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Introduction
Lecture 1; Thursday 06.10.2022

This course is an introduction to stochastic processes, a notion which is central to both
classical and modern probability theory. A stochastic process simply describes the evolution
of a system which is subject to randomness. Thus formally, a stochastic process is nothing
else but a sequence

X = (X0, X1, . . .)

of random variables taking values in some space S (called the state space) which may be
the real line or some more exotic space. Such a sequence will be denoted thourghout the
notes indifferently by (Xn, n ≥ 0) or (Xn)n≥0. Plainly, this is a very broad notion, and we
will need to focus our attention on how the underlying randomness affects the evolution of
the system in order to be able to say something interesting. In this course and in these notes
we will encounter two main types of stochastic processes: on the one hand, Markov chains
and on the other, martingales.

Markov chains are the ones which will occupy us the most in this course, and therefore
we only discuss these in this introduction. Informally, a Markov chain is simply a stochastic
process in which the future evolution of the system depends only on its current state, and
is otherwise independent of its past: to put it another way, at any time n ≥ 0, if we want
to guess something about some future state of the system (say at time m ≥ n) then the
only relevant information is the current state Xn, whereas additional information about
X0, . . . , Xn−1 would not impact our guesses. A formal definition will follow, but at this stage
it is already sufficient and useful to see that a huge variety of systems intuitively fit this
definition.

Example 0.1. The evolution of the genome as it undergoes successive mutations. If we
think of the genome of an individual as initially given by some sequence of letters, say
X0 = ATTTCATG..., and suppose that at each time step a random mutation occurs (e.g.
substitution, deletion, reversals/transpositions, etc.). Clearly, for any time n ≥ 0, only the
current state of the genome is relevant to make predictions about what the genome might
look like in the future, whereas how it got to that state is irrelevant. This therefore forms
an example of a Markov chain.

Example 0.2. A deck of card is being repeatedly shuffled at random. We can describe this
evolution by a stochastic process (Xn, n ≥ 0) where Xn denotes the state of the deck at time
n and the state space is the premutation group S = S52 of 52 elements (cards). Clearly,
only the current state of the deck is relevant to describe its future, not the previous shuffles
leading to the current deck. This too forms a Markov chain.

Example 0.3. The motion of a particle in a turbulent fluid. Here the random variable Xn

might be the position and velocity of the particle at time n, so the state space is S = R3×R3.
This too forms a Markov chain: the past velocities and positions of the particle have no
impact on the future trajectory of the particle beyond its current values.
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Figure 1: How will the infection spread?

Example 0.4. The spread of an infection through a population. We are given a graph
G = (V,E), say the square lattice. Here Xn could denote the assignment of a value 0 or
1 to each vertex of the graph, where a 0 denotes a healthy individual, and a 1 denotes
an infected individual (so the state space is S = {0, 1}V ). See Figure 1. Let us suppose
that, at each successive time step, an infected individual infects a random proportion of
its neighbours. Then Xn forms a Markov chain: only the current state of the infection is
relevant to make predictions about its future evolution, whereas its past would not give us
additional information.

Example 0.5. The Markov Chain Monte Carlo (MCMC) algorithm – one of the most used
algorithms throughout industry, is based on Markov chains. It is a little too sophisticated to
explain at this stage, but let us say for now that it involves simulating a sequence of random
variables (Xn, n ≥ 0) which forms a Markov chain, in order to approximate some desired
distribution.

As these examples already show, Markov chains are ubiquitous and arise in a truly
bewildering variety of contexts. Perhaps surprisingly, it is possible to build an elegant theory
which encompasses all these examples at once. The results are nontrivial mathematically,
and interesting for applications. It is a uniquely successful theory in that regard!

In all cases, the questions which will be of interest to us will be of the following type:
will the Markov chain ever reach a particular configuration (or sets of configurations) we
are interested in? If, so how long can we expect it to take? And what about the long-term
behaviour of the Markov chain? What will the infection look like in the long run? Will
it die out or survive forever? If so, how will the infected individuals be distributed in the
population? What about the distribution of the deck of cards – can we guarantee it will be
well shuffled in some suitable sense? What about the genome evolution? And in the case of
the MCMC algorithm, can we guarantee that the approximation procedure works?

Surprisingly, all these questions can to some extent be answered by a unified theory, which
we are about to develop. A remarkable fact is that part of the answer to these questions
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involves beautiful connections to harmonic analysis and more specifically to sets of equations
that are best viewed as discrete versions of Partial Differential Equations (PDEs). On the
one hand, such connections illuminate our understanding of PDEs by giving a concrete
(“microscopic”) description of the systems they represent. Conversely, the physical intuition
one gains from formulating these problems as discrete PDEs is far-reaching. This connection
is a recurring theme of these notes, and, I believe, of probability theory in general.
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1 Markov chains: definition, basic properties

1.1 Basic definition

The theory we will develop is restricted for convenience to countable state spaces (some
considerable analytical subtleties arise in the case where the state space isn’t countable).
Let S = {x1, x2, . . .} denote a countable set. We call S the state space of the Markov
chain, and we call its element states. We say that λ = (λx)x∈S is a measure on S if

0 ≤ λx <∞, x ∈ S.

If furthermore
∑

x∈S λx = 1, we say that λ is a distribution on S.

Let X denote a random variable with values in S. (Technically, this means we are given
a probability space (Ω,F ,P) and a measurable function X : Ω→ S but we will never specify
this in the future). Then if we define λx = P(X = x), λ = (λx)x∈S is a distribution on S,
which we call the law of X.

Example 1.1. An unbiased die is rolled, let X be the outcome. Then the corresponding
state space is S = {1, . . . , 6} and the law of X is uniform: λx = 1/6 for any x ∈ S.

We are now ready to give the definition of stochastic processes and Markov chains.

Definition 1.2. A stochastic process (Xn, n ≥ 0) with values in S is simply a sequence
of random variables taking values in S.

Definition 1.3. A stochastic process (Xn, n ≥ 0) with values in S is called a Markov chain
if there exists functions Pn : S × S → [0, 1], called the transition matrices of the chain,
such that for every n ≥ 0, for every x0, . . . , xn, xn+1 ∈ S,

P(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = Pn(xn, xn+1). (1.1)

It is necessary to make a few comments on this definition.
(1) Given some arbitrary stochastic process X = (Xn, n ≥ 0), we would normally expect

the left hand side of (1.1) to depend on x0, . . . , xn and xn+1. The defining property of a
Markov chain is to say that it depends only on xn (current state), xn+1 (the next state), and
n.

(2) It is not hard to check (exercise!) using the law of total probability that if (1.1) holds,
then the right hand side is necessarily equal to P(Xn+1 = xn+1|Xn = xn) (exercise!). Thus in
words, Pn(x, y) gives us the probability that, if the chain was in state x at time n, it would
jump to state y at time n+ 1.

(3) While Pn is really a function from S × S → [0, 1], we think of it as a matrix

Pn = (Pn(x, y))x,y∈S

indexed by the elements of S. When S is finite, then the dimension of that matrix equals
the size of S and we are in the realm of linear algebra (as we will see later, this is extremely
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useful). We will also think of Pn as a matrix even when S is infinite. In that case, Pn is
(doubly) infinite. Nevertheless, the entry of that matrix for the row x and column y gives
us the probability to jump from x to y at time n.

Definition 1.4. We call a Markov chain time-homogeneous if its transition matrix Pn
does not depend on n: that is, Pn = P0 for all n ≥ 0. In that case, P = P0 is called the
transition matrix of the chain.

Example 1.5. We throw n dice, and let Xn be the sum of the dice modulo 2. Then X is a
Markov chain. Its transition matrix is

P =

(
1/2 1/2
1/2 1/2

)
and so X is time-homogeneous.

It is not hard to see that if X is a (possibly time-inhomogeneous) Markov chain, then
Yn = (n,Xn) is a time-homogeneous Markov chain (exercise!). There is therefore no loss
of generality in considering such chains. In the rest of this course we focus only on time-
homogeneous chains, and do so without further mention.

If X is a Markov chain, the transition matrix P is an example of what in linear algebra
is called a stochastic matrix: that is, P (x, y) ≥ 0 and∑

y∈S

P (x, y) = 1,

i.e., the sum of each row is equal to 1 (exercise: prove it!). In other words, for each fixed
x ∈ S, (λy)y∈S = (P (x, y))y∈S defines a distribution on S. This is none other than the law
of the Markov chain after one step, if it starts from x.

1.2 Specifying a Markov chain; diagram

To determine a Markov chain on a countable state space S, one must specify:

• A stochastic matrix P (which will be the transition matrix of the chain)

• A distribution λ which will be the initial distribution of the chain.

Given such a λ and P , we say that the stochastic process (Xn, n ≥ 0) is Markov (λ, P )
if X is a Markov chain with transition matrix P , and for every x ∈ S, P(X0 = x) =
λx.(Together, λ and P determine a unique law on S-valued stochastic processes – showing
this would require a bit of measure theory, but this will not be needed in the following).

Often, but not always, the starting point of a Markov chain is a fixed state, call it x0.
The associated starting distribution λ is simply the Dirac mass at x0: λx = 1x=x0 . We
write λ = δx in the following.
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Example 1.6. Let λ = (1/2, 1/2) and for 0 ≤ α, β ≤ 1 let

P =

(
1− α α
β 1− β

)
.

What is the Markov chain described by λ and P? First of all, the state space is S = {0, 1}
say – we could of course choose the label the states S differently, but S has no matter what
two states. Since λ = (1/2, 1/2) the chain is equally likely to start in 0 or 1. Reading the
rows of P , we see that:

• if at x = 0, the chain stays at x with probability 1− α, and jumps to y = 1 otherwise.

• if at x = 1, the chain stays at x with probability 1− β, and jumps to y = 0 otherwise.

It is sometimes convenient to represent a transition matrix P by a diagram, where each
possible transition is represented by an arrow, and we label the arrow with the probability
to make this transition. In the above example, the diagram is as in Figure 2.

α

β

1− β1− α

Figure 2: The diagram associated to the transition matrix of Example 1.6

Since the sum of all transitions from a point x is always equal to 1, we can also choose
not to include any self-loops. This is a little easier to read if the chain is a bit bigger.

1.3 Examples: random walks on graphs

Lecture 2; Friday 7.10.2022 The following example is a fundamental example of a Markov
chain, which will come back on many occasions in this course. Let G = (V,E) be a graph.
That is, V is a (countable) collection of vertices, and E ⊂ V ×V . We assume that the graph
G is locally finite, i.e., for every x ∈ V , deg(x) <∞.

Associated to this graph, we can define a transition matrix P as follows:

P (x, y) =

{
1

deg(x)
if (x, y) ∈ E

0 else.

In words, P describes the transitions of an ant walking on G, which at each time step jumps
to a uniformly chosen neighbour of its current position. See Figure 3 for an example.

Example 1.7. Random walk on Zd. A very important graph is the cubic lattice Zd. Here
d ≥ 1 is the dimension, and x ∈ Zd is called a neighbour of y ∈ Zd if

∑d
i=1 |xi − yi| = 1.

With an abuse of notation we call Zd both the set of vertices and the corresponding graph.
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Figure 3: Graph (here undirected for simplicity) and associated transition matrix
and diagram

For instance, you might think of a tourist walking at random in Manhattan (d = 2). A
natural question, whose answer will occupy us for a significant portion of this course, would
be: will she ever return to her hotel? Or in d = 3, you could think of a bird flying at random.
Will it ever return to its nest? We will later see that the answer to these questions depends
very much on the dimension d. In this case, we will prove that tourists are more lucky than
birds...

Many more examples can be described as random walks on graphs, even if that is not
always immediately apparent.

Example 1.8. Card shuffling. Consider the following card shuffling method. We start
with an ordered deck. Then at each step, we select a pair of cards uniformly at random in
the deck, and exchange them. (Thus shuffling method is very inefficient, but is a canonical
example from the mathematical point of view.) This is a Markov chain which can be realised
as a random walk on a suitable graph. Let V denote the permutation group on n elements
(with n = 52 if it is a real deck of cards). Define a graph on V as follows: say that two
permutations σ, σ′ are nieghbours if

σ′ · σ−1 ∈ T

where T = {(i, j) : 1 ≤ i < j ≤ n} is the set of transpositions. (In group theory, this graph is
called the Cayley graph of Sn generated by the set of transpositions.) Then the above card
shuffling is simply the random walk on this graph, started from the identity permutation.

1.4 (Weak) Markov property

While the definition of a Markov chain via conditioning (see (1.1)) is somewhat intuitive, it
is not very convenient to work with in practice. That is because conditional probabilities
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tend to be awkward to manipulate and cumbersome. The following equivalent condition is
somewhat a little easier.

Proposition 1.9. Let S be a countable state space, P a transition on matrix and λ a
distribution on S. A stochastic process (Xn, n ≥ 0) with values in S is Markov (λ, P ), if and
only if, for every n ≥ 0 and every x0, . . . , xn ∈ S,

P(X0 = x0, . . . , Xn = xn) = λx0P (x0, x1) . . . P (xn−1, xn). (1.2)

Proof. Suppose X is Markov (λ, P ). We proceed by induction. The formula (1.2) is clear
for n = 0. Furthermore, for n ≥ 1,

P(X0 = x0, . . . , Xn = xn) = P(X0 = x0, . . . , Xn−1 = xn−1)× P(Xn = xn|X0 = x0, . . . , Xn−1 = xn−1)

= λx0P (x0, x1) . . . P (xn−2, xn−1)× P (xn−1, xn)

by the induction hypothesis and the definition of a Markov chain. This proves (1.2).
Conversely, suppose (1.2) holds. Then clearly (applying it with n = 0) P(X0 = x) = λx

so λ is the initial distribution of X. Now let us show it is a Markov chain with transition
matrix P : we have, if n ≥ 1,

P(Xn = xn|X0 = x0, . . . , Xn−1 = xn−1) =
P(Xn = xn;X0 = x0, . . . , Xn−1 = xn−1)

P(X0 = x0, . . . , Xn−1 = xn−1)

=
λx0P (x0, x1) . . . P (xn−2, xn−1)× P (xn−1, xn)

λx0P (x0, x1) . . . P (xn−2, xn−1)× P (xn−2, xn−1)

= P (xn−1, xn)

as desired.

With this characterisation we can formulate an important property of Markov chains,
called the Markov property. In some sense it is just another way of expressing the definition
of a Markov chain. Later on this property will be superseded by a more powerful version
which will be called the strong Markov property.

Proposition 1.10. Let X be Markov (λ, P ) and let m ≥ 0 and x ∈ S. Conditionally
given {Xm = x}, the sequence (Xm, Xm+1, . . .) is Markov (δx, P ) and is independent of
(X0, . . . , Xm).

To explain the statement, recall that δx is a Dirac mass at x (equal to 1 at x and 0
elsewhere). Note also that the statement would be unchanged if the conclusion was “...
and is independent of (X0, . . . , Xm−1)”. This is because we are conditioning on Xm. Under
this conditional probability, Xm is not random (indeed it is equal to x) and constants are
independent of everything: if c is a constant random variable, then X is independent of Y if
and only if it is independent of (Y, c).
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Proof. We first reformulate the statement in a more concrete way which can be verified by
computations. Let Y0 = Xm, Y1 = Xm+1, . . .. Let P∗ = P(·|Xm = x) denote the conditional
probability given Xm = x. Then to prove the proposition, we claim it suffices to show the
following: for any x0, . . . , xm = x and any x = y0, y1, . . . , yn,

P∗(X0 = x0, . . . , Xm = xm, Y0 = y0, . . . , Yn = yn)

= P∗(X0 = x0, . . . , Xm = xm)× δx(y0)P (y0, y1) . . . P (yn−1, yn). (1.3)

Let us explain why (1.3) implies Proposition 1.10. Indeed if (1.3) holds, let us denote by A
the event A = {X0 = x0, . . . , Xm = xm} and by B the event B = {Y0 = y0, . . . , Yn = yn}. We
first deduce from (1.3) by summing over x0, . . . , xm−1 ∈ S that the second term in the right
hand side is P∗(B). By Proposition 1.9, this implies that Y has the desired law. Furthermore,
we deduce that P∗(A ∩ B) = P∗(A)P∗(B) and thus A and B are independent under P∗.
Since A and B are arbitrary events describing completely the sequence (X0, . . . , Xm) and Y
respectively, we deduce that these two sequences are independent under P∗.

Thus it suffices to verify (1.3). As this is a somewhat tedious computation using the
definition of conditional probability and Markov chains, the proof is left as an exercise.

1.5 Chapman–Kolmogorov equations and diagonalisation

Lecture 3; Thursday 13.10.2022
Given a Markov chain, we might ask what is the probability to find the chain in some

given state y starting from x, not just after one step but after n steps. As we will see, this
can be reduced to computing the matrix P n.

It is worth reviewing the definition of P n (also because this was only defined in linear
algebra for finite matrices). Let P 0 = I denote the identity matrix (that is, I(x, y) = 1y=x).
Set P 0 = I, and define by induction

P n(x, y) =
∑
z∈S

P n−1(x, z)P (z, y).

When S is finite, the above definition corresponds to the matrix multiplication P n = P n−1×
P . When S is infinite, a few comments are needed to justify this definition: it is easy to see
that this defines P n(x, y) as a nonnegative number, meaning that the sum which serves to
define P n(x, y) is actually well-defined.

Given a measure λ, we may define λP in the same manner:

(λP )(y) =
∑
x

λxP (x, y)

which also corresponds to matrix multiplication if we think of λ as a row vector.

Theorem 1.11 (Chapman–Kolmogorov equations). Let X be Markov (λ, P ). Then for all
n ≥ 0, x, y ∈ S, we have:

(i) P(Xn = y|X0 = x) = P n(x, y)
(ii) P(Xn = y) = (λP n)(y).
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Proof. Note that conditionally given X0 = x, X is simply Markov (δx, P ) (by the Markov
property at time m = 0). Let us write Px for P(·|X0 = x). Then by the law of total
probability,

Px(Xn = y) =
∑
z

Px(Xn−1 = z,Xn = y)

=
∑
z

Px(Xn−1 = z)Px(Xn = y|Xn−1 = z)

=
∑
z

Px(Xn−1 = z)P (z, y)

by the Markov property at time n− 1. The result (i) therefore follows by induction and the
definition of P n.

Point (ii) follows by conditioning on the value of X0 and the law of total probability.

To put it another way, P n can by induction be seen to satisfy

P n(x, y) =
∑

x1,...,xn−1∈S

P (x, x1) . . . P (xn−1, y)

and the sum specifies all the ways that there are to reach y from x in n steps (and the
summand indicates the probability of that particular path).

The Chapman–Kolmogorov equations can be used to compute P(Xn = y|X0 = x) ex-
plicitly in some cases, usually when the state space is finite (and in fact typically quite
small, as otherwise the computations become too unwieldly). In that case, suppose we can
diagonalise the matrix P , i.e., we can write

P = U−1DP

where

D =


λ1 0 . . . 0
0 λ2 . . . 0

. . .
0 . . . λk


is a diagonal matrix of size k = |S|, and (λi)1≤i≤k are the eigenvalues of P . Then

P n = U−1DnU = U−1


λn1 0 . . . 0
0 λn2 . . . 0

. . .
0 . . . λnk

U.

As a consequence, P n(x, y) is given as a fixed linear combination of the eigenvalues to the
nth power, as summarised by the following result.
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Theorem 1.12. Suppose that the transition matrix P on the finite space S of size k = |S|
is diagonalisable. Then for each x, y ∈ S, there exist a1(x, y), . . . , ak(x, y) such that for any
n ≥ 0,

P n(x, y) = a1(x, y)λn1 + a2(x, y)λn2 + . . .+ ak(x, y)λnk .

The coefficients of this linear combination are often not so hard to compute in practice,
by computing by hand the first few values of P n(x, y). We illustrate this method with an
example.

Example 1.13. Consider the example of Example 1.6 and Figure 2, i.e.,

P =

(
1− α α
β 1− β

)
.

How can we compute P n(x, y)?
We first compute the characteristic polynomial of P ,

χ(λ) =

∣∣∣∣ 1− α− λ α
β 1− β − λ

∣∣∣∣
= (1− α− λ)(1− β − λ)− αβ
= (λ− 1)(λ− q)

for some q ∈ R to be determined. (We know a priori that the expression of the second line
may be simplified into an expression of the type in the third line, since it is a polynomial of
the second degree with λ = 1 obviously a root and the coefficient of λ2 is obviously equal to
one). To compute q, we note that χ(0) = q so

q = (1− α)(1− β)− αβ = 1− α− β.

Hence P is diagonalisable with two distinct eigenvalues, namely

λ1 = 1, λ2 = 1− α− β.

We deduce that
P n(x, y) = A(x, y) +B(x, y)(1− α− β)n.

For instance say x = y = 0 is the state corresponding to the first row of P and let A = A(0, 0)
and B = B(0, 0). Then

P n(0, 0) = A+B(1− α− β)n.

To compute A and B, note that P 0(x, x) = 1 so A+B = 1, and P 1(x, x) = 1− α, so

A+B(1− α− β) = 1− α.

We deduce that B(α + β) = α, so

B =
α

α + β
;A =

β

α + β
.

13



Thus, the final answer is

P n(0, 0) =
β

α + β
+

α

α + β
(1− α− β)n.

As an exercise, compute P n(x, y) in all remaining three cases.

Remark 1.14. Note that the theorem assumes that P is diagonalisable, which can be a
little difficult to check in practice. When we compute the characteristic polynomial χ of a
transition matrix P and find that the roots are all distinct, then this implies by a theorem
of linear algebra that P is indeed diagonalisable and thus Theorem 1.12 applies.

In some examples however, we find the correct number of roots but some coincide, and so
we cannot immediately deduce that P is diagonalisable and apply Theorem 1.12. However,
it can be shown that even in these cases we get a formula for P n(x, y): suppose λ is a root
of χ of multiplicity equal to d. Then the “coefficient” in front of λ is, instead of a constant
independent of n, a polynomial in n of degree d − 1. For instance, if λ is a double root of
χ, then the term λn in the expression for P n(x, y) comes with a “coefficient” of the form
An + B. Thus this eigenvalue contributes (An + B)λn to P n(x, y), and the expression of
P n(x, y) is a sum over all eigenvalues of expressions of this type.

Remark 1.15. Keep in mind that in order to diagonalise P you are allowed to diagonalise
it over the complex numbers, i.e. the eigenvalues are allowed to be complex. In that case,
they will necessarily come in pairs of complex-conjugates, since P n(x, y) is a real quantity.
This can sometimes be useful in reducing the number of unknowns that we need to solve for.

2 Hitting probabilities and recurrence/transience

2.1 Class structure

Our first task in our analysis of Markov chains will be to break the state space into pieces
where the state “communicate” with one another: within each such piece, it is possible to
eventually visit each state. To formulate this idea, we need the following definition.

Definition 2.1. Let P be the transition matrix of a Markov chain on some state space S.
Let x, y ∈ S. We say that x leads to y, and we write x→ y, if

Px(Xn = y for some n ≥ 0) > 0.

Here and in the rest of these notes, Px denote the law of the Markov chain conditioned to
start in the state x, i.e., Px(A) = P(A|X0 = x).

Remark 2.2. Observe two things. First, the property that x leads to y does *not* depend
on the starting distribution of the chain. It depends only on what the chain can (or cannot)
do *if* it starts from x.
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Second, the choice of n in the definition above could be random (i.e., depend on the
actual realisation of the Markov chain starting from x). That is, we are not asking that
there is some fixed n ≥ 0 such that the Markov chain has positive probability to be at y at
time n, simply that there is some time, which can be random, at which the chain visits y.

Definition 2.3. We say that x communicates with y, and we write x↔ y, if x→ y and
y → x.

There is a useful characterisation of the notion of x → y in terms of the transition
probabilities of the chain.

Proposition 2.4. Fix two states x, y ∈ S. The following are equivalent.

(i) x→ y.

(ii) there exists n ≥ 0, and a sequence of states x0, . . . , xn with x0 = x and xn = y, such
that

P (x0, x1) . . . P (xn−1, xn) > 0.

(iii) there exists n ≥ 0 such that P n(x, y) > 0.

This proposition is perhaps a bit surprising in view of Remark 2.2. In point (iii), we are
precisely requiring that there is some fixed n (which, in this statement, is not allowed to be
random) such that the chain has positive probability to be at y at this time n which was
fixed in advance. It is surprising that this is equivalent to (i), since in this definition, the
requirement seemed at first sight less strict.

Proof. We observe that (iii)⇒ (i) is immediate. For (i)⇒ (iii), observe that by σ-additivity
(more specifically, Boole’s inequality) we have

Px(Xn = y for some n ≥ 0) = Px(
∞⋃
n=0

{Xn = y})

≤
∑
n≥0

Px(Xn = y)

=
∑
n≥0

P n(x, y).

Thus if the right hand side is 0, so is the left hand side and x cannot lead to y. This show
(i) ⇒ (iii).

The equivalence (ii) ⇐⇒ (iii) is even simpler: we have, by Chapman–Kolmogorov,

P n(x, y) =
∑

x1,...,xn−1∈S

P (x, x1) . . . P (xn−1, y).

So the left hand side is positive if and only if the right hand side is positive, which is
equivalent to at least one term being positive.
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From (ii) it is immediate that if x → y and y → z then x → z. Furthermore x → x
always. Thus

x↔ y defines an equivalence relation.

Definition 2.5. The partition of S defined by ↔ are called the communicating classes
of P . A chain in which there is a single communicating class is called irreducible.

Example 2.6. What are the communicating classes in this example?

