ρ1), . . . ,Γ(ρn)) match those of a Gaussian free
field in H with boundary values λs0. This completes the proof.

The finite-time identity (77) can be interpreted similarly. Conditional on (γs : s 6 t),
let Γt be a Gaussian free field on Ht with boundary value λst and let Γ̄t be its extension as
a random variable in D′(H). Then Γt is a Gaussian free field on H with boundary value
λs0.
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9 Additional topics

The following section is meant to give a brief overview of some topics closely related to
SLE that have come play to an important role in recent developments of the theory. We
do not go in any depth and do not include any proofs, but focus on some main ideas.

9.1 Radial SLE

In a few natural discrete models of statistical mechanics, the natural curves do not go from
boundary to boundary, as in the chordal theory of SLE we have developed, but rather from
an interior point to the boundary (think of a loop-erased random walk, or a self-avoiding
walk, starting from an interior point). In this case the scaling limits will involve a variant
of SLE known as radial SLE.

To describe this, our first task is to parameterise the curves appropriately. While in the
chordal case this was given by the half-plane capacity (which is natural as the curves are
targeted at infinity), here it is natural to take as reference domain the unit disc D, and view
the curve as being oriented from a boundary point b (say b = 1) to some interior target z
(say z = 0). We then measure the size of a compact D-hull K (i.e., K is such that K ⊂ D
and D \K is simply connected) via its so-called conformal radius. More precisely, given
such a compact D-hull note that there exists a unique conformal isomorphism, denoted by
gK , such that gK : D \K → D, such that gK(0) = 0 and g′K(0) > 0. The number

RK = 1/g′K(0)

is called the conformal radius of D \ K viewed from 0. It is a (conformal) measure of
the distance from 0 to the boundary of D \K.12 By Schwarz’s lemma (Lemma 2.8), note
that RK 6 1. The conformal radius also behaves multiplicatively under composition of
conformal maps, hence if K1 ⊂ K2 are two compact D-hulls then RK2 6 RK1 .

We leave it to the reader to formulate a notion of local growth for families of compact D-
hulls (Kt)t>0, analogous to Definition 4.1. Associated to such a growing family of compact
D-hulls with local growth, there is a well-defined Loewner transform Ut which is now
continuous function on the unit circle (the Martin boundary of D). By continuity, we may
write Ut = eiξt for a unique continuous real-valued function (ξt)t>0 with ξ0 = 0 so that
eiξ0 = U0 = b = 1. It is more convenient to think of (ξt)t>0 as the Loewner transform.

Thanks to the above monotonicity, any such family can be parametrised so that RKt =
e−t, i.e.,

− logRKt = t.

If that is the case, we say that (Kt)t>0 is parameterised by its log-conformal radius or
capacity. There is a form of Loewner’s theorem for such a growing family of compact D-
hulls. A simplified version of this theorem (which conveys the most relevant information)
is as follows:

12Indeed, by the so-called Koebe 1/4 theorem, it can be proved that (d/4) 6 RK 6 d, where d =
dist(0, ∂(D \K)).
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Theorem 9.1. Let (Kt)t>0 be as above and write gt = gKt. Then gt satisfies a differential
equation, namely

d

dt
gt(z) = gt(z)

eiξt + gt(z)

eiξt − gt(z)
, (78)

which is valid until a time τ(z) such that |gt(z)− eiξt | → 0 as t ↑ ζ(z).
Conversely, given a continuous real-valued function (ξt)t>0, solving the ordinary dif-

ferential equation (78)defines a unique growing family of compact D-hulls satisfying local
growth and parameterised by capacity having (ξt)t>0 as its Loewner transform.

Radial SLEκ is obtained by setting ξt =
√
κBt, as usual. The properties of radial SLEκ

are easiest to describe when we express it as an evolution in the upper-half plane. More
precisely, consider the map ψ(z) = eiz, which takes the upper half plane H to the unit disc
D \ {0}, and takes 0 and ∞ respectively to 1 and the interior point 0. Thus for z ∈ H̄, let

ht(z) := ψ−1 ◦ gt ◦ ψ(z) = −i log gt(e
iz),

which is defined either locally or as a multivalued function, but describes the growth in H
instead of D. Then note that ht satisfies the equation

d

dt
ht(z) = −i ġt(z)

gt(z)

= −ie
iξt + gt(e

iz)

eiξt − gt(eiz)

= −ie
iξt + eiht(z)

eiξt − eiht(z)

= cot

(
ht(z)− ξt

2

)
.

Recall that as x → 0, cot(x) = cos(x)/ sin(x) ∼ 1/x, so as (ht(z) − ξt) → 0 (i.e., as
t ↑ ζ(z)),

d

dt
ht(z) ∼ 2

ht(z)− ξt
.

We recover (approximately) the chordal form of Loewner’s differential equation.13

This can be used to show that the phases of radial SLEκ are the same as those of
chordal SLEκ. Hence radial SLEκ is simple for κ 6 4, space-filling for κ > 8, and neither
of those things for κ ∈ (4, 8).

In fact, arguments similar to those used in the proof of locality (Theorem 6.7) could
be used to show that a radial SLE6, observed in the upper half plane and up to a certain
time, is nothing but a chordal SLE6 (up to a time change). More precisely, if γt is a chordal
SLE6 in H from 0 to ∞, then the curve (eiγt)t6T in D̄, considered up to the first time T
such that 0 6↔ ∂D (the first time that 0 is disconnected from the boundary of the unit disc
by eiγ), is a radial SLE6, up to a time-change. This is a form of locality for SLE6.

