
CONCENTRATION OF MEASURE∗
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2.2 Poincaré inequality and eigenvalues . . . . . . . . . . . . . . . . . . 17
2.3 Cheeger’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Discrete case: Markov chains on graphs . . . . . . . . . . . . . . . . 22

3 Logarithmic Sobolev Inequalities 27

3.1 Introduction and definition . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Log-Sobolev implies Gaussian concentration . . . . . . . . . . . . . 29

∗Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics,

University of Cambridge. Email: n.berestycki@statslab.cam.ac.uk, r.nickl@statslab.cam.ac.uk.

These are informal lecture notes, and we claim no originality for any of its contents. Please let

us know of any errors in these notes.

1



4 Concentration of Gaussian Measures and Processes 32

4.1 The Ornstein-Uhlenbeck Semigroup . . . . . . . . . . . . . . . . . . 33
4.2 The logarithmic Sobolev inequality for Gaussian Measures in Rn . . 36
4.3 Proof of Borell’s Inequality . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Gaussian Measures in Banach Spaces . . . . . . . . . . . . . . . . . 40

5 Log-Sobolev Inequalities in Product Spaces 43

5.1 Entropy in product spaces . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Further results and applications . . . . . . . . . . . . . . . . . . . . 45

6 Talagrand’s Inequality for Empirical Processes 49

6.1 Empirical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Talagrand’s inequality and variations thereof . . . . . . . . . . . . . 50
6.3 A Proof of Talagrand’s Inequality . . . . . . . . . . . . . . . . . . . 52

6.3.1 A bound for the Laplace transform of empirical processes . . 52
6.3.2 A Bernstein-type version of Talagrand’s inequality . . . . . . 54
6.3.3 Completion of the Proof of Theorem 14 . . . . . . . . . . . . 57

6.4 Moment Bounds via Rademacher Symmetrization . . . . . . . . . . 59
6.4.1 Rademacher Processes . . . . . . . . . . . . . . . . . . . . . 59
6.4.2 Moment Bounds for Empirical Processes . . . . . . . . . . . 61
6.4.3 A ’statistical version’ of Talagrand’s Inequality . . . . . . . . 62

6.5 Sums of i.i.d. Banach-Space valued Random Variables . . . . . . . . 65
6.6 Estimation of a Probability Measure . . . . . . . . . . . . . . . . . 66

A Concentration inequalities for Wigner random matrices 69

A.1 Wigner’s semicircle law . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2 A general concentration inequality for eigenvalues . . . . . . . . . . 71
A.3 Concentration of eigenvalues at the right scale . . . . . . . . . . . . 74

2



1 Introduction

1.1 Foreword

The concentration of measure phenomenon is a notion that was put forward in the
1970’s by V. Milman while investigating the asymptotic (i.e., high dimensional)
geometry of Banach spaces. It is a notion that has since then proved tremendously
useful in a huge variety of contexts, partly due to the work of mathematicians such
as M. Gromov, M. Talagrand and M. Ledoux. Let us mention, among other fields:
combinatorics, functional and discrete analysis, statistics, probability theory, ge-
ometry, statistical physics, and probably much more. It is also a mathematical
theory of its own, with its major theorems (e.g., Talagrand’s inequality), ramifica-
tions into other branches of mathematics, and outstanding open problems.

In this course we will try to convey some basic notions and results related to this
phenomenon, and showcase some of its applications in different contexts. Roughly
speaking, the course will be divided into three parts of approximately equal length.
Michel Ledoux’s monograph [31] will be a major source of inspiration throughout
the notes.

1. The first part consists of the ’geometric theory’ (in particular, isoperime-
try and Cheeger’s constant) and its functional-analytic counterpart, e.g.,
Poincaré and Log-Sobolev inequalities.

2. In the second part we show how the analytic theory using ’log-Sobolev’ in-
equalities can be used to establish two main results of the theory: First,
we prove ”Borell’s inequality” [5] by establishing the Log-Sobolev inequality
(and thus measure concentration) for Gaussian measures, in a dimension-free
way. This has striking ramifications to (and is partly motivated by questions
in) probability theory, infinite dimensional analysis and statistics, among
other things. Second, we state, discuss and summarize the main ingredi-
ents of the proof of what has become known as ”Talagrand’s inequality” [38]
(although there are really many inequalities proved by Talagrand!). Tala-
grand [37] summarized the intuition behind as ’a new look at independence’:
a random variable that smoothly depends on a large number of independent
random variables (but not too much on any of them), is ’essentially’ constant,
in a ’dimension-free’ way. It is clear that any formalization of such a state-
ment is to have profound impact on probability theory and, in particular, on
statistics.

3. In the third and final part, we will examine some non-trivial applications to
empirical processes in statistical theory, first passage percolation in proba-
bility theory, and random matrix theory.
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Often, proofs can be formulated either analytically or probabilistically. We will
strive to present both points of view, as much as possible. It is usually the case
that one proof informs on the other, and vice-versa, so the audience and readers
are warmly encouraged to make the effort to understand both points of view!

1.2 Definitions

We start with a few informal examples that describe the notion of measure con-
centration from a few different points of view.

From a probabilistic perspective, let us agree that a random variable Z defined
on some probability space satisfies a concentration inequality if for some constant
m – which will typically be EZ or the median of Z – we have for every u ≥ 0

P {|Z − m| ≥ u} ≤ c exp

{
−u2

2v

}

or equivalently

P {|Z − m| ≤ u} ≥ 1 − c exp

{
−u2

2v

}
(1)

where the constant v is usually related to the variance of Z, and where c > 0
should be a small numerical constant. Sometimes the exponent will not be of the
Gaussian form u2, but at least a function of polynomial growth of u should feature
in the exponent to convey the notion of concentration. We also emphasize that a
concentration inequality should hold for every u ≥ 0 : it is different from a ’large
deviation inequality’ that holds only ’asymptotically’ (for large enough u).

From a more geometric perspective, we can say that a measure µ on some
metric space (X, d) satisfies a measure concentration principle if, for any set A
such that µ(A) ≥ 1/2, we have

µ(Ar) ≥ 1 − c exp

{
− r2

2v

}
(2)

where Ar denotes the r-enlargement of A: that is, points x ∈ X within distance r
of A. This point of view should be of some use to the combinatorists and analysts:
indeed, it is highly reminiscent of the celebrated ’sharp transition thresholds’ of
Friedgut-Kalai [16].

Since this helps to get an intuition on the phenomenon of measure concentra-
tion, it is perhaps worth briefly discussing this result. Consider the random graph
process G(n, p), where every edge of the complete graph Kn is present with prob-
ability p - the ’density’ of edges. Let A is an arbitrary monotone graph property
(in the sense that if H satisfies A and H is a subgraph of G then G automatically
satisfies A - think for instance of the property ’being connected’ or ’containing a
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cycle’). Then A has a sharp threshold of occurrence. That is, there is pc such that
G(n, pc − ε) does not satisfy A with high probability, while G(n, pc + ε) satisfies
A with high probability, for every ε > 0. Here and in what follows, ’with high
probability’ means with probability tending to 1 as n → ∞. This statement says,
roughly speaking, that if G(n, p) satisfies A with probability bounded away from
0 as n → ∞ for some p > 0, then increasing p just slightly will guarantee that A
is satisfied with overwhelming probability. The concentration of measure should
be viewed similarly. Suppose a set A carries a small but ’bounded away from 0’
probability: then an ε-enlargement of A carries almost full probability.

Note that from this description, the connection to isoperimetric problems is
already quite intuitive: there is measure concentration if and only if the measure
of any set increases very rapidly with its enlargement, i.e., if their ’boundaries’ (in
a sense that can be made rigorous) carry significant weight.

Naturally, the two points of view (1) and (2) are strictly equivalent by defining
µ(A) = P(Z ∈ A).

1.3 Spherical Isoperimetry

It is time to speak about an example. We start with one of the simplest geometric
examples, which is the concentration of measure on a high-dimensional sphere.
Let Sn be the unit sphere in Rn+1 equipped with the geodesic metric d. Let Z
be distributed according to the uniform probability measure µn on Sn, and let
A be any measurable subset of Sn that satisfies µn(A) ≥ 1/2, so that A is a
set with significant area. Recall further our notation for the enlargement (or the
neighbourhood)

Aε = {x ∈ S
n : d(x, y) < ε for some y ∈ A}.

Then we claim that

Theorem 1. Under the above assumptions,

P(Z ∈ Aε) = µn(Aε) ≥ 1 − e−(n−1)ε2/2. (3)

One particularly striking consequence of this result is that, from a measure
point of view, most of the mass of the sphere is concentrated around points within
distance O(1/

√
n) of the equator. This (and some further developments) has

prompted M. Gromov to say that the observable diameter of the sphere is of order
1/
√

n, in contrast with its physical diameter of order 1. See Section 1.4 in Ledoux
[31] for more about this notion.
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Proof. This proof relies on the spherical isoperimetric inequality and a computa-
tion. The spherical isoperimetric inequality, discovered by ... Paul Lévy in 1919, is
the n-dimensional generalization of the following statement: among all curves on
the unit sphere S2 ⊂ R3, the ones which enclose the largest area for a given length
are circles (which enclose spherical caps). More formally, on a metric measured
space (X, d, µ), for a given measurable set A ⊂ X, define the Minkowski boundary
measure

µ+(A) = lim inf
ε→0

1

ε
µ(Aε \ A).