1

2

3

4

5
6

Figure 4: Only the transitions with positive probability are represented

Answer: {1, 2, 3}, {4}, {5, 6}.

Exercise 2.7. True or false? Let C be a communicating class. Starting from a state in C,
the Markov chain remains in C forever.

2.2 Hitting times and probabilities

We begin with an important definition.

Definition 2.8. Let A ⊂ S be a collection of states. We call hitting time of A, and denote
by TA, the random variable

TA = inf{n ≥ 0 : Xn ∈ A}
with the convention inf ∅ = +∞. If A = {x} where x ∈ S, we simply write Tx instead of
T{x}.

In words, TA is the first (smallest) time at which the chain enters in A and tells us how
long we have to wait until the chain visits A. This is why we take inf ∅ = +∞.

Example 2.9. A supermarket gives away stickers (also known as coupons) from a set of N
possible coupons. At each visit to the supermarket, you receive a randomly chosen coupon.
How long must you wait until you collect the complete set?

This can be formulated as the hitting of a Markov chain. Set Xk to be the number of
coupons that remain to be collected after k visits to the supermarket (so initially X0 = N).
Then the time of interest to us is the hitting time of zero, namely T0.
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Lecture 4; Friday 17.10.2022
Usually we are interested in whether the chain will ever visit A (with what probability?),

and how long this will take on average. We state the theorem regarding the probability to
hit A; this cannot be computed using algebraic methods such as Theorem 1.12. Instead,
this result tells us that the probability to hit A, viewed as a function of the starting point,
satisfies a set of equations. This set of equations can be viewed as a discrete analogue to the
Dirichlet problem from (harmonic) analysis, as we will discuss below.

Theorem 2.10. Let A be as above and TA the hitting time of A. Set hA(x) = Px(TA <∞)
(recall that Px denotes the probability for the chain starting from x). Then hA(x), viewed as
a function of x ∈ S, is the minimal nonnegative solution to{

hA(x) =
∑

y P (x, y)hA(y) (if x /∈ A)
hA(x) = 1 (if x ∈ A).

(2.1)

To explain the meaning of the word minimal in the above statement, this means if g is
any other nonnegative solution to the equation, then hA(x) ≤ g(x) for any x ∈ S.

Remark 2.11. A result of similar flavour can be established regarding the expectation of
TA and this will be part of the exercise sheets.

We will first prove this theorem and then discuss its significance.

Proof. Let us first check that hA solves the “Dirichlet problem” (2.1). If x ∈ A it is straight-
forward that hA(x) = 1 since TA = 0 < ∞ in that case. Let us suppose x /∈ A. Then TA
cannot be equal to zero so TA ≥ 1. Let us decompose over the position of the chain at the
first step: using the law of total probability, we get

hA(x) = Px(TA <∞) =
∑
y∈S

Px(TA <∞, X1 = y)

=
∑
y∈S

P (x, y)Px(TA <∞|X1 = y)

The second term in the sum depends only on the future since TA ≥ 1. Using the (weak)
Markov property at time 1, we deduce that

hA(x) =
∑
y∈S

P (x, y)Py(TA <∞)

=
∑
y∈S

P (x, y)hA(y).

So hA is a solution of the Dirichlet problem (2.1).
Now let us check minimality. Let g(x) denote another nonnegative solution and let us

show g(x) ≥ hA(x) for any x ∈ S Obviously g = hA on A so let us consider the case x /∈ A.
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Then writing the equation that g satisfies and considering separately the cases where y ∈ A
and the cases where y /∈ A, we get:

g(x) =
∑
y∈S

P (x, y)g(y)

=
∑
y∈A

P (x, y)× 1 +
∑
y/∈A

P (x, y)g(y)

= Px(X1 ∈ A) +
∑
y/∈A

P (x, y)g(y).

The first term has an interpretation but the second one is less obvious. The only thing we
can do is use the equation satisfied by g but at the point y now (which is allowed, since
y /∈ A). Thus

g(x) = Px(X1 ∈ A) +
∑
y/∈A

P (x, y)
∑
z∈S

P (y, z)g(z)

= Px(X1 ∈ A) +
∑
y/∈A

P (x, y)

(∑
z∈A

P (y, z)× 1 +
∑
z /∈A

P (y, z)g(z)

)
= Px(X1 ∈ A) + Px(X1 /∈ A,X2 ∈ A) +

∑
y/∈A

∑
z /∈A

P (y, z)g(z)

= Px(TA = 1) + Px(TA = 2) +
∑
y/∈A

∑
z /∈A

P (y, z)g(z)

after once again considering separately the cases z ∈ A and the cases z /∈ A. A pattern is
beginning to emerge. Reasoning by induction, we get for all n ≥ 0:

g(x) = Px(TA = 1) +Px(TA = 2) + . . .+Px(TA = n) +
∑

x1,...,xn /∈A

P (x, x1) . . . P (xn−1, xn)g(xn).

Since g is assumed nonnegative, we deduce for all n ≥ 0.

g(x) ≥ Px(TA = 1) + Px(TA = 2) + . . .+ Px(TA = n)

Letting n→∞, this implies

g(x) ≥
∞∑
n=1

Px(TA = n) = Px(TA <∞) = hA(x),

as desired (where we used σ-additivity of Px above).

2.3 Physical interpretation and example

Theorem 2.10 calls for numerous comments, which we try to gather here. The equation

h(x) =
∑
y

P (x, y)g(y) (2.2)
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is saying, in words, that the value of h is equal to the average value of h at its neighbours
(where the averaging is done according to the transition probabilities P (x, ·)). This is perhaps
clearest of in the case of a random walk on a graph, but remains true on any Markov chain.
In other words, the function hA satisfies the mean-value property. If h was a function on
Rd instead of a function defined on S, the mean-value property is the property that h(x) is
equal to the average of its values on any sphere centered at x and contained on the domain
in which h is defined. We could deduce from such a property that h must be a harmonic
function:

∆h(x) = 0. (2.3)

The equation (2.2) must be thought of as a discretised form of the Laplace equation (2.3).
For the same reason, the equation (2.1) must be thought of as a discretised version of the
continuous Dirichlet problem {

∆h(x) = 0 on Ac

h(x) = 1 if x ∈ A.
(2.4)

The second of these equations must be viewed as a boundary condition. This partial
differential equation, or PDE for short, has a physical interpretation which is useful to bear
in mind as it helps us mentally guess the hitting probabilities of A by a chain. Namely,
the Dirichlet problem is precisely the equation satisfied by the temperature (viewed as
a function of the space variable x) if we impose a temperature of 1 (in normalised units)
on A. So if you view A as some kind of oven in intersideral space in which you maintain
a constant temperature (say 200C if you are baking), this doesn’t just heat your oven but
also the space around it. In the stationary regime you would expect the temperature to
be pretty close to 200C close to the oven, and to decay to zero “at infinity”. The equation
satisfied by this temperature would obey a non-normalised version of (2.4). This remarkable
fact was discovered by Laplace (possibly in conjunction with the chemist Lavoisier) around
1782-1783.

Furthermore, as we will discuss in some examples below, the fact that hA is not just a
solution to the Dirichlet problem but the minimal nonnegative solution may be viewed as
a way of specifying an additional boundary condition “at infinity”. This is best understood
and appreciated on examples; in the physical example of the oven above, one can see that
harmonic functions equal to 1 are not necesarily unique: one can imagine setting a positive
temperature “at infinity”, which could modify the temperature away from A and from ∞,
but cannot affect the fact that the temperature is a harmonic function of the space variable
(so the resulting temperature would still be a solution of the Dirichlet problem). The fact
that we consider the minimal nonnegative solution to the Dirichlet problem can be viewed
as setting a boundary condition at infinity to be the lowest permissible value. (This is often,
but not always, zero). This requirement clearly makes solutions of the Dirichlet problem
unique.

We now switch to an example (which has nothing to do with these physical considerations)
but where the Dirichlet problem (i.e., Theorem 2.10) is useful for a concrete problem.
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1 2 3 4

1/2

1/2

1/2

1/2

Figure 5: Markov chain representation of the two-player game in Example 2.12.

Example 2.12. Two players, A and B, toss a fair coin, until one of them gets a head. If
the first player is A, what is the chance that B wins this game?

This can be formulated as a Markov chain with S = {1, 2, 3, 4}. States 2 or 3 indicate
that A or B toss the coin. 1 indicates that A has obtained a head. 4 indicates that B has
obtained a head. The corresponding Markov chain can be represented as in Figure 5.

We are then interested in Px(TA <∞) where x = 2 and A = {4}. It is notationally more
convenient to write hx = hA(x) here. The equations we get from the Dirichlet problem are:
h1 = 0, h4 = 1 (obvious). Moreover,

h2 =
1

2
(h1 + h3) =

h3
2
.

h3 =
1

2
(h4 + h2) =

1

2
(1 + h2).

Thus
h2 =

1

4
(1 + h2), i.e. , h2 = 1/3, h3 = 2/3.

So, starting from A, B has only a probability of 1/3 to win this game!

Exercise 2.13. What if the coin is biased? Can you compute the winning probabilities in
this case?

2.4 Biased random walk on Z
Lecture 5; Thursday 20.10.2022

We are now going to apply what we discovered about hitting probabilities to some fun-
damental examples. The first one we consider is the biased random walk on Z. This is the
Markov chain on Z whose transition matrix P verifies

P (x, y) =


p if y = x+ 1

q if y = x− 1

0 else.
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where 0 ≤ p ≤ 1 and p + q = 1. See Figure 6. In other words this is a random walk on a
directed graph (for every x ∈ Z, the weight of the directed edge (x, x + 1) is p and that of
its reverse (x+ 1, x) is q).

xx− 1 x+ 1

pq

Figure 6: Biased random walk on Z.

We will be interested in knowing, starting from some point x ∈ Z (possibly far away from
0), how likely it is that the biased random walk ever touches 0. Let us set hx = Px(T0 <∞),
where, as before, T0 is the hitting time of zero. Note that by symmetry (possibly exchanging
the roles of p and q we may assume without loss of generality that x ≥ 0. Also, since we
are interested in whether the chain hits y = 0, we could modify the chain so that y = 0 is
an absorbing state (i.e., once the chain hits 0, it stays there forever). There is therefore no
need to consider negative states.

Applying Theorem 2.10, we see that h0 = 1 and h is the minimial nonnegative solution
to

hi = phi+1 + qhi−1; i ≥ 1. (2.5)

This is a recurrence of order two, which can be solved explicitly. Such equations arise often
in Markov chains, so we explain carefully how to solve them. (The method is similar to
solving an Ordinary Differential Equation of the form ay′′ + by′ + cy = 0, and for a good
reason: a recursion of order two is in fact nothing but a discretised form of this ODE). To
solve (2.5), we consider the associated characteristic equation:

x = px2 + q. (2.6)

We note that x = 1 is a solution, thus we can compute the other root by considering the
coefficient of the highest degree and the value of the polynomial at x = 0, which is q: that

px2 − x+ q = p(x− 1)(x− q/p)

so that the other root of (2.6) is necessarily x = q/p.
Consider first the case where p 6= q so the two roots are distinct. Then it can

be shown that the general solution of (2.5) is obtained by considering a linear combination
of the form

hi = A1i +B

(
q

p

)i
= A+B

(
q

p

)i
, (2.7)

where A,B ∈ R are unknown parameters to be determined. This solution should remind you
of the calculations in Theorem 1.12 and Example 1.13. This is not a coincidence: in fact, the
recursion (2.5) can be written in matrix form in terms of the unknown vector Yi = (hi+1, hi)
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in such a way that we are looking to compute the power of a certain 2 × 2 matrix and
hence need to diagonalise it; hence (2.6) is nothing but the characteristic polynomial for this
matrix.

Either way, we can compute the unknown parameters A and B from the boundary con-
ditions. We obtain one equation from the knowledge h0 = 1 so A + B = 1. To obtain the
second equation we exploit the fact that h is the minimal nonnegative solution of (2.5) (as
mentioned informally, we can think of the minimality condition as a boundary condition at
infinity, which therefore gives us a second equation). We have assumed that p 6= q but we
distinguish further p < q or q > p.

Case 1. Suppose p > q. Then since A+B = 1 we can write

hi = A+B

(
q

p

)i
= A

(
1−

(
q

p

)i)
+

(
q

p

)i
.

When q < p, the term in the bracket on the right hand side is ≥ 0 for every i ≥ 0. Hence
the minimal nonnegative solution of (2.5) is attained for A = 0 and we deduce in this case

hi =

(
q

p

)i
; i ≥ 0. (2.8)

Note that, in this case, when the starting point i is far away from zero, the probability to
ever reach zero becomes vanishingly small. This is somewhat intuitive since, when p > q,
the walk is more likely to go to the right than to the left, and starts already quite far from
zero.

Case 2. Now suppose instead p < q. Then q/p > 1 and the term (q/p)i diverges to ∞
as i → ∞. Since hi is in fact bounded by 1 it follows necessarily that B = 0. Hence A = 1
and

hi = 1; i ≥ 0. (2.9)

Thus in this case, no matter how far away from zero the walk starts, it is always guaranteed
to return to zero!

Case 3. To some extent we could use our intuition to guess the qualitative nature of
the results when p 6= q, but when p = q, the symmetric situation in which the walk doe
not favour either direction, it becomes harder to make use of our intuitition and guess the
answer: starting from far away, does the walk eventually return to zero, or does it get lost
at infinity? We return to the recursion (2.5) satisfied by hi and recall that when p = q the
two roots to the characteristic equation (2.6) coincide and are both equal to 1. As explained
in Remark 1.14, it is possible to give the general form of the recursion: namely, in that case,
any solution to (2.5) is of the form

hi = A+Bi, i i ≥ 0, (2.10)
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(where A,B are parameters to be determined) and h remains the minimal nonnegative solu-
tion to (2.10) satisfying h0 = 1. The latter gives us A = 1 so hi is the minimal nonnegative
solution to hi = 1 +Bi, i ≥ 0. This minimum is clearly attained for B = 0. We deduce,

hi = 1; i ≥ 0. (2.11)

Thus, as in Case 2, no matter how far away from zero the walk starts, it is always guaranteed
to return to zero!

We summarise these answers through the following theorem.

Theorem 2.14. Consider the biased random walk on Z described above, and set hi = Pi(T0 <
∞) for i ≥ 0. Then

• if p ≤ q, hi = 1 for any i ≥ 0.

• if p > q then hi = ( q
p
)i for any i ≥ 0. In particular hi → 0 as i→∞.

To think of what this might mean in practice, consider playing in a casino in a game
of chance in which at stage, you either win or lose 1 euro. The game stops when (if) you
become ruined (i.e., when you fortune reaches zero). In a casino, the game is always biased
ever so slightly against you, so p < q. What will happen to your fortune in the long run?
The answer is, no matter how rich you are to begin with, you will end up with certain ruin!

2.5 Branching processes

We now introduce another favourite example (which we will keep returning to throughout
the course) called branching processes. This Markov chain can be thought of as a crude
(but remarkably useful) model for the spread of an epidemic in a population, ignoring any
spatial, demographic effect – in fact pretty much everything except for the growth of the
epidemic itself. Traditionally branching processes are often described in terms of the growth
of a population rather than an epidemic within a population, but this makes no difference in
terms of mathematics, and we find the epidemic interpretation more relevant these days...! In
the first interpretation, the branching process will count the number of infected individuals
at time n, while in the second interpretation, the branching process counts the size of the
population at generation n.

The stochastic process is defined as follows. Suppose we are given a distribution (pk)k≥0
a distribution on N. We think of this distribution as describing the law of the number of
individuals I will infect if I am infected, and is called the offspring distribution.

Definition 2.15. The branching process with offspring distribution (pk)k≥0, is the stochastic
process (Zk)k≥0 defined by induction as follows: initially Z0 = 1. Furthermore, for n ≥ 0,
given Zn = k,

Zn+1 =
k∑
i=1

ξn+1,i (2.12)

where ξn,i are i.i.d. and have common law (pk)k≥0.

23



In words, each of the k individuals alive at generation n gives rise to independent and
identically distributed offsprings with law (pk)k≥0, and Zn+1 counts the total number of
offsprings in generation n + 1. Note that, although we think of Zn as counting the number
of infected individuals at time n (where n could be the number of days since the start of
the pandemic), in practice it is more convenient to use the language associated with the
interpretation of Zn as a population count in generation n (and so we speak of generations
and individuals alive rather than infected at generation n).

It is not hard to check that a branching process defines a Markov chain on N = {0, 1, . . .}.
Exercise 2.16. Write down a formula for the transition probabilities of a branching process
with offspring distribution (pk)k≥0. You may find useful to recall that the law of the sum
of k random variables with distribution λ is given by the k-fold convolution of λ with itself,
λ∗k, where the convolution of two distributions λ and µ is given by λ ∗ µ(m) =

∑
i λiµm−i.

Both in the pandemic and in the population interpretations, we are interested in knowing
whether the process will ever become extinct, i.e., whether T0 < ∞. (Note that once the
population reaches zero, it remains extinct for ever after that time). Applying Theorem 2.10,
the following fundamental result can be shown:

Theorem 2.17. Let us set θ = P1(T0 <∞). Then θ is the smallest nonnegative solution to
the equation θ = F (θ), where

F (θ) =
∞∑
n=0

θnpn.

An exercise in the next example sheet will guide you towards a proof of this important
theorem. In practice, we care above all whether θ < 1: i.e., is there a positive probability
for the infection (or the population) to survive forever?

Using Theorem 2.17 and a bit of analysis, the following fundamental dichotomy is not
very hard to show (for this we need to exclude the trivial and unrealistic case where (pk)k≥0
is the Dirac mass at 1, i.e., we assume p1 6= 1):

Theorem 2.18. We have θ < 1 if and only if the mean number of offsprings, m =
∑∞

k=0 kpk,
satisfies m > 1.

We will not need this result in the rest of the course so skip its proof, which is in any
case not difficult. In the applied literature and in the media, the mean number of offsprings
is usually called R instead of m (and represents, once again, the mean number of secondary
infections created by a single infected individual). This theorem shows that what governs
the long term behaviour of the pandemic depends only on this single number R and not on
the details of the offspring distribution (pk)k≥0: when R > 1 the epidemics survives forever
with positive probability (and that probability is itself very high if the initial number of
infected individuals is very high), whereas if R ≤ 1 then pandemics is guaranteed to die out.
Theorem 2.18, although based on a very crude model, explains the almost obsessive focus
on this quantity in the context of a pandemic. More sophisticated epidemiological models
often share a similar structure (towards the end of the course will see how spatiality changes
the result).
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2.6 Strong Markov property

We have already discussed the (weak) or simple Markov property, which says that the law
of a Markov chain, starting from some fixed time onwards, is that of a Markov chain given
the state of the chain at that time, and is furthermore independent of the past of the chain
(still conditionally on the current state of the chain).

The strong Markov property extends this fact to a certain class of very important random
times, known as stopping times. We begin with the definition.

Definition 2.19. Let (Xn, n ≥ 0) be a stochastic process with values in a state space S. We
say that the random variable T , with values in {0, 1, . . .} ∪ {∞}, is a stopping time if, for
every n ≥ 0, the event {T = n} is determined by the values of X0, . . . , Xn only. That is,
there exists a function Fn : Sn+1 → {0, 1} such that, almost surely, the two following random
variables are equal:

1{T=n} = Fn(X0, . . . , Xn).

The formal definition is at first quite hard to parse, but is in fact very intuitive. It says
we can determine whether T = n simply by considering the stochastic process up to time n.
In other words, whether or not T = n depends only on the past (including the present) of
the process, not its future. In practice, it is very easy to see if a random time is a stopping
time.

Example 2.20. Let X be any stochastic process with values in a state space S. If A ⊂ S
and TA = inf{n ≥ 0 : Xn ∈ A} is the hitting time of A, then TA is a stopping time. Indeed,
TA = n if and only if

{X0 /∈ A, . . . , Xn−1 /∈ A,Xn ∈ A}.
As a consequence, the event {TA = n} depends only on X0, . . . , Xn and not on the future of
X after time n.

Example 2.21. Let T (2)
A be the time of the second visit to A: that is,

T
(2)
A = inf{n > TA : Xn ∈ A}.

Is this a stopping time?

Answer: yes! Indeed, we can write

{T (2)
A = n} =

⋃
0≤j≤n−1

(
{TA = j} ∩ {Xj+1 /∈ A, . . . , Xn−1 /∈ A,Xn ∈ A}

)
.

which depends only on X0, . . . , Xn.

Exercise 2.22. Consider the coupon (or sticker) collector problem. Let T denote the first
time at which there is a repetition (i.e., a sticker is collected twice). Is T a stopping time?

Exercise 2.23. Let X be a stochastic process on S and let A ⊂ S. Let T = TA − 1. Is T a
stopping time?
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Exercise 2.24. Let X be a stochastic process on S and let A ⊂ S. Let T denote the time
of the last visit by X to A. Is this a stopping time?

It should be apparent that by nature, a stopping time does not anticipate the behaviour
of the Markov chain after the stopping time. This property lies at the root of the next
theorem, which extends the weak Markov property (Proposition 1.10) to stopping times.

Theorem 2.25. Let X be Markov (λ, P ), let x ∈ S and let T be a stopping time. Condi-
tionally given T <∞ and {XT = x}, the sequence (XT , XT+1, . . .) is Markov (δx, P ) and is
independent of (X0, . . . , XT ).

Proof. The proof proceeds by applying the law of total probability (summing over all the
possible values of T , say T = m) and applying the weak Markov property, since T = m
depends only on the past by definition of a stopping time. The proof is not particularly
informative and is therefore skipped.

Lecture 6. Friday, 21.10.2022.
Using the strong Markov property in a concrete example is far more informative than

checking its somewhat boring proof...

Example 2.26. Consider the biased random walk on Z of Figure 6, and let hi = Pi(T0 <∞).
(We computed hi exactly in Theorem 2.14 based on the Dirichlet problem, but ignore this
for a moment). We make the following claim:

hi = Pi(Ti−1 <∞)hi−1. (2.13)

To see (2.13), simply apply the strong Markov property at the stopping time Ti−1. Indeed,
if Ti−1 < ∞, Theorem 2.25 implies that, after time Ti−1, the future of the Markov chain is
simply that of a biased walk starting from i − 1, and so the conditional probability to hit
zero is just hi−1.

An interesting consequence of (2.13) is that hi is necessarily of the form zi for some z.
Indeed, note that, by translation invariance, Pi(Ti−1 < ∞) = P1(T0 < ∞) = z does not
depend on i, so that (2.13) becomes

hi = zhi−1

an by induction hi = zih0 = zi. In Theorem 2.14 we identified z explicitly: if q ≥ p then
z = 1, while if p > q then z = q/p. Thus z = min(1, q/p).

2.7 Recurrence, transience

Let (Xn, n ≥ 0) denote a Markov chain on some state space S.

Definition 2.27. Let x ∈ S. We say that x is recurrent if

Px(Xn = x for infinitely many values of n) = 1.
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In other words, let Vx =
∑∞

n=0 1{Xn=x} denote the total number of visits to x. Then x is
recurrent if and only if Px(Vx =∞) = 1.

Definition 2.28. Let us say x is transient if Px(Vx =∞) = 0.

Note that, a priori, a state x could be neither transient nor recurrent: the probability
to visit x infinitely often could be strictly between 0 and 1. However, we will soon see a
posteriori, as a consequence of Theorem 2.31, that this is not possible: this probability is, in
fact, either 0 or 1.

Note also that the notion of recurrence for a state x does not depend on the starting
distribution λ but only on the transition matrix P : the condition states that, if we were to
start the chain in x, then we would visit x infinitely often.

The following lemma is a fundamental observation. Recall that a random variable N
taking values in {1, 2, . . .} is said to have a geometric distribution with parameter p ∈ [0, 1]
if P(N = n) = (1− p)n−1p;n = 1, 2 . . .. Equivalently, P(N > n) = (1− p)n for n = 0, 1, . . ..
In words, we toss a biased coin (where the probability to get a heads at each toss is p) and
wait until the first toss N where we get a heads. The parameter p can therefore be thought
of as a success probability for independent and identically distributed trials. We also recall
that E(N) = 1/p: in other words, we must wait on average for 1/p trials for a success. This
can be verified by differentiation of the geometric series (and is also very intuitive – consider
for instance the case where p is very small!).

Lemma 2.29. For x ∈ S, set px = Px(T+
x < ∞), where T+

x = inf{n ≥ 1 : Xn = x} is the
first return time to x. Then Vx is a geometric random variable with parameter 1− px.

Remark 2.30. In the above definition of the return time, note that this differs from the
hitting time defined earlier only in that the inf is taken over n ≥ 1 rather over n ≥ 0. px is
therefore the probability that, starting from x, the chain ever returns to x.

Proof. Define the successive return times to x as T (0)
x = Tx = 0, T (1)

x = T+
x , and inductively:

T (i)
x = inf{n > T (i−1)

x : Xn = x}.

We note that for each i ≥ 1, T (i)
x is a stopping time (exercise!). Note also that Vx, the

number of visits to x, is > n if and only if T (n)
x <∞:

Vx > n ⇐⇒ T (n)
x <∞.

(The inequality Vx > n above is strict because the first visit occurs at T (0)
x with our conven-

tions.) Now, to prove the lemma, it suffices to show that

P(Vx ≥ n) = pn−1x , n = 1, 2, . . . (2.14)
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We prove this by induction and using the strong Markov property. For n = 1 this is trivial.
Now suppose n ≥ 2. We have,

Px(Vx ≥ n) = Px(T (n)
x <∞)

= Px(T (n)
x <∞, T (n−1)

x <∞)

= Px(T (n−1)
x <∞)Px(T (n)

x <∞|T (n−1)
x <∞)

= Px(T (n−1)
x <∞)px

where in the last line, we have used that Px(T (n)
x < ∞|T (n−1)

x < ∞): this follows from the
strong Markov property at time T (n−1)

x (which is indeed a stopping time). By the induction
hypothesis, we deduce that Px(Vx ≥ n) = pn−1x , as desired. This completes the proof of the
lemma.