13The traditional factor 2 in the chordal form of Loewner’s equation actually originates from this calcu-
lation.
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9.2 SLEκ(ρ).

In some natural problems (including many models of statistical mechanics), conformal
invariance and/or domain Markov property may only be expected up to the specification
of an additional point, typically on the boundary of the domain, which plays a special role
in the model. This could reflect a “change in the boundary conditions” of the model, or
some other more subtle distinction.

Let us give two examples, both related to models we have already encountered, and
which illustrate this idea.

Example 9.2. Consider a Gaussian free field on the upper half plane H, with boundary
conditions −λ on (−∞, 0), +λ on (0, 1) and λ+α on (1,∞), where λ =

√
π/8 and α > 0.

In other words, instead of the two values ±λ on either side of zero which form the boundary
conditions in Theorem 8.16, there is a third boundary value, λ+α, along the interval (1,∞).
We may still expect the existence of a curve γ starting from 0 which keeps −λ and +λ on
its left and right, but we should not expect it to be conformally invariant unless we specify
the position of the point (here x = 1) where the boundary condition changes from λ to
λ+ α.

Another example is provided by considering a Brownian excursion (Et)t>0 in the upper
half plane H, and letting γ denote the right boundary of its associated filling. Suppose
we discover a portion γ[0, t] of this boundary, and seek to describe the future evolution of
the curve. Then this is described by right boundary of a Brownian motion, starting from
γ(t), which may not touch the real line, or the right-hand side of γ[0, t], but which may
touch its left hand side. If we believe in conformal invariance and apply the conformal
gt which maps away γ[0, t], then this becomes a Brownian motion which is reflected on
[Ot, ξt] (where Ot is the “left image” of 0, and ξt is the Loewner transform), and is not
allowed to touch R \ [Ot, ξt], before touching ∞. Clearly, this description necessitates a
third boundary point namely Ot) beyond the start and end point of the excursion, 0 and
∞.

In both these examples, we are looking for laws µ(D,a,b,o,σ) which are indexed by a two-
pointed domain (D, a, b) and a scale σ (so we look for a chord in D from a to b) and by an
additional point o ∈ δD, the (Martin) boundary of D. It is only if we keep track of this
additional marked point o that the corresponding laws may be expected to enjoy conformal
invariance and domain Markov property.

Suppose that µ(D,a,b,σ,o) is a family of such laws. We now explain that there are rather
few possibilities for what these laws can be. Suppose we observe the corresponding hulls
(Kt)t>0 in the upper half plane, parameterised by half-plane capacity, and let o ∈ R be
the marked point. Let gt denote the associated Loewner flow, ξt the Loewner transform,
and set Ot = gt(o), for t < ζ(o). Let us try and describe the law for the evolution of the
Loewner transform (ξ)t>0.

First, observe that Loewner’s equation applies, so

d

dt
Ot =

2

Ot − ξt
. (79)
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On the other hand, the domain Markov property assumption implies that

Zt := ξt −Ot

is a continuous diffusion, i.e., the solution of an (autonomous) stochastic differential equa-
tion. The assumption of conformal invariance implies that Zt enjoys in addition the Brow-
nian scaling property. It is not hard to see that the only SDEs which enjoy Brownian
scaling are in fact Bessel processes. This specifies a law for Z = ξ − O; from this one
can recover the evolution of O via (79) and hence ξ itself, which defines a unique chordal
evolution via Loewner’s theorem.

Thus take κ > 0, and fix ρ > −2. Define Zt (later to be equal to ξt − Ot) be the
solution of the SDE

dZt =
√
κdBt +

ρ+ 2

Zt
dt. (80)

After scaling by
√
κ, this is a Bessel process of dimension δ, where

δ = 1 +
2(ρ+ 2)

κ
.

The reason for the choice of the form of the constant ρ+ 2 in (80) will become clear below
(see (81)). For now, note that since ρ > −2, ρ+ 2 > 0 and δ > 1.

Note that Zt is well defined for all t > 0, and can be equal to zero; indeed it can even
start from 0 (in which case one must specify if it starts either from 0+ or 0−.) Either
way, by definition, the sign of Z remains constant and is determined by its value (which
is chosen to be nonnegative if starting from 0+ and nonpositive if starting from 0−).14

Furthermore, note that
∫ t

0
du/Zu <∞, since in fact∫ t

0

du

Zu
=
Zt −

√
κBt − Z0

(ρ+ 2)
.

14The degeneracy of the equation at Z = 0 means that the SDE falls outside the scope of classical SDE
theory with Lipschitz or Hölder coefficients. By convention, to define a solution to (80) we start instead
from the squared-Bessel equation, i.e., we take Xt = Z2

t which satisfies dXt = 2
√
κXtdBt + κδdt; this is

now an SDE with Hölder 1/2 coefficients for which strong (pathwise) uniqueness holds; the solutions are
then a.s. nonnegative and we set Zt =

√
Xt. When the dimension of the Bessel process δ satisfies δ > 1,

the integral
∫ t

0
du/Zu converges, and Z is a strong (i.e., adapted to the filtration of Brownian motion)

solution of the equation (80) in the sense that Zt −Z0 =
√
κBt +

∫ t

0
(ρ+ 2)du/Zu, a.s. Thus, the fact that

a strong solution to (80) exists which furthermore remains of constant sign is a consequence of the fact
that δ > 1.