We say that X has isoperimetric profile I : [0,∞) → [0,∞) (a function on the real
numbers) if for every m > 0 and every A such that µ(A) = m we have

µ+(A) ≥ I(m),

and I is the largest function for which this holds. Then the spherical isoperimetric
inequality sates that on X = Sn, I(m) = v′(v−1(m)), where v(r) is the volume of
a (spherical ball or cap) B(x, r) for any x ∈ S

n and r such that µ(B(x, r)) = m.
Hence v−1(m) is the radius r such that v(r) = m. In practice, this means that if
µ(A) = m and if r is such that µ(B(x, r) = m then

µ(Aε) ≥ µ(B(x, r + ε)).

This is, of course, the analogue of the classical isoperimetry in Rn, and we won’t
include a proof of it here. Once it is accepted, it suffices to prove (3) for A a
spherical ball of mass ≥ 1/2. Thus the rest of the proof basically follows from the
following computation on the volume of spherical caps.

Let v(r) = µ(A) where A = B(x, r) for some (any) x ∈ Sn. Then for 0 < r < π,

v(r) =
1

sn

∫ r

0

sinn−1 θdθ,

where sn =
∫ π

0
sinn−1 θdθ. Since we have assumed that µ(A) ≥ 1/2, then r =

π/2 + s for some s ≥ 0. Now, let ε > 0 and let s′ = s + ε

1 − v(r + ε) = s−1
n

∫ π

r+ε

sinn−1 θdθ

= s−1
n

∫ π/2

s+ε

cosn−1 θdθ

Making the change of variable θ = τ/
√

n − 1, and using the inequality cosu ≤
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e−u2/2 for 0 ≤ u ≤ π/2, we find

∫ π/2

s+ε

cosn−1 θdθ =
1√

n − 1

∫ (π/2)
√

n−1

(s+ε)
√

n−1

cosn−1

(
τ√

n − 1

)
dτ

≤ 1√
n − 1

∫ ∞

(s+ε)
√

n−1

e−τ2/2dτ

≤
√

π√
2(n − 1)

e−(n−1)(s+ε)2/2 ≤
√

π√
2(n − 1)

e−(n−1)ε2/2

We now bound sn from below. Integrating by parts twice, we get sn = ((n −
2)/(n − 1))sn−2, from which

√
n − 1sn ≥

√
n − 3sn−2

Using this inequality inductively, we obtain sn ≥ 2/
√

n − 1. Putting the pieces
together gives us:

1 − v(r + ε) ≤ e−(n−1)ε2/2

and thus
µ(Aε) ≥ µ(B(x, r + ε)) ≥ 1 − e−(n−1)ε2/2

which is what we wanted.

A pretty interesting consequence of this is the following: any Lipschitz function
on the sphere (i.e., and function whose local oscillations are small) must be con-
centrated! Recall that a function F : Sn → R is said to be a C-Lipschitz function,
if

sup
x 6=y,x,y∈Sn

|F (x) − F (y)|
d(x, y)

≤ C.

Let mF be the median of F , that is, mF is a number which satisfies

µn {x : F (x) ≥ mF} ≥ 1/2 and µn {x : F (x) ≤ mF} ≥ 1/2.

(Note that mF doesn’t have to be unique but always exists).

Corollary 1.

µn {x ∈ S
n : |F (x) − mF | ≥ r} ≤ 2 exp

(
−(n − 1)r2

2C2

)
(4)

where mF is the median of F .
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Proof. Let A = {F ≤ mF} i.e., A = {x ∈ S
n : F (x) ≤ mF}. If ε > 0 and

d(x, A) ≤ ε then there exists y ∈ A such that d(x.y) ≤ ε. Since F is C-Lipschitz,

F (x) ≤ F (y) + Cε ≤ mF + Cε.

Taking the contrapposite, {F > mF + Cε} ⊂ Ac
ε, so that, taking probabilities:

µ(F > mF + Cε) ≤ 1 − µ(Aε) ≤ exp

(
−(n − 1)r2

2

)
.

Similarly,

µn(F < mF − Cε) ≤ 1 − µ(Aε) ≤ exp

(
−(n − 1)r2

2

)
.

Changing r into r/C and combining these two inequalities, we obtain

µn {x ∈ S
n : |F (x) − mF | ≥ r} ≤ 2 exp

(
−(n − 1)r2

2C2

)

as requested.

So again – choosing r = t/
√

n – we see that the measure of the set of points
in S

n for which F (x) deviates more than t/
√

n from a constant (here mF ) is less

than or equal to 2e−
t2

2
(1− 1

n
). A visual interpretation of this pheonomeon – due

to Gromov – is the following: The unit sphere Sn cannot be ’observed’ by us for
n ≥ 3. However, we could think of a visual machine that sends points on high-
dimensional spheres into one-dimensional information (so an ’observable’). We
would think that any ’reasonable machine’ is such that local oscillations in the
domain result in oscillations of the same size in the image – meaning that the
machine is a Lipschitz function. The last inequality then says that ’the observable
diameter of Sn is effectively of size 1/

√
n, whereas its diameter as a metric space

is constant’.

1.4 Concentration of Gaussian Measures

A centered Gaussian or normal real random variable with variance σ2 (we shall
often write N(0, σ2)) is defined by its probability density

φσ(x) =
1√

2πσ2
exp

{
− x2

2σ2

}
.

These random variables are central to probability theory and statistics for various
reasons. We start with a simple calculus exercise.
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Proposition 1. If X is a normally distributed random variable with mean EX
and variance σ2, then X concentrates around a constant, namely its mean, in the
sense that, for every u ≥ 0

Pr {|X − EX| ≥ u} ≤ exp

{
− u2

2σ2

}
.

Proof. We can assume EX = 0 and, replacing X by X/σ, also that σ = 1. If
Φ(u) = P (X ≤ u) denotes the cumulative distribution function of X then we
want to prove 2Φ(−u) ≤ e−u2/2 for every u ≥ 0. This is obviously true for u = 0,
and follows from differentiating the inequality

2Φ(−u) =

√
2

π

∫ ∞

u

e−x2/2dx ≤ e−u2/2

with respect to u in the range 0 < u ≤
√

2/π. For u >
√

2/π we use the well
known bound

Φ(−u) ≤ 1√
2π

e−u2/2

u
(5)

which follows from integration by parts

∫ ∞

u

xe−x2/2 1

x
dx =

e−u2/2

u
−
∫ ∞

u

1

x2
e−x2/2dx ≤ e−u2/2

u
.

While the more classical bound (5) is more exact in the ’large deviation’ context
(that is, for u large), it is not optimal for every u > 0. The last proposition shows
that in the Gaussian case a genuine concentration inequality of type (1) holds with
exponent −u2, v = σ2 and leading constant c = 1 – which is often referred to as
Gaussian concentration.

Clearly Proposition 1 follows merely from the definition of Gaussian random
variables and elementary calculus, so is not at all surprising. However, we shall see
that Proposition 1 is a special case of a very general, dimension free phenomenon
that Gaussian measures and processes concentrate around their mean.

For instance we shall prove the following result: Let (B, ‖ ·‖B) be a (separable)
Banach space and let X : (Ω,A, Pr) → B be a random variable taking values in B
(i.e., a measurable mapping where B is equipped with its Borel-σ-field). We say
that the random variable X is centered Gaussian if L(X) is normally distributed
with mean zero for every continuous linear form L : B → R. It is easily seen that
this requirement characterizes normal laws in finite-dimensional real vector spaces
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(e.g., [11] Theorem 9.5.13), but otherwise serves as the natural generalization. A
consequence of Borell’s inequality will be that

Pr {|‖X‖B − E‖X‖B| ≥ u} ≤ exp

{
− u2

2σ2

}
(6)

where
σ2 = sup

L:‖L‖′B≤1

EL2(X)

are the ’weak’ variances (and where ‖ · ‖′B is the norm of the dual space of B).
We should note that (6) does almost but not exactly yield Proposition 1 as a

corollary, but the unifying approach via the theory of Gaussian processes will: We
shall prove for (almost) arbitrary centered Gaussian processes {Xt}t∈T where T is
any index set that

Pr

{∣∣∣∣sup
t∈T

Xt − E sup
t∈T

Xt

∣∣∣∣ ≥ u

}
≤ exp

{
− u2

2σ2

}

where σ2 = supt∈T EX2
t . This result clearly implies Proposition 1 but will also

be seen to imply (6), and has substantial implications in the theory of Gaussian
processes (such as Brownian motion, for instance).

1.5 Concentration of Product Measures

Let now X1, ..., Xn be independent and identically distributed random variables
with law P supported in [−1, 1] (as long as the range is bounded the restriction
to [−1, 1] is immaterial, as one can always rescale), and denote by Pr := P n the
product probability measure representing the joint law of X1, ..., Xn.