In words, the lemma says the following. At each subsequent visit to x, the Markov chain
tosses an independent coin: with probability px it comes back, with probability 1 − px it
does not come back. (The independence of the coin and the fact that they always have the
same probability is precisely the strong Markov property). If we interpret a success as “not
coming back”, we see that Vx counts the number of trials until we have a success, and that
is why Vx has a geometric distribution with parameter 1− px.

From this lemma we deduce the following important characterisation of recurrence and
transience.

Theorem 2.31. We have the following dichotomy.

(i) Suppose px = 1. Then x is recurrent, and
∑∞

n=0 P
n(x, x) =∞.

(ii) Suppose px < 1. Then x is transient, and
∑∞

n=0 P
n(x, x) <∞.

In particular, a state is either recurrent or transient. It is recurrent if and only if
∑∞

n=0 P
n(x, x) =

∞.

We recall that P n(x, x) is the (x, x) entry of the matrix P n, and so is equal to Px(Xn = x)
by the Chapman–Kolmogorov equation.

Proof. Suppose px = 1. By Lemma 2.29, we know that Vx is a geometric random variable
with success probability 1 − px = 0. Thus Px(Vx ≥ n) = 1. Since n is arbitrary, we deduce
Vx =∞ and hence x is recurrent.

Suppose instead px < 1. Then Px(Vx ≥ n) = pnx − 1 → 0 as n → ∞. Hence Vx < ∞,
with Px-probability equal to one (Px-a.s.).
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Concerning the series, note that

∞∑
n=0

P n(x, x) =
∞∑
n=0

Px(Xn = x)

=
∞∑
n=0

Ex(1{Xn=x})

= Ex(
∞∑
n=0

1{Xn=x})

= Ex(Vx) = 1/(1− px).

(In the third line, we exchanged summation and expectation. This requires a bit of mea-
sure theory for a proper justification: for instance via Fubini’s theorem, or by considering
the truncated sum, using linearity of expectation and taking a limit via the monotone con-
vergence theorem since all terms are positive. This can also be proved by hand rather
elementarily). The right hand side is finite if and only if px < 1, and this completes the
proof of the theorem.

Lecture 7: Thursday 27.10.2022 Before seeing concrete examples of the theorem, we
explain a few consequences of the above dichotomy.

Corollary 2.32. Let C be a communicating class. Then one of the two alternative holds:

(i) For every x ∈ C, x is recurrent.

(ii) For every x ∈ C, x is transient.

In other words, recurrence/transience is a class property.

Proof. Fix x, y ∈ C. Suppose x is transient, and let us show y is transient too. Since x↔ y
we know that P k(x, y) > 0 for some k ≥ 0 and P j(y, x) > 0 for some j ≥ 0. Furthermore,
using the (simple) Markov property, for any n ≥ 0,

P k+n+j(x, x) ≥ P k(x, y)P n(y, y)P j(y, x).

Now let us sum over n ≥ 0. The left hand side is finite by Theorem 2.31, and thus so is the
right hand side. It follows (again by Theorem 2.31) that y is transient, as desired.

Let us call a collection C of states closed if x ∈ C and x → y imply y ∈ C. That is,
starting from somewhere in C, the chain remains in C forever. (This notion is distinct from
that of communicating class introduced earlier in Definition 2.5: indeed, we have already
noticed in Exercise 2.7 that a communicating class is not necessarily closed). In the same
vein as above, we now show that every finite closed communicating class is recurrent.

Corollary 2.33. Suppose C is a finite, closed, communicating class. Then C is recurrent
(i.e., all states x ∈ C are recurrent).
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Proof. Fix x ∈ C. Since C is finite and the Markov chain is defined forever, there is
necessarily some y ∈ C which is visited infinitely many times by the chain. This follows
from the pigeonhole principle or, more simply, from the observation that ∞ =

∑
y∈C Vy, so

there is at least one y ∈ C such that Vy =∞. Note however that this y ∈ C may be random:
that is, we have established that

Px(
⋃
y∈C

{Vy =∞}) = 1.

By Boole’s inequality (also known as a union bound),

1 = Px(
⋃
y∈C

{Vy =∞}) ≤
∑
y∈C

Px(Vy =∞)

and hence for at least one y ∈ C (this one is deterministic), it must be the case that

Px(Vy =∞) > 0.

On the other hand, by the strong Markov property,

Px(Vy =∞) = Px(Ty <∞)Py(Vy =∞)

so we deduce in particular that Py(Vy =∞) > 0. Hence y cannot be transient, and so must
be recurrent by Theorem 2.31. By the previous corollary, this implies all the states of C are
recurrent.

2.8 Pólya’s theorem

In this section we will apply Theorem 2.31 to state and prove Pólya’s remarkable theorem
concerning the recurrence and transience of simple random walk in Zd.

Let G be a locally finite, connected graph. Then the associated random walk is clearly
irreducible (recall that this means that there is a single communicating class). Hence there
are two possibilities: either all vertices of G are recurrent or all vertices of G are transient.
Call the graph G recurrent in the first case, transient in the other.

Given any graph, a fundamental question is whether this graph is recurrent or transient.
When the graph is finite, by Corollary 2.33, the graph is necessarily recurrent. For instance,
the random transpositions of Example 1.8 are necessarily recurrent: if we shuffle the deck
of cards sufficiently many times, it is certain that at some point the deck will return to its
original ordering (it might take a long time in practice though! We will actually be able to
compute how long it takes on average in the next Chapter, see Example 3.10 – the answer
is n!).

The question of recurrence/transience therefore only arises when the graph is infinite.
Then it might be possible for random walk to get lost in the graph, and wander off to
infinity before returning to its starting point, as the next amazing result shows. Recall the
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graph G = Zd, with vertex set V = {x = (x1, . . . , xd) : xi ∈ Z} formed by points of Rd such
that each coordinate is a (relative) integer, and with edge set determined x ∼ y if and only
if
∑d

i=1 |xi− yi| = 1. With an abuse of notation we use Zd both to denote the vertex set and
the graph itself.

Theorem 2.34 (Pólya’s theorem). Zd is recurrent if d = 1 or d = 2, but is transient for
d ≥ 3.

Apart from the sheer beauty of the theorem and its surprising conclusion, this result also
has enormous implications e.g. in condensed matter physics, from Bose–Einstein condensa-
tion to superconductivity; it can be seen as the main reason why matter behaves differently
in two and three dimensions.

To prove this theorem we will focus mostly on the case d = 1. This might seem surprising
initially, because in reality we already know the answer in that case: indeed, the random
walk on Z simply corresponds to the case p = q = 1/2 of the biased random walk, for which
we have shown in Theorem 2.14 that Px(T0 < ∞) = 1 for any x ∈ Z. Hence by the simple
Markov property P0(T

+
0 <∞) = 1 and the walk is recurrent.

However, it is not straightforward to generalise this approach to higher dimensions. This
is because the analysis of difference equations, which lies at the heart of our proof of Theorem
2.14, is much more subtle in higher dimensions: it is hard to get explicit formulae.

Instead, we will provide a different proof of recurrence in dimension d = 1, which can
be generalised to higher dimensions with relatively little effort. This proof will be based on
the characterisation in Theorem 2.31: namely, we will study the asymptotics of P n(0, 0) as
n → ∞, and show that the series is not summable. The study of P n(0, 0) is based on the
following combinatorial observation.

Lemma 2.35. For any n ≥ 0, P0(Xn = 0) = 0 if n is odd, whereas for even integers,

P0(X2n = 0) =

(
2n

n

)
2−2n.

Proof of Lemma 2.35. We first observe that the walk alternates between even and odd po-
sitions, so it is impossible to return to zero at an odd time. So we will only consider even
times in the following.

Fix any path (x0, . . . , xn) with x0 = 0, xi ∈ Z and |xi − xi−1| = 1, for 1 ≤ i ≤ n. Then

P0(X0 = x0, . . . , Xn = xn) = (1
2
)n (2.15)

since each transition has probability 1/2. It follows that (changing n into 2n since we want
to consider even times),

P0(X2n = 0) = (1
2
)2n#L2n, (2.16)

where L2n is the set of lattice paths of length 2n starting at 0 and ending at 0 at time 2n:

L2n = {(x0, . . . , x2n) : x0 = x2n = 0, xi ∈ Z for 0 ≤ i ≤ 2n, |xi − xi−1| = 1 for 1 ≤ i ≤ 2n}.
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Indeed we obtain (2.16) by summing (2.15) over all paths in L2n and each such path con-
tributes the same probability, namely (1/2)2n. The lemma is therefore proved once we show

#L2n =

(
2n

n

)
.

However, this is immediate from the following observation: any path in L2n satisfies the
property that there are exactly n times for which the corresponding increment of the path
is +1, and n times for which the increment is −1: that is, for any (x0, . . . , x2n) ∈ L2n,

#{1 ≤ i ≤ 2n : xi − xi−1 = +1} = n.

Furthermore, any such path in L2n is entirely determined by the data of the set above (the
set of times for which the increment is +1). There are clearly

(
2n
n

)
ways of choosing such a

set. Hence #L2n =
(
2n
n

)
and the lemma is proved.

Using Lemma 2.35, we can now determine the asymptotic behaviour of P 2n(0, 0). We
make use of the well known approximation of n! by Stirling:

Lemma 2.36. We have n! ∼ (n/e)n
√

2πn, in the sense that the ratio of the two sides
converges to 1 as n→∞.

Proof of Theorem 2.34, case d = 1. We just need to compute an asymptotic equivalent for
P 2n(0, 0): combining Lemma 2.35 and 2.36, we have:

P0(X2n = 0) =
(2n)!

n!n!
2−2n

∼ (2n/e)2n
√

2π2n

(n/e)2n2πn
2−2n

∼ 1√
πn

. (2.17)

Now, the series 1/
√
n is not summable and hence P 2n(0, 0) is equivalent to a non-summable

series. We deduce that
∑∞

n=0 P
n(0, 0) =∞. This completes the proof in the case d = 1.

Now consider the case d ≥ 2. Before starting the proof properly we explain the intuition.
If (Xn, n ≥ 0) is a simple random walk on Zd, observe that for each 1 ≤ i ≤ d, the coordinate
process (X i

n, n ≥ 0) is a stochastic process taking values in Z. At each step, it stays put
with probability 1 − 1/d, while with the remaining probability it moves by ±1 with equal
probability. In other words it is a simple random walk with random “delays”. From that
and (2.17) it is natural to expect that if ~0 = (0, . . . , 0), then P~0(X i

n = 0) ≈ n−1/2. (As
this is an informal explanation providing heuristics, we do not try to make precise what we
mean by ≈ here). Furthermore, as i varies between 1 and d, the coordinates are essentially
independent of one another. The only dependence between them comes from the fact that
only one coordinate changes at a time. Thus it is reasonable to expect, using independence,

P~0(Xn = ~0) = P~0(X
1
n = 0, . . . , Xd

n = 0) ≈ (n−1/2)d = n−d/2.
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Note that the sum of the series on the right hand side is infinite if d = 1, 2 but finite for
d ≥ 3. Combining with Theorem 2.31 gives the result of Theorem 2.34 we are looking for.

Turning this into a proof requires a number of rather delicate arguments, which go
beyond the scope of the course.

Proof of Theorem 2.34, case d = 2. We briefly sketch the proof for the case d = 2, for which
we adapt an argument due to D. Chafaï. This relies on the Vandermonde convolution identity
for binomial coefficients: (

n+m

r

)
=

r∑
k=0

(
n

k

)(
m

r − k

)
,

which is obtained by considering the expansion of (1 + x)m+n = (1 + x)m(1 + x)n. Taking
m = n = r this gives (

2n

n

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
=

n∑
k=0

(
n

k

)2

. (2.18)

Now note that

P 2n(~0,~0) =
∑

i,j≥0:i+j=n

(2n)!

(i!j!)2

(
1

4

)2n

. (2.19)

To see this, note that each fixed lattice path of length 2n from 0 to 0 has probability exactly
(1/4)2n. Furthermore, once i, j ≥ 0 have been chosen such that i+ j = n, there are exactly
(2n)!
(i!j!)2

ways to choose the lattice path in such a way that the first coordinate moves exactly
2i times, and the second 2j times. This proves (2.19). Rewriting this we get

P 2n(~0,~0) =

(
2n

n

)
(1/4)2n

n∑
k=0

(
n

k

)2

=

(
2n

n

)2

(1/4)2n (2.20)

by (2.18). Using Stirling’s formula (Lemma 2.36) we deduce that

P 2n(~0,~0) ∼ 1

πn
.

Since this is not summable we conclude using Theorem 2.31.

Proof of Theorem 2.34, case d ≥ 3. We briefly sketch the proof for the case d ≥ 3. While
the Vandermonde identity has an obvious generalisation (think of expanding (1 + x)n(1 +
x)n(1 + x)n = (1 + x)3n) the resulting identity is of little help: which coefficient should be
of interest to us? Instead we follow the argument of Norris [Nor98]. First of all, we observe
that it suffices to consider the case d = 3. To see this, note that Z3 ⊂ Zd and that if
Yn = (X1

n, X
2
n, X

3
n) records the first three coordinates of X, then Y is a delayed (i.e., “lazy”,

in the terminology of an exercise in the first example sheet) simple random walk in Z3: more
precisely, at each step, Y stays put with probability 1 − 3/d and otherwise evolves like a
simple random walk on Z3 with probability 3/d.
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From this observation we claim that it suffices to prove transience in the case d = 3.
Indeed, if we know transience for d = 3, this immediately implies transience for the lazy
version of the random walk on Z3, as the expected number of visits is then also necessarily
finite. In turn, this implies that the number of visits to the origin of Zd by random walk
on Zd also has finite expectation: this is because whenever Xn = ~0, then necessarily Yn =
(X1

n, X
2
n, X

3
n) = (0, 0, 0) so each visit to ~0 coincides with a visit of Y to (0, 0, 0). Given that

Y is transient, it therefore follows that X is transient.
Thus suppose d = 3, and note

P 2n(~0,~0) =
∑

i,j,k≥0:i+j+k=n

(2n)!

(i!j!k!)2

(
1

6

)2n

, (2.21)

which is the direct analogue of (2.19), valid for the same reasons. This can also be rewritten
in the following way:

P 2n(~0,~0) =

(
2n

n

) ∑
i,j,k≥0:i+j+k=n

(
n!

i!j!k!

)2(
1

6

)2n

. (2.22)

We combine this with two observations:∑
i,j,k≥0:i+j+k=n

n!

i!j!k!

(
1

3

)n
= 1 (2.23)

since the left hand side is the sum over all assignments of n balls into 3 urns of the probability
to make that assignment; and secondly, the multinomial coefficient is maximised when all
parts are approximately equal: that is,

n!

i!j!k!
=

(
n

i j k

)
≤
(

n

m m n− 2m

)
(2.24)

with m = bn/3c. These two observations together with (2.22) give us

P 2n(~0,~0) ≤
(

2n

n

)(
1

2

)2n(
n

m m n− 2m

)(
1

3

)n
∼ cn−3/2

for some constant c > 0, by Stirling’s formula. The result follows in the case d ≥ 3.
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3 Long-term behaviour
Lecture 8: Friday 28.10.2022

Consider the following silly example. A frog oscillates between jumping and falling asleep.
At each minute, if asleep, it wakes up with some given probability α, and otherwise stays
asleep. If awake and jumping, it falls asleep with probability β, and otherwise continues
jumping. In other words, this is nothing but the silly example of Example 1.6.

Suppose we wait for a long time. What can we say about the probability of finding the
frog asleep? And does it matter for this probability if we are told initially the frog was
awake or asleep? Intuition suggests a limit exists for the probability to find asleep at time
n, and this limit does not depend on the initial state of the frog. Actually, in this case we
were able to diagonalise the chain explicitly (see Example 1.13) and check this intuition: the
probability to find the frog asleep at a large time is approximately β/(α+β), independently
of the starting state.

What about other chains? Consider for instance random walk on a finite connected
graph. In this case too our intuition suggests that there is a limit for the probability to find
the walk in some given state after a long time, and that this limit should not depend on
the starting state. How to formalise this intuition? How to prove it? This will occupy us
throughout this chapter. The key concept is that of invariant distribution which we define
below.

3.1 Invariant measures and invariant distributions

Definition 3.1. Let P denote the transition matrix of a Markov chain on a state space S.
A measure µ on S is called invariant if for every y ∈ S,

µy =
∑
x∈S

µxP (x, y). (3.1)

If furthermore µ is a distribution, we say that µ is an invariant distribution (ID).

Sometimes invariant distributions are also referred to as equilibrium distributions or
stationary distributions. All these words mean the same thing. In matrix notations, the
measure µ is invariant if and only if

µP = µ. (3.2)

Both (3.1) and (3.2) have a transparent probabilistic interpretation if µ is a distribution.
We start the chain in the distribution µ, and let the chain evolve for one step. Then the
distribution after one step is still µ (recall for instance Theorem 1.11).

We write this fact as the following more general proposition.

Proposition 3.2. Suppose λ is an invariant distribution. Let (X0, X1, . . .) be Markov (λ, P ),
and let m ≥ 0 be arbitrary and fixed. Then the distribution of (Xm, Xm+1, . . .) is also Markov
(λ, P ).

35



Proof. By the simple Markov property, we only need to prove that the law of Xm is λ. But

P(Xm = y) =
∑
x∈S

λxP
m(x, y) = (λPm)y = λy

since λPm = λPPm−1 = λPm−1 = . . . = λP = λ.

Example 3.3. Recall the silly example of Example 1.6. What are the invariant measures?
We have two equations: {

µ0 = (1− α)µ0 + βµ1

µ1 = (1− β)µ1 + αµ0.

While these are two equations for two unknowns, there is some redundancy: indeed, simpli-
fying, the equations become {

αµ0 = βµ1

βµ1 = αµ0

so in fact we have only one unknown. This is to be expected: invariant measures are not
unique: indeed, if µ is an invariant measure and r ≥ 0 is arbitrary then rµ is also an invariant
measure (the defining condition (3.2) is linear).

Here µ0 = β, µ1 = α gives a solution, and any invariant measure is of the form µ0 =
rβ, µ1 = rα. In particular, there is a unique invariant distribution: µ0 = β/(α + β), µ1 =
α/(α + β).

Note that this is precisely the limiting probabilities we computed for the frog to be asleep
or awake in Example 1.13 by diagonalisation!

The computation in the last example suggests there is a close connection between invari-
ant measures and invariant distributions, and the above is no fluke. We can back this up
with the following proposition, which for convenience we only state in the case of a finite
state space (see below why).

Proposition 3.4. Suppose S is finite, and X is Markov (λ, P ) for some arbitrary starting
distribution λ. Suppose

πy = lim
n→∞

P(Xn = y)

exists. Then (πy)y∈S is an invariant distribution.

We tend to reserve the letters λ for the starting distribution of a chain, π for an invariant
distribution, and µ for an invariant measure. This is purely a matter of convention, of course.

Proof. The proof is simply an application of the Markov property (or the definition of Markov
chains). Indeed, fix y ∈ S. Since P(Xn = y) → πy as n → ∞ we can also say that
P(Xn+1 = y)→ πy. But decomposing over the possible values of the chain at time n,

P(Xn+1 = y) =
∑
x∈S

P(Xn = x)P (x, y).
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Now take the limit as n → ∞. Since S is finite there is no difficulty in taking the limit for
each term and deducing the value of the limit for the sum: thus

πy =
∑
x∈S

πxP (x, y).

In other words, since y ∈ S was arbitrary, π is invariant.

In practice, Proposition 3.4 is of little help. What we would really like is a kind converse:
if given an invariant distribution π, can we guarantee that P(Xn = y) actually converges
to πy? From that point of view, Proposition 3.4 only tells us there is no point in looking
beyond invariant distributions/measures, and simply serves as a motivation to study those.
For instance, do invariant distributions always exist? Are they unique? If so, is the desired
convergence actually true?

Before we answer these questions, we give more examples.

Example 3.5. Let G = (V,E) denote a locally finite (undirected) graph. For x ∈ V , let
µ(x) = deg(x). Then µ is invariant for the simple random walk on G.

To see this, we fix y ∈ S. We want to show

µ(y) =
∑
x∈V

µ(x)P (x, y)

i.e.
deg(y) =

∑
x∈V :x∼y

deg(x)
1

deg(x)

which is plainly true.

From Example 3.5 we deduce for instance that if G = Zd then µ(x) = 1 is an invariant
measure. Note that this cannot be scaled to give an invariant distribution! (In fact, we will
soon see that no invariant distribution exists in this case). However, for the card shuffle
of random transpositions discussed in Example 1.8, all vertices have equal degree and the
graph is finite (the total size is n!) so an invariant distribution is given by πx = (1/n!) for
every x ∈ Sn, the permutation group of order n. In fact, we will soon see this is the unique
invariant distribution.

Lecture 9: Thursday 3.11.2022

Exercise 3.6. Renewal theory. Here is another family of examples we have not en-
countered before (this can be skipped on a first reading). We give ourselves a probability
distribution (pn)n≥0 on {1, 2, . . .} and we think of pn as the probability that a lightbulb will
last n months before needing to be replaced. Once the lightbulb breaks, we immediately
replace it with a new lightbulb, whose lifetime is an independent random variable with same
distribution. Alternatively, (pn)n≥1 could represent the law of the time (in minutes) between
two successive buses at the bus stop, thus pn is the probability that two successive buses are
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Y1 − 1

Y2 − 1

Y3 − 1

S1 S2 S3

Y3Y2Y1

Figure 7: “Simulation” of the renewal chain Rn.

separated by n minutes. Either way we are interested in the stochastic process (Rn, n ≥ 0)
which denotes the number of remaining months until the next replacement/next bus and its
long term behaviour: what can we say about the probability that we have to wait n minutes
when we arrive? How long do we have to wait on average until the next replacement/bus?
And why do we tend to be unlucky?!

Formally, this is defined as follows. Let Y1, Y2, . . . denote i.i.d. random variables with
common distribution (pn)n≥1. Let Sn =

∑n
i=1 Yi (this is the time of the nth replacement),

and for n = 0, 1, 2, . . ., let
Rn = inf{Sm : Sm ≥ n} − n. (3.3)

(Rn, n ≥ 0) is called a renewal chain. Its transition probabilities are as follows:{
P (i, i− 1) = 1 if i ≥ 1.

P (0, i) = pi+1 for any i ≥ 0,

and 0 otherwise. See Figure 7 for an illustration.
From the point of view of the above questions it is natural to ask the following question:

what are the invariant measures and invariant distributions (if any) of this Markov chain?
A problem on the example sheet will guide you towards a solution. We will also further
develop this example to illustrate the theory we will present below.

3.2 Existence, uniqueness for recurrent chains

Given a Markov chain with transition matrix P on a state space S, our first task is to
ask if we can find an invariant measure. When S is finite, it is not hard to do this using
linear algebra (see one of the exercises in the upcoming sheet). We now present a general
construction, which shows existence and uniqueness (up to scaling) of invariant measures,
for recurrent and irreducible chains.
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Definition 3.7. Fix a state x ∈ S, and define a measure µx on S as follows:

µx(y) = Ex(
T+
x −1∑
n=0

1{Xn=y}),

where, as before, T+
x = inf{n ≥ 1 : Xn = x} is the return time to x. The measure µx is

called the return measure based at x.

In words, µx(y) counts the expected number of visits to y between two successive visits
to x. Note that there is no guarantee a priori that µx(y) <∞. The return measure is useful
because of the following result.

Theorem 3.8. Suppose that P defines a Markov chain. Then µx is the minimal nonnegative
solution of the equations:{

µ(x) = 1∑
w∈S µ(w)P (w, y) ≤ µ(y) for all y ∈ S.

(3.4)

If furthermore x is recurrent then µx solves (3.4) with equality, i.e., µx is an invariant
measure and satisfies µx(x) = 1 (we say that µ is normalised at x), and is therefore the
minimal invariant measure normalised at x. Finally, if P is also irreducible, then µ(y) ∈
(0,∞) for all y ∈ S. In that case, the nonnegative solutions to (3.4) are unique, so µx is the
unique invariant measure normalised to be equal to 1 at x.

A measure which satisfies (3.4) is sometimes called a super-invariant measure, or a
super-solution to the equation µ = µP . Thus µx is the minimal super-invariant measure
normalised at x, and when x is recurrent, µx is the minimal invariant measure normalised
at x.

Before starting the proof (which is quite long) we state an important corollary to this
result.

Corollary 3.9. Suppose P is irreducible and recurrent. Then P possesses a unique invariant
measure up to scaling: if µ, µ′ are two invariant measures, there exists r ∈ [0,∞] such that
µ = rµ′.

Proof. Suppose that we can find x such that 0 < µ(x) <∞ and x′ such that 0 < µ′(x′) <∞
(otherwise the result trivially holds with r =∞ or r = 0). Then µ/µ(x) is an invariant mea-
sure normalised at x. Hence by uniqueness, µ/µ(x) must coincide with the return measure
based at x. Hence all the entries of µ are positive and finite, in particular µ(x′) ∈ (0,∞)
also. Hence dividing by µ(x′), we obtain an invariant measure which is now normalised at
x′ instead of x. By uniqueness this must coincide with the return measure based at x′.