However when the dimension δ satisfies instead δ ∈ [0, 1], corresponding to values of the parameter

ρ 6 −2, the integral
∫ t

0
du/Zu a.s. does not converge absolutely. It can still be assigned a meaning e.g. via

the notion of principal value (where we remove the contribution of the local time at zero to obtain a finite
integral), see [17]. Alternatively, we may involve more randomness than just that of the driving Brownian
motion and endow Z with a sign, chosen in an i.i.d. manner, each time it restarts from 0 (taken to be
positive with probability (1 +β)/2 and negative with probability (1−β)/2; here β ∈ [−1, 1] is a skenwness
parameter). This results in a signed version of a Bessel process called skew Bessel process, and symmetric
in the particular case β = 0.
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We may thus define Ot := o− 2

∫ t

0

du

Zu
ξt := Zt +Ot.

Definition 9.3. The chordal SLEκ(ρ) in H from 0 to∞, with initial marked point o = O0,
is the unique chordal evolution whose Lowener transform is (ξt)t>0.

Note that ξ satisfies an equation

dξt = dZt + dOt =
√
κdBt +

ρ

Zt
dt. (81)

This explains the form of the constant ρ + 2 in (80); on the other hand, note that in
comparison to (80), (81) is not an autonomous SDE. Yet this equation allows us to give
some meaning to the parameter ρ: in comparison with regular SLEκ, the driving function
ξ is “attracted” to Ot if ρ < 0, and is “repelled” by it if ρ > 0. For ρ = 0 we recover
ordinary SLEκ.

Note that since Zt may touch zero, it is possible that Ot touches ξt; equivalently the
curve has absorbed the point o which was initially marked. Yet the evolution continues
after, and in fact after the time T = ζ(o), the evolution is again that of a chordal SLEκ(ρ)
but with a new marked point which is immediately to the left KT ∩ R (assuming that
Z0 > 0, so that initially the marked point is to the left of the starting point of the curve).
Thus, when the curve absorbs the marked point, we immediately move the marked point
(potentially infinitesimally) in the direction which preserves the order between the starting
point of the curve and the marked point.

Since Z is a Bessel process, it is not hard to find for which values of ρ the curve touches
the real line:

Lemma 9.4. Let (Kt)t>0 be chordal SLEκ(ρ) with some marked point o. Then (Kt; o)t>0

is scale-invariant. Furthermore, set ρ0 = κ/2− 2 > −2.

• If κ 6 4 and ρ > ρ0, then K∞ ∩ R = {0}, a.s.

• If κ 6 4 and ρ < ρ0 and o 6 0 (so initially the marked point is to the left of 0), then
K∞ ∩ R = (−∞, o] ∪ {0}, a.s.

Thus for κ 6 4 and ρ < ρ0, the curve is sufficiently attracted to the marked point that
it goes and hits it, even though κ 6 4 so the curve would like to stay away from the real
line. In that case the marked point is immediately moved to the left (infinitesimally) of its
current value, and the process continues in the same manner. Eventually the curve covers
all of (−∞, o] and its starting point 0, but nothing more.

Note also that so long as ξt 6= Ot, the curve is (by Girsanov’s theorem) absolutely
continuous with respect to SLEκ. In particular, it will be simple, space-filling, or swallowing
exactly in the same way that a regular chordal SLEκ is.
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There are interesting connections between a chordal SLE8/3(ρ) for ρ > −2 and restric-
tion measures. Recall that a sample K from a restriction measure of exponent α > 0 is
one such that

P(K ∩ A = ∅) = φ′A(0)α (82)

for all compact hulls A ∈ Q, i.e., which avoid zero.
Let γ be a chordal SLE8/3(ρ) in H from 0 to ∞ with marked point o = 0−, where

ρ > −2. Let K denote the “left filling” associated to γ, obtained by filling in everything to
the left of the curve. It is natural to ask if K satisfies a one-sided restriction, in which
we require (82) to hold only for those A such that Ā ∩ R ⊂ (0,∞). We let Q+ the set of
hulls.

Using the same tools as Theorem 6.17, one can show:

Proposition 9.5. Let K be as above. Then K satisfies a one-sided restriction with expo-
nent

α =
20 + 16ρ+ 3ρ2

32
=

(3ρ+ 10)(2 + ρ)

32
.

Note that when ρ spans (−2,∞) then α spans (0,∞). In particular, unlike in the
two-sided case, one-sided restriction measures exist for all α > 0.

A two-sided restriction measure always defines a one-sided restriction measures. We
deduce:

Corollary 9.6. Let α > 5/8, and let K be a sample from a restriction measure. Then its
right boundary is an SLE8/3(ρ) with

ρ =
−8 + 2

√
24α + 1

3
.

In particular, the right boundary of a Brownian excursion in the upper half plane is a
chordal SLE8/3(2/3) with marked point o = 0−.

It is not hard to deduce as a corollary that two-sided restriction measures cannot exist
for α < 5/8.

Corollary 9.7. For any α < 5/8, the two-sided restriction measure does not exist.

Sketch of proof. Let γ be an SLE8/3(ρ) curve and suppose ρ < 0. Let E be the event that
i is to the right of the curve γ, i.e., i is not separated from 1 by γ. Then since ρ < 0 one
has that P(E) > 1/2 (which is what it would be for SLE8/3(0))15.