The sample mean 1
n

∑n
i=1 Xi is a fundamental quantity in almost all of statis-

tics, but also in the study of random walks and in many other problems in prob-
ability theory. It turns out that the sample mean represents another instance of
the ’dimension-free measure concentration’.

As a first step in this direction, let us briefly prove a classical result due to
Hoeffding [26], in dimension one.

Proposition 2. Let X1, ..., Xn be i.i.d. random variables bounded in absolute value
by one and with EX = 0. Then we have, for every n ∈ N and every u > 0

Pr

{
1

n

n∑

i=1

Xi ≥ u

}
≤ exp

{
−u2

2
n

}
. (7)

and hence also

Pr

{∣∣∣∣∣
1

n

n∑

i=1

Xi

∣∣∣∣∣ ≥ u

}
≤ 2 exp

{
−u2

2
n

}
. (8)
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Proof. We first derive a bound on the moment generating function of vX for v > 0,
namely

EevX ≤ ev2/2. (9)

To see this, observe that convexity of the exponential function implies

evx ≤ 1 − x

2
e−v +

1 + x

2
ev, − 1 ≤ x ≤ 1.

Taking expectations and using EX = 0 we see

EevX ≤ 1

2
e−v +

1

2
ev = e−v+log( 1

2
+ 1

2
e2v) =: eg(v)

where g(v) = −v + log
(

1
2

+ 1
2
e2v
)
. Clearly g(0) = g′(0) = 0, and also g′′(v) ≤ 1

for all v ≥ 0, so that a Taylor series expansion gives g(v) = (v2/2)g′′(ṽ) ≤ v2/2,
completing the proof of (9).

Now to prove Hoeffding’s inequality, recall Markov’s inequality Pr{|X| > C} ≤
E|X|/C. Then, for every t > 0, v > 0, using that the Xi’s are i.i.d and (9),

Pr

{
n∑

i=1

Xi ≥ t

}
= Pr

{
ev

Pn
i=1 Xi ≥ etv

}
≤ e−tvEev

Pn
i=1 Xi

= e−tvΠn
i=1EevXi ≤ e−tvΠn

i=1e
v2/2

= e−tv+ v2n
2 = e−

t2

2n

by choosing v = t/n. Finally (7) simply follows from multiplying the inequality
featuring in the probability in question by n and applying the last inequality with
t = nu.

The result says that a sample mean of n bounded i.i.d. random variables satis-
fies a concentration inequality of type (1) around its mean m = EX with exponent
u2, v = 2/n and leading constant c = 2. In particular, the ’degree of concentra-
tion’, measured by the exponent in the inequality, improves as dimension (i.e.,
’sample size’) n increases.

While Proposition 2 is a genuine concentration inequality, it is still some-
what unsatisfactory: One would think that the size of the random fluctuations
of 1

n

∑n
i=1 Xi around the constant EX should depend on the variance σ2 of X,

and that therefore σ2 should be featuring in the exponent on the r.h.s. of (8), as it
does in Proposition 1 for example. This more refined result is known as Bernstein’s
inequality: If X1, ..., Xn are as in Theorem 2, and if σ2 = V ar(X), then

Pr

{
1

n

n∑

i=1

Xi ≥ u

}
≤ exp

{
− u2

2σ2 + 2u
3

n

}
. (10)
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and thus also

Pr

{∣∣∣∣∣
1

n

n∑

i=1

Xi

∣∣∣∣∣ ≥ u

}
≤ 2 exp

{
− u2

2σ2 + 2
3
u
n

}
. (11)

The proof – which is only marginally more involved than the one of Proposition 2
– can be found, for instance, in [34]. To interpret this inequality, it is instructive
to rescale the centered sample mean, so that one has the equivalent inequality

Pr

{
√

n
1

n

n∑

i=1

Xi ≥ v

}
≤ exp

{
− v2

2σ2 + 2v
3
√

n

}
. (12)

This suggests that – as n → ∞ – this inequality approaches Gaussian concen-
tration. This of course has a deeper meaning that is linked to the central limit
theorem, which states that

1√
n

n∑

i=1

Xi →d N(0, σ2)

as n → ∞, which gives a heuristic explanation of (12) at least for large n. In fact
one may at first sight hope for ’pure’ Gaussian concentration e−v2/2σ2

in (12), and
wonder why the 2v

3
√

n
term occurs in the denominator of the exponent. That this

term cannot be improved uniformly in u, however, can be seen as follows: Take
Xi i.i.d. Bernoulli variables with success probability p := pn very small depending
on n, say pn = 1/n. A standard result in probability is that the distribution of∑n

i=1 Xi can in this case be very well approximated by the distribution of a Poisson
variable Y with rate 1, in fact one can show that

∣∣∣∣∣Pr

{
∑

i

Xi ≥ u

}
− P {Y ≥ u}

∣∣∣∣∣ ≤ 1/n.

Since the tail of a Poisson random variable is of order e−u and not e−u2
, we cannot

expect ’pure’ Gaussian concentration in (12) if σ2 is very small and/or depends
on n (as in this Bernoulli example). Note also that this does not contradict the
’limiting’ Gaussian concentration suggested by the central limit theorem, as the
distribution of the Xi’s in this ’counter-example’ changes with n.

This shows that product measures of bounded random variables in one dimen-
sion satisfy concentration inequalities. It was mentioned after Proposition 1 that
one-dimensional Gaussian concentration extends to arbitrary dimensions without
a price by virtue of Borell’s inequality, and one may ask the same question for
product measures. One of the most striking achievements in the theory of mea-
sure concentration in the last decades is Talagrand’s inequality [38], which shows
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that the same is true for product measures in infinite dimensions. For instance
Talagrand’s inequality for empirical processes (these processes, which will be de-
fined precisely below, parallel the role of Gaussian processes in the treatment of
Gaussian measures in a way) will imply that for X1, ..., Xn i.i.d. centered random
variables in a Banach space (B, ‖ · ‖B) that are bounded (‖X‖B ≤ 1) one has a
genuine concentration inequality (comparable to (11) above):

Pr

{∣∣∣∣∣

∥∥∥∥∥
1

n

n∑

i=1

Xi

∥∥∥∥∥
B

− E

∥∥∥∥∥
1

n

n∑

i=1

Xi

∥∥∥∥∥
B

∣∣∣∣∣ ≥ u

}
≤ exp

{
− u2

2V + 2u
n

}
(13)

where V is a quantity that needs some more careful discussion (but will depend
on the variance of X in a suitable way).

Someone who knows the field of probability in Banach spaces will immediately
recognize the following: The central limit theorem for a sum

∑n
i=1 Xi of general

B-valued centered random variables holds only under certain conditions on the
geometry of B (see [1] and [32]), whereas the concentration inequality (13) will be
seen to hold (in more or less) arbitrary Banach spaces. This offers one of the deep-
est insights in the theory treated in this course: concentration of product measures
is – contrary to what one may expect at first – NOT related to the central limit
theorem, but a self-standing probabilistic phenomenon. A complete understanding
of this involves some subtleties and requires more context, so we postpone exact
statements and definitions to Section 6.
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2 Isoperimetric and Poincaré Inequalities

In this section we discuss a class of inequalities calles Poincaré inequalities, and
their relation to, on the one hand, spectral quantities (ie., having to do with the
eigenvalues of a certain operator), and, on the other hand, isoperimetric problems.
We will notably discuss the celebrated Cheeger inequality in this context. We start
by defining what is a Poincaré inequality. Recall that the variance of a random
variable f with respect to a probability measure µ is Varµ(f) = Eµ((f − m)2) =
Eµ(f 2) − Eµ(f)2.

Definition 1. A measure µ on a space X is said to satisfy a Poincaré inequality
with constant c if

Varµ(f) ≤ c

∫

X

|∇f |2dµ (14)

for every f : X → R such that the various terms in (14) make sense.

Usually we will have in mind that X is a smooth Riemaniann manifold with
metric g which is either compact or open and bounded, and that µ is a probability
measure on X. However, not much is lost in thinking that X is a finite graph
and that ∇f denotes the discrete derivative f(y) − f(x) for x and y neighbours
in f (the integral then becomes a sum over the edges). We will come back to the
discrete case in more specific details below.

Poincaré proved that if X is the closure of an open domain in R
n with smooth

boundary, equipped with the standard Euclidean metric and Lebesgue measure,
then X satisfies (14) for some c > 0. Here is an elementary proof in dimension
n = 1, in which case we may assume without loss of generality that X = (0, 1).
Then if f is C1 and m denotes the average of f , we have:

∫ 1

0

|f(s) − m|2ds =

∫ 1

0

∣∣∣∣f(s) −
∫ 1

0

f(t)dt

∣∣∣∣
2

ds

≤
∫ 1

0

∫ 1

0

|f(s) − f(t)|2dsdt

=

∫ 1

0

∫ 1

0

∣∣∣∣
∫ t

s

f ′(u)du

∣∣∣∣
2

dsdt

≤
∫ 1

0

∫ 1

0

|t − s|
∫ t

s

f ′(u)2dudsdt

14



by applying Cauchy-Schwarz’s inequality (twice). Thus, by Fubini’s theorem:

∫ 1

0

|f(s) − m|2ds ≤ 2

∫ 1

0

f ′(u)2du

∫ 1

0

∫ 1

0

|t − s|1{s≤u≤t}dtds

≤ 2

∫ 1

0

f ′(u)2du[u(1− u) − u2

2
(1 − u)]

≤ 1

2

∫ 1

0

f ′(u)2du,

and (14) holds with c = 1/2. (Better optimal constants are possible).