But by the same reasoning, the latter is a multiple of µ′: indeed, µ′/µ′(x′) = µx
′ must

coincide with the return measure based at x′. Thus both µ/µ(x′) and µ′/µ′(x′) are equal to
one another (and equal to µx′). Consequently,

µ = rµ′
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with r = µ(x)/µ(x′).

Let us now begin the proof of the theorem.

Proof of Theorem 3.8. (Super-Invariance). There are many things to check. The first
is to prove that µx indeed solves (3.4). Let us start with checking the normalisation, i.e.
µx(x) = 1. This holds because, starting from x, by definition of T+

x , the only visit by the
chain to x occurs at time 0 (even on the event {T+

x =∞}).
The proof that µx is invariant is more tricky, but the idea is simple to explain in words. It

exploits the so-called cycle trick. As we know, µx(y) measures the expected number of visits
to y by the chain during {0, 1, . . . , T+

x − 1}. On the other hand, µxP (y) =
∑

z µ
x(z)P (z, y)

measures the total expected number of visits to other sites z, weighted by the probability
to make a transition to y immediately after. A moment of thought shows that this counts
the total expected number of visits to y, but during the time interval {1, . . . , T+

x } instead of
{0, . . . , T+

x − 1}. However when x is recurrent the two quantities are obviously equal (even
for y = x: the lone visit to x is counted at the end rather than the beginning). When x is
not recurrent (i.e., T+

x could be infinite), we still have an inequality.
More formally, we notice that no matter what,

µx(y) = Ex(
T+
x −1∑
n=0

1{Xn=y}) ≥ Ex(
T+
x∑

n=1

1{Xn=y}).

In fact, if the chain was recurrent this would always be an equality, whereas if the chain
is not assumed recurrent, the inequality comes from the case y = x and T+

x = ∞. Thus,
exchanging sums and expectations liberally (the actual justification is provided by measure
theory as usual):

µx(y) ≥ Ex(
T+
x∑

n=1

1{Xn=y})

= Ex(
∞∑
n=1

1{Xn=y,n≤T+
x })

=
∞∑
n=1

Px(Xn = y, n ≤ T+
x ) (3.5)

=
∞∑
n=1

∑
z∈S

Px(Xn−1 = z, T+
x > n− 1, Xn = y).

Since T+
x is a stopping time, the event {T+

x > n−1} is entirely determined by the (X0, . . . , Xn−1).

40



We can therefore apply the simple Markov property at time n− 1, to obtain:

µx(y) ≥
∞∑
n=1

∑
z∈S

Px(Xn−1 = z, T+
x > n− 1)P (z, y)

=
∑
z∈S

P (z, y)
∞∑
n=1

Ex(1{Xn−1=z,T
+
x >n−1})

=
∑
z∈S

P (z, y)
∞∑
m=0

Ex(1{Xm=z,T+
x >m})

=
∑
z∈S

P (z, y)Ex(
∞∑
m=0

1{Xm=z,T+
x >m})

=
∑
z∈S

P (z, y)µx(z),

where, to go from the second to third line we changed the index of summation n ≥ 1 to
m = n − 1 ≥ 0, and we recognise in the last line the number of visits to z between 0 and
T+
x − 1, as noted in the heuristic description. This shows that µx is super-invariant. If x is

recurrent, then all these inequalities are equalities, so µx is invariant.
Minimality. Let µ be another super-invariant measure normalised at x, i.e., a solution

to (3.4). We aim to show that for every y ∈ S, µ(x) ≥ Ex(
∑T+

x −1
n=0 1{Xn=y}). The super-

invariance of µ gives us

µ(y) ≥
∑
w∈S

µ(w)P (w, y)

= P (x, y) +
∑

w∈S\{x}

µ(w)P (w, y)

by separating the contribution of the term w = x from the rest of the sum. Calling w = w1

above and exploiting again (iteratively) the invariance of µ we get

µ(y) ≥ P (x, y) +
∑

w1∈S\{x}

∑
w2∈S

µ(w2)P (w2, w1)P (w1, y)

= P (x, y) +
∑

w1∈S\{x}

P (x,w1)P (w1, y) +
∑

w1,w2∈S\{x}

µ(w2)P (w2, w1)P (w1, y)

= Px(X1 = y, T+
x ≥ 1) + Px(X2 = y, T+

x ≥ 2) +
∑

w1,w2∈S\{x}

µ(w2)P (w2, w1)P (w1, y).

Continuing inductively, we find

µ(y) ≥ Px(X1 = y, T+
x ≥ 1) + . . .+ Px(Xn = y, T+

x ≥ n)+

+
∑

wn,...,w1∈S\{x}

µ(wn)P (wn, wn−1) . . . P (w2, w1)P (w1, y).
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Ignoring the sum at the end of the right hand side we get

µ(y) ≥
n∑
i=1

Px(Xi = y, T+
x ≥ i). (3.6)

Letting n → ∞, and recalling (3.5), we recognise the right hand side as µx(y), so µ(y) ≥
µx(y), as desired.

Nondegeneracy. Now suppose P irreducible (and recurrent), and let us show µx(y) ∈
(0,∞). Let us first check positivity. Fix y ∈ S. Since P is irreducible, let n ≥ 0 such that
P n(x, y) > 0. Since µx is invariant,

µx(y) = (µxP n)(y)

=
∑
z

µx(z)P n(z, y)

≥ µx(x)P n(x, y) > 0

so µx(y) > 0. To check finiteness, let m ≥ 0 such that Pm(y, x) > 0. Then

µx(x) =
∑
z

µx(z)Pm(z, x) ≥ µx(y)Pm(y, x).

Since the left hand side is equal to 1 and Pm(y, x) > 0, we deduce that µx(y) < ∞, as
desired.

Uniqueness. The last thing to check is that there is a unique invariant measure nor-
malised at x. Let µ be another such normalised invariant measure, and let ρ = µ− µx. We
already know that ρ ≥ 0 by minimality of µx, and furthermore by linearity, ρ is invariant.
Hence ρ is an invariant measure, and satisfies ρ(x) = 0. Let us show that ρ(y) = 0 for any
other y ∈ S. By invariance,

ρ(x) =
∑
z

ρ(z)Pm(z, x) ≥ ρ(y)Pm(y, x)

where, as before, m ≥ 0 is chosen so that Pm(y, x) > 0. Since the left hand side is zero and
the right hand side is nonnegative, it must be zero. But as Pm(y, x) > 0 the only possibility
is that ρ(y) = 0, as desired. This completes the proof of the theorem.

Example 3.10. Consider G = Zd with d = 1, 2. Then G is recurrent (by Pólya’s theorem)
and irreducible. Hence invariant measures are unique up to scaling. Since µ(x) = 1 is an
invariant measure, all invariant measures must be constant. In particular there can be no
invariant distribution.

Example 3.11. Note that if P is the transition matrix of an irreducible, recurrent chain,
and x, y ∈ S then necessarily µx and µy are proportional to one another. This is absolutely
not obvious a priori. For instance, suppose that, between two successive visits to x, the
number of visits to y is α > 0 on average. Then it follows from Theorem 3.8 (or more
precisely Corollary 3.9) that, between two successive visits to y, the number of visits to x is
on average 1/α.

Lecture 10: Friday 4.11.2022
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3.3 Positive recurrence and invariant distributions

At this point we know by Proposition 3.4 that, to compute the long-term distribution of
a Markov chain over its state space, we must look for an invariant distribution. We also
know, by Theorem 3.8, that invariant measures always exist (at least for recurrent chains,
which is the only case that is sensible to consider – for transient chains, the chain goes “off to
infinity” so there is no point looking for limiting distributions; this will be formalised later).
We also know these invariant measures are unique up to scaling. But the question remains:
does there exist an invariant distribution? (If one exists, it is clearly necessarily unique by
Corollary 3.9.)

This question is clearly more subtle than just recurrence/transience. For instance, in the
case of the frog of Example 3.3 or any random walk on a finite graph, (see Example 3.5), we
could find an invariant distribution. But on Z and Z2, both of which are recurrent, there
is no invariant distribution. As we will see, the key notion for the existence of an invariant
distribution is the following notion of positive recurrence.

Definition 3.12. Let P be the transition matrix of a Markov chain on a state space S. The
state x ∈ S is called positive recurrent if

Ex(T+
x ) <∞,

where as before T+
x = inf{n ≥ 1 : Xn = x} is the return time to x. If however, T+

x < ∞
with probability one starting from x, but the above expectation is infinite, x is said to be null
recurrent.

The condition of positive recurrence is a strong form of recurrence. Not only is the return
time finite, but the expectation is finite, so the chain returns to x quickly. By contrast, a
null recurrent state is one such that the return time is finite with probability one, but in fact
one must typically wait a very long time before seeing the chain return to x. As we will see,
the long term behaviour of a Markov chain is very different in these two cases. The theorem
below provides the basis of this fundamental distinction.

Theorem 3.13. Let P be an irreducible transition matrix. Then the following are equivalent:

(i) Every state x ∈ S is positive recurrent.

(ii) Some state x ∈ S is positive recurrent.

(iii) There exists an invariant distribution.

Furthermore, if either (i)-(iii) occur, the unique distribution π is necessarily given by the
formula

πx =
1

Ex(T+
x )
. (3.7)

Before seeing a proof of this theorem, we make a few remarks.
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Remark 3.14. At first the formula (3.7) appears miraculous. Let mx = Ex(T+
x ) (sometimes

called the mean recurrence time). It’s not even clear at first why
∑

x(1/mx) should be equal
to 1: this sum is either zero (all the terms are zero), or equal to 1. The theorem guarantees
there are no other possibilities, since 1/mx defines the unique invariant distribution. (It’s
even less clear why 1/mx should be invariant!)

On the other hand, some basic considerations can help us understand the formula. Sup-
pose the chain is recurrent and consider the successive returns to x. Then the time between
the successive returns forms i.i.d. random variable (by the strong Markov property), of mean
mx, by definition. Thus, using the law of large numbers, the fraction of times spent at x
in the long run should be 1/mx. But, at least intuitively, if the chain spends 3% of its time
in a state x, the probability to find it at x after a very long time should also be 3%. That
is, the fraction of times spent at x should coincide with the probability to find it at x, hence
it is reasonable to expect that πx = 1/mx.

Let us now begin a proof of that theorem, and defer examples until after the proof.

Proof. (i)⇒ (ii) is trivial. Let us assume (ii) and show (iii). Suppose x is a positive recurrent
state. In particular x is recurrent so, by Theorem 3.8, the return measure µx based at x is
invariant. Let us check that µx has finite total mass (so that scaling by that mass, we would
get an invariant distribution). Recalling the definition of µx(y) as the expected number of
visits to y prior to the return to x,

∑
y∈S

µx(y) =
∑
y∈S

Ex(
T+
x −1∑
n=0

1{Xn=y})

= Ex(
T+
x −1∑
n=0

∑
y∈S

1{Xn=y})

= Ex(T+
x ) (3.8)

since
∑

y∈S 1{Xn=y} = 1: there is always a unique y where the chain is located at time n.
Since x is positive recurrent, the right hand side is finite, and thus

π = µx/mx (3.9)

(where mx = Ex(T+
x )) is an invariant distribution. This proves (iii).

Now let us show (iii) ⇒ (i). Let π be an invariant distribution. Let us first show that
πx > 0 for every x ∈ S. Since

∑
x πx = 1, there is at least one x0 such that πx0 such that

πx0 > 0. Now fix x ∈ S. By irreduciblity, choose n ≥ 0 such that P n(x0, x) > 0. Then, since
π is invariant,

πx =
∑
z

πzP
n(z, x) ≥ πx0P

n(x0, x) > 0,

as desired. Let us show that x is positive recurrent. Since πx > 0 we can consider the
measure π/πx, which is invariant (as a scaling of π) and is normalised at x. Since µx is the
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minimal such invariant, we deduce that µx(y) ≤ πy/πx, for any y ∈ S. (Note here that
we do not yet know that x is recurrent, but even without this assumption, it holds that
µx(y) ≤ πy/πx: this is because µx is the minimal super-invariant, and π, being invariant, is
also super-invariant). Hence∑

y∈S

µx(y) ≤
∑
y∈S

πy/πx = 1/πx <∞. (3.10)

We have already noted in (3.8) that
∑

y µ
x(y) = Ex(T+

x ). Combining with (3.10), we deduce
that x is positive recurrent, as desired. This proves (i).

Hence (i), (ii) and (iii) are equivalent. To prove (3.7), we recall (3.9), valid for any
positive recurrent state x ∈ S (hence for any x ∈ S by (i)). We evaluate both sides at the
state x. Since µx(x) = 1, we deduce that

πx = 1/mx,

as desired.

To get a feeling for this fundamental theorem we now discuss a few examples.

Example 3.15. Let G = Zd. Does G admit an invariant distribution? If so, then the graph
is positive recurrent and so in particular recurrent. This clearly rules out d ≥ 3. What
about d = 1, 2? Even in that case no invariant distribution can exist, as already mentioned
in Example 3.10 (there is uniqueness of invariant measures up to scaling, and µ(x) = 1 is
invariant).

Lecture 11: Thursday 10.11.2023

Example 3.16. Let P be an irreducible transition matrix over a finite state space. Then
the corresponding chain is necessarily positive recurrent. Indeed, the chain is recurrent, so
µx is an invariant measure by Theorem 3.8. Its total mass is necessarily finite (each entry
is finite, as shown in Theorem 3.8, and there are only a finite number of states). Hence the
chain possesses an invariant distribution, and so is positive recurrent.

Sometimes we can use the invariant distribution to compute the mean recurrence times,
as in this example.

Example 3.17. Suppose we shuffle cards (say with random transpositions). Then this is
a random walk on the permutation group Sk (a finite state space), and hence is positive
recurrent. As already mentioned, an invariant distribution is given by the uniform distribu-
tion πx = 1/k!, because on this graph every vertex has a constant degree (more precisely,(
k
2

)
in the case of random transpositions). By uniqueness (say, Corollary 3.9) the invariant

distribution is necessarily unique. Suppose we start from the identity permutation, denoted
by e, and let m denote the mean return time to e: i.e., me = Ee(T+

e ). Then

πe = 1/me
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and therefore
me = k!

In other words, on average it takes k! for the deck to return to its original configuration.
This is finite but very long when k is large!

Example 3.18. Consider the renewal chain of Example 3.6. Does the chain have an invariant
distribution? Clearly, the chain is irreducible on S = {0, . . . ,M−1} whereM is the essential
supremum of the renewal distribution (pn)n≥1, i.e., M = sup{n ≥ 1 : pn > 0} (note that
M could be infinite). By Theorem 3.8 there is an invariant distribution if and only if 0 is
positive recurrent. Clearly, starting from 0, the return time to 0 has the same law as the
inter-renewal distribution (pn)n≥1. Thus the renewal chain has an invariant distribution if
and only if

∑∞
n=1 npn < ∞. This is consistent with the invariant measure you will describe

in an exercise on Problem Sheet 5.

3.4 Convergence to equilibrium

We now come to one of the crucial theorems concerning Markov chains. Suppose X is a
Markov chain on a state space S and π is an invariant distribution. Then, as suggested by
Proposition 3.4, πy is a good candidate for limn→∞ P(Xn = y). But does the limit actually
exist? And can we prove this?

The answer is basically yes, except for a possible obstruction of a combinatorial nature,
called periodicity.

Definition 3.19. We say that a state x is aperiodic if P n(x, x) > 0 for all sufficiently large
n: i.e., there exists n0 (possibly depending on x) such that P n(x, x) > 0 for all n ≥ n0.

Example 3.20. Consider G = Z and let x = 0. Is x aperiodic? The answer is no, since
the walk alternates between even and odd positions so P n(0, 0) = 0 for every n odd. (More
generally this will be the case for every bipartite graph – a graph for which vertices can be
coloured black and white in such a way that black vertices only have white neighbours and
vice-versa. Thus, on Zd which is bipartite thanks to the usual checkerboard colouring, the
walk is periodic).

Example 3.21. Consider the n-cycle, G = Z/(nZ) equipped with edges between x and x±1
mod n for every 0 ≤ x ≤ n− 1, and consider a given state, say x = 0. Is x aperiodic?

Actually this depends on the parity of n. If n is even then the walk alternates between
even and odd positions, just as in the case of Z. However if n is odd then the walk could
return to an even position in an odd number of steps (and vice-versa) by wrapping around
the cycle. Hence in that case x is aperiodic.

The kind of restrictions in the above two examples (the walk can only return to its starting
point on certain integer multiples) is in fact the most general obstruction to aperiodicity, as
shown in the following exercise.
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Exercise 3.22. The state x is aperiodic if and only if the set of possible return times

Rx := {n ≥ 1 : P n(x, x) > 0}

has a greatest common divisor (gcd) equal to 1. In all other cases, Rx is of the form
Rx = {d, 2d, 3d, 4d, . . .} where d = dx is called the period of x. Furthermore, if the chain is
irreducible, then all the states are either simultaneously aperiodic or simultaneously periodic.
In the latter case, the period of a state x does not depend on x and is hence constant across
the state space: that is, dx = dy for x, y ∈ S.

We will not use this exercise and so do not include its proof, though it is good to keep
in mind to understand the notion of periodicity/aperiodicity. The following lemma (which
actually forms a small part of the proof of the exercise) will however be needed and so we
include it separately and prove it.

Lemma 3.23. Suppose P is irreducible and let z ∈ S. Suppose z is aperiodic. Then for
every x, y ∈ S, there exists n0 = n0(x, y, z) such that for all n ≥ n0, P n(x, y) > 0.

Proof. Fix k, j ≥ 0 such that P k(x, z) > 0 and P j(z, y) > 0, and let m0 be such that
Pm(z, z) > 0 if m ≥ m0. Then if m ≥ m0,

P k+j+m(x, y) ≥ P k(x, z)Pm(z, z)P j(z, y) > 0

so the lemma holds with n0 = m0 + j + k.

In particular, if P is irreducible, some state is aperiodic if and only if all states are
aperiodic. In that case we call the entire Markov chain aperiodic. We can now state one
of the main theorems of this class.

Theorem 3.24. Suppose P is an irreducible, aperiodic transition matrix on S with invariant
distribution (πy)y∈S. Let X = (Xn, n ≥ 0) be Markov (λ, P ) for some arbitrary starting
distribution λ. Then for every y ∈ S,

P(Xn = y)→ πy

as n→∞. In particular, for every x, y ∈ S, limn→∞ P
n(x, y) exists and equals πy.

Proof. The proof of this theorem is quite beautiful and uses an idea called coupling which
is very important in the study of Markov processes and more generally in probability theory.
The idea is to introduce another copy of the chain, (Yn)n≥0, which is started from the
invariant distribution π (hence by Proposition 3.2 its distribution at any given time is also
equal to π), and force Xn to be equal to Yn by modifying the trajectory of X.

Thus let Y be Markov (π, P ) and be independent from X. We consider the following
stochastic process

Wn = (Xn, Yn),

47



taking values in S ′ = S × S.
Step 1. We show that W is an irreducible Markov chain on S ′ (called the product

chain). Since X and Y are independent and are both Markov with transition matrix P , it
is clear that W is a Markov chain on S ′, with transition matrix Q defined by

Q
(

(x, y); (z, w)
)

= P (x, z)P (y, w)

for any (x, y) ∈ S ′ and (z, w) ∈ S ′ (i.e. for any x, y, z, w ∈ S). The starting distribution µ
of W is

µ((x, y)) = P(X0 = x, Y0 = y) = λxπy

by independence between X0 and Y0.
Now let us check that Q is irreducible (and in fact aperiodic, although we will not need

this). Fix (x, y) and (z, w) arbitrary in S ′. Since P is aperiodic and irreducible, we know
by Lemma 3.23 that P n(x, z) > 0 for all n large enough, and P n(y, w) > 0 for all n large
enough. Therefore,

Qn
(

(x, y); (z, w)
)

= P n(x, z)P n(y, w) > 0

for all n large enough. Thus Q is irreducible (and in fact aperiodic).

Step 2: Q is positive recurrent. Since Q is irreducible, in order to show that the
product chain is positive recurrent it suffices to check it has an invariant distribution by
Theorem 3.13. On the other hand, it is easy to guess what the invariant distribution should
be: since X and Y are independent, we guess ν(x,y) = πxπy (for x, y ∈ S) defines an invariant
distribution. Let us check this. First of all, ν(x,y) ≥ 0 for all x, y ∈ S, and∑

(x,y)∈S′
ν(x,y) =

∑
x,y∈S

πxπy = (
∑
x∈S

πx)(
∑
y∈S

πy) = 1,

so ν is a distribution on S ′ = S × S. Second of all, if (z, w) ∈ S ′ then∑
(x,y)∈S′

ν(x,y)Q
(

(x, y); (z, w)
)

=
∑

x∈S,y∈S

πxπyP (x, z)P (y, w)

=
(∑
x∈S

πxP (x, y)
)(∑

y∈S

πyP (y, w)
)

= πzπw = ν(z,w)

so ν is invariant. Hence Q is positive recurrent. In particular Q is recurrent!
Let us fix u ∈ S a reference state, and set

T = T(u,u) = inf{n ≥ 0 : Xn = Yn = u}.

T is the first time both chains are equal to u. Since Q is recurrent, note that T <∞ almost
surely.
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Step 3. Coupling and conclusion. We modify the trajectory of X by taking it equal
to Y after time T (for this reason T is called the coupling time). That is, define

X ′n =

{
Xn if n ≤ T

Yn if n > T.

Since T is a stopping time, it is not hard to see by the strong Markov property that X ′ is also
Markov (λ, P ) and so has the same law as X. (Indeed, after time T , the stochastic process
Y is nothing but Markov (δu, P ), which is exactly the law that X needs to have after time
T .) Thus P(Xn = y) = P(X ′n = y) for any n ≥ 0 and for any y ∈ S. And since X ′n = Yn for
n ≥ T , we see that

P(Xn = y, T ≤ n) = P(Yn = y, T ≤ n).

Consequently,

P(Xn = y) = P(Xn = y, T ≤ n) + P(Xn = y, T > n)

= P(Yn = y, T ≤ n) + P(Xn = y, T > n).

Hence

|P(Xn = y)− P(Yn = y)| ≤ P(Yn = y, T > n) + P(Xn = y, T > n)

≤ 2P(T > n)

The right hand side tends to zero since T <∞ with probability one by Step 2. On the other
hand, since Y is Markov (π, P ) and π is invariant, P(Yn = y) = πy, by Proposition 3.2. In
summary, we have proved

|P(Xn = y)− πy| → 0

as n → ∞, as desired. (In fact, the argument above shows that the convergence is uniform
in y ∈ S).

Example 3.25. To visualise the argument given above in a concrete example, consider for
instance a card shuffling process (say we shuffle cards using random transpositions, but this
could of course be more general). Let Xn denote the deck of cards after n shuffles, which
is an element of the permutation group Sk with k = 52 for a real deck of cards. Note that
the invariant distribution π is uniform on Sk. Along with our deck of cards X, we consider
an imaginary or virtual deck of cards Yn, which already at the beginning of time is assumed
to be perfectly shuffled, i.e. initially Y0 has law π. Initially the two decks are shuffled
independently of one another. We wait until the first time that both decks are perfectly
ordered, say both equal to the identity permutation. It will take a very long time for this to
happen (roughly (k!)2 on average, in fact) but Step 2 of the proof shows this will eventually
happen at some time T <∞. We then let the two decks evolve in parallel after time T with
identical updates. When we consider the decks individually, at each time we are updating
the deck by using the correct shuffling procedure, hence altogether this evolution defines a
valid way of constructing a process with the same law as X. On the other hand, Y is already
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in equilibrium at the beginning of time, and remains so by invariance of π and Proposition
3.2. Since the two decks are identical after time T which is finite, the law of Xn and the law
of Yn are necessarily close to one another, the only difference coming from the possibility
that time T (the “coupling time”) has not yet occurred, even though n is very large.

We now see a few basic examples of application of the theorem.

Example 3.26. Let G = (V,E) be a finite connected graph, and suppose that the random
walk (Xn, n ≥ 0) on G is aperiodic. Then for any vertices u and v in V , we have, as n→∞,

Pu(Xn = v)→ deg(v)

2|E|
. (3.11)

To see this, note that the walk is irreducible since G is connected, and aperiodic by assump-
tion. It is furthermore positive recurrent and in fact an invariant distribution is given by
scaling the invariant measure µ(x) = deg(x) so its total mass becomes one. To conclude it
remains to observe that

∑
x deg(x) = 2|E| (since each edge is counted twice in the sum) and

apply Theorem 3.24.

In fact, the same argument applies to undirected graphs, even though in that case we do
not know the invariant distribution explicitly (note that this is in general not simply given
by the in-degree of a vertex, nor its outdegree). This is of great practical importance in
connection with search engines. To explain, the world wide web can be viewed as a graph,
with vertices given by webpages and (directed) edges between vertices if there is a hyperlink
between the two pages. It is essential in this application that we view the graph as directed
rather than undirected: you might have a link to the New York Times on your personal
webpage, but typically the converse is not true! In 1998, two PhD students at Stanford
named Larry Page and Sergey Brin, together with two professors (Rajeev Motwani and
Terry Winograd) came up with an interesting proposal to evaluate the relative importance
of webpages (the paper is publicly available, see [PBMW99]). One could simply consider a
random walk on the directed graph of the world wide web; its invariant distribution gives the
desired ranking. The idea is that if a website is important, then many webpages will point
to it; this will be reflected in the invariant distribution of the random walk on this directed
graph (as suggested by the formula (3.11) for the undirected case). This simple algorithm
was called PageRank by its authors. A year later they quit their PhD to start a company
that would implement the algorithm. The company became known as... Google. (In reality,
the Markov chain on which PageRank is based has an extra randomisation step compared
to the random walk, where every so often the walk restarts on the graph with some given
distribution (say proportionally to the in- or out-degree of a vertex.)