On the other hand, if K is a sample from two-sided restriction measure, then the
probability that i is to the right of K is at most 1/2 by symmetry (it can be strictly less
if there is a positive probability that i is neither to the left nor to the right of K, e.g. if
K is the filling of a Brownian excursion). However for α < 5/8, the right boundary of a
one-sided restriction measure with exponent α is an SLE8/3(ρ) with ρ < 0, showing that
this cannot come from a two-sided restriction measure.

15This requires an argument, which is sketched in [11].
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9.3 Reversibility and duality

The definition of chordal SLEκ as a chord in H from 0 to infinity is very directional ; it
is important that we think of the curve as growing from 0 to ∞ (and not the other way
round) to define the Loewner transform. However if we think of an SLE curve as the scaling
limit of an interface in a model of statistical mechanics (which is in many cases believed,
and sometimes proved as we have argued) then there is no reason to consider the curve as
oriented in one particular direction. For that reason Rohde and Schramm [18] conjectured
that for κ 6 8, SLEκ is reversible. In other words, if γ is a chordal SLEκ from 0 to ∞ in
the upper half plane H, and if ψ(z) = −1/z is the Möbius inversion then (ψ(γ(t)); t > 0)
is, up to time parameterisation, also an SLEκ from 0 to ∞ in H. This conjectured has
been proved (at least for κ 6 4) by Dapeng Zhan [26].

Another remarkable property is the Duplantier duality, which, roughly speaking,
states that the outer boundary η′ of (a portion of) an SLEκ curve η, should be, locally, (a
version of) SLEκ′ , where the parameters κ and κ′ are related via the identity

κκ′ = 16. (83)

Note that if κ > 4 then κ′ 6 4, and κ = 4 is self-dual. Thus if η is nonsimple (κ > 4), η′

is a.s. simple.
For instance, when κ = 8 (in which case η corresponds to the scaling limit of the curve

snaking around the Uniform Spanning Tree), then κ′ = 2, corresponding to loop-erased
random walk. Already at the discrete level, it is indeed already known that there are close
connections between the Uniform Spanning Tree and Loop-Erased Random Walks, which
are summarised through Wilson’s celebrated algorithm for sampling a Uniform Spanning
Tree using Loop-Erased Random Walk. A precise form of this conjecture was described
by Dubédat in [6]. A form of this conjecture was proved rigorously by Dubédat in [7] and
Zhan [25], who proved the precise form conjectured in [6]. This result takes the following
form:

Theorem 9.8. For κ > 4, the right boundary of the final hull of a chordal SLEκ(κ − 4)
from 0 to ∞ with marked point at 0+ is a chordal SLEκ′(

κ′−4
2

) from 0 to ∞ with marked
point at 0−.

Note that in this result, the values of the ρ parameter, namely ρ = κ − 4 and ρ′ =
(κ′ − 4)/2 both satisfy ρ, ρ′ > −2.

9.4 Conformal Loop Ensemble

In many cases, in models of statistical mechanics one would like to keep track not just of
a single interface but rather, in some sense, the whole collection of interfaces separating
different clusters. The natural candidate is an object called Conformal Loop Ensemble
(or CLE) for short and was first constructed in the case κ = 6 of percolation by Camia
and Newman [4] under the name of “full scaling limit”. A more general construction was
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Figure 13: (a) Critical percolation configuration; (b) associated loop configuration; (c)
shading corresponds to nesting. Image from [15].

proposed by Sheffield in [23] in the range of parameters κ ∈ (8/3, 8] which turns out to be
maximal; the resulting random collection (or ensemble) of loops is called CLEκ. (We will
say a few words about this construction in the case κ > 4 below). Locally, each loop in this
ensemble is absolutely continuous with respect to SLEκ. The loops will thus turn out to be
simple and not touch the boundary or each other when κ 6 4, but may touch the boundary,
themselves or each other without crossing if κ ∈ (4, 8]. As κ ↓ 8/3, the corresponding CLEκ

degenerates to the empty set, while as κ ↑ 8 the ensemble becomes a unique space-filling
loop which coincides with SLE8. Thus the range of parameters κ ∈ (8/3, 8] cannot be
extended beyond these two bounds.

Subsequently an axiomatic characterisation in terms of conformal invariance and do-
main Markov property was proposed by Sheffield and Werner in [24]. In that same paper,
a different construction in terms of the so-called Brownian loop soup was given for κ 6 4.
We summarise some of these results below.

The setup is the following. Let D be a proper simply connected domain and let C =
(`j)j>1 be a countable collection of random loops in D. It is convenient to allow the
state space of loops to be arbitrary (i.e., continuous maps from the unit circle into D);
nevertheless it will a.s. be the case that in C, all loops are non-crossing, and cannot cross
each other. We let µD the law of C. Since we prefer to view C as unordered it is more
appropriate to identify C with

∑∞
j=1 δ{`j} which is a random point measure on the space L

of loops. Equipped with the Prokhorov distance, this is a metric space and we let µD be
the law of C on measures on L. Associated to C is also a collection C∗ of outermost loops:
indeed, since the loops of C do not cross each other they have a nested structure: given
`, `′ ∈ C we have either `′ surrounds `, or the other way around, or the two loops have
disjoint interiors. A loop ` is called outermost if it is not surrounded by any loop; we then
let Γ∗ to be the set of outermost loops.