Intuition.To say that there is a Poincaré inequality amounts to the following
statement. Say a number σ > 0 is given. We try to build a function f on X such
that E(f) = 0 and the standard deviation off is σ (fixed). Then there is a Poincaré
inequality if there is always a “smoothest” function which achieves this standard
deviation. In particular any function with zero mean and standard deviation σ has
to be rougher than this function, in the sense that its gradient has larger L2 norm.
This is a highly intuitive fact for domains in Rd, so unsurprisingly the Poincaré
inequality holds with a great degree of generality - as we will soon see. But first,
we explain why we are interested in this inequality.

Remark 1. In (14), the L2 norm of the gradient makes sense even if the function
is not C2, e.g. if the weak derivatives exist and are L2 functions as in the Sobolev
space W 1,2 = H1. In proofs below, we will freely apply the Poincaré inequality for
functions in W 1,2.

2.1 Poincaré implies concentration

Theorem 2. Assume that (X, g) satisfies a Poincaré inequality (14) for some
c > 0 and that µ is absolutely continuous with respect to the volume element.
Then if µ(A) ≥ 1/2, we have for all ε > 0

µ(Aε) ≥ 1 − exp

(
− ε

3
√

c

)
. (15)

In other words, a Poincaré inequality always implies an exponential concentra-
tion for (X, µ).

Proof. Let A, B be subsets of X such that d(A, B) = ε (later, we will take B to
be the complement of Aε). Define a function f : X → R by the following. Let
a = µ(A) and let b = µ(B). Let f be a function such that f(x) = 1/a on A and

15



f(x) = −1/b on B. In between A and B, interpolate as smoothly as possible, say
linearly. For instance, take

f(x) =
1

a
− 1

ε

(
1

a
+

1

b

)
min(ε, d(x, A)).

f is not smooth but is in the space W 1,2, so we can apply the Poincaré inequality
(14) to it (this is where we use the fact that µ is absolutely continuous with respect
to the volume element). This will give us a lower bound on the total roughness
of f and thus may tell us how b and a differ - in particular, we hope to show
concentration, so that b is indeed much smaller than a.

Note that since f is constant on A∪B, we have ∇f = 0 on this set. Moreover,

|∇f | ≤ 1

ε

(
1

a
+

1

b

)
,

µ-almost surely. Thus, integrating:

∫
|∇f |2dµ ≤ 1

ε2

(
1

a
+

1

b

)2

(1 − a − b).

On the other hand, if m denotes the mean of f ,

Varµ(f) =

∫
(f − m)2dµ

≥
∫

A

(f − m)2dµ +

∫

B

(f − m)2dµ

≥ a(1/a − m)2 + b(−1/b − m)2

Calculus shows that the right-hand side is minimized for m = 0. Thus, after
expanding, we find:

Varµ(f) ≥ 1

a
+

1

b
.

Plugging this into (14), this implies:

1

a
+

1

b
≤ c

1

ε2

(
1

a
+

1

b

)2

(1 − a − b)

or equivalently

ε2

c
≤
(

1

a
+

1

b

)
(1 − a − b) =

(1 − a − b)(a + b)

ab
≤ 1 − a − b

ab
≤ 1 − a

ab
− 1

a

16



where we have used that a + b ≤ 1. Rearranging, we get (since a ≥ 1/2):

b ≤ 1 − a

a

1 − a

1/a + ε2/c
≤ 1

1 + aε2/c
≤ 1 − a

1 + ε2/(2c)
.

If B = Ac
ε and ε2/(2c) = 1 or ε =

√
2c, then we find

µ(Ac
ε) ≤ µ(Ac)

1

2

and, iterating, 1− µ(Akε) ≤ 2−k−1. Thus if r > 0 and if kε ≤ r < (k + 1)ε, noting
that r 7→ µ(Ac

r) is monotone non-increasing,

1 − µ(Ar) ≤ 2−k−1 ≤ exp

(
− log 2√

2c
r

)
.

Since log 2/
√

2 = 0.49... > 1/3, we get

1 − µ(Ar) ≤ exp

(
− r

3
√

c

)

as claimed.

Note. Ledoux’s proof of this result, p. 48, contains several typos that affect
the proof.

2.2 Poincaré inequality and eigenvalues

On every Riemaniann manifold (X, g) there is one particularly natural measure
which is the volume element dv. If furthermore, X is compact then dv is a finite
measure and we can define µ = dv/V , where V is the total volume, so that µ
is a probability measure. In that case, we claim that (X, g, µ) always satisfies a
Poincaré inequality, and furthermore that the constant c > 0 is the first eigenvalue
of an operator −∆, where ∆ is defined on functions on X and is called the Laplace-
Beltrami operator, or shortly the Laplacian. Formally, if f is a smooth function
on X, then

∆f = div(∇f)

as for the usual Laplacian in Rn. Alternatively, one may think of a general finite
graph X and a Markov chain defined on X through its transition probability
matrix P . In that case ∆ = P − I, where I is the identity matrix.

In all those cases, spectral theory guarantees that the eigenvalues of −∆ are all
nonnegative, and form a discrete set. Thus they can be ordered in a nondecreasing
way 0 ≤ λ1 ≤ λ2 ≤ . . .. Usually we are interested only on strictly positive eigenval-
ues. We have written here λi ≤ λi+1 because the eigenvalues may have nontrivial
multiplicity. However, it is a fact that the first eigenvalue λ1 has multiplicity 1:
see Proposition VII.4.1 in [8] or Corollary 2 in Chapter I of [7].
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Remark 2. if the Riemaniann manifold X is not compact, it becomes necessary
to impose boundary conditions in order to get a discrete spectrum. These are
typically of the Dirichlet type, meaning that f |∂X = 0, or of Neumann type: that
is, ∂f/∂n = 0 on ∂X. In both cases there is a discrete spectrum, however in
the Neumann case the first eigenvalue is λ1 = 0, corresponding to the constant
eigenfunction equal to 1 on X. On a compact manifold, or in the Dirichlet case
for open bounded manifolds, then it is a fact that λ1 > 0.

A good and short introduction to the Laplacian on Riemaniann manifolds can
be found in the book by Chavel [7], Chapter I. Chapters VII.1 and VII.2 in another
book by Chavel, [8], contains many more details, but is still very accessible.

Theorem 3. Assume that (X, g) is a compact Riemaniann manifold. Then a
Poincaré inequality (14) holds with c = 1/λ1. Moreover, 1/λ1 is the smallest
constant for which (14) holds. In particular, there is the concentration inequality:
for all measurable A ⊂ X such that µ(A) ≥ 1/2, and for all ε > 0

µ(Aε) ≥ 1 − exp

(
−ε

√
λ1

3

)
. (16)

Proof. We may regard C2 functions on X as elements of L2(X), which is a Hilbert
space when equipped with (f, g) =

∫
fgdµ. Green’s formula states that for any C2

functions f and g, ∫
(∆f)gdµ = −

∫
(∇f,∇g)dµ.

(Since the manifold is compact there is no boundary term). In particular, −∆
is self-adjoint and nonnegative for this scalar product, hence the eigenspaces are
orthogonal to one another, and there exists a complete orthonormal basis of L2(X)
which consists of eigenfunction f1, . . . that are associated with eigenvalues λ1, . . ..
Thus for every f ∈ L2(X) one may write

f =

∞∑

j=1

(f, fj)fj

and by Parseval’s identity

‖f‖2 =
∞∑

j=1

(f, fj)
2.

Now, let E(f, g) =
∫

(∇f,∇g)dµ, the so-called Dirichlet energy. Then E is bilinear
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symetric, so if r ≥ 1 one has, letting αj = (f, fj)

0 ≤ E
(

f −
r∑

j=1

αjfj , f −
r∑

j=1

αjfj

)

= E(f, f) − 2
r∑

j=1

αjE(f, fj) +
r∑

j,k=1

αjαkE(fj, fk)

= E(f, f) + 2
r∑

j=1

αj(f, ∆fj) −
r∑

j,k=1

αjαk(fj, ∆fk)

= E(f, f) − 2

r∑

j=1

α2
jλj +

r∑

j=1

α2
jλj

Thus E(f, f) ≥∑r
j=1 α2

jλj for all r ≥ 1, from which we deduce:

∞∑

j=1

α2
jλj < ∞

and

E(f, f) ≥
∞∑

j=1

α2
jλj ≥ λ1

∞∑

j=1

α2
j = λ1‖f‖2

by Parseval’s identity. Note that if f has zero mean, then ‖f‖2 = Varµ f . By
adding to a zero-mean f a constant number, note that neither the variance nor
the Dirichlet energy are changed, from which we deduce that for any function f
on X:

Varµ f ≤ 1

λ1
E(f, f)

as claimed. To see that this is sharp, take f = f1.