There are two reasons why this is a tractable algorithmic problem. One is that the
random walk on the world wide web reaches its equilibrium very rapidly. There are ways to
assign a rigourous meaning to this last statement, which are in fact related to the “coupling
time” of the proof of Theorem 3.24. It can then be shown that if the graph has order n
vertices, typically the walk will reach its equilibrium in time of order O(log n). This type of
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results is closely connected with a beautiful area of modern probability theory calledmixing
times and cutoff phenomenon for Markov chains, see [LP17] for more on this topic
and [BLPS18] for the above results. Secondly, the invariant distribution can be computed
as the leading eigenvector of a matrix related to the transition matrix (i.e. closely related to
the adjacency matrix of the graph). Since the matrix in question is typically quite sparse,
the numerical computation of its leading eigenvector is not as difficult as what one might
fear.

Example 3.27. Consider the renewal chain (Rn, n ≥ 0) of Example 3.6. Let (pn)n≥1 denote
the renewal distribution and let m =

∑
n≥1 npn denote the average waiting time between

two successive renewals. Suppose to simplify that pn > 0 for all n = 1, . . . ,M where
M = sup{n ≥ 1 : pn > 0} is the essential supremum of (pn)n≥1. Then the renewal chain is
aperiodic on {0, . . . ,M}. If m <∞, we have already checked in Example 3.18 that there is
an invariant distribution. Therefore

P(Rn = 0)→ π0

as n → ∞. The event {Rn = 0} is precisely the event that there is a renewal at time n
(i.e., in the bus example, it is the event that you get the bus as soon as you arrive). The
computation of π implies that π0 = 1/m.

Lecture 12: Friday 11.11.22

3.5 Time-reversal and detailed balance equations

In the definition of a Markov chain, the past and the present are conditionally independent
given the present. It is therefore natural to ask ourselves, whether there is complete time-
reversal symmetry?

Intuitively this is typically not possible for “entropic” reasons: intuitively, the entropy of
a Markov chain can only increase as time goes on (this can in fact be proved rigourously
without too much effort). This clearly prevents a complete time-reversal symmetry. However
if the Markov chain is started from the invariant distribution the entropy stays constant (since
the distribution is constant). Can there be complete symmetry at equilibrium? The answer,
given in the theorem below, is quite close to yes.

Theorem 3.28. Let P be an irreducible transition matrix, and let π be an invariant distri-
bution for P . Suppose X is Markov (π, P ) and let N ≥ 1 be fixed. Set

X̂n = XN−n, 0 ≤ n ≤ N.

Then X̂ is Markov (π, P̂ ), where

P̂ (x, y) =
πy
πx
P (y, x). (3.12)
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Remark 3.29. Before the proof, we note that the formula for P̂ in (3.12) is reminiscent of
Bayes’ elementary formula for conditional probability:

P(A|B) =
P(A)

P(B)
P(B|A).

In fact, (3.12) is Bayes’ formula with B = {Xn = x}, A = {Xn−1 = y}. As in Bayes’ formula,
(3.12) shows that in order to observe a transition from y to x in the reverse time-direction
(or rather, for that transition to be likely), it is not sufficient for the transition x to y to
be likely in the usual direction of time: in addition, the state x itself must be overall likely
compared to y, unconditionally on any information.

Proof of Theorem 3.28. We first note that the formula (3.12) is meaningful since πx > 0 for
any x ∈ S as the chain is irreducible. The first thing to do is to check that P̂ is indeed a
transition matrix (i.e., a stochastic matrix). It is obvious that P̂ (x, y) ≥ 0 so let us check
that the row sum is one:∑

y∈S

P̂ (x, y) =
1

πx

∑
y∈S

πyP (y, x) =
1

πx
πx = 1

by invariance of π. So P̂ is indeed a transition matrix.
Now let us check that X̂ is Markov (π, P̂ ) by direct computation (more specifically Propo-

sition 1.9). Then for any sequence of states x0, . . . , xN , noting that πuP (u, v) = P̂ (v, u)πv,

P(X̂0 = x0, . . . , X̂N = xN) = P(X0 = xN , . . . , XN = x0)

= πxNP (xN , xN−1)︸ ︷︷ ︸P (xN−1, xN−2) . . . P (x1, x0)

= P̂ (xN−1, xN) πxN−1
P (xN−1, xN−2)︸ ︷︷ ︸ . . . P (x1, x0)

= . . .

= P̂ (xN−1, xN)P̂ (xN−2, xN−1) . . . P̂ (x0, x1)πx0 ,

by induction. Rearranging the terms in the product in the right hand side, we see that
this is nothing else than the product of the P̂ -transition probabilities, so we conclude by
Proposition 1.9.

There is one particular case which is especially interesting, and which is when P̂ = P .
This corresponds to the following definition

Definition 3.30. Let µ be a measure on a state space S and let P be a transition matrix. We
say that µ solves the Detailed Balance Equations (DBE) (equivalently: µ is reversible)
if for all x, y ∈ S:

µxP (x, y) = µyP (y, x).

To understand this definition, we make the following observation.
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Remark 3.31. Let π be the invariant distribution of an irreducible, aperiodic Markov chain.
Then π(x)P (x, y) is the probability to observe a transition from x to y at equilibrium (or
the frequency of such transitions). So π solves the detailed balance equations if and only if
the frequency of transitions from x to y equals the frequency of transitions from y to x, for
every x, y ∈ S.

Example 3.32. If G is a locally finite graph and µ(x) = deg(x), then µ is reversible.
Indeed, if x, y are two neighbouring vertices (there is nothing to prove otherwise), then
µ(x)P (x, y) = deg(x) × (1/ deg(x)) = 1 which is also µ(y)P (y, x), so µ solves the detailed
balance equations.

It is easy to check that reversibility implies invariance (but the converse is far from true,
as we will discuss below):

Lemma 3.33. Suppose µ is a reversible measure for P . Then µ is invariant.

Proof. Let y ∈ S. We just check the identity defining invariance:∑
x∈S

µ(x)P (x, y) =
∑
x∈S

µ(y)P (y, x)

= µ(y)
∑
x∈S

P (y, x)

= µ(y),

where we used the reversibility of µ in the first line, and the fact that P is a stochastic matrix
in the last one. This gives the result.

For instance, combining Lemma 3.33 and Example 3.32, we recover the fact (already
established in Example 3.5) that µ(x) = deg(x) defines an invariant measure on a locally
finite graph, since it is reversible.

The notion of reversible measure leads us to that of reversible Markov chains. Let X be
Markov (λ, P ). Let us say that X is a reversible chain if for all N ≥ 1, the distribution
of X̂ is the same as X, where X̂n = XN−n for 0 ≤ n ≤ N . Then we deduce from Theorem
3.28 the following result.

Corollary 3.34. Let λ be a distribution and P an irreducible transition matrix on a state
space S. The following are equivalent:

(i) X is reversible

(ii) λ satisfies the detailed balance equations (in particular λ is an invariant distribution).

Remark 3.35. In words, if π is an invariant distribution solving the detailed balance equa-
tions, then the movie looks the same forwards and backwards (at equilibrium, of course)!
Surprisingly, it is possible to have walks on directed graphs which nevertheless have a re-
versible equilibrium. See the exercises on the upcoming example sheet.

53



Proof. Let us start with the proof of (ii) ⇒ (i). If λ is reversible then λ is an invariant
distribution by Lemma 3.33. Let N ≥ 1. Then we can apply Theorem 3.28, and X̂ is
Markov (λ, P̂ ), but then clearly P̂ = P . So X̂ has the same law as X and X is reversible.

In the converse direction suppose X is reversible and let us check that λ is also invariant.
Take N = 1. Then reversibility shows that (X1, X0) has the same law as (X0, X1). In
particular X1 has the same law as X0 so λ is indeed invariant. So Theorem 3.28 applies.
Since X is reversible, we deduce that P̂ = P and hence λ solves the detailed balance
equations.

In the exercises you will see more examples of reversible Markov chains and examples in
which reversibility does not hold. (In fact, it can be shown that any Markov chain on N in
which only transitions to nearest neighbours are allowed, has a reversible measure). We will
go through a more complicated example in the next section.

Lecture 13: Thursday 17.11.22

3.6 Example: particle system

In many stochastic processes of interest (be it in statistical mechanics or in more applied
fields such as biology) the state space and the process is often too complex to solve directly
for an invariant distribution. But solving detailed balance equations is far easier, and if you
are given a Markov chain it should be the first thing you try. To illustrate this point we will
describe a Markov chain which is a little more complex than other examples treated in class
so far, and for which we can solve the detailed balance equations.

The example we will describe is the most basic example of a particle system, in which
we consider multiple random walks on a finite graph without interaction. Let us suppose that
G = (V,E) is a finite, connected graph. We are given a number of particles on this graph
(we identify each particle with the position of a random walker on this graph). Suppose
this number is N . At each step we pick a particle uniformly at random, and move it to a
randomly chosen neighbour. Let us describe the state space and transition matrix a little
more formally. The Markov chain will keep track of the number of particles at each site.
Thus the state space will be

S = NV ; with N = {0, 1, . . .}

and an element of S (a configuration of the system) will be denoted by ~n = (nx)x∈V with
nx ∈ N for every vertex x ∈ V . Let ~ex = (0, 0, . . . , 0, 1, 0, . . . 0) with a unique 1 at position
x ∈ V . Then we define a transition matrix on S by setting

P (~n, ~n− ~ex + ~ey) =

{
nx

N
1

deg(x)
if nx > 0 and y ∼ x

0 else.
(3.13)

In words, the new state ~n − ~ex + ~ey is the one in which we have taken one particle from x
and moved it to y. The probability to do so is assumed to be nx/N (this is the probability
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to choose a particle at x among the nx present in ~n) times 1/ deg(x), which is the same as
the probability that a random walk at x would move to y.

In this Markov chain, the total number of particles remains constant equal to N . If we
restrict S to the configurations in which there areN particles (let us call SN the corresponding
subspace), it is not hard to see we have an irreducible Markov chain on a finite state space
(hence positive recurrent). What is the unique invariant distribution of this chain? In other
words, as time goes to ∞, how will the particles be distributed across the graph?

Theorem 3.36. Fix any λ > 0. Then the measure

µ(~n) =
∏
x∈V

(λ deg(x))nx

(nx)!

is a reversible (hence invariant) measure.

Let us prove this theorem first and discuss later what it means concretely.

Proof. Let ~m = ~n− ~ex + ~ey. We need to check that

µ(~n)P (~n, ~m) = µ(~m)P (~m,~n).

Because of the product form of µ, and since nothing changes except at x and y, we need to
check that

(λ deg(x))nx

(nx)!

(λ deg(y))ny

(ny)!
× nx
N

1

deg(x)
=

(λ deg(x))nx−1

(nx − 1)!

(λ deg(y))ny+1

(ny + 1)!
× ny + 1

N

1

deg(y)
.

But making the cancellations, both sides are equal to

λnx+ny(deg(x))nx−1(deg(y))ny

(nx − 1)!ny!

so equality holds and the proof of Theorem 3.36 is complete.

The formula for the reversible measure µ above has an interpretation in terms of Poisson
random variables. Recall that a random variable X with values in N is said to have the
Poisson distribution with parameter α if

P(X = k) = exp(−α)
αk

k!
.

Corollary 3.37. Let π denote the law of (Xv)v∈V where Xv are independent Poisson random
variables with parameter λ deg(v). Then π is an invariant distribution on S.
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Proof. π is clearly a distribution (since it is the joint law of some set of random variables),
and is easily seen to be fixed multiple of the measure µ above. Indeed,

π(~n) =
∏
x∈V

e−λdeg(x)
(λ deg(x))nx

(nx)!

=

(∏
x∈V

e−λ deg(x)

)
µ(~n)

so π is indeed proportional to µ with factor of proportionality given by
∏

x∈V e
−λdeg(x) =

e−2λ|E|. Since µ is reversible, π is also reversible hence a reversible distribution.

The distribution is not unique because here the number of particles is unconstrained so
the Markov chain is not irreducible. When we condition on the number of particles however
we obtain the following result:

Corollary 3.38. For any λ > 0, the distribution π conditioned on having N particles in
total is the unique invariant distribution on SN .

It is a priori not obvious that this law does not depend on λ, but since each such choice
of parameter λ results in an invariant distribution, and SN is finite so the chain is irreducible
recurrent, the conditioned distribution cannot depend on λ. When N →∞, it can be shown
that choosing λ of order N/(2|E|) would make the conditioning on the total size of the
system essentially harmless. Hence in that case the unique invariant distribution is very
close to independent Poisson random variables with parameter λ deg(x) at each vertex x of
the graph.

3.7 Complements

We briefly mention a few additional results without proof, which won’t be needed for the
rest of the course, but which you may find interesting.

The first one is an ergodic theorem, which says that for an irreducible, aperiodic positive
recurrent, not only does the long term distribution of the chain converges to the invariant
distribution π, but also the fraction of times spent at any given state becomes approximately
equal to π in the long run. Thus spatial averages (π) are equal to time averages.

Theorem 3.39. Let P be an irreducible, aperiodic positive recurrent Markov chain and let
π be the invariant measure. Let X be Markov (λ, P ) for some starting distribution λ. For
y ∈ S, let Vn(y) =

∑n−1
i=0 1{Xn=y} denote the number of visits to y by time n. Then as n→∞,

Vn(y)

n
→ πy (3.14)

almost surely. More generally if f : S → R is a bounded function on S, then as n→∞,

1

n

n−1∑
i=0

f(Xi)→ f̄ , (3.15)
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where f̄ =
∑

x∈S πyf(y) is the expectation of f under the invariant distribution π.

This ergodic theorem (part (3.14)) can be deduced from the law of large numbers by
considering the successive visits to y, as the interval of times between successive visits form
i.i.d. random variables by the strong Markov property, with mean Ey(T+

y ) = 1/πy. The
second part (3.15) can then be deduced using some relatively standard measure theoretic
arguments.

Finally, we have focused in this section on positive recurrent chains. But what if the chain
is null recurrent, for instance on Z or Z2? What can be said about the limiting probability
to find the chain in a given state? What about the fraction of times spent at a given state?

Theorem 3.40. Let P be an irreducible, aperiodic null recurrent Markov chain. Let X be
Markov (λ, P ) for some starting distribution λ. For y ∈ S, let Vn(y) =

∑n−1
i=0 1{Xn=y} denote

the number of visits to y by time n. Then as n→∞,

P(Xn = y)→ 0 (3.16)

as n→∞, and
Vn(y)

n
→ 0, (3.17)

almost surely.

Formally this is in fact the same conclusion as in the positive recurrent case, but with
πy = 1/Ey(T+

y ) = 0.
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4 Martingales
We come to one of the most fundamental concepts in probability theory, which is that
of martingales. They play a role which is analogous to that of constants of motion in
physics (i.e., energy, momentum, etc.): as we will see, they identify certain quantities which
are conserved throughout the evolution of a stochastic process. Often, finding a martingale
associated to a stochastic process is the key which unlocks the understanding of its behaviour.
In order to appreciate what a powerful tool martingales are on some concrete examples, we
must however first develop a fair amount of theory.

4.1 Definitions

Let (Xn, n ≥ 0) be a stochastic process taking values in R (in this chapter we depart
somewhat from the study of Markov chains, and we will not restrict ourselves to a countable
state space; in fact, for the notion of martingale, it will be important that Xn takes values in
a linear space such as R in order to make sense of its expectation. It would also be possible
to discuss martingales with values in Rd, but we will not do so for simplicity).

For n ≥ 0, let Fn denote the collection of events depending only on (X0, . . . , Xn): for-
mally, an event A is in Fn if and only if there is a (measurable) function ϕ : Rn+1 → {0, 1}
such that 1A = ϕ(X0, . . . , Xn). As an example, with these notations, the random variable T
is a stopping time if and only if the event {T ≤ n} is in the collection Fn.

Definition 4.1. We call F = (Fn)n≥0 the filtration generated by the stochastic process X.

We also write Fn = σ(X0, X1, . . . , Xn) and say that Fn is generated by (X0, . . . , Xn).
In some examples the randomness only kicks in at time n = 1. In those cases it will be
convenient to let Fn = σ(X1, . . . , Xn); for n = 0 the collection on the right is then empty.
In this uninteresting case we take F0 consists only of trivial events, namely ∅ and the full
probability space Ω. (This is a technicality which can safely be ignored for most of the
course).

When we observe X progressively from time 0 to time n, we know exactly the status of
each event in Fn, i.e., given an event in Fn we can tell with complete certainty whether it
occurs or not. In this sense, Fn corresponds to and should be thought of as the information
gained from observing (X0, . . . , Xn).

Definition 4.2. A stochastic process (Yn)n≥0 is called adapted to the filtration F if for
every n ≥ 0, the random variable Yn depends only on (X0, . . . , Xn).

Once again, formally, this means there exists a (measurable) function ϕn : Rn+1 → R
such that Yn = ϕn(X0, . . . , Xn). Another way to say it in a measure-theoretic way (so we
will not do that in the rest of the course) is that Yn is Fn-measurable.

Example 4.3. If X = (Xn)n≥0 is a stochastic process, then Yn = X2
n sin(Xn) is an adapted

process. Zn = Xn −Xn−2 is also adapted. However, Wn = Xn + Xn+1 is not: to know the
value of Wn would require more information than is contained in Fn.
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If X is a stochastic process with filtration F , and Y is another stochastic process adapted
to F , this implies that the filtration G generated by Y satisfies

Gn ⊂ Fn; n ≥ 0.

Indeed any event of Gn can be written as a function of (Y0, . . . , Yn) and so as a function of
(X0, . . . , Xn).

Example 4.4. Let Xn = ±1 be a sequence of i.i.d. fair coin tosses. Let F = (Fn)n≥0 denote
the filtration generated by X. Let also Sn =

∑n
i=1Xi if n ≥ 1 (and S0 = 0). In other words,

(Sn)n≥0 is the unbiased random walk on Z. Let G = (Gn)n≥0 be the filtration generated by
S. Then we claim that F and G are identical.

Indeed, (Sn)n≥0 is clearly adapted to F : given the increments up to time n, we obtain
the walk by summing these increments. This shows that Gn ⊂ Fn for every n ≥ 0.

Conversely, (Xn)n≥0 is also adapted to G. Indeed, we obtain the incrementXn as Sn−Sn−1
which depends on Fn. This shows that Fn ⊂ Gn. Thus Fn = Gn for every n ≥ 0.

We now formulate the crucial definition for this chapter.

Definition 4.5. Let X = (Xn)n≥0 be a stochastic process and F = (Fn)n≥0 be its filtration.
The stochastic process (Mn)n≥0 is called a martingale if:

(i) M is adapted to F .

(ii) M is integrable: i.e., for every n ≥ 0, E(|Mn|) <∞.

(iii) Finally, M satisfies the martingale condition: for every n ≥ 0,

E(Mn+1|Fn) = Mn. (4.1)

Let us make some comments on the defining condition (4.1) of this definition. In words,
this property says that “given all the information up to today, the best prediction we can
make about tomorrow’s value, is equal to today’s value”. As an example which should help
fix ideas, if Mn denotes the temperature as a function of time (where n is measured in days)
thenMn can roughly be thought of as a martingale: in the absence of any other information,
the best guess we can make about tomorrow’s temperature is roughly the same as what it
is today. The temperature might go up or down, but its conditional expectation will be
the same as today’s temperature. This assumes that the expected increase in temperature
balances the expected decrease – an assumption which, at best, ignores seasonal effects, and,
at worst, is blatantly untrue.

Formally, if X takes values in a countable state space S, then the property (4.1) can be
written more concretely as follows: for every n ≥ 0, for every x0, . . . , xn ∈ S,

E(Mn+1|X0 = x0, . . . , Xn = xn) = Mn.
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Another way to rewrite the same thing is to write:

E(Mn+1 −Mn|X0 = x0, . . . , Xn = xn) = 0.

This is equivalent to the above, because M is adapted, so that, given X0 = x0, . . . , Xn = xn,
Mn is known (i.e., it is a constant – so its conditional expectation is simply Mn, the same
way that the expectation of the random variable equal to a constant c is c itself).

Remark 4.6. In a measure-theoretical framework, yet another way to rewrite (4.1) would
be to write E(Mn+11A) = E(Mn1A) for every n ≥ 0 and every Fn−measurable event A. We
will not write things in this manner since we do not assume measure theory.

4.2 Properties of conditional expectation and examples

The defining property (4.1) of a martingale may feel somewhat abstract at this stage, so
as usual it is a good idea to turn to examples. These examples are fundamental and will
keep coming up in later parts of the theory. To treat any examples it is important to first
understand the following fundamental rules for manipulating conditional expectations:

• Conditional expectation is linear: E(aX + bY |F) = aE(X|F) + bE(Y |F)

• If Y is determined by F then E(Y |F) = Y : since Y is known given F , its conditional
expectation is simply itself. More generally Y should be regarded as a constant, thus
E(XY |F) = Y E(X|F).

• By contrast if Y is independent of F then E(Y |F) = E(Y ): indeed in that case,
conditioning on F has given no relevant information on Y , so its conditional expectation
is simply its unconditional expectation.

Formally, these properties hold whenever the random variables are nonnegative (whether
the conditional expectations are finite or infinite), and whenever the random variables are
integrable (i.e., E(|X|) < ∞). It is important to note that E(X|F) is a random variable;
intuitively, E(X|F) describes how our estimate of X changes when we get to observe the
information contained in F . Hence if we are given F , the quantity E(X|F) is completely
fixed: in other words, it is a random variable, but depends only on the randomness used to
generate F .

It is desirable that, at the end of this course, you will be so familiar with conditional
expectation that you will be able to use these properties without thinking about it. Practice
with lots of examples is essential for this. Let us see how this works in practice.

Lecture 14: Friday 18.11.22 (zoom)

Example 4.7. Let (Xi)i≥1 be a sequence of i.i.d. random variables (with values in R).
Suppose E(|Xi|) < ∞ and let m = E(Xi). Let Sn =

∑n
i=1Xi (we will always use the

convention in these sums that if n = 0,
∑0

i=1Xi = 0, so S0 = 0). Let

Mn = Sn −mn.
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Then M is a martingale in the filtration (Fn)n≥0 generated by (Xi)i≥1. That is, for n ≥ 1,
Fn = σ(X1, . . . , Xn) consists of the events depending only on (X1, . . . , Xn); as per our
convention, for n = 0, F0 contains only the two trivial events ∅ and the full probability space
Ω. (Once again this technicality can safely be ignored.)

Let us prove this. First, it is clear that (Mn)n≥0 is adapted: given (X1, . . . , Xn) we
can say with complete certainty what is the value of Sn =

∑n
i=1Xi, and thus the value of

Mn = Sn −mn.
Second, E(|Mn|) <∞ for any n ≥ 0, because Mn is the sum of n random variables which

are by assumption integrable.
Finally, let us prove (4.1). We have:

E(Mn+1

∣∣Fn) = E(Sn+1 −m(n+ 1)
∣∣Fn)

= E(Sn +Xn+1|Fn)−m(n+ 1) (by linearity)
= Sn −m(n+ 1) + E(Xn+1

∣∣Fn) (by linearity and since Sn is determined by Fn)
= Sn −m(n+ 1) + E(Xn) (by independence of Xn+1 with respect to Fn)
= Sn −mn = Mn,

as desired.

In the same vein, let us find another martingale associated with Sn. This will be denoted
by Qn which stands for “quadratic”.

Example 4.8. In the same setup as above, let us suppose m = E(Xi) = 0 and that σ2 =
E(X2

i ) <∞ (since E(Xi) = 0, σ2 is also the variance of each Xi). For n ≥ 0, let

Qn = S2
n − nσ2.

Then Q = (Qn)n≥0 is a martingale in the filtration F generated by (X1, X2, . . .) in the same
sense as before (that is, Fn = σ(X1, . . . , Xn) for n ≥ 0, with the same convention as before
when n = 0 – from now on we will not mention this again).

Let us check this. First of all, it is clear that Q is adapted: indeed, given Fn we can
determine Sn with certainty and hence also S2

n, and therefore also Qn. Second, for every
n ≥ 0,

E(|Qn|) <∞
by the triangle inequality and the fact that we have assumed that E(X2

i ) < ∞. It remains
to prove (4.1). Then

E
(
Qn+1

∣∣Fn) = E
(
S2
n+1 − (n+ 1)σ2

∣∣Fn)
= E

(
(Sn +Xn+1)

2|Fn
)
− (n+ 1)σ2

= E
(
S2
n + 2SnXn+1 +X2

n+1

∣∣Fn)− (n+ 1)σ2

= S2
n + 2SnE

(
Xn+1

∣∣Fn)+ E
(
X2
n+1

∣∣Fn)− (n+ 1)σ2.

So far we have only used linearity and the fact that Sn is known (given Fn) and hence
is like a constant – it can be taken out of the conditional expectation. Now recall that
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Xn+1 is independent of Fn (i.e., of (X1, . . . , Xn)) and hence E(Xn+1|Fn) = E(Xn) = 0 (the
conditional expectation equals the unconditional expectation). Likewise, E

(
X2
n+1

∣∣Fn) =
E(X2

n+1) = σ2. We deduce:

E
(
Qn+1

∣∣Fn) = S2
n + 2Sn × 0 + σ2 − (n+ 1)σ2

= S2
n − nσ2

= Qn.

Thus Q is a martingale, as desired.