We will assume that the collection of laws µD are conformally invariant in the natural
sense, and satisfy the following domain Markov property. Suppose D′ ⊂ D. Let U = D\D′.
Let C be the collection of loops associated with µD. Suppose we discover all the loops of C
which intersect U , say CU = {` ∈ C : [`] ∩ U 6= ∅}, where [`] is the trace (or range) of the
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loop `. These loops split D into a collection (Dk)k>1, i.e.,

D \
⋃
`∈CU

([`] ∩D) =
∞⋃
k=1

Dk

The domain Markov property is that conditionally given CU , the conditional law of C re-
stricted to each Dk form independent ensembles of loops with respective law µDk . Sheffield
and Werner’s theorem from [24] takes the following form.

Theorem 9.9. For each κ ∈ (8/3, 8], the CLEκ ensemble of loops satisfies the above
conformal invariance and domain Markov property. Conversely, if µD satisfy conformal
invariance and domain Markov property in the above sense, then there exists κ ∈ (8/3, 8]
such that µD is the law of CLEκ in D.

This characterisation allowed Sheffield and Werner in [24] to provide a construction of
the conformal loop ensemble CLEκ when κ 6 4 in terms of the so-called Brownian loop
soup. We now briefly explain what this means and how CLE is related to it.

A (rooted) loop is a continuous function γ : [0, t]→ C with γ(0) = γ(t) = z. The loop
is then rooted at z. If D ⊂ C is a proper domain, we obtain a (σ-finite) measure on loops
in D by setting

µDrooted(·) =

∫
z∈D

∫ ∞
0

1

t
pDt (z, z)PDz→z;t(·)dt (84)

=

∫
z∈D

∫ ∞
0

dt

2πt2
PC
z→z;t(·; b[0, t] ⊂ D). (85)

where pDt (x, y) is the transition probability for Brownian motion killed outside of D, and
PDz→z;t is the law of a Brownian bridge of duration t from z to z, conditioned to stay in D, as
in (7), whereas PC

z→z;t(·; b[0, t] ⊂ D) denotes the law of a Brownian bridge (in the full plane)
from z to z, of duration t, but restricted to the event that the Brownian bridge remains in
D. This is an (infinite, but σ-finite) measure on the space of rooted loops, equipped with
the Borel topology inherited from the uniform metric after applying Brownian scaling so
that both loops are defined on the interval [0, 1] (this turns the space of rooted loops into
a complete metric space).

An unrooted loop is a continuous function γ : U → C (where U = {z : |z| = 1} is the
unit circle), modulo the equivalence relation that two such functions γ1, γ2 are equivalent
if there exists θ ∈ [0, 2π) such that γ1(z) = γ2(zeiθ) for all z ∈ U. A rooted loop γ is
naturally associated to an unrooted loop denoted by γ. We obtain from the measure on
rooted loops above an unrooted measure, denoted by µloop, in the obvious manner:

µDloop(A) = µDrooted({γ : γ ∈ A}).

This is an infinite but σ-finite measure on the space L of unrooted loops, equipped with
the Borel σ−algebra inherited from the quotient metric of the above metric (which also
turns the space of unrooted loops into a complete metric space).
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The advantage of µDloop over µDunrooted is that it enjoys conformal invariance, in an obvious
sense. Since the measure is infinite we cannot sample from this measure, but as it is σ-finite
we may instead consider a Poisson point process with intensity µDloop. More generally, given
λ > 0, we may consider a Poisson point process

Nλ =
∑
i>1

δ{γi}

on the space of unrooted loops, with intensity16 (λ/2)µDloop. This is the Brownian loop
soup with intensity λ/2. By definition this is a random point measure, such that
if for any k > 1, any pairwise disjoint A1, . . . , Ak ⊂ L, then (Nλ(A1), . . . , Nλ(Ak)) are
independent random variables with a Poisson distribution (λ/2)µDloop(Ai), 1 6 i 6 k.

The Brownian loop soup is conformally invariant since µDloop is conformally invariant.
Furthermore, the Brownian loop soup enjoys a natural restriction property: given two
proper simply connected domains D,D′ with D′ ⊂ D, and given Nλ =

∑
i>1 δ{γi} a Brow-

nian loop soup in D, if we consider

N ′λ =
∑
i>1

δ{γi}1{[γi]⊂D′} (86)

where [γi] denotes the trace (i.e. the range or image set) of the unrooted loop γi, then N ′λ is
a Brownian loop soup in D′. That is, the point process consisting of those loops remaining
entirely in D′ is the Brownian loop soup in D′. This is immediate from the definition of
a Poisson point process and the definition of the loop measure coming from the second
expression in (85).

We now explain how to associate a conformal loop ensemble to a Brownian loop soup.
Let Nλ be a realisation of the Brownian loop soup in D with intensity λ/2. We can consider
clusters of loops associated to Nλ, where two loops γ, γ′ are considered connected if there
is a finite chain γ0, . . . , γk, such that γ0 = γ and γk = γ′, and [γi−1]∩ [γi] 6= ∅ for 1 6 i 6 k.
It is not hard to see that as λ increases, the clusters of loops increase monotonically, making
it plausible that there exists a phase transition at some critical parameter λc such that the
loop clusters are nontrivial for λ < λc, while they cover (almost) all of D for λ > λc,
in the sense that there is a unique cluster. For λ < λc, we may fill in each cluster; the
outer-boundary of the resulting compact set will be a simple loop. The set of all outer
boundaries of filled-in Brownian loop soup clusters are therefore a plausible candidate for
the set of outermost loops in a CLE.