2.3 Cheeger’s inequality

We now explain the connection of the Poincaré inequality to isoperimetric prob-
lems. This explains Theorem 2 from a more geometric perspective. Recall the
definition of the isoperimetric constant:

h = inf
Ω⊂X

µ+(Ω)

µ(Ω)
,

where Ω is open with compact closure within X.
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It is not hard to see that if X is compact then h, as defined here, must be equal
to 0 (take, for instance, X itself or X minus a small ball of radius ε > 0, and let
ε → 0.) Thus in the compact case, one needs to change slightly the definition,
for instance by requiring that µ(Ω) ≤ 1/2. But for the sake of simplicity we only
speak about the open bounded case.

It can be shown that if X is a n-dimensional Riemaniann manifold (n ≥ 2),
then

h = inf
Ω

A(∂Ω)

Vol(Ω)
(17)

where A is the n−1-dimensional Riemaniann area measure for submanifolds of X.
We have seen how we can expect to have exponential concentration of the form
µ(Ar) ≥ 1 − e−hr for µ(A) ≥ 1/2. The following fundamental inequality shows
that (up to the the constants in the exponential) what we get from a Poincaré
inequality is stronger.

Theorem 4. (Cheeger’s inequality) The following inequality holds in complete
generality:

h2/4 ≤ λ1,

where λ1 is the first eigenvalue of −∆ with Dirichlet boundary conditions.

Proof. The proof consists of two results which are interesting in their own right.
First, introduce a more general ’isperimetric constant’ hν for ν > 1:

hν = inf
Ω

A(∂Ω)

Vol(Ω)1−1/ν
(18)

If 0 < hν < ∞ then ν may be called an ’isoperimetric dimension” of X, and
it is fairly obvious that hν > 0 can only occur if ν ≥ n, the dimension of the
manifold. The standard isoperimetric number of (17)is obtained by taking ν = ∞
in (18). The first one says that the isoperimetric constant can be viewed as an L1

equivalent of the Poincaré constant.

Lemma 1. (Federer-Fleming theorem)

hν = inf
f 6=0

∫
|∇f |dµ

‖f‖ν/(ν−1)

where the infimum is taken over f ∈ C∞
c .

Proof. The proof is closely related to the arguments in the proof of Theorem 2, so
we skip it. (This is an adaptation of Theorem II.2.1 in [8]).

The second result is the Nirenberg-Sobolev inequality, which is a particular
case of the well-known Sobolev embedding (on which we will come back later).
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Lemma 2. There is the following inequality: for any function φ ∈ C∞
c , then

‖∇φ‖2 ≥
ν − 2

2(ν − 1)
hν‖φ‖2ν/(ν−2).

Proof. We follow Lemma VI.1.1 in [8]. We may assume that ν > 2 and that hν > 0
without loss of generality. Let f = |φ|p where

p =
2(ν − 1)

ν − 2
.

Then p ≥ 2, and f ∈ C∞
c a.e.-dµ. By the Federer-Fleming theorem,

‖∇f‖1 ≥ hν‖f‖ν/(ν−1). (19)

But note that
|∇f | = p|φ|p−1|∇φ|, a.e.-dµ.

Therefore, integrating and applying the Cauchy-Schwarz inequality, we obtain:
∫

|∇f |dµ ≤ p‖∇φ‖2‖φ‖p−1
2(p−1).

Putting this together with (19), we get

p‖∇φ‖2‖φ‖p−1
2(p−1) ≥ hν‖f‖2ν/(ν−2)

Since f = |φp|, we get

‖∇φ‖2 ≥
1

p
hν

‖f‖ν/(ν−1)

‖φ‖p−1
2(p−1)

=
1

p
hν‖φ‖2ν/(ν−2)

as claimed.

Now, letting ν → ∞ in the Nirenberg-Sobolev inequality we obtain:

‖∇φ‖2 ≥
1

2
h‖φ‖2, (20)

for any φ ∈ C∞. Let f = f1, the first eigenfunction of the Dirichlet Laplacian. We
claim that this inequality (20) also holds for φ = f . This is because, since f has
Dirichlet boundary conditions, we can find a sequence of functions φn ∈ C∞ such
that φn → f in Sobolev norm, i.e., ∇(φn − f) and φn − f both tend to 0 in the
L2 norm. Thus applying (20) to φn and letting n → ∞, this also applies to f .
However, by Green’s formula

‖∇f‖2 =
√

λ1‖f‖2,

which, after squaring in (20), completes the proof.
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2.4 Discrete case: Markov chains on graphs

Much of the theory developed above has an equivalent for the discrete case, where
the manifold X is replaced with a graph G = (V, E) and the gradient of a function
f : V → R defined on the vertices of the graph, is given by the discrete derivative

∇f(e) = f(y) − f(x), e = (x, y) ∈ E.

Let us assume for simplicity that G is undirected (we will only use the gradi-
ent squared, so the orientation doesn’t matter anyway), and consider the simple
random walk on G: thus if p(x, y) denotes the transition probabilities: p(x, y) =
1/deg(x) if y ∼ x, and 0 otherwise. It has a reversible equilibrium probability
distribution µ(x). That is,

µ(x)p(x, y) = µ(y)p(y, x) (21)

and µ(x) is proportional to deg(x). Define the Dirichlet energy of this function f
is given by

E(f, f) =
1

2

∑

x,y

(f(y)− f(x))2p(x, y)µ(x).

A Poincaré inequality states that

Var f ≤ c E(f, f) (22)

for all functions f : V → R. Recall that the discrete Laplacian is the matrix

L = P − I,

where I is the V × V identity matrix and P = (p(x, y))x,y inV is the transition
matrix. The matrix L is the (discrete) generator of the random walk, in the sense
that for any bounded function f : V → R,

f(Xn) −
n−1∑

i=0

Lf(Xi), n = 0, 1, . . .

is a martingale in the natural filtration of the random walk (X0, . . .). By the
Perron-Frobenius theorem, P has all its eigenvalues smaller or equal to 1, so we
can order the eigenvalues of L in nondecreasing order λ0 = 0 < λ1 ≤ λ2 . . ..

Definition 2. The number λ1 > 0 is called the spectral gap of the random walk.

The spectral gap comes up in a number of probabilistic and geometric problems.
In probability, the spectral gap is intimately connected to asymptotics of the mixing
time of the random walk, i.e., how long does it take for a random walk to reach
its stationary distribution.

We start with an analogue of the Poincaré inequality described in Theorem 3.
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Theorem 5. There is the equality:

λ1 = inf
f 6=0

E(f, f)

Var f

The proof is a copy of the continuum version of this result (Theorem 3). In
particular, this gives us a (discrete) Poincaré inequality (22) satisfied with c =
1/λ1.

We now prove a concentration inequality (closely related Theorem 2) which
holds in complete generality for functions that are sufficiently ’smooth”, i.e., Lip-
schitz in a suitable sense. For f : V → R, define

‖|f |‖2
∞ =

1

2
sup
x∈X

∑

y∈X

|f(y) − f(x)|2p(x, y) (23)

Theorem 6. Assume that (p, µ) is reversible on the finite graph G, and let λ1 > 0
be the spectral gap. Then if ‖|F |‖∞ < ∞ we have:

µ

(
F >

∫
Fdµ + ε

)
≤ 3e−ε‖|F |‖∞

√
λ1/2. (24)

Proof. While (24) can be proved along the same lines as Theorem 2, we propose
a different approach which is more adapted to this case. Let

Φ(λ) =

∫
eλF dµ

be the Laplace transform of the random variable F under the distribution µ. We
may assume by homogeneity that ‖|F |‖∞ = 1. By the Poincaré inequality applied
to eλF/2 we get

λ1 Var(eλF/2) ≤ E(eλF/2, eλF/2),

that is,
λ1(Φ(λ) − Φ(λ/2)2) ≤ E(eλF/2, eλF/2).

On the other hand, if we compute the Dirichlet energy of eλF/2 we get

E(eλF/2, eλF/2) =
∑

F (x)<F (y)

(eλF (x)/2 − eλF (y)/2)2p(x, y)µ(x) by symmetry

≤ λ2

2

∑

F (x)<F (y)

eλF (y)(F (y) − F (x))2p(x, y)µ(x) using 1 − e−x ≤ x

=
λ2

2

∑

y

eλF (y)
∑

x

(F (y)− F (x))21{F (x)<F (y)}p(y, x)µ(y) by (47)

≤ λ2‖|F |‖2
∞
∑

y

eλF (y)µ(y) = λ2Φ(λ).
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Thus we get
λ1(Φ(λ) − Φ(λ/2)2) ≤ λ2Φ(λ).