Our next example concerns branching processes, already discussed in Definition 2.15
and in Theorem 2.17. For this we will need our last fundamental property of conditional
expectation, which is the so-called tower property.

Theorem 4.9. If X is a random variable and F a collection of events, then E(X) =
E[E(X|F)].

(Here we use F to denote a single collection of events – like Fn for instance – rather than a
whole filtration F = (Fn)n≥0 ).To explain the meaning of Theorem 4.9, recall that E(X|F) is
a random variable which describes how our estimate of X changes when we get to observe the
information contained in F . This proposition says that the average of our updated guess will
be equal to E(X) (when we average over the randomness in F). It is for instance impossible
to systematically underestimate X when we get to observe the information contained in F .

Let us now return to the example of branching processes. Recall that a branching
process (Zn)n≥0 is determined by an offspring distribution (pk)k≥0 on N = {0, 1, . . .} where
pk is the probability for any given individual to have k offsprings in the next generation, and
offspring numbers are independent random variables. Thus, Z0 = 1 (initially there is one
individual in this population) and given (Z1, . . . , Zn), we obtain Zn+1 as

Zn+1 =
Zn∑
i=1

ξi,

where (ξi)i≥1 are independent of (Z1, . . . , Zn) and are i.i.d. with common law (pk)k≥0. The
following theorem gives a fundamental martingale attached to the branching process.

Theorem 4.10. Let (Zn)n≥0 be the above branching process and set m =
∑∞

k=0 kpk denote
the mean number of offsprings per individual. For n ≥ 0, set

Mn =
Zn
mn

.

ThenM = (Mn)n≥0 is a martingale in the filtration F = (Fn)n≥0 generated by (Z0, Z1, Z2, . . .).

Lecture 15: Thursday 24.11.22
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Proof. We start with the obvious observation that M is adapted to F . Indeed, if we are
given Fn we can determine Zn with certainty and hence alsoMn = Zn/m

n. SoM is adapted.
Normally we would then turn to a proof that Mn is integrable, without which the condi-

tional expectation might not necessarily be well defined. However here, we will first establish
(4.1) (the definition of conditional expectation and the manipulations we will do are all justi-
fied by the nonnegativity of the random variables involved) and deduce thatMn is integrable
using the tower property of conditional expectations. Let n ≥ 0. Then

E(Mn+1|Fn) = E(
Zn+1

mn+1
|Fn)

=
1

mn+1
E(Zn+1|Fn) (by linearity)

=
1

mn+1
E(

Zn∑
i=1

ξi|Fn).

Now we remember our rules for manipulating conditional expectations. When we condition
on Fn (i.e., we pretend we know all the information in Fn), Zn is no longer a random
variable but actually a fixed (constant) quantity. We can thus use the linearity of conditional
expectation to get

E(Mn+1|Fn) =
1

mn+1

Zn∑
i=1

E(ξi|Fn)

=
1

mn+1

Zn∑
i=1

E(ξi) (since ξi is independent from Fn)

=
1

mn+1
mZn (since each ξi has mean m)

=
Zn
mn

= Mn.

Therefore (4.1) holds in this case. Let us now use this to deduce thatMn is in fact integrable:
taking expectations, we have

E(E(Mn+1|Fn)) = E(Mn)

so that by the tower property (i.e., Theorem 4.9) we have

E(Mn+1) = E(Mn).

By induction we have E(Mn) = E(M0) = 1 so it is clear that E(|Mn|) < ∞ (as Mn ≥ 0).
This concludes the proof of Theorem 4.10.

Since we showed in the proof that E(Mn) = 1, we obtain as an important corollary the
following result:
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Corollary 4.11. In setup of Theorem 4.10, we have for every n ≥ 0, E(Zn) = mn.

This should remind you of Theorem 2.18. Indeed when m < 1 we have E(Zn) = mn → 0
(as n → ∞) so it is natural to expect that the process will become extinct eventually. On
the other hand if m > 1 then E(Zn) = mn →∞ so it is natural to expect that the branching
process can survive at least with positive probability. (Of course this heuristic does not
immediately suggest what should be happening in the borderline case m = 1.) We will soon
see martingale proofs of this dichotomy.

4.3 Fair games and martingale transform

In the course of the proof of Theorem 4.10 we observed that the expectation remains constant.
This is in fact true of every martingale – the first hint that they are in a certain sense
“constants of motion”:

Proposition 4.12. Let M = (Mn)n≥0 be a martingale in some filtration F = (Fn)n≥0. Then
E(Mn) = E(M0) for every n ≥ 0. Furthermore, for all n ≥ k ≥ 0,

E(Mn|Fk) = Mk. (4.2)

Proof. This is easy to establish with the tower property: since E(Mn|Fn−1) = Mn−1, we take
expectation and by the tower property deduce that E(Mn) = E(M0). The proof of (4.2)
is similar and uses a generalisation of the tower property of Theorem 4.9 for conditional
expectations of conditional expectations.

We will now discuss a very important interpretation of martingales which are related to
the notion of fair game. To discuss this (and to prepare for later developments) it is useful
to generalise slightly the notion of martingale.

Definition 4.13. Let (Xn, n ≥ 0) be a stochastic process generating a filtration F = (Fn)n≥0.
Let M = (Mn)n≥0 be a stochastic process with values in R. We say that M is a submartin-
gale (resp. supemartingale) if:

(i) M is adapted to F

(ii) For every n ≥ 0, Mn is integrable, i.e., E(|Mn|) <∞.

(iii) Finally,
E(Mn+1|Fn) ≥Mn, (4.3)

(resp. E(Mn+1|Fn) ≤Mn).

The definition therefore only differs from that of a martingale in the last point. The dif-
ference is that in a submartingale, Mn underestimates the true conditional expectation. The
terminology comes from harmonic analysis: as we will soon see, martingales are connected
to harmonic functions, whereas submartingales are related to subharmonic functions (and
supermartingales to superharmonic functions).
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The notion of martingale is intrinsically related to that of fair game. Let us imagine that
a player takes part in a game involving randomness and (Mn)n≥0 is the fortune of the player
at time n (so M0 is the initial fortune of the player). We will introduce, for n ≥ 1,

∆n = Mn −Mn−1,

the increment (change) of the fortune after the nth game. Then using ∆ instead of M , we
have that M is a martingale if and only if:

1. (∆n)n≥1 is adapted,

2. ∆n is integrable for every n ≥ 1,

3. and for all n ≥ 1,
E(∆n|Fn−1) = 0 (4.4)

Naturally, the right hand side should be ≥ 0 for a submartingale, and ≤ 0 for a supermartin-
gale. Equation (4.4) says that the game in which the player takes part is fair at each step,
the expected net change in the fortune is zero. On the other hand in a supermartingale, the
game is biased against the player (like playing against a casino) and in a submartingale it is
on the contrary biased in the player’s favour.

Example 4.14. Consider the biased walk (Xn)n≥0 on the integers with P (i, i + 1) = p;
P (i, i− 1) = q and p+ q = 1. If p ≥ q then X is a submartingale, while if p ≤ q then X is a
supermartingale.

This interpretation leads us to the following notion of martingale transform. This
is the martingale that one gets when a player in a fair game varies the stakes. To explain
what this means, suppose a player bets 1e at each time step in a fair game. Her resulting
fortune Mn (assuming she sticks to this betting strategy) at the end of the nth game will, as
already mentioned, form a martingale, since we assume the game to be fair. But it is also
possible for her to change betting strategy and to play with different stakes at each game:
for instance she might choose to bet 2e on some games, or 100e on some others, if she is
feeling lucky. If she bets 100e instead of 1e her fortune will increase by 100∆n instead of by
∆n. The fortune in this scenario (with the new betting strategy) is what we call a martingale
transform of the original martingale describing the evolution of the fortune with some fixed
(old) betting strategy. (A formal definition will follow).

Let us point out that after changing strategy, the game remains a fair one: no matter
what, she cannot bias the game in her favour or against her simply by deciding how much she
is going to bet! This intuitive fact explains the fundamental fact that a martingale transform
remains a martingale, as we will now see formally.

Definition 4.15. Let (Fn)n≥0 be a filtration generated by a stochastic process. We say that
the stochastic process W = (Wn)n≥1 is predictable if for every n ≥ 1, Wn depends only
Fn−1.
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You can think of Wn as representing the stakes for the nth game: in general, the player
is allowed to decide how much she is willing to bet at the nth game depending on the results
of the previous (n− 1) games, but not (unfortunately) on what will happen in the nth game
itself.

Definition 4.16. Let (Mn)n≥0 be a (sub, super-)martingale with respect to a filtration F =
(Fn)n≥0, and let W = (Wn)n≥1 be a predictable process. The martingale transform of M
by W is the process M ′ = (M ′

n)n≥0 defined by

M ′
n = M0 +W1∆1 + . . .+Wn∆n.

(Thus M ′
0 = M0.)

It is common to denote the martingale transform M ′ as M ′ = W ·M. Note that each
increment of M has been amplified by W . If you study stochastic analysis later on, you will
encounter stochastic integrals of the form

M ′
t = M0 +

∫ t

0

Ws dMs,

where M is a (continuous) martingale and W is a process which is predictable in a suit-
able sense. In fact, martingale transforms are nothing else but discretised versions of these
stochastic integrals, in the same way that integrals can be approximated (discretised) by
Riemann sums. We now state the theorem alluded to above, which states the martingale
transform of a martingale remains a martingale. Let us call a process (Xn)n≥0 uniformly
bounded if there exists C <∞ (nonrandom!) such that

|Xn| ≤ C, for all n ≥ 0.

This inequality is required to almost surely, that is, on an event of probability one – but
pay attention to the fact that your upper bound on Xn is not allowed to be random. For
instance, if X is an exponential random variable, and Xn = X, then (Xn)n≥0 is not bounded
(because there is no absolute bound on the exponential distribution).

Theorem 4.17. Let M be a martingale and let W be a bounded, predictable process. Then
W ·M is a martingale. If instead M is a submartingale (resp. supermartingale), and we also
assume Wn ≥ 0 for all n ≥ 0, then W ·M remains a submartingale (resp. supermartingale).

Proof. Suppose first that M is a martingale. Let us consider the increments ∆′n of the
martingale transform M ′ = W ·M : we have for n ≥ 1,

∆′n = M ′
n −M ′

n−1 = Wn∆n.

To prove that M ′ is a martingale, we need to check three properties. First, it is clear that
∆′n is adapted: indeed, ∆n is adapted and Wn is predictable (hence clearly adapted). So the
product Wn∆n is adapted. Second, since Wn is bounded,

E(|∆′n|) = E(|Wn∆n|) ≤ CE(|∆n|) <∞,
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so ∆′n is integrable. Finally, for n ≥ 1,

E(∆′n|Fn−1) = E
(
Wn∆n

∣∣∣Fn−1)
= WnE

(
∆n

∣∣∣Fn−1) because W is predictable, so Wn is known given Fn−1
= 0

because M is a martingale. This verifies (4.4), hence M ′ is a martingale.

More generally the above result holds if we only assume that Wn is bounded but not
uniformly: i.e., |Wn| ≤ Cn for some nonrandom Cn < ∞. The following example is a well
known betting strategy known as St Petersburg’s.

Example 4.18. Let (Mn)n≥0 denote (unbiased) random walk on the integers. Let τ be the
first time there is a positive increment: τ = inf{n ≥ 1 : ∆n ≥ 0}.

Let W1 = 1 and define inductively Wn = 2Wn−1 so long as n ≤ τ . Let Wn = 0 if n > τ .
Then W ·M is a martingale. Indeed, Wn is predictable: the decision to switch to zero can
be made based solely on the information in the games before time n. Furthermore Wn is
bounded (although not uniformly in n) since |Wn| ≤ 2n which is nonrandom. Thus Theorem
4.17 applies and M ′ is a martingale.

St. Petersburg’s strategy is well known since at the stopping time τ , the fortune of the
player is guaranteed to have increased: indeed, say τ = n, then

M ′
τ = M0 − (1 + 2 + . . .+ 2n−1) + 2n

= M0 − (2n − 1) + 2n

= M0 + 1.

Since the game is fair, this may seem paradoxical! As we are about to see, this is can
only happen if M ′ has very peculiar properties which make this strategy not feasible in
practice: indeed, in the next section we will see that for “reasonably behaved” martingales,
it is impossible to make money from fair games.

4.4 Optional stopping theorem

We come to a couple of fundamental results about martingales. The first one will be the
optional stopping theorem (discussed in this section) and the second will be the martingale
convergence theorem (discussed in the next). After these two results we will switch to
examples and see how martingale theory can help us analyse stochastic processes.

Our first observation is that quitting a fair game at a stopping time, no matter how well
chosen, cannot tilt the game into an unfair game. Recall that if F is a filtration generated by
some stochastic process, then the random variable τ with values in {0, 1, . . .}∪{∞} is called
a stopping time if for every n ≥ 0, {τ ≤ n} ∈ Fn. Also, given a, b ∈ R, let a∧ b = min(a, b).
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Proposition 4.19. Let M be a (sub)martingale and let τ be a stopping time. For n ≥ 0, let

M ′
n = Mn∧τ =

{
Mn if n ≤ τ

Mτ if n ≥ τ.

Then (M ′
n)n≥τ is a (sub)martingale.

The process M ′ is known as the martingale stopped at time τ , because it ceases to evolve
after τ . For instance, the martingale in St Petersburg’s strategy (Example 4.18) is a stopped
martingale.

Proof. This is actually a simple consequence of the martingale transform Theorem 4.17.
Indeed, we take

Wn = 1{τ≥n}

which is bounded and nonnegative. It is furthermore predictable (despite appearances):
indeed,

{τ ≥ n} = {τ ≤ n− 1}c,

and written in this manner, the event {τ ≥ n} depends indeed only on Fn−1 (since τ is a
stopping time). Furthermore, we claim that W ·M is simply the stopped martingale M ′.
Indeed,

(W ·M)n = M0 + 1{τ≥1}(M1 −M0) + . . .+ 1{τ≥n}(Mn −Mn−1)

which is a telescopic sum, summing to Mn if τ ≥ n or Mτ if τ ≤ n.

The consequence of this, the optional stopping theorem, is one of the cornerstones of
probability. It says that the expectation of a martingale is conserved even at a stopping
time (intuitively, one cannot make money from fair games). As mentioned concerning the
St Petersburg stratgy, this theorem needs assumptions.

Theorem 4.20. Let M be a (sub)martingale and τ a stopping time. Suppose at least one
of the following two conditions hold:

(i) τ is bounded, i.e., there exists n ≥ 0 (nonrandom) such that τ ≤ n almost surely.

(ii) τ <∞ almost surely and Mn∧τ is uniformly bounded (i.e., there exists C <∞ nonran-
dom such that |Mn| ≤ C for all n ≤ τ).

Then E(Mτ ) = E(M0) (and if E(Mτ ) ≥ E(M0) if M is a submartingale).

Before we give a proof of this theorem, it is useful to compare the conclusion of this
theorem with the St Petersburg example (Example 4.18). In that case we have a stopping
time τ and a martingale such that Mτ = M0 + 1. This seems to violate the conclusion of the
Optional Stopping Theorem since in such a situation it is impossible to have E(Mτ ) = E(M0).
But there is no contradiction: simply, on the one hand, τ is not bounded (even if it is a
geometric random variable and so has a tail that decays exponentially fast), and on the other
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hand, the stopped martingale is certainly far from bounded – it has the potential to become
very negative before turning positive. This feature makes impractical in real life: casinos in
particular prevent players from borrowing too much money – this forces players’ fortunes to
stay bounded and hence makes the conclusion of the optional stopping theorem valid.

Proof. Suppose first (i), i.e., there exists a nonrandom n ≥ 0 such that τ ≤ n with probability
one. Let us consider for simplicity the martingale case. LetM ′

k = Mτ∧k for k ≥ 0. As proved
in Proposition 4.19, M ′ is a (sub)martingale. Consequently, by Proposition 4.12,

E(M ′
k) = E(M ′

0)

for any k ≥ 0. In particular, take k = n. ThenM ′
k = Mn∧τ = Mτ since τ ≤ n by assumption.

Furthermore M ′
0 = M0. Hence we learn

E(Mτ ) = E(M0),

as desired.
Now suppose (ii). We apply the conclusion of (i) to the random time τn = τ ∧ n: note

that this is a stopping time (check it!) which is furthermore bounded by n. Hence by (i),

E(Mτ∧n) = E(M0).

At this point we want to let n → ∞ and claim that E(Mτ∧n) → E(Mτ ). To see this, you
may either use the dominated convergence theorem (if you know measure theory) using the
boundedness assumption and the fact that τ <∞ almost surely, or you may simply observe
that

|E(Mτ∧n)− E(Mτ )| ≤ E(|Mτ −Mτ∧n|)
≤ 2CP(τ > n)

since the only contribution to this expectation comes from the event {τ > n} (otherwise,
the random variables Mτ and Mτ∧n are equal). The right hand side tends to 0 as n → ∞,
because τ <∞ with probability one. This concludes the proof.

Lecture 16: Friday 25.11.22
We now begin some examples of applications of the Optional Stopping theorem.

Example 4.21. Let (Xn, n ≥ 0) denote an (unbiased) random walk on the integers starting
from 0. Fix a, b ∈ N = {0, 1, . . .}. Then

P0(T−a < Tb) =
b

a+ b
, (4.5)

where, as usual, Tx denote the hitting time of x. In fact, we have already seen this by solving
an associated Dirichlet problem (see for instance (2.10), from which (2.10) can be deduced
without too much difficulties (in fact, this was one of the exercises on an example sheet). Let
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us give a new proof of (4.5) based on martingales and in particular the Optional Stopping
theorem. Consider T = T−a ∧ Tb. This is the first hitting time of the set A = {−a, b}, and
so is a stopping time. Furthermore, X is a martingale (as already proved in Example 4.7)
and is uniformly bounded before T (by C = max(a, b) which is indeed non-random). We
may therefore apply the optional stopping theorem. We deduce:

E(XT ) = E(X0).

The right hand side is simply 0. To evaluate the left hand side, we note that XT is a random
variable that only takes two values, namely −a (with the desired probability p = P0(T−a <
Tb)) or b (with the complementary probability 1− p). We deduce

E(XT ) = p(−a) + (1− p)b.

Since E(XT ) = 0, this implies
b = p(a+ b)

and hence
p =

b

a+ b
,

as desired in (4.5).

Of course, this can be translated: for instance, for 0 ≤ k ≤ n, so equivalently to (4.5) we
may write Pk(T0 < Tn) = (n− k)/n = 1− k/n.

Example 4.22. In the same setup as above, let T = T−a ∧ Tb. Then we claim

E0(T ) = ab. (4.6)

We will also derive this from the optional stopping theorem. In order to do this, it is useful
to know a martingale which involves time. We already found such a martingale in Example
4.8, namely

Mn = X2
n − nσ2,

where σ2 is the variance of the increments ∆n of the random walk. Since ∆n = ±1,
E((∆n)2) = 1, and since E(∆n) = 0, we see that σ2 = Var(∆n) = 1, hence

Mn = X2
n − n.

We would like to apply the optional stopping theorem to M and the stopping time T .
Unfortunately, this is not uniformly bounded (because T is not uniformly bounded: although
T is finite almost surely by the recurrence of random walk in dimension 1, T cannot be
bounded by a nonrandom constant). We thus apply the optional stopping theorem first to
T ∧ n, which is a bounded stopping time: we get

E(MT∧n) = E(M0) = 0.
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Hence
E(X2

T∧n) = E(T ∧ n).

We now let n→∞ and deduce (using a bit of measure theory: the dominated convergence
on the left hand side, since X is uniformly bounded before time T , and the monotone
convergence theorem on the right hand side),

E(X2
T ) = E(T ).

But we already know that XT is a random variable that only takes two values (−a or b), and
we know with which probability thanks to Example 4.21. Hence we can compute E(X2

T ):
namely, if p = P0(T−a < Tb) = b/(a+ b),

E(X2
T ) = pa2 + (1− p)b2

=
b

a+ b
a2 +

a

a+ b
b2

=
ba2 + ab2

a+ b
=
ab(a+ b)

a+ b

= ab.

This completes the proof of (4.6).

Another comment (which may help to remember (4.6)) is that if we take a = b = n then
we have

E(T ) = n2

i.e. it takes roughly n2 units of time before the walk leaves the interval [−n, n]. This order
of magnitude (if not the exact constant in front) could have been guessed from the central
limit theorem. Indeed, the position Xm at time m of the random walk is the sum of m
i.i.d. random variables (the increments of the walk) which are centered and have variance
1. By the central limit theorem, when m is large, Xm is therefore close in distribution to√
mN (0, 1), where N (0, 1) is a standard Gaussian random variable. We must therefore take

m ≈ n2 before there is a good chance for the walk to exit [−n, n].

4.5 Hitting time of patterns

We will illustrate the power of the Optional Stopping theorem through another very basic
and natural question. Suppose we play a game of heads a tails: i.e., we toss a fair coin
independently and repeatedly. We do so until we obtain a specified pattern w, say

w = THT.

More formally, let (Xn)n≥1 be i.i.d. random variables with P(Xn = H) = P(Xn = T ) = 1/2,
and consider the pattern time

τ = inf{n ≥ 3 : (Xn−2, Xn−1, Xn) = (T,H, T )},
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which is a stopping time. How long should we wait on average for τ? And does this depend
on the chosen pattern w? We will show two approaches to this question. The first one will
use tools from Markov chains. It is more natural, but does not generalise. The second will
use the tools from martingale theory, and will be very elegant – as well as immediate to
generalise.

Markov chain solution. We start with the tools from Markov chains. Let us associate
to the sequence (Xn, n ≥ 1) another Markov chain (call it Wn) which corresponds to the
part of the last letters of (X0, . . . , Xn) which match with w. Thus, if n = 6, and

(X1, . . . , X6) = (H,T, T,H, T,H)

then
Wn = TH,

which is the part of (X1, . . . , Xn) which may be used to get the pattern w = THT . We claim
that (Wn)n≥0 is a Markov chain, on the state space S = {∅, T, TH, THT}, and this Markov
chain may be represented by the following diagram:

∅ TH THTT

1/2 1/2 1/2

1/2

1/2

1/2

In words, the chain Wn starts at time 0 from the state W0 = ∅, since at the start no
piece of the desired pattern already exists. Then at each step we have probability 1/2 to
start creating the pattern with drawing the letter T . If so we have probability 1/2 to draw
the letter H (which will help us build w and thus advance), or to draw T in which case T is
the only pattern that is usable. From TH, either we draw a T and we have w, or we draw
a H and must start from scratch.

With these notations, we are interested in E∅(Tw). For a state x ∈ S, let F (x) = Ex(Tw).
Using the Markov property, we may write a system of equations for F (x) (essentially the
analogue of the Dirichlet problem of Theorem 2.10, but for expected hitting times):

F (∅) =
1

2
F (∅) +

1

2
F (T ) + 1

F (T ) =
1

2
F (T ) +

1

2
F (TH) + 1

F (TH) =
1

2
F (∅) +

1

2
F (w) + 1

Since F (w) = 0, we get

F (TH) =
1

2
F (∅) + 1
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and thus plugging back into the equation for F (T ), we obtain

F (T ) =
1

2
F (∅) + 3

and so plugging back into the equation for F (∅) we get

F (∅) =
1

2
F (∅) + 5

so that
F (∅) = 10.

Hence
E(τ) = 10. (4.7)

As you can see, this is hard to generalise. What if we change w to a different pattern, say
w = HHH? What if the pattern is somewhat longer? each time the Markov chain must be
computed, the system of equations must be set up and solved. As you can see, this is not a
very efficient method!

Lecture 17, Thursday 1.12.22

Martingale solution. We now explain how to answer this question using the tools from
martingales. We first consider a restricted game using three independent fair coins X, Y, Z.
The player hopes to get the pattern THT . At first she bets 1e on T . If she loses, she quits
the game. Otherwise, she invests her fortune (now 2e) on the next letter of that pattern,
H. If she loses, she quits the game. Otherwise, she invests her fortune (now 4e) on the next
letter of that pattern, T .

In total the player either loses her initial 1e, or wins 8 − 1 = 7e in case she gets the
pattern she desires (which occurs with probability 1/8). Naturally, since the game is fair,
her expected win is 7× (1/8)− 1× (7/8) = 0 e.

Now let us get back to the question at hand, the computation of E(τ). Suppose that
at each n = 1, 2, . . ., a new player comes in, and starts playing the above restricted game
with coins (Xn, Xn+1, Xn+2). For n ≥ 0, let Mn denote the combined net fortune (sum of
all fortunes) at time n of all the players that have come in up to and including time n (i.e.,
after the nth coin has been tossed). Since each player plays at a fair game, their fortune
evolves like a martingale. As a consequence (Mn)n≥0 is itself a martingale.

We will apply the optional stopping theorem at time τ . Let us consider the random
variable Mτ . Suppose τ = n. Then we have had n players who have each invested 1e to
participate in the game. Of those, since τ is the first time that the pattern w occurs, only
two players have gained something positive: the player arriving at time n− 2 (playing with
coins Xn−2, Xn−1, Xn – she has earned 8e) and the player arriving at time n who plays with
coins Xn, Xn+1, Xn+2 – she has earned 2e at time n. (She may well lose it eventually, but
at time n, that is the state of her fortune!) This can be summarised by the following table:

player 1 2 . . . n− 2 n− 1 n
losses by time n −1 −1 −1 −1 −1
wins by time n 0 0 . . . +8 0 +2
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We conclude that
Mτ = −τ + 10,

almost surely. By the Optional Stopping theorem, we must have

E(Mτ ) = 0

and hence
E(τ) = 10,

which confirms (4.7).