Theorem 9.10 ([24]). Let Nλ denote a Brownian loop soup in D with intensity λ/2, and
let Cλ denote the collection of outer boundaries of filled in loop clusters in Nλ.

(a) If λ > 1, then there is a.s. a unique cluster of loops in Nλ.

16The factor 1/2 in the intensity has to do with the fact that the loops we consider here are oriented;
if we were to consider unoriented loops, which is natural both in the context of percolation and from the
point of view of the geometric description of the outermost cluster boundaries, then this factor 1/2 would
not need to be there.
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(b) If λ 6 1, then a.s. Cλ consists of a countable collection of disjoint simple loops.
These satisfy the axioms of Theorem 9.9 and are therefore a CLEκ for some value of
κ ∈ (8/3, 4]. In fact, κ is determined from λ via the relation

λ =
(3κ− 8)(6− κ)

2κ
. (87)

Let us make a few observations about this theorem:

• First, this confirms that the percolation phenomenon which was discussed heuristi-
cally above takes place, and identifies the critical intensity λc to be λc = 1.

• We point out that, assuming that the loop clusters are nontrivial (say λ < λc) then
the fact that the collection Cλ satisfies the axioms of Theorem 9.9 is relatively easy
to see (conformal invariance follows directly from the conformal invariance of the
Brownian loop soup, and the domain Markov property comes from the restriction
property of the Brownian loop soup (86) and elementary properties of Poisson point
processes).

• The relation (87) between the intensity of the loop soup and the parameter κ describ-
ing the geometry of the outer boundary is the same, up to a sign factor, as the one
used to construct restriction measures from SLEκ. Indeed, recall that by exercise 3 on
Sheet 8, given κ 6 8/3, we obtain a restriction measure of exponent α = (6−κ)/(2κ)
by adding to a chordal SLEκ path γ the collection of loops encountered by γ from a
Brownian loop soup with intensity

λ =
(8− 3κ)(6− κ)

2κ
. (88)

Note that the relation (88) is almost the same as (87), except for a sign change.
Furthermore κ 6 8/3 in (88), while in (87), κ is by assumption greater than 8/3.
Thus the intensity of the loop soup is always nonnegative, as required.

• Given the relationship between κ and λ, it is reasonable to expect that λc = 1 (which
corresponds to κ = 4). Indeed, at κ = 4 the CLE loops are very close to touching
the boundary or one another. Increasing the value of λ just a little therefore results
in a unique percolation cluster.
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A Beurling’s projection theorem

We prove a result of Beurling which concerns the probability that complex Brownian motion
(Bt)t>0 starting from 0 hits a relatively closed subset A ⊆ D before leaving D. It states that
the probability does not increase if we replace A by its radial projection A∗ = {|z| : z ∈ A}.
For A = [ε, 1) we can compute the hitting probability exactly. This provides general source
of lower bounds for harmonic measure. We also prove a symmetry estimate, in the case
where A is a simple path, for the probability that Brownian motion hits a given side of A.
Finally, we prove a maximal inequality for H1 functions of Brownian motion.

Write TA for the hitting time of A given by

TA = inf{t > 0 : Bt ∈ A}.

Theorem A.1. Let A be a relatively closed subset of D. Then

P0(TA∗ < T (D)) 6 P0(TA < T (D)).

The proof relies on the following folding inequality17. Define the folding map φ on C
by φ(x+ iy) = x+ i|y|.
Lemma A.2. Let A be a relatively closed subset of D. Then

P0(Tφ(A) < T (D)) 6 P0(TA < T (D)).

Proof. We exclude the case where 0 ∈ A for which the inequality is clear. Consider the set
ρ(A) = A ∪ {z̄ : z ∈ A}, symmetrized by reflection. Set R0 = 0 and define, recursively for
k > 1,

Sk = inf{t > Rk−1 : Bt ∈ ρ(A) or Bt 6∈ D}, Rk = inf{t > Sk : Bt ∈ R}.

Then Sk and Rk are stopping times and Rk−1 6 Sk 6 Rk <∞ for all k, almost surely.
Set K = inf{k > 1 : Sk = Rk}, where we take inf ∅ =∞ as usual. On the event {K =

∞}, we have Rk−1 < Sk < Rk < TR\D < ∞ for all k, so the sequences (Sk : k > 1) and
(Rk : k > 1) have a common accumulation point T ∗ 6 TR\D. We can write (D\ρ(A))∩R as
a countable union of disjoint open intervals ∪nIn. By a straightforward harmonic measure
estimate, there is a constant C <∞ such that P0(Bt ∈ In for some t < TR\D) 6 C Leb(In)
for all n so, by Borel-Cantelli, almost surely, B visits only finitely many of the intervals In
before TR\D. Hence, on {K =∞}, almost surely BT ∗ = limk BSk = limk BRk is an endpoint
of one of the intervals In. But, almost surely, B does not hit any of these endpoints. Hence
K <∞ almost surely.