Rephrasing this, we get the inequality:

Φ(λ) ≤ 1

1 − λ2/λ1

Φ(λ/2)2,

for every λ <
√

λ1. This can now be iterated, yielding:

Φ(λ) ≤
n−1∏

k=0

(
1

1 − λ2/(4kλ1)

)2k

Φ(λ/2n)2n

Note that Φ(λ) = 1 + λE(F ) + o(λ) as λ → 0 (by the Lebesgue convergence
theorem), and we may assume without loss of generality that E(F ) = 0. Thus
letting n → ∞:

Φ(λ) ≤
∞∏

k=0

(
1

1 − λ2/(4kλ1)

)2k

and note that this infinite product converges for every λ > 0 (but we have only
show that the above inequality holds if λ <

√
λ1). If we also set λ =

√
λ1/2 then

the right-hand side is a universal constant slightly smaller than 3 (slightly bigger
than e) and we find

Φ(
√

λ1/2) ≤ 3.

The proof of Theorem 2 is now an easy application of Markov’s inequality:

µ (F > ε) ≤ µ
(
eλF > eε

)

≤ e−λεΦ(λ) = 3e−ε
√

λ1/2

as desired. The proof extends immediately to arbitrary function F with ‖|F |‖∞ <
∞.

We now mention a couple of useful and rather unexpected consequences of this
Theorem, which relates the spectral gap of the random walk to the diameter of the
graph. Let G = (V, E) be an undirected finite graph and let µ be the equilibrium
measure of simple random walk on G: thus, µ(x) = α/deg(x), where α > 0 is a
normalising constant. We say that µ is nearly constant if there exists C > 0 such
that

µ(x) ≤ C min
y∈V

µ(y).

In particular this is guaranteed to happen if the graph G is regular (in which case
we can take C = 1).
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Theorem 7. Let λ1 be the spectral gap of the random walk, and let δ be the
diameter of the graph (maximal distance between two vertices). Then

λ1 ≤
(

8 log(12C Card V )√
2δ

)2

.

Proof. We first show how to extend Theorem 6 to a concentration away from the
median. Let

D(x, y) = sup
‖f‖∞≤1

[f(y) − f(x)]

Then for any set A such that µ(A) ≥ 1/2 we have, denoting Aε the D-enlargement
of size ε of A,

µ(Aε) ≥ 1 − 3 exp(−ε
√

λ1/4). (25)

Indeed, F (x) = min(r, D(x, A)) satisfies ‖|f |‖∞ ≤ 1 so Theorem 6 applies to it.
On the other hand, ∫

Fdµ ≤ (1 − µ(A))r

thus

µ(Ac
r) ≤ µ(F > r)

≤ µ

(
F >

∫
Fdµ + rµ(A)

)

≤ µ

(
F >

∫
Fdµ + r/2

)
≤ 3 exp(−r

√
λ1/4)

by Theorem 6. This proves (25). In particular, if F is 1-Lipschitz for the distance
D, the same reasoning as for the sphere shows that

µ(|F − mF | > r) ≤ 6 exp(−r
√

λ1/4). (26)

Now, fix a, b ∈ V , and let 2r = D(a, b). Consider the function F (y) = D(y, b),
and let m be a median for F . Note that since F is 1-Lipschitz for the distance D,
we have:

µ(a)µ(b) ≤ µ ⊗ µ{(x, y) : |F (x) − F (y)| ≥ 2r}.
Decomposing on the event where |F (x)−m| ≤ r, |F (y)−m| ≤ r, or |F (x)−m| > r
and |F (y)− m| > r, we get to the upper-bound:

µ(a)µ(b) ≤ 2µ(|F − m| > r) ≤ 12 exp(−r
√

λ1/4),
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using (26). On the other hand, note that D(a, b) ≥ d(a, b)
√

2. Indeed, for every

‖|f |‖2
∞ =

1

2
sup
x∈V

∑

y∈V

(f(y) − f(x))2p(x, y)

≤ 1

2
sup{|f(y) − f(x)|; x ∼ y}2 =: ‖∇f‖2

∞

and thus

D(x, y) = sup
‖f‖∞≤1

[f(y) − f(x)] ≥ sup
‖∇f‖2

∞≤2

[f(y) − f(x)] =
√

2d(x, y).

Thus
µ(a)µ(b) ≤ 2µ(|F − m| > r) ≤ 12 exp(−

√
2d(a, b)

√
λ1/8).

Since µ is almost constant, note however that µ(x) ≥ 1/(C Card V ). Thus taking
a, b a pair of vertices which realise the diameter, gives us the result.

The spectral gap of a random walk is an important quantity, and contains
much information about the properties of the random walk. For instance, its
inverse R = 1/λ1 is called the relaxation time, and is closely related to the mixing
time of the random walk. Intuitively speaking, this is the time it takes for the
process to reach its equilibrium distribution. Equivalently, if we think of heat
diffusion on the graph, starting from a situation where a particular vertex has
temperature 1 and every other vertex has temperature 0, this is the time it takes
for the temperature distribution to take its stationary values.

Thus the spectral gap gives information about how long to run a particular
Markov chain to get a stationary sample. As such, the relaxation is a quantity of
fundamental importance in statistics or computer science: the MCMC is one of the
10 most widely used algorithms in the world. The upper-bound from Theorem 7
gives a lower bound on the relaxation time R. In practice this will rarely be sharp,
but it maybe useful to give theoretical polynomial or logarithmic lower bounds on
the running time of an MCMC algorithm.
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3 Logarithmic Sobolev Inequalities

3.1 Introduction and definition

Log-Sobolev inequalities, introduced by Leonard Gross in 1975 [22], are one of the
essential tools for proving concentration phenomena, not only because they require
in some sense less understanding about the underlying geometry of the measured
space, but also because they yield sharper results for concentration, i.e., Gaussian
rather than exponential. They are particularly well-suited for infinite-dimensional
analysis.

We start by recalling the classical Sobolev embedding for functions in R
n. Let

Ω be a bounded open domain in Rn with sufficiently regular boundary (Lipschitz
boundary, or satisfying the ’cone’ condition for Brownian motion). Let W k,p(Ω)
be the Sobolev space of order (k, p) where k ≥ 1 and p ∈ [1,∞): this is the set
of functions for which all k (weak) derivatives are in Lp(Ω). In particular, W 1,2

is denoted by H1 is a Hilbert space. Then the Sobolev embedding states the
following:

Theorem 8. Let f ∈ W k,p(Ω). Then f ∈ W ℓ,q(Ω) for any ℓ, q such that ℓ ≤ k
and

1

p
<

1

q
+

k − ℓ

n
. (27)

Moreover, this embedding is continuous: that is,

‖f‖ℓ,q ≤ c‖f‖k,p (28)

where the Sobolev norm ‖f‖k,p is given by the sum of the Lp norms of all derivatives
of order k.

In the case where k = 1 and p = 2, which is the case we are in fact really
interested in, we have already proved this result (it is the Nirenberg-Sobolev in-
equality). Let us make a few important comments on this result. First, this result
tells us that if f ∈ W k,p for some k ≥ 1 and p ∈ [1,∞), then its derivatives of
order ℓ < k are in fact not only in Lp but also in Lq where q is defined by (27),
and note that q > p. In the case k = 1, p = 2, this says

‖f‖2+εn ≤ cn‖∇f‖2

where εn > 0 and εn ∼ 4/n as n → ∞. Thus lower-order derivatives are more
integrable. Interestingly, how much more integrable depends on the dimension n,
as shown by (27). Note that as n → ∞ (in order to work in dimension-free setup)
we have 1/q → 1/p, and thus the Sobolev gain appears to become negligible in the
limit. In fact things are more subtle, as we will see that if k = 1 and p = 2, we
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can still get a logarithmic additional control when n → ∞: under the Gaussian
measure, we will see with the Gaussian Log-Sobolev inequality (Theorem 30)

∫
f 2 log(f 2)dµ ≤ c

∫
(∇f)2dµ (29)

for some c > 0, provided the right normalisation is chosen (E(f 2) = 1). In-
terestingly, this logarithmic gain compared to the Poincaré inequality has huge
consequences for the concentrative properties. In particular we will see that this
in general leads to Gaussian concentration (Theorem 9).

We will essentially take (29) as our definition of a Log-Sobolev inequality.
Given the f log f term, there is a natural probabilistic interpretation in terms of
the entropy of the random variable f . This leads us to the following definition.

Definition 3. Let (X, g) be a Riemaniann manifold, equipped with a probability
measure µ. We say that µ satisfies a Log-Sobolev inequality with constant C > 0
if for every smooth function f such that the terms below are well-defined:

Entµ(f 2) ≤ 2C

∫
|∇f |2dµ. (30)

Here Ent(f) denotes the entropy of the function f :

Entµ(f) = E(f log f) − E(f) log E(f).

More generally, this definition makes sense on any metric probability measure space
(X, d, µ), where |∇f | denotes the generalized gradient:

|∇f(x)| = lim sup
y→x

|f(y)− f(x)|
d(x, y)

,

Note that the entropy of a random variable (function) is always nonnegative
by Jensen’s inequality (since the function x 7→ x log x is convex) and is defined as
soon as E(X log+(1 + X)) < ∞. It is also homogeneous of degree 1 (as a norm
should be).

A first, unsurprising result, is that a Log-Sobolev inequality is always stronger
than a Poincaré inequality.