Remark 4.23. In order to justify the use of the optional stopping theorem, it would be
better to first apply it at time τ ∧ n, noting that if Wn denote the wins by time n and Ln
the losses by time n, E(Mτ∧n) = E[Wτ∧n]− E[Lτ∧n]. Thus

E[Wτ∧n] = E[Lτ∧n] = E(τ ∧ n).

We let n→∞, and the right converges to E(τ) by monotone convergence, while the left hand
side converges to E(Wτ ) = 10 by the dominated convergence theorem, since |Wτ∧n| ≤ 10.

This approach is much easier to generalise. For instance, the time τ ′ to hit the pattern
w′ = HHH has expectation

E(τ ′) = 2 + 4 + 8 = 14,

since the gain comes from the last three gamblers (which win respectively 2,4 and 8 at time
τ).

Remark 4.24. In particular, the expected time it takes to obtain a given pattern w of a
fixed length (here the length of the pattern is n = 3) depends on the pattern w, even though,
in any sequence of n given coin tosses, the probability to obtain any pattern w is always
1/2n, independently of the pattern w.

Intuitively, this comes from the dependence between the sequences. When we fail to
build the pattern, in particular, sometimes the failure itself can be used as the start of a
new attempt to build the pattern. In the pattern HHH however, when we fail it will always
be through the letter T and so this can not be used; we must start from scratch. From
that point of view it seems intuitive that HHH (or equivalently TTT ) is the worst possible
pattern in the sense that the corresponding expected hitting time is maximal among patterns
of length three. This is relatively easy to prove with the martingale approach.

Exercise 4.25. Prove that the pattern w = HH . . .H (or equivalently TTT ) maximises the
expected hitting time among all patterns of length n.

Obviously this argument is not limited to coin-tossing:

Exercise 4.26. A monkey types at random on a keyboard. How long will it take on average
until it will have typed the word ABRACADABRA?
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4.6 Discrete Stroock–Varadhan theorem

By now it should be plausible that finding martingales is very helpful in order to describe
or understand a stochastic process. But is there a systematic way to find martingales, or
is it an art? The following result, which we call a discrete form of the Stroock–Varadhan
theorem, shows that at least for Markov chains there is a systematic method. In fact, there
are so many martingales attached to a Markov chain that these can be used to completely
characterise the Markov property. (Usually this theorem is stated for continuous diffusions,
where it is highly nontrivial – in this simple discrete setting, its proof will be rather simple).

First, we need some notations. Fix a Markov chain (Xn, n ≥ 0) with transition matrix
P on a state space S. Let f : S → R be a function on S, with values in R. Define a new
function Pf by setting, for x ∈ S,

(Pf)(x) =
∑
y

P (x, y)f(y). (4.8)

Therefore, if the function f is viewed as a column vector, then the function Pf coincides
with the vector Pf . However the identity (4.8) signals a change in point of view which may
be useful to adopt (and which has been already implicit in some of what we have already
discussed): we view here P no longer as a matrix but as an operator on function, in the
same way that in analysis a function K(x, y) from S × S → R is identified with an integral
operator f 7→ Kf with Kf(x) =

∫
K(x, y)f(y)dy. In fact, except for the fact that the

sum has been replaced by an integral, this analogy can be taken literally. When we wish to
emphasise this point of view we will call P an operator rather than a matrix.

Remark 4.27. Note that Pf(x) = Ex(f(X1)). Thus Pf(x), in words, is the following
quantity: start from x, and apply one step of the Markov chain, then compute the average
new value of f .

The definition (4.8) makes sense for more general matrices. In particular, if D = P − I
(where I is the identity matrix), we can define

Df(x) =
∑
y

D(x, y)f(y)

=
∑
y

[P (x, y)− I(x, y)]f(y)

= [
∑
y

P (x, y)f(y)]− f(x)

= Pf(x)− f(x) (4.9)

=
∑
y

P (x, y)[f(y)− f(x)],

where in the last line we used the fact that
∑

y P (x, y) = 1. Either way, as can be seen from
any of the last two above equivalent expressions, Df(x) measures the expected change in
f after applying one step of the Markov chain.
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Definition 4.28. The operator (matrix) D on functions f : S → R is called the discrete
Laplace operator associated to the transition matrix P .

Example 4.29. The following examples explains more clearly why D bears the name of
a discrete Laplace operator. Fix a small number ε > 0 and consider the simple random
walk on Sε = εZd (which is the scaled lattice, where the mesh size is ε instead of one). Let
Pε denote the associated transition matrix on Sε and let Dε denote the associated discrete
Laplace operator. Fix a sequence xε ∈ Sε with xε → x ∈ Rd as ε → 0. Fix a function
f : Rd → R to be a twice continuously differentiable. Then, as ε→ 0,

Dεf(xε) ∼
ε2

2d
∆f(x), (4.10)

in the sense that the ratio of both sides converges to 1 as ε → 0. To see (4.10), we simply
note that (denoting (ei)1≤i≤d the canonical basis of Rd, so that from xε ∈ Sε, the walk can
jump to xε ± εei with probability 1/(2d) each),

Dεf(xε) =
d∑
i=1

f(xε + εei) + f(xε − εei)
2d

− f(xε)

=
d∑
i=1

f(xε + εei) + f(xε − εei)− 2f(xε)

2d

=
d∑
i=1

ε2

2d

∂2f

∂x2i
(xε) + o(ε2)

∼ ε2

2d
∆f(x)

after Taylor expansion and by continuity of the second derivatives.

Remark 4.30. If you study probability further, you will learn that, speeding time by a
factor ε−2, the random walk on εZd converges to a random continuous trajectory called the
Brownian motion. In a suitable sense, its “infinitesimal transition probabilities” are related
to the (continuous) Laplacian.

Let us now state the discrete Stroock–Varadhan theorem. In one direction, this result
gives us a way to construct many martingales associated with a Markov chain. In other
direction, this result says that these martingales completely characterise the law of the
Markov chain.

Theorem 4.31 (Discrete Stroock–Varadhan theorem). Let X = (Xn)n≥0 be a stochastic
process on a state space S. Let P be a transition matrix on S and let D = P − I be the
associated discrete Laplace operator. Fix f : S → R, and define an associated stochastic
process M f by setting (for n ≥ 0):

M f
n = f(Xn)−

n−1∑
k=0

Df(Xk), (4.11)
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(where if n = 0 the sum is by convention null). Suppose f(Xn) and Pf(Xn) are integrable
random variables for any n ≥ 0, i.e., E[|f(Xn)|] < ∞ and E[|Pf(Xn)|] < ∞ for all n ≥ 0.
Then the two conditions are equivalent:

(i) X is a Markov chain with transition matrix P .

(ii) M f is a martingale for any choice of f : S → R.

Proof. Let us with the direction (i) ⇒ (ii). Fix f as in the theorem, and consider M f . It
is clear that M f is adapted since, given Fn, f(Xn) is known, and so is Df(Xk) for every
0 ≤ k ≤ n− 1. M f is further integrable by the triangle inequality and the assumption that
f(Xn) and Pf(Xk) are integrable for every 0 ≤ k ≤ n. It remains to prove the martingale
property:

E[M f
n+1|Fn] = E

[
f(Xn+1)−

n∑
k=0

Df(Xk)

∣∣∣∣∣Fn
]

= E[f(Xn+1)|Fn]−
n∑
k=0

Df(Xk)

= Pf(Xn)−
n∑
k=0

Df(Xk)

by the Markov property and the definition of Pf . Thus, isolating the last term in the sum,
and using one of the equivalent definitions of the Laplace operator (more precisely, (4.9)),

E[M f
n+1|Fn] = Pf(Xn)−Df(Xn)−

n−1∑
k=0

Df(Xk)

= Pf(Xn)− (Pf(Xn)− f(Xn))−
n−1∑
k=0

Df(Xk)

= f(Xn)−
n−1∑
k=0

Df(Xk)

= M f
n .

Thus M f is a martingale, as desired.
Now let us turn to the converse (ii) ⇒ (i). Fix y ∈ S. We first claim that it suffices to

show that
P(Xn+1 = y|Fn) = P (Xn, y). (4.12)

Indeed from there it follows directly (using the tower property) that for any x ∈ S, P(Xn+1 =
y|Fn, Xn = x) = P (x, y), which is the definition of Markov chains with transition matrix P .
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To see (4.12), we simply use the fact that M f is a martingale for the function f = δy:
indeed,

P(Xn+1 = y|Fn) = E(f(Xn+1)|Fn)

= E(M f
n+1|Fn) +

n∑
k=0

Df(Xk)

= M f
n +

n∑
k=0

Df(Xk)

= f(Xn)−
n−1∑
k=0

Df(Xk) +
n∑
k=0

Df(Xk)

= f(Xn) +Df(Xn)

= f(Xn) + Pf(Xn)− f(Xn)

= Pf(Xn),

as desired.

Example 4.32. Let X be simple random walk on Z and let f(x) = x. Then Df(x) = 0, so
Xn is a martingale, as we already know. Now consider f(x) = x2. Then

Pf(x) =
1

2
(x+ 1)2 +

1

2
(x− 1)2 = x2 + 1.

Thus Df(x) = Pf(x) − f(x) = 1, and we deduce that M f
n = X2

n − n is a martingale. We
therefore recover the result obtained in Example 4.8.

We have already alluded to the fact that there are connections between martingales and
harmonic functions. The Stroock–Varadhan theorem allows us to make this precise. First
let us define precisely the notion of harmonic function and of subharmonic functions.

Definition 4.33. Let P be a transition matrix on a state space S, and let D = P − I be
the associated discrete Laplace operator. Let f : S → R. We say that f is harmonic (resp.
subharmonic, superharmonic) on A ⊂ S if

Df(x) = 0

(resp. Df(x) ≥ 0, Df(x) ≤ 0) for all x ∈ A.

In other words, f is harmonic on A if Pf(x) = f(x), i.e., f(x) =
∑

y P (x, y)f(y) (that
is, f satisfies the mean-value property). For a subharmonic function f , the definition is
equivalent to requiring f(x) ≤

∑
y P (x, y)f(y) for all x ∈ A.

Example 4.34. Let A ⊂ S, and let h(x) = Px(TA < ∞). Then h is harmonic on Ac. In
fact, by Theorem 2.10, h is the minimmal nonnegative harmonic function which is equal to
1 on A.
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Corollary 4.35. Let X = (Xn)n≥0 be Markov (λ, P ) on a state space S. Let f be a
subharmonic function. For n ≥ 0 let Zn = f(Xn) and suppose Zn is integrable (i.e.,
E(|f(Xn)|) < ∞). Then Z = (Zn)n≥0 is a submartingale. In particular if f is harmonic
then Z is a martingale.

Proof. This is straightforward from Theorem 4.31, except for the integrability of Mn which
needs some justification: however when f is harmonic then Df(Xn) = 0 which is definitely
integrable. This makes the theorem applicable. When f is only assumed to be subharmonic,
then Df(Xn) ≥ 0. Even if we do not know the integrability, this is however sufficient
to justify the computations of the conditional expectation in the proof of the theorem:
E[f(Xn+1)|Fn] = Pf(Xn) = f(Xn) +Df(Xn) ≥ f(Xn). The result follows immediately.

As an example of application, we obtain a probabilistic proof of an analytic result called
the Liouville property.

Corollary 4.36. Let G = Zd with d = 1 or d = 2. Then G possesses the Liouville property:
any bounded harmonic function is constant.

Proof. Let f be a bounded harmonic function and let x, y ∈ Zd. We want to show that
f(x) = f(y). Consider the random walk X starting at x, and let T = Ty be the hitting time
of y by X. Since f is bounded, f(Xn) is integrable, and since f is harmonic, we deduce that
Mn = f(Xn) is a bounded martingale. Applying the optional stopping theorem at time T
(which is allowed since on the one hand, T finite almost surely by Pólya’s theorem, and on
the other hand, M is uniformly bounded),

Ex(MT ) = Ex(M0).

The left hand side f(y) and the right hand side is f(x). This completes the proof.

Remark 4.37. In dimension d = 2, this result should be compared to the Liouville’s theorem
in complex analysis: any function which is bounded and holomorphic on the entire complex
plane is constant. The connection between these two facts is that in two dimension, any
real-valued harmonic function u : R2 → R can be viewed as the real part of a holomorphic
function f : C→ C. Furthermore if u is bounded then so is f , which explains the result.

In fact, the result is true not just in dimension d = 1, 2 but also in dimensions d ≥ 3
(even though the graph is transient). However, the Liouville property is easily shown to fail
on graphs such as the binary tree: in fact, by a beautiful theorem of Varopoulos [Var85]
(see also the important work of Kaimanovich–Vershik [KV83]), on Cayley graphs (and even
more generally), the existence of non-constant bounded harmonic functions is equivalent to
the random walk escaping to infinity at positive speed, in the sense that limn→∞ d(o,Xn)/n
exists and is positive, with d(x, y) being the graph distance and o the starting point of the
walk.
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4.7 Eigenfunctions and the escape problem

Lecture 18: Friday 2.12.22
We will show another application of the optional stopping theorem to the following escape

problem for a random walk on a locally finite, connected graph G = (V,E). Fix a starting
point for the walk (call it x) and a finite subset A ⊂ V containing x. We suppose that A
is a strict subset of V and without loss of generality suppose it is connected. The problem
we consider (the escape problem) is the following: how likely is it for the random walk to
remain in A for a long time? Let

τ = inf{n ≥ 0 : Xn /∈ A}

be the first time that the walk leaves A (thus, with our previous notations, τ = TAc is the
hitting time of Ac). We are asking to obtain asymptotics as n → ∞ for the probability
Px(τ > n). Intuition suggests that this probability decays exponentially fast with n: after
all, since A is finite and a strict subset of vertices of the graph, every few units of time,
there is always a constant probability to escape A if we haven’t done so far. By the Markov
property we thus expect an exponential decay of Px(τ > n). But can we prove this? And
can we determine the exact exponential rate of decay?

We will see how to answer this problem with martingales and through the help of a
suitable notion of eigenfunctions.

Definition 4.38. Let P the transition matrix of an irreducible Markov chain on S. Let
f : S → R. f is called an eigenfunction on A ⊂ S (with eigenvalue λ ≥ 0) if f is not
constantly equal to zero and {

Pf(x) = λf(x) if x ∈ A
f(x) = 0 if x /∈ A.

If furthermore f(x) > 0 for all x ∈ A then we say that f is a principal eigenfunction.

Note that a principal eigenvalue λ satisfies λ > 0 necessarily (since then both Pf(x) and
f(x) are strictly positive).

Example 4.39. Let G = Z and for L ≥ 1 let A = {1, . . . , L − 1}. Then for k ≥ 1, the
function

fk(x) = sin

(
πkx

L

)
; x ∈ {0, . . . , L};

and fk(x) = 0 if x ∈ Z\{0, . . . , L}, defines an eigenfunction with eigenvalue λk = cos(kπ/L).
In particular, for k = 1, f = f1 is a principal eigenfunction with associated eigenvalue
λ = cos(π/L).

Let us check this carefully. Fix k ≥ 1. First let us observe that fk(x) = 0 for all x /∈ A
(including at the boundary x = 0 and x = L) since sin(0) = sin(πk) = 0. Furthermore, for
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any x ∈ A,

Pfk(x) =
1

2
fk(x+ 1) +

1

2
fk(x− 1)

=
1

2
sin

(
πk(x+ 1)

L

)
+

1

2
sin

(
πk(x− 1)

L

)
=

1

2
=(exp(i

πk(x+ 1)

L
)) +

1

2
=(exp(i

πk(x− 1)

L
))

= =
(

exp(i
πkx

L
)[

1

2
exp(i

πk

L
) +

1

2
exp(−iπk

L
)]

)
= =

(
exp(i

πkx

L
) cos(

πk

L
)

)
= λkfk(x).

Thus fk is an eigenfunction. Furthermore, if k = 1, for x ∈ A we have πx/L ∈ (0, π) so
fk(x) > 0. Thus fk is a principal eingenfunction, as desired.

Remark 4.40. The occurrence of trigonometric functions here should only be mildly sur-
prising. Informally, our definition of eigenfunction can also be reformulated in terms of the
discrete Laplace operator as Df(x) = (λ− 1)f(x), so our Definition 4.38 amounts to requir-
ing that f is an eigenfunction for the discrete Laplace operator in A with Dirichlet boundary
condition. In the continuum, it is easy to check that fk(x) = sin(πkx/L) then f ′′k (x) is indeed
a multiple of fk(x).

More generally, one can show with a bit of linear algebra (going outside the scope of this
course – this is the Perron–Frobenius theorem) that if A is nonempty, there always exists
a unique principal eigenfunction. Sometimes these eigenfunctions can even be computed
explicitly as above (and you will some other examples in the exercises).

The relevance of the eigenfunctions to the escape problem is explained by the following
result.

Theorem 4.41. Let f be a principal eigenfunction and let λ be the associated eigenvalue.
There exists constants c, C, depending only on A, such that for all x ∈ A, and for all n ≥ 0,

cλn ≤ Px(τ > n) ≤ Cλn.

(In fact, as mentioned above, principal eigenvalues are necessarily unique, but we will
not need this uniqueness here). For instance, in dimension d = 1, if A = {1, . . . , L − 1},
Px(τ > n) decays exponentially fast, at rate λ = cos(π/L).

Proof. The proof is a nice application of the optional stopping theorem. The key is to find
a suitable martingale. We define:

Mn = λ−nf(Xn∧τ );n ≥ 0.
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We claim M is a martingale. Indeed, it is first clear that M is adapted, and Mn is also
integrable for every n ≥ 0, since λ−n is a constant and f is bounded by an absolute constant
C (indeed, f is nonzero only on the set A, which is finite). To check the martingale property,
we condition on Fn and distinguish two cases.

(i) τ ≤ n. If τ ≤ n, then Xn∧τ = X(n+1)∧τ = Xτ ∈ Ac, so f(X(n+1)∧τ ) = f(Xn∧τ ) = 0.
Hence, on the event {τ ≤ n},

E(Mn+1|Fn) = E(0|Fn) = 0 = Mn.

(ii) Now suppose instead τ > n, in particular Xn∧τ = Xn ∈ A and (n + 1) ∧ τ = n + 1.
Then

E[Mn+1|Fn] = E[λ−(n+1)f(Xn+1)|Fn]

= λ−(n+1)Pf(Xn)

= λ−nf(Xn) = Mn.

since f is an eigenfunction with eigenvalue λ. All in all, M is indeed a martingale.
Let us apply the optional stopping theorem at the bounded stopping time τ ∧ n. Then

Ex(Mτ∧n) = Ex(M0) = f(x).

On the other hand, in Mτ∧n, the only nonzero contribution comes from the event τ > n: if
τ ≤ n then Mn = 0 since f = 0 outside of A. Thus

Ex(Mτ∧n) = Ex(Mτ∧n1{τ>n})

= Ex(λ−nf(Xn)1{τ>n}).

Let c = minx∈A f(x) > 0, and let C = maxx∈A f(x). Then the above expectation satisfies

Ex(λ−nf(Xn)1{τ>n})

≥ λ−nEx(c1{τ>n})
≥ cλ−nPx(τ > n).

We deduce

Px(τ > n) ≤ (1/c)λnEx(Mτ∧n)

= (1/c)λnEx(M0)

= (1/c)λnf(x)

≤ (C/c)λn

from which the desired upper bound follows. The lower bound can be proved in exactly the
same way.
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4.8 Doob’s martingale convergence theorems

Lecture 19: Friday 9.12.22. NB: no class on Thursday 8.12.22
By now it should be clear that martingales are not only a fundamental tool in the study

of stochastic processes, but are also ubiquitous. It turns out there is yet another reason
why martingales are so useful. This comes from the Doob martingale convergence theorem
which we will discuss in this section. In essence, the theorem can be understood as showing a
dichotomy for martingales, in the sense that there are only two ways a stochastic process can
be a martingale. For the conditional expectation to be zero all the time (i.e., for the negative
fluctuations to balance the positive fluctuations on average), the only two possibilities are
the following:

• Either the fluctuations of the martingales become larger and larger and the martingale
oscillates between larger and larger positive and negative values

• Or, on the other hand, the fluctuations become smaller and smaller; in that case the
martingale will converge to a finite limit.

Hence it is not possible for any martingale to stay bounded and oscillate indefinitely
between two values. The theorem can be stated in various forms, which have the following
flavour. We can suppose that the martingale is in some sense bounded (either uniformly
or in some weaker sense, say in the L2 sense). Effectively this rules out scenario one in
the above dichotomy. According to this dichotomy, scenario two must holds! And indeed
the conclusion of the theorem will be that, under this sole assumption of boundedness, the
martingale must have an almost sure limit.

Alternatively, we could make a different assumption, by supposing that the martingale
is bounded, but only in one direction: say, we assume that the martingale is nonnegative.
Although by doing so we did not explicitly rule out large upward fluctuations, this neverthe-
less prevent scenario one to occur, since no large downward fluctuations can occur. Hence
in this case too, according to this dichotomy, convergence must occur!

We will start our preparations for this amazing theorem by defining the crucial notion of
downcrossings, which makes sense for any given sequence (random or not).

Definition 4.42. Let (xn)n≥0 be a sequence with values in R. Fix α < β. A downcrossing
of the interval [α, β] by the sequence x is an interval of time, say [n1, n2], such that xn1 ≥ β,
xn2 ≤ α, but xk > α for n1 ≤ k < n2.

We will be interested in counting the number of downcrossings completed by time n. To
this end, let us introduce the following stopping times:

σ1 = inf{n ≥ 0 : xn ≥ β}; τ1 = inf{n ≥ σ1 : xn ≤ α}.

The interval [σ1, τ1] is the first interval at which a downcrossing of [α, β] is completed. The
inductively, for n ≥ 1 let

σn+1 = inf{n ≥ τn : xn ≥ β}; τn+1 = inf{n ≥ σn+1 : xn ≤ α}.

Figure 8 shows the first few values of these stopping times on a concrete example.
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α

β

τ1

σ2

τ2

σ3σ1

Figure 8: The sequence (xk)k≥0 is drawn as a continuous curve (the linear interpo-
lation of its values) for ease. It has completed two downcrossings by time n (during
[σ1, τ1] and [σ2, τ2] respectively). A third one begins at time σ3 before time n, but is
not completed.

Definition 4.43. For α < β, the number of downcrossings of the sequence (xk)k≥0 by
time n, dn = dn[α, β], is the quantity:

dn = max{k : τk ≤ n}

with dn = 0 by convention if τ1 > n (i.e., when this set is empty).

The reason we care about downcrossings is that they can be used to characterise the
convergence of the sequence (xn)n≥0:

Lemma 4.44. The sequence (xn)n≥0 is convergent in R∪ {−∞,+∞} if and only if for any
α, β ∈ Q with α < β, there exists C = C(α, β) such that dn[α, β] ≤ C.

Proof. This is easy to see using the limsup and liminf of the sequence, `+ = lim supn→∞ xn
and `− = lim infn→∞ xn. We recall that these are always well defined in R ∪ {−∞,∞},
and the sequence is convergent if and only if `− = `+. Hence non convergence is equivalent
to `− < `+ which is equivalent to the existence of rational numbers α < β such that
`− < α < β < `+. By definition of `− and `+, this is equivalent to the existence of
subsequences along which xn ≤ α and xn ≥ β, which in turn is equivalent to an unbounded
number of downcrossings.

We are therefore interested in bounding from above the number of downcrossings. The
crucial observation, due to Doob, is the following inequality called Doob’s downcrossing
lemma.

Lemma 4.45. Let (Xn)n≥0 be a submartingale, and for α < β let Dn = Dn[α, β] denote the
number of downcrossings by X of [α, β] by time n. Then

E(Dn) ≤ E(X+
n ) + |β|
β − α
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where X+
n = (Xn)+, and x+ = max(x, 0) denote the nonnegative part of xn.

Let us first give the proof of the lemma, and then discuss its significance.

Proof. Let θ = β−α which is the gap between the two sides of the downcrossing. We define
a predictable process (Wn)n≥0 by setting

Wn =

{
1 if σi < n ≤ τi for some i ≥ 1,

0 else.

In words, the betting strategy is 1 if a downcrossing has started, and 0 if it has been completed
and the next one has not yet started. Clearly, W is predictable, bounded, and nonnegative,
from which it follows that the martingale transform Zn = (W ·X)n−X0 is a submartingale,
by Theorem 4.17. Furthermore, with W we only bet a nonzero amount (1e, in fact) during
a downcrossing. Let us consider the increments ∆′n = Zn − Zn−1 = Wn(Xn −Xn−1) of the
martingale transform. We note the following properties:

• For each completed downcrossing interval [n1, n2], the sum of the increments of Z
during (n1, n2] is at least θ in absolute value, i.e.,

∑n2

n=n1+1 ∆′n ≤ −θ. (This is only an
upper-bound, because at the start n1 of the downcrossing, Xn1 ≥ β, and at the end
of the downcrossing, Xn2 ≤ α, so overall X has decreased by more than θ in absolute
value.)

• Outside of a downcrossing the increments of Z are zero.

• The only way these downcrossings are potentially offset is through a downcrossing
which started at time σ before n but not been completed by time n. In that case,
during that interval W is nonzero, and X could potentially increase – but in any case,
by no more than (Xn − β)+:

n∑
k=σ+1

∆′k ≤ (Xn − β)+

As a consequence,

Zn = (W ·X)n −X0 ≤ (Xn − β)+ − θDn. (4.13)

Exploiting the submartingale property of Z, we get

E((Xn − β)+ − θDn) ≥ E(Zn) ≥ E(Z0) = 0.