Set A+ = φ(A) ∩ A and A− = φ(A) \ A. Take a sequence of independent random
variables (εk)k>1, independent of B, with P(εk = ±1) = 1/2 for all k. Set ε̂k = δkεk, where

17Our proof of the folding inequality is new, though based on ideas from an argument of Oksendal.
Whereas Oksendal cuts up the events whose probabilities are to be compared into pieces where symmetry
can be invoked to make the comparison, we obtain the inequality from a global inclusion of events, using
stochastic calculus to obtain the needed symmetry.
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δk = ±1 according as BSk ∈ ρ(A±). Then (ε̂k)k>1 has the same distribution as (εk)k>1 and

is also independent of B. Write Bt = Xt + iYt and define new processes B̃, Ỹ and B̂ by
setting

B̃t = Xt + iỸt = Xt + iεkYt, B̂t = Xt + iε̂kYt, for Rk−1 6 t < Rk, k = 1, . . . K

and B̃t = Xt + iỸt = B̂t = Bt for t > RK . Then we have

Ỹt =

∫ t

0

(
K∑
k=1

εk1{Rk−16s<Rk} + 1{s>RK}

)
dYs

almost surely, where the right hand side is understood as an Itô integral in the filtration
(Ft)t>0 given by

Ft = σ(εk, Bs : k > 1, s 6 t).

Thus Ỹ is a continuous (Ft)t>0-local martingale with quadratic variation [Ỹ ]t = t. Morever
we have [X, Ỹ ] = 0. Hence B̃ is a Brownian motion by Lévy’s characterization, Similarly
B̂ is also a Brownian motion (in a different filtration). Note that, with obvious notation,
for all k,

T̃ (D) = T̂ (D) = T (D), S̃k = Sk, R̃k = Rk.

Suppose that B̃ hits φ(A) before T (D). Note that B̃ cannot hit φ(A) before S1 and, if
it does not hit φ(A) at Sk, then it cannot do so until Sk+1. Also, if RK < T (D), then
B̃RK ∈ ρ(A) ∩ R ⊆ φ(A). Hence the only possible values for Tφ(A) are S1, . . . , SK and RK .

Now, if Tφ(A) = Sk for some k 6 K, then either B̃Sk ∈ A+ so B̂Sk = B̃Sk ∈ A, or B̃Sk ∈ A−
so B̂Sk = ¯̃BSk ∈ A. On the other hand, if Tφ(A) = RK , then B̂RK = B̃RK ∈ ρ(A) ∩ R ⊆ A.

In all cases B̂ hits A before T (D). Hence {T̃φ(A) < T (D)} ⊆ {T̂A < T (D)} and the folding
inequality follows on taking probabilities.

Proof of Theorem A.1. The map φ folds C along R and fixes the point i. Note that φ
preserves the class of relatively closed subsets of D. Set φ0 = φ and consider for n > 1 the
map φn which folds C along exp(2−nπi)R and fixes 1. Set ψn = φn ◦ · · · ◦φ0. For all n > 0,
by the folding inequality and rotation invariance,

P0(Tφn(A) < T (D)) 6 P0(TA < T (D))

and so by induction
P0(Tψn(A) < T (D)) 6 P0(TA < T (D)).

Consider the set
A(n) = {zeiθ : z ∈ A, |θ| 6 2−nπ}.

Then A(n) is relatively closed and

A∗ = A(n)∗ ⊆ {xeiθ : x ∈ A∗, θ ∈ [0, 2−nπ]} = ψn(A(n))
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so
P0(TA∗ < T (D)) 6 P0(Tψn(A(n)) < T (D)) 6 P0(TA(n) < T (D)).

On letting n→∞ we have TA(n) ↑ TA almost surely, so we obtain

P0(TA∗ < T (D)) 6 P0(TA 6 T (D)).

By scaling, the same inequality holds when D is replaced by sD for any s ∈ (0, 1) and the
result follows on taking the limit s→ 1.

Theorem A.3 (Beurling’s estimate). Let A be a relatively closed subset of D and let
ε ∈ (0, 1). Suppose that A contains a continuous path from the circle {|z| = ε} to the
boundary ∂D. Then

P0(TA > T (D)) 6 2
√
ε.

Proof. By the intermediate value theorem, we must have [ε, 1) ⊆ A∗. Then, by Beurling’s
projection theorem, it will suffice to consider the case where A = [ε, 1). Consider the
conformal map D \ A→ H given by φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1, where

φ1(z) = i
1− z
1 + z

, φ2(z) =
1 + ε

1− εz, φ3(z) =
√
z2 + 1, φ4(z) = az, a =

1− ε
2
√
ε
.

Then φ(0) = i and the left and right sides of A are mapped to the interval (−a, a). Then,
by conformal invariance of Brownian motion,

P0(TA > T (D)) = Pi(|BT (H)| > a) =
2

π
cot−1 a

and the claimed estimate follows using the bound sin x > 2x/π for x ∈ [0, π/2].

B Smirnov’s theorem

We now discuss Smirnov’s proof of Cardy’s formula for percolation on the triangular lat-
tice. Consider the lattice of edge length δ. Sites of the lattice are coloured black or white
independently with probability 1/2. Take any Jordan domain D with three distinct bound-

ary points a(1), a(τ), a(τ 2), ordered positively, where τ = e2πi/3 = −1
2

+
√

3
2
i. Write Φ for

the unique conformal isomorphism from D to the triangle ∆ with corresponding boundary
points 1, τ, τ 2. For z ∈ D and α ∈ {1, τ, τ 2}, write Qα(z) for the event that z is sepa-
rated from the boundary segment a(τα)a(τ 2α) by a simple black path from a(α)a(τα) to
a(τ 2α)a(α). Set Hα(z) = Hδ

α(z) = P(Qα(z)). By a black path we mean any path in the
lattice which visits only black points. The functions Hα(z) are constant in the interior of
lattice triangles with discontinuities at the edges. Let fα denote the unique affine function
on ∆ with fα(α) = 1 and fα(τα) = fα(τ 2α) = 0, and set hα = fα ◦ Φ.