Proposition 3. Assume that µ satisfies a Log-Sobolev inequality (30) for all
smooth functions f with constant C > 0. Then for all bounded smooth functions
f

Varµ(f) ≤ C

∫
|∇f |2dµ,

i.e., the Poincaré inequality is satisfied.
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Proof. The proof is simple and relies on a Taylor expansion of the Log-Sobolev
inequality (30) applied to 1 + εf , where f is any bounded function with zero
mean. Indeed, note first that ∇(1 + εf) = ε∇f so the right-hand side of (30) is
2Cε2

∫
|∇f |2dµ. The left-hand side, on the other hand, has the following asymp-

totics as ε → 0. First, using the probabilistic notations P and X instead of µ and
f , by the Lebesgue convergence theorem

E[(1 + εX)2 log((1 + εX)2)] = 2E[(1 + 2εX)(εX − ε2X2/2)] + o(ε2)

= 2εE(X) + 4ε2
E(X2) − ε2

E(X2) + o(ε2)

= 3ε2
E(X2) + o(ε2) (since E(X) = 0).

Also,

E[(1 + εX)2] log E[(1 + εX)2] = (1 + ε2
E(X2)) log(1 + ε2

E(X2))

= (1 + ε2
E(X2))(ε2

E(X2)) + o(ε2)

= ε2
E(X2) + o(ε2)

so that
EntP[(1 + εX)2] = 2ε2

E(X2) + o(ε2).

From this we conclude (using (30)): for all ε > 0

2ε2
E(X2) + o(ε2) ≤ 2Cε2

∫
|∇f |2dµ

so that necessarily

Varµ f = E(X2) ≤ C

∫
|∇f |2dµ.

Since this inequality is unchanged by the addition of a constant to f , it holds for
any smooth function f with compact support, thereby proving Poincaré’s inequal-
ity.

3.2 Log-Sobolev implies Gaussian concentration

We now state the result which explains our interest in log-Sobolev inequalities.
Let (X, d, µ) be a general measured metric space. If φ : (X, d) → (Y, | · |) then we
may define the (generalised) gradient length of φ at the point x to be:

|∇φ(x)| = lim sup
y→x

|φ(y) − φ(x)|
d(x, y)

,

which matches the usual definition when X = Rn and Y = R. The important
property that is used in this proof is that the generalized gradient satisfies the
following chain rule: if f : X → R and φ : R → R is smooth, then

|∇φ(f)| ≤ |φ′(f)||∇(f)|
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pointwise. Recall that if a function is K-Lipschitz

Theorem 9. Let (X, d, µ) be a metric measure space in which the Log-Sobolev
inequality (30) holds, where |∇f | is interpreted as above. Then every K−Lipschitz
function is integrable and if F : X → R is such a function, we have:

µ

{
x : F (x) ≥

∫
Fdµ + r

}
≤ exp

(
− r2

2CK2

)
. (31)

Proof. We start by proving the result for F bounded. The following argument is
due to Herbst and is described in Theorem 5.3 from Ledoux [31]. Let Φ(λ) denote
the Laplace transform of F :

Φ(λ) =

∫
eλF dµ.

Our goal will be to show that if
∫

Fdµ = 0, and F is bounded,

Φ(λ) ≤ eCK2λ2/2, (32)

and the result then follows from Markov’s inequality and optimising in λ: indeed
for every λ > 0: assuming (32) then we have

P(F > r) ≤ e−λrΦ(λ) ≤ exp(−λr + CK2λ2/2).

The term in the exponent is optimal when −r + CK2λ = 0, i.e. if λ = r/(CK2),
in which case we obtain:

P(F > r) ≤ exp(−r2/(2CK2)),

as claimed (the general, not necessarily bounded case is then an easy consequence
of the monotone convergence theorem). Thus it suffices to prove (32). To do this,
assume by homogeneity that K = 1 and consider the function

G(λ) = E(eλF−Cλ2/2).

If f is defined as f 2 = eλF−Cλ2/2 so that G(λ) = E(f 2), then by the Log-Sobolev
inequality

Entµ(f 2) ≤ 2C

∫
|∇f |2dµ. (33)

Now, note that by definition of the entropy,

Entµ(f 2) = E(eλF−Cλ2/2(λF − Cλ2/2)) − G(λ) log G(λ)
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Let us now get an upper-bound on the the right-hand side of (33). Note first that
by the genearlized chain rule,

∫
|∇f |2dµ ≤ λ2

4

∫
|∇F |2eλF−Cλ2/2dµ

≤ λ2

4

∫
eλF−Cλ2/2dµ = λ2G(λ)/4.

since |∇F | ≤ K almost everywhere, by Rademacher’s theorem, and K = 1 by
assumption.Thus, using (33) and our lower bound on the entropy, we get

E(eλF−Cλ2/2(λF − Cλ2/2)) − G(λ) log G(λ) ≤ Cλ2G(λ)/2

and thus
E(eλF−Cλ2

(λF − Cλ2)) − G(λ) log G(λ) ≤ 0

but note that the first term in the left hand side is now simply equal to λG′(λ),
hence:

λG′(λ) − G(λ) log G(λ) ≤ 0.

Equivalently, if

H(λ) =
log G(λ)

λ
; λ > 0;

and H(0) = G′(0)/G(0) = E(F ) = 0. Then we get

H ′(λ) =
1

λ2G(λ)
[λG′(λ) − G(λ) log G(λ)] ≤ 0

and thus H(λ) ≤ H(0) = 0 for all λ ≥ 0. In particular, G(λ) ≤ 1 for all λ ≥ 0.
That is,

Φ(λ) ≤ eCK2λ2/2, (34)

which proves (32).

Remark 3. Below we will prove that the infinite-dimensional Gaussian measure
satisfies a Log-Sobolev inequality. In fact a similar argument may be used to prove
that any compact manifold X has a Log-Sobolev inequality. Furthermore, it can be
shown that if

ρ = inf
f 6=0

∫
|∇f |2dµ

Entµ(f 2)

(so that a Log-Sobolev inequality holds if and only if ρ > 0), and if n is the
dimension of the manifold X then

λ1 ≥ ρ ≥ nγ

n − 1

where γ is any lower-bound on the Ricci curvature of X.
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4 Concentration of Gaussian Measures and Pro-

cesses

In this section we shall investigate several ways in which Gaussian measures en-
joy dimension-free concentration phenomena. There are several mathematical ap-
proaches to establish this (geometric, probabilistic, analytic), and we take an an-
alytic approach via Ornstein-Uhlenbeck semigroups with some probabilistic ele-
ments coming from Gaussian processes.

First some definitions: Let T be any (nonempty) set and let (Ω,A, Pr) be a
probability space. Then a Gaussian process G is a mapping G : T×(Ω,A, Pr) → R

such that for any finite set of points (t1, ..., tk), the vector (G(t1), ..., G(tk)) has a
multivariate normal distribution. We shall say that G is centered if EG(t) = 0
for every t ∈ T . All standard Gaussian processes (such as the usual variants of
Brownian motion and sheets, Brownian bridges, etc.) as well as Gaussian measures
in normed linear spaces B (by simple duality arguments, see Subsection 4.4) can
be accommodated in this framework.

As we shall see a unified way to establish dimension-free measure concentration
for Gaussian measures is through studying the suprema of Gaussian processes, that
is by studying the random variable supt∈T G(t) (or alternatively, supt∈T |G(t)|). To
ensure that supt∈T G(t) is well defined, let us assume that T is countable. [Note
that otherwise this supremum is not necessarily a proper random variable. Usually
G will have continuous sample paths and then the supremum can a fortiori be
realized as one over a countable set, so that this is not really a restriction.]

Since E supt G(t) is generally not zero we can expect concentration of supt G(t)
only around its mean E supt G(t) (or, alternatively, around its median). Indeed we
shall prove the following fundamental result, which is due independently to Borell
[5] and Sudakov & Cirelson. Note that it holds with ’minimal structure’ required
for the Gaussian process (i.e., no ’stationarity’ requirement, no assumption on the
increments, no sample-continuity etc.). The only condition is that the maximum of
the process exists almost surely (which is necessary to even formulate the result).

Theorem 10 (Borell’s inequality). Let G(t), t ∈ T, be a centered Gaussian process
indexed by the countable set T , and such that supt∈T G(t) < ∞ almost surely. Then
E supt∈T G(t) < ∞, and for every r ≥ 0 we have

Pr

{∣∣∣∣sup
t∈T

G(t) − E sup
t∈T

G(t)

∣∣∣∣ ≥ r

}
≤ 2e−r2/2σ2

where σ2 = supt∈T E(G2(t)) < ∞.

We note that the same inequality holds if G(t) is replaced by |G(t)| everywhere
in the theorem.
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Before we prove Theorem 10 below let us add some comments. The quantity σ2

is sometimes called the ’weak’ variance of G, as the supremum over T is outside of
the expectation of the second moment of G(t). Indeed one of the hidden strengths
of this result is that the dependence on the variance of the process G is simply
through σ2: Think of the simplest case where T = 1, ..., n and where the X(t)′s
are i.i.d. centered normal: then E max1≤t≤n G2(t) grows logarithmically in n (being
the maximum of n i.i.d random variables) whereas max1≤t≤n EX2(t) is bounded
by a fixed constant!