In other words,

E(Dn) ≤ 1

θ
[E((Xn − β)+)] ≤ 1

θ
[E(X+

n ) + |β|],

as desired.
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Remark 4.46. As already mentioned, Doob’s downcrossing lemma is the crucial argument
which is used in the proof of the martingale convergence below. It is worth pausing a moment
to consider the various ideas used in that proof. At the heart of the proof lies the idea that,
even if we bet 1e during each downcrossing, the resulting fortune remains a submartingale
(so the fortune has a tendency to increase overall). These downcrossings can only be offset
by a large (positive) value at the end. Hence if E(X+

n ) is known to be not too large, it
follows there cannot be too many downcrossings. In other words, if the martingale remained
bounded and oscillated a lot, there would be many downcrossings (and hence a way to lose
money systematically) without anything to offset it – an impossibility.

Lecture 20: Thursday 12.01.23. NB: no class on Thursday 15.12.22 and Friday 16.12.22
With this we can now state the first version of Doob’s martingale convergence.

Theorem 4.47 (Doob’s martingale convergence theorem 1). Let (Xn)n≥0 be a submartingale,
and suppose that there exists K < ∞ such that E(X+

n ) ≤ K for every n ≥ 0. Then there
exists a random variable X such that Xn → X, almost surely. Furthermore, E(|X|) <∞.

Remark 4.48. The above notion of convergence is that of almost sure convergence: for any
given realisation of the sequence (Xn)n≥0, e.g. one that you simulate on a computer, you will
observe the sequence Xn converging to a limit. That limit could depend on the realisation
of the sequence, and is hence a random variable.

Proof. We will use the criterion of Lemma 4.44 together with Doob’s downcrossing Lemma
4.45. Fix α < β and let Dn[α, β] denote the number of downcrossings of [α, β] by time n.
Since Q × Q is countable, it suffices to show that, almost surely for this fixed choice of α
and β in Q, Dn[α, β] is a bounded sequence (note: the bound C = C(ω, α, β) is allowed to
be random here). Now, Dn[α, β] is a nondecreasing sequence and so converges to a limit
D = D[α, β]. It suffices to check that E(D) < ∞ (which implies D < ∞ almost surely and
hence Dn ≤ D < ∞ is a sequence bounded by a finite random variable, as desired). By
Doob’s downcrossing lemma,

E(Dn[α, β]) ≤ 1

β − α
(E(X+

n ) + |β|)

≤ K + |β|
β − α

using the assumption. Letting n→∞, and using the monotonicity ofDn with n, we conclude
that

E(D) <∞,

as desired. This proves convergence of the sequence Xn to a limit X. The proof that X
is integrable uses some measure-theory arguments: first, E(X+

n ) ≤ K which implies by
Fatou’s lemma that E(X+) ≤ lim infn→∞ E(X+

n ) ≤ K. Secondly, since E(X+
n ) ≤ K and

E(X+
n ) − E(X−n ) = E(Xn) ≥ E(X0) we also see that E(X−n ) ≤ E(X+

n ) − E(X0) is also
bounded, from which it follows (once again by Fatou’s lemma) that E(X−) <∞.
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A simple but very important corollary is the following:

Corollary 4.49. Let (Xn)n≥0 be a supermartingale, and suppose Xn ≥ 0 for every n ≥ 0.
Then Xn converges to a limit X ≥ 0 such that E(X) ≤ E(X0) <∞.

Proof. Let Yn = −Xn. Then Y is a submartingale. Furthermore Y +
n = max(Yn, 0) = 0,

so clearly we can apply the previous theorem to Yn (with K = 0 trivially!) Hence Yn
converges to a finite limit, and hence so must Xn = −Yn. The bound on the expectation is a
consequence of Fatou’s lemma (or the observation already contained in the proof of Theorem
4.47).

Remark 4.50. A sometimes useful way of remembering Corollary 4.49 is to view it as a
stochastic analogue of the property that nondecreasing sequences which are bounded above
converge. But it seems to me more useful to keep in mind the dichotomy explained in the
introduction to this section in order to understand why the result is true.

Note also the fundamental fact that nonnegative martingales converge!

As an example of application, let us give a very short proof of recurrence for the random
walk on Z using martingales.

Example 4.51. Consider the random walk (Xn)n≥0 on Z, started from X0 = 1. Let τ = T0
denote the hitting time of zero. Then τ < ∞, with probability one. In particular X is
recurrent.

Proof. Recall that X is a martingale. Hence if Yn = Xn∧τ then (Yn)n≥0 is also a martingale
by Proposition 4.19. It is furthermore nonnegative since we stop at time τ . By Corollary
4.49, Yn converges almost surely to a limit, call it L. But since Yn is integer-valued, the only
that (Yn)n≥0 converges is if Yn is constant (equal to L) from a certain point onwards; thus
Yn = L for n ≥ n0 for some (random) n0. But Yn changes by ±1 at every time n, except if
n ≥ τ . Thus τ ≤ n0 must be finite (and L = 0, but this is not important). This proves the
first claim. To prove X is recurrent, if X starts from 0, then after the first step it will be at
±1. If it jumps to x = 1, then it will necessarily return to zero by what we just proved and
the simple Markov property. If it jumps to x = −1, then the same argument (or symmetry)
also shows that the walk will return to zero. Either way, it is guaranteed to return to zero,
hence X is recurrent.

Remark 4.52. We now know multiple proofs of recurrence in one dimension: the first one
follows from the computation of hitting probabilities in Theorem 2.14. The second one fol-
lows from the non-summability of the series P n(0, 0) which is computed combinatorially in
Theorem 2.34. The last proof is the shortest, and follows from basic martingale considera-
tions.

We now state the second version of Doob’s martingale convergence theorem, in which
both the assumption and the conclusion involve a second moment (so we have both a stronger
assumption and a stronger conclusion that Theorem 4.47). For this (in the proof and for
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using this theorem), the concept of conditional variance, already encountered in Example
sheet 8 exercise 1, is very useful: if X is a random variable,

Var(X|Fn) = E(X2|Fn)− E(X|Fn)2. (4.14)

It is easy to check that this can be rewritten as E[(X −mX,n)2|Fn] where mX,n = E(X|Fn).
Conditional variances obey all the rules you know for variances, bearing in mind that – just
as in the computation of conditional expectations – all the random variables which depend
just on Fn should be treated as constants. For instance,

Var(λX|Fn) = λ2 Var(X|Fn) (scaling) (4.15)

whenever λ ∈ R, and this remains true if λ is a random variable depending solely on Fn.
Likewise, if X and Y are independent given Fn, then

Var(X + Y |Fn) = Var(X|Fn) + Var(Y |Fn) (additivity). (4.16)

Finally, if X is independent of Fn then

Var(X|Fn) = Var(X), (4.17)

which mirrors what we already know of conditional expectations.

Theorem 4.53. Let (Xn)n≥0 be a martingale and suppose that there exists K < ∞ such
that E(X2

n) ≤ K. Then there exists a random variable X such that Xn → X almost surely
as n → ∞, and E(|Xn − X|2) → 0 (i.e., Xn converges to X in L2(P)). In particular,
E(X) = E(X0).

Proof. By Cauchy–Schwarz, E(X+
n ) ≤ E(|Xn|) ≤ E(X2

n)1/2 ≤
√
K, so the first Doob

martingale convergence theorem applies, and hence Xn converges to some limit X almost
surely. Hence it suffices to prove that Xn converges to its limit in L2(P). The proof uses
some elements of measure theory, so its understanding is not required for this course. Let
∆n = Xn − Xn−1 be the increment, and let Vn = E(∆2

n|Fn−1) for n ≥ 1. (Recall that Vn
can be interpreted as the conditional variance of Xn, given Fn−1.) Recall that, as proved in
Example sheet 8, exercise 1, if we define

Mn = X2
n −

n∑
i=1

Vi, n ≥ 0,

then (Mn)n≥0 is a martingale. Thus E(Mn) = 0 and E(X2
n) =

∑n
i=1 E(Vi). Now, Vi is clearly

nonnegative and thus E(Vi) ≥ 0 too. On the other hand, we have assumed that E(X2
n) ≤ K

is bounded. Hence the series
∑∞

i=1 E(Vi) must be convergent.
Let us show that (Xn)n≥0 is a Cauchy sequence in L2(P). Let 1 ≤ m < n. Then

(Xn −Xm)2 =

(
n∑

i=m+1

∆i

)2

=
n∑

i=m+1

∆2
i + 2

∑
m+1≤i<j≤n

∆i∆j.
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Taking expectations, we deduce

E((Xn −Xm)2) =
n∑

i=m+1

E(∆2
i ) + 2

∑
m+1≤i<j≤n

E(∆i∆j). (4.18)

But using the tower property (Theorem 4.9), we note that E(∆2
i ) = E(E(∆2

i |Fi−1)) = E(Vi),
while if i < j,

E(∆i∆j) = E(E(∆i∆j|Fi))
= E(∆iE(∆j|Fi)) (because ∆i is known given Fi)
= E(∆i × 0) = 0,

by the martingale property (more precisely, by Proposition 4.12). Plugging back into (4.18),
we deduce that

E((Xn −Xm)2) =
n∑

i=m+1

E(Vi).

But we have already observed that the series on the right hand side is convergent. The
Cauchy property follows immediately, hence Xn converges to X in L2(P), as desired.

Example 4.54. Let εi be independent random variables, with εi = ±1 each with probability
1/2. Then the series

∞∑
n=1

εn
n

converges almost surely and in L2(P) (although it does not converge absolutely). Indeed,
the partial sum MN =

∑N
n=1 ε/n is a martingale which is bounded in L2(P) (as E(M2

N) =∑N
n=1 1/n2 is bounded).

Remark 4.55. In practice, to use this theorem it is very convenient to recall that Mn =
X2
n −

∑n
i=1 Vi is a martingale, as it gives a way of evaluating E(X2

n): the assumption of the
theorem is satisfied as soon as the conditional variances have summable expectations, i.e.,

∞∑
n=1

E(Vn) <∞. (4.19)

This can be useful to (somewhat) demistify the proof of Theorem 4.53: essentially, to prove
convergence in L2(P), we find a good martingale (M) associated to X2

n. The fact M is a
martingale shows that X is bounded in L2(P) if and only if the conditional variances of the
increments are so small that their expectation is summable, i.e., (4.19) holds. It should not
be too surprising that, once the variances of the increments are small, the whole sequence
(Xn)n≥0 is Cauchy and hence converges.

In the applications below it will be essential to check that some martingale is bounded
in L2(P). We will do so by checking (4.19). We warn the reader that there is no tower
property for conditional variance: while Vn = Var(Xn|Fn−1), it is not true in general that
E(Vn) = Var(Xn).
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4.9 Application 1: exponential growth of branching processes

As an example of application of Doob’s martingale convergence theorem, let us now return
to the example of branching processes. Recall once again that a branching process (Zn)n≥0 is
determined by an offspring distribution (pk)k≥0 on N = {0, 1, . . .} where pk is the probability
for any given individual to have k offsprings in the next generation, and offspring numbers
are independent random variables. Thus, Z0 = 1 (initially there is one individual in this
population) and given (Z1, . . . , Zn), we obtain Zn+1 as

Zn+1 =
Zn∑
i=1

ξi,

where (ξi)i≥1 are independent of (Z1, . . . , Zn) and are i.i.d. with common law (pk)k≥0.
We have already stated (and partly proved) in Theorem 2.18 that the survival/extinction

dichotomy depends crucially on the mean number of offspring, m =
∑∞

k=0 kpk, also known
as reproductive number in an epidemiological context. We will give a different proof of this
result here based on martingales. But more importantly, we will be able to show that when
the process survives, it grows geometrically (i.e., exponentially) fast, at ratem: not only does
the branching process survives in this case, but it grows extremely quickly. This is stated
in the following theorem, in which we make the additional assumption that the offspring
distribution has finite variance.

Theorem 4.56. Let (Zn)n≥0 be the above branching process, and suppose σ2 = Var(ξ) <∞,
where ξ has the distribution (pk)k≥0 on N = {0, 1, . . .}. Then the following dichotomy holds:

• If m ≤ 1, with p1 6= 1, then (Zn)n≥0 becomes extinct almost surely: there exists n0

(random but finite almost surely) such that Zn = 0 for n ≥ n0.

• However if m > 1 then P(Zn > 0 for all n ≥ 0) > 0. Furthermore, Zn/mn converges
almost surely to a limit W which satisfies E(W ) = 1, hence W > 0 with positive
probability.

Proof. The proof of this theorem relies entirely on the martingale identified in Theorem 4.10.
Recall that this theorem states that if

Mn =
Zn
mn

,

then (Mn)n≥0 is a martingale.
Let us first prove extinction in the case m ≤ 1 and p1 6= 1, for which the proof is slick

and elegant. Since M is a martingale and m ≤ 1, note that (Zn)n≥0 is a supermartingale
(as E(Zn+1|Fn) = mZn ≤ Zn for any n ≥ 0). Furthermore, Zn ≥ 0 and so we may apply
the first Doob convergence theorem (more precisely, Corollary 4.49): therefore, (Zn)n≥0
converges almost surely to a limit, call it L. Since Zn ∈ N is integer-valued, we deduce (as
in Example 4.51) that Zn must be constant from some point onwards, equal to its limit L:
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that is, there exists n0 (random but finite almost surely) such that Zn = L for all n ≥ n0.
There are various ways to conclude from here: Now, because we have assumed p1 6= 1, at
each step there is always a positive probability that Zn+1 6= Zn, unless Zn = 0. Thus the
only way for Zn to be eternally constant from some point onwards, is if Zn = 0 is extinct.
This shows that extinction takes place at a finite time, almost surely.

Now let us assume that m > 1 and prove the second point. In fact, it suffices to prove
that

E(M2
n) ≤ K (4.20)

is bounded: indeed, given (4.20) we may apply the second Doob convergence theorem (The-
orem 4.53) to deduce thatMn converges almost surely and in L2 to a limitW , which satisfies
E(W ) = 1. As W = limn→∞ Zn/m

n, clearly W ≥ 0. Since we also have E(W ) = 1, it follows
that W is not identically zero and hence W > 0 with positive probability. The fact that
Zn/m

n converges to a limit which is strictly positive on an event E of positive probability
shows that, at least on the event E, Zn is nonzero for all n ≥ 0 and hence E implies survival.

Thus, it suffices to prove (4.20). As indicated in Remark 4.55, we do so by bounding
from above the conditional variance of Mn. Let Vn = E(∆2

n|Fn−1) and recall that Vn can be
interpreted as the conditional variance of Mn given Fn−1: that is, we compute the variance
of Mn given all the information in Fn−1 (using the same rules we might use to compute a
conditional expectation). By Remark 4.55, in order to show (4.20) it suffices to show

∞∑
i=1

E(Vi) <∞. (4.21)

Let us compute Vn. We have:

Vn = Var(Mn|Fn−1) = Var(
Zn
mn
|Fn−1)

=
1

m2n
Var(Zn|Fn−1) (by scaling)

=
1

m2n
Var(

Zn−1∑
i=1

ξi|Fn−1).

Given Fn−1, Zn−1 is known and so we need to compute the variance of the sum of a finite
number of i.i.d. random variables. Using the elementary fact that Var(X + Y ) = Var(X) +
Var(Y ) when X and Y are independent, we deduce that

Vn =
1

m2n

Zn−1∑
i=1

Var(ξi|Fn−1).

The ξi are independent of Fn−1 and so the conditional variance Var(ξi|Fn−1) is simply the
unconditional variance, i.e., σ2. Thus

Vn =
1

m2n
Zn−1σ

2.
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Hence
E(Vn) =

σ2

m2n
E(Zn−1) =

σ2

mn+1
.

Since m > 1, we deduce that
∑∞

n=1 E(Vn) <∞. This proves (4.21) and hence concludes the
proof.

4.10 Application 2: branching random walk

As our next application, we will describe another system of particles known as branching
random walks. This can be thought of as a (very interesting) generalisation of the branching
processes studied in some details in these notes, but in which we also take into account spatial
effects. We suppose given a locally finite graph G and an offspring distribution (pk)k≥0 on
N. We start the process with a single particle (or individual) at time n = 0, located in some
pre-determined vertex of the graph. As before, the process is defined inductively: given
all the particle locations at generation n, each particle gives rise to a random number of
offsprings, distributed according to (pk)k≥0. If the parent’s location is at x ∈ V , then each of
the children’s location is given by y ∈ V with probability P (x, y), where P is the transition
probability of the random walk on G. In other words, the children’s location is obtained
from that of the parent by taking a random walk step. As always, all the displacements and
the number of offsprings are assumed to be independent of one another. (A more formal
definition will be given below). Thus the total size of the population at generation n is given
by a branching process, but the particles now have an interesting, nontrivial distribution
across the vertices of the graph.

To understand why such a system of particles is natural, one may think again of the
growth of a population. For instance, a plant will usually place its offsprings in nearby loca-
tions rather than very far away. Alternatively, in an epidemiological context, an individual
tends to infect its friends or contacts, who usually live nearby rather than far away.

In such a system we are not just interested in the total population size (which, as already
mentioned, is simply a branching process) but in how the particles are distributed across the
graph. How far away from the starting point can you find particles after n generations, when
the populations survive? How many particles will be on a given site? Where is the center
of mass of the population? Many of these questions, although very basic, have only been
understood very recently (say less than ten years ago) and are still the subject of intense
research.

Let us define the branching random walk a bit more formally. Again, we fix a locally
finite graph G = (V,E) and an offspring distribution (pk)k≥0 on N = {0, 1, . . .}. This will
require some slightly tedious notations (but hopefully the above intuition will help). This
will be defined inductively. We will have for each generation n ≥ 0 a set of particles, with
Zn many particles in total, and whose locations are given by Zn = (Xn,1, . . . , Xn,Zn), where
for each 1 ≤ i ≤ Zn, Xn,i is a vertex of the graph (the particles are labelled from i = 1
to i = Zn in some arbitrary order). The label n will be reserved for the generation in the
branching process (“time”), while the label i will be reserved for the index of the ith particle
in some given generation n. We will reserve a thid label, j, for the location of the jth child
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of the ith particle in some generation n. The branching random walk is defined inductively
as follows:

Definition 4.57. Initially we have Z0 = 1 and the unique particle comprising the population
at time n = 0 is located at X0,1 = u, for some given vertex u of the graph. Now suppose given
the process Zn = (Xn,1, . . . , Xn,Zn) at time n ≥ 0. For each i = 1, . . . , Zn, let ξn,i denote
independent random variables having the law (pk)k≥0 (thus ξn,i is the number of offsprings of
individual i in generation n). Given ξn,i, let (Yn,i,j)1≤j≤ξn,i

be independent random variables
with

P(Yn,i,j = w|Xn,i = v) = P (v, w),

where P (v, w) is the transition matrix of simple random walk on G. The position Yn,i,j ∈ V
is the location of the jth child of the ith particle in generation n. We then set

Zn+1 = (Yn,i,j)1≤i≤Zn,1≤j≤ξn,i
. (4.22)

We emphasise again that in this definition, we take the (Yn,i,j)1≤i≤n,1≤j≤ξn,i
to be inde-

pendent of one another and independent of (Z0, . . . ,Zn).

To make things somewhat more interesting, we will add another ingredient to this defini-
tion. Namely, we will fix a finite subset A of vertices such that the initial ancestor’s location
u ∈ A, and declare that every particle falling outside of A is immediately killed. Formally
speaking, this means that, compared to (4.22), the index j is only running over 1 ≤ j ≤ ξn,i
such that Yn,i,j ∈ A:

Z ′n+1 = (Yn,i,j)1≤i≤Zn,1≤j≤ξn,i:Yn,i,j∈A. (4.23)

The resulting process (Z ′n)n≥0 is called the branching random walk killed on Ac.
From the point of view of interpretation, you could think that A represents an island and
the plant population cannot grow beyond A. Alternatively, in an epidemiological context,
you could imagine that A represents a region that has not yet been completely vaccinated
against an infection, while Ac represents a region in which everyone is vaccinated. See Figure
9 for an illustration.

Note that the total population size Z ′n = #Z ′n is now no longer simply a branching
process, because of the fact that some particles are killed when they leave A. Because of
this, it is unclear under what conditions the killed branching random walk survives. Clearly,
using Theorem 4.56, survival requires m =

∑∞
k=0 kpk to be greater than 1, otherwise the

entire branching random walk dies out (even if we don’t kill particles when they leave A).
So does it suffice that m > 1? We might initially be tempted to say yes; indeed if m > 1
we know by Theorem 4.56 that the population size grows exponentially. If we start from
the center which is far away from the boundary of A, it will take time before even a single
particle dies off and by that time we should already have a very large number of particles.
So we might expect the killing to play very little role in the survival of the process. In fact,
this is not the case, as demonstrated by the following result:

Theorem 4.58. Let (Z ′n)n≥0 be the above killed branching random walk, and suppose σ2 =
Var(ξ) < ∞, where ξ has the distribution (pk)k≥0 on N = {0, 1, . . .}. Let λ be a principal
eigenvalue of A, in the sense of Definition 4.38. Then the following dichotomy holds:
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Figure 9: An example of a branching random walk on a graph which is the square
lattice with fine mesh size. Different colours represent different particles. Particles
are killed when they leave the unit disc.

• If m < 1/λ, then (Z ′n)n≥0 becomes extinct almost surely: there exists n0 (random but
finite almost surely) such that Z ′n = #Z ′n = 0 for n ≥ n0.

• However if m > 1/λ then P(Zn > 0 for all n ≥ 0) > 0.

Thus the critical threshold for survival is not m = 1 but m = 1/λ. It is not hard to see
(e.g., using Theorem 4.41) that λ < 1. Thus the threshold for survival is strictly greater
than 1. To put this is an epidemiological context, if the world outside of A is fully vaccinated
against the infection, then the reproductive number m can be greater than one and yet the
epidemics will die out (so long as it is not greater than 1/λ)! The proof we give below does
not cover the case mλ = 1, but pushing the arguments just a little further would show that
the killed branching random walk also dies out at the critical value.

Proof. As always, the key is to identify a suitable martingale. Since our result involves the
principal eigenvalue λ, it is natural to seek a martingale that involves it and the associated
principal eigenfunction f . Recall that f is positive on A and satisfies

Pf(x) = λf(x).

Taking some inspiration from Theorem 4.41, we propose

Mn =
1

(mλ)n

Z′n∑
i=1

f(Xn,i). (4.24)

Lemma 4.59. M = (Mn)n≥0 is a martingale.

Proof of Lemma 4.59. Using the fact that f is bounded above (as A is finite) it is not hard
to see that M is integrable, and it is clearly adapted. Let us check the martingale property:
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we have

E(Mn+1|Fn) = E(
1

(mλ)n+1

Z′n∑
i=1

ξn,i∑
j=1

f(Yn,i,j)1{Yn,i,j∈A}|Fn)

=
1

(mλ)n+1

Z′n∑
i=1

E(

ξn,i∑
j=1

f(Yn,i,j)|Fn) (4.25)

Now to compute the last conditional expectation, ξn,i is independent of Fn. Thus the con-
ditional expectation is equal to an (unconditional) expectation of the form

E(
N∑
j=1

f(Yj)),

where the Yj are i.i.d., having law P (Xn,i, ·) and independent of N . We compute this
expectation by conditioning on N and applying the tower property: find

E(
N∑
j=1

f(Yj)|N) = NE(f(Y )),

so

E(
N∑
j=1

f(Yj)) = E(N)E(f(Y )).

Here E(N) is simply the expected number of offsprings, m, and E(f(Y )) is simply Pf(Xn,i).
Since f is an eigenfunction with eigenvalue λ, we see that

E(

ξn,i∑
j=1

f(Yn,i,j)|Fn) = mλf(Xn,i).

Plugging back into (4.25), we deduce

E(Mn+1|Fn) =
1

(mλ)n+1

Z′n∑
i=1

mλf(Xn,i) = Mn,

as desired.

Let us see why the fact that M is a martingale implies the result. Note that M is
nonnegative, hence by Doob’s convergence theorem (more precisely, Corollary 4.49) converges
almost surely to a (finite) limit, call it W .

Suppose first that mλ < 1. Then

Z′n∑
i=1

f(Xi,n) = (mλ)nMn.

95



Let ε = minx∈A f(x). Then
εZ ′n ≤ (mλ)nMn. (4.26)

Since Mn converges to a finite limit and mλ < 1, we see that Z ′n converges to 0. But Z ′n is
integer valued, so Z ′n must eventually be equal to zero.

Now suppose that mλ > 1. To prove survival it suffices to show (just as in Theorem
4.56) that M is bounded in L2. As indicated in Remark 4.55, the most convenient way
is to compute the conditional variance of Mn, take the expectation and show that this is
summable. We sketch the argument here: let

Vn+1 = Var(Mn+1|Fn).

Clearly,

Vn+1 =
1

(mλ)2n+2

Z′n∑
i=1

Var(

ξn,i∑
j=1

f(Yn,i,j)|Fn). (4.27)

We could compute the conditional variance on the right hand side of (4.27), but in fact all
we need is the fact that this conditional variance is uniformly bounded by a constant, call
it C. (This follows from the fact that f is uniformly bounded and the offspring distribution
has finite variance.)

We deduce that
Vn+1 ≤

1

(mλ)2n+2
CZ ′n.

Taking expectations,

E(Vn+1) ≤
CE(Z ′n)

(mλ)2n+2
.

Using (4.26),

E(Vn+1) ≤
C

ε(mλ)n+2
.

Since mλ > 1, we see that the right hand side is summable and hence

∞∑
n=1

E(Vn) <∞.

This completes the proof that M is bounded in L2(P).
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