Theorem B.1 (Smirnov). For α = 1, τ, τ 2, Hδ
α converges uniformly on D to hα as δ → 0.
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It follows, in particular, by taking z ∈ ∂D, that the asymptotic crossing probabilities for
this percolation model are indeed conformally invariant and are given by Cardy’s formula.

Before sketching the proof, we will describe a variant of the Cauchy–Riemann equations
and of conjugate harmonic functions, associated with the angle 2π/3. For α = 1, τ, τ 2, and
f analytic, set

fα = Re(f/α).

Then fα is harmonic and we can recover f by

αf = fα +
i√
3

(fατ − fατ2).

Also, for any η ∈ C, the directional derivatives satisfy

∇ηfα(z) =
∂

∂ε
|ε=0 Re

(
f(z + εη)

α

)
= Re

(
f ′(z)η

α

)
= ∇τηfτα(z).

These are the 2π/3-Cauchy–Riemann equations, and (f1, fτ , fτ2) is the harmonic triple of
f .

Conversely, if we are given C1 functions f1, fτ , fτ2 such that, for α ∈ {1, τ, τ 2}, for all
η,

∇ηfα(z) = ∇τηfτα(z),

then f , defined by

f = f1 +
i√
3

(fτ − fτ2),

is holomorphic and fα = Re(f/α) for all α.

Sketch proof of Theorem B.1. For z the centre of a lattice triangle in D and η a vector
from z to one of the three neighbouring triangle centres, for α ∈ {1, τ, τ 2}, the events
Q = Qα(z + η) \ Qα(z) and Q̃ = Qτα(z + τη) \ Qτα(z) have the same probability. To see
this, label the vertices of the triangle at z by X, Y, Z, where X is opposite to η and we
move anticlockwise around the triangle. Note that Q is the event that there exist disjoint
black paths from Y to a(ατ 2)a(α) and from Z to a(α)a(τα) and also a white path from
X to a(ατ)a(ατ 2). On the other hand, Q̃ is a similar event but where the path from Y
must be white, and that from X must be black. To see that P(Q) = P(Q̃), explore the
lattice from a(α) just as far as is needed to find suitable black paths (for Q) from Y and
Z. Supposing this done, the conditional probability of the required white path from X is
the same as if we required it to be black (and disjoint from the other paths). Hence Q and
Q̃ both have the same probability as the event of three disjoint black paths to the required
boundary segments.

Set Pα(z, η) = P(Q). We have shown that

Pα(z, η) = Pτα(z, τα). (89)

This is a discrete version of the 2π/3-Cauchy–Riemann equations for the triple (H1, Hτ , Hτ2).
The rest of the proof is analytic. We accept here without proof the following results
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Lemma B.2 (Hölder estimate). There are constants ε > 0 and C < ∞, depending only
on (D, a(1), a(τ), a(τ 2)), such that

|Hα(z)−Hα(z′)| 6 C(|z − z′| ∧ δ)ε.
Also, Hα(a(α))→ 1 as δ → 0.

The proof uses a a classical method for regularity estimates in percolation due to Russo,
Seymour and Welsh.

Lemma B.3. For any equilateral triangular contour Γ, of side length `, interpolating
neighbouring centres of lattice triangles, define the discrete contour integral∫ δ

Γ

H(z)dz = δ
∑
z∈A1

H(z) + δτ
∑
z∈Aτ

H(z) + δτ 2
∑
z∈Aτ2

H(z),

where Aα is the set of centres along the side parallel to α. (Make some convention at the
corners.) Then ∫ δ

Γ

Hα(z)dz =
1

τ

∫ δ

Γ

Hατ (z)dz +O(`δε).

The proof is an elementary, if complicated, resummation argument, using the identity

Hα(z + η)−Hα(z) = Pα(z, η)− Pα(z + η,−η)

and, from the preceding lemma, the estimate Pα(z, η) 6 Cδε for some stray terms.
The Hölder estimate implies that every sequence δn ↓ 0 contains a subsequence δnk such

that H
δnk
α converges uniformly on D for all α, and any such subsequential limits, hα say,

must have boundary values hα(a(α)) = 1 and hα(z) = 0 on a(ατ)a(ατ 2). Moreover, by
Lemma B.3, we must have ∫

Γ

hα(z)dz =
1

τ

∫
Γ

hατ (z)dz.

Set h = h1 + (i/
√

3)(hτ − hτ2), then ∫
Γ

h(z)dz = 0

for all Γ, so h is holomorphic by Morera’s theorem, and hα = Re(h/α) is harmonic for all
α. Hence we obtain

∇ηhα = ∇ταhτα.

(This can be considered as the limiting form of the key observation on the discrete model
(89), but the limit has not been justified directly.) This relation implies that the directional
derivatives of h1 on a(τ 2)a(1) and a(τ)a(1) at an angle τ to the tangent are zero. Thus
we have a (conformally-invariant) Dirichlet-Neumann problem for h1. In the case D = ∆,
the affine function f1 is obviously a solution, and moreover it is the only solution. Hence
the functions Hδ

1 , H
δ
τ , H

δ
τ2 each have exactly one uniform limit point as δ → 0, given by

h1, hτ , hτ2 respectively, as required.
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