We should also emphasize that Theorem 10 does not give any information about
the size of E supt Gt, it just says that supt Gt concentrates around its expectation.
If one is interested in estimating the size of E supt Gt one can use Dudley’s entropy
integral [12] and refinements using ’generic chaining’ [39], but this is not the content
of these notes.

4.1 The Ornstein-Uhlenbeck Semigroup

We shall prove Theorem 10 in Subsection 4.3 by applying a powerful logarithmic
Sobolev inequality for Gaussian measures on Rn. To establish this log-Sobolev
inequality we need some simple analytic tools from semigroup theory that are
summarized in what follows. We refer to Section 1.4 in [4] for an excellent reference.

Let γ = γn be the canonical Gaussian measure on Rn and denote by Lp(γn) the
space of p-fold γ-integrable functions on Rn. The Ornstein-Uhlenbeck semigroup
(Pt)t≥0 is the family of integral operators defined by

Pt(h)(x) =

∫

Rn

h(e−tx + (1 − e−2t)1/2y)dγ(y), t ∈ [0,∞], x ∈ R
n.

There are other (equivalent) ways to define these operators, the one used here is
also know as the ’Mehler formula’. Clearly whenever h is a bounded (measurable)
function these operators are well-defined. More generally, recall that γ equals the
image of the measure γ ⊗ γ on Rn × Rn under the mapping (x, y) 7→ e−tx +√

1 − e−2ty (write e−tx +
√

1 − e−2ty = x sin θ(t) + y cos θ(t) for θ(t) = arcsin(e−t)
and use that for X, Y i.i.d. centered Gaussian vectors and every θ the random
variable X sin θ + Y cos θ has the same distribution as X). Therefore

∫
|h(x)|dγ(x) =

∫ ∫
|h(e−tx +

√
1 − e−2ty)|dγ(x)dγ(y)

so that Fubini’s theorem implies that Pt(h) exists and is γ-integrable whenever h
is. The same holds for L1(γ) replaced by Lp(γ). Similarly we obtain for f ∈ L1(γ)
that

∫
Pt(h)(x)dγ(x) =

∫ ∫
h(e−tx +

√
1 − e−2ty)dγ(x)dγ(y) =

∫
h(x)dγ(x),
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or in other words
P∞(Pt(h)) = P∞(h) (35)

so that γ is a (in fact the unique) invariant measure for family of operators (Pt)t≥0.
From the above and dominated convergence and a simple approximation argument
we also obtain, for f ∈ Lp(γ)

lim
t→∞

Pt(f) = P∞(f) in Lp(γ). (36)

On the other ’end’ of the parameterization we have, since γ is a probability mea-
sure,

P0(h)(x) = h(x). (37)

Using furthermore the change of variables

(y, z) 7→ e−s

√
1 − e−2t

√
1 − e−2t−2s

y +

√
1 − e−2s

√
1 − e−2t−2s

z

which also realizes γ as the image of γ ⊗ γ one has

Pt(Psh)(x) =

∫
Psh

(
e−tx +

√
1 − e−2ty

)
dγ(y)

=

∫ ∫
h
(
e−se−tx + e−s

√
1 − e−2ty +

√
1 − e−2sz

)
dγ(z)dγ(y)

=

∫
h
(
e−t−sx +

√
1 − e−2t−2sw

)
dγ(w)

so that
Pt(Psh)(x) = Pt+sh(x), (38)

which implies that (Pt)t≥0 has the properties of a semigroup. The (infinitesimal)
generator of the semigroup is the operator defined by

Lh := lim
s→0

Ps(h) − h

s
(in L2(γ)) (39)

for h ∈ L2(γ) for which this limit exists. This is equivalent to

LPt(f) =
d

dt
Pt(f) (40)

(apply (39) to h = Pt(h) and use (38) for one direction and recall P0(h) = h for
the other).

The following Proposition gives a useful characterization of L in terms of a
second differential operator and an integration by parts formula for this operator
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(which is called the Ornstein-Uhlenbeck operator). We define a Gaussian Sobolev
space: Let W 1

2 (Rn, γ) be the completion of the space of infinitely-differentiable
functions with compact support in Rn with respect to the norm

‖f‖2
1,2 :=

∫

Rn

f 2(x)dγ(x) +

∫

Rn

|∇f(x)|2dγ(x).

Say f ∈ W 2
2 (Rn, γ) if f, Df ∈ W 1

2 (Rn, γ).

Proposition 4. Denote by ∆ the Laplace operator on Rn and by ∇ the gradi-
ent operator. Let L be the infinitesimal generator (39) of the Ornstein-Uhlenbeck
semigroup. Then we have L = ∆ − x∇ and the integration by parts formula

−
∫

fL(g)dγ =

∫
∇f · ∇gdγ

holds true for every f ∈ W 1
2 (Rn, γ), g ∈ W 2

2 (Rn, γ).

Proof. The identity L = ∆ − x∇ has several proofs: There is for instance a
probabilistic one using Ito’s formula and martingales, a funtional-analytic one
using Hermite polynomials as orthonormal bases for L2(γ), and one that simply
uses Taylor expansions. We shall give here a rather pedestrian calculus proof for
’smooth enough’ f (the general result following from approximation arguments):
clearly ’machinery’ can give faster proofs here but we prefer to stay self-contained.
In view of (40) it is sufficient to establish that

d

dt
Pt(f) = (∆ − x∇)(Pt(f))

holds. Define

Pθ(f)(x) =

∫
f(x sin θ + y cos θ)dγ(y)

and furthermore the mapping θ(t) = arcsin(e−t) so that Pθ(t)(f) = Pt(f) and

d

dt
Pt(f) =

d

dt
Pθ(t)(f) =

d

dθ
Pθ(f)

dθ

dt
=

d

dθ
Pθ(f)

(
− sin θ

cos θ

) ∣∣∣∣
θ=θ(t)

(41)

by the chain rule. Denote by 〈·, ·〉 the regular inner product in Rn. Then

d

dθ
Pθ(f) =

∫
d

dθ
f(x sin θ + y cos θ)dγ(y)

=

∫
〈∇f(x sin θ + y cos θ), x cos θ − y sin θ〉dγ(y)
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= cos θ

∫
〈∇f(x sin θ + y cos θ), x〉dγ(y)

− sin θ

∫
〈∇f(x sin θ + y cos θ), y〉 dγ(y)

=
cos θ

sin θ
〈∇
∫

f(x sin θ + y sin θ)dγ(y), x〉

−cos θ

sin θ
∆

∫
f(x sin θ + y cos θ)dγ(y)

=
cos θ

sin θ
(〈∇Pθf, x〉 − ∆Pθ(f)) (42)

where we have used, in the last but one step, that

∇xf(x sin θ + y cos θ) =
∇x (f(x sin θ + y cos θ))

sin θ

as well as integration by parts for the i-th coordinates

∫

Rn−1

∫ ∞

−∞

d

di
f(x sin θ + y cos θ)yi

e−
Pn

i=1 y2
i /2

(2π)n/2
dy

= cos θ

∫

Rn

d2

(di)2
f(x sin θ + y cos θ)dγ(y) (43)

=
cos θ

(sin θ)2

d2

(di)2

∫

Rn

f(x sin θ + y cos θ)dγ(y).

Plugging the last expression in (42) into (41) gives

d

dt
Pt(f) = − (〈∇Pθf, x〉 − ∆Pθ(f))

∣∣∣∣
θ=θ(t)

= (∆ − x∇)(Pt(f))

which completes the proof of the first claim. Given the identity L = ∆ − x∇ the
second claim of the proposition now follows immediately from integration by parts
on
∫
∇f · ∇gdγ.

4.2 The logarithmic Sobolev inequality for Gaussian Mea-

sures in Rn

We will now prove that the canonical Gaussian measure γ := γn on Rn satisfies the
log-Sobolev inequality condition of Theorem 9. This in turn implies that arbitrary
Lipschitz-maps of Gaussian measures concentrate in a dimension-free way, and will
in particular be seen to imply Theorem 10.

The following theorem is originally due to Gross [22] (it is sometimes called
”Gross’ logarithmic Sobolev inequality”).
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Theorem 11. Let γ be the canonical Gaussian measure on R
n with mean vector

zero and covariance matrix equal to the identity. Then for every f ∈ W 1
2 (Rn, γ)

we have

Entγ(f
2) ≤ 2

∫
|∇f |2dγ.

Proof. We shall assume first that f is infinitely differentiable, bounded and satisfies
infx f(x) ≥ c > 0 to simplify technicalities (in particular so that we can interchange
differentiation and integration below as we wish). We comment on the general case
at the end of the proof.

If we set h = f 2 then it is in fact sufficient to establish

Entγ(h) ≤ 1

2

∫ |∇h|2
h

dγ (44)

since
|∇(f 2)|2

f 2
=

|2f∇f |2
f 2

= 4|∇f |2.

We use the Ornstein-Uhlenbeck semigroup (Pt)t≥0 introduced in the previous sub-
section. Define

E(t) =

∫
Pt(h) log Pt(h)dγ

for which we have E(0) =
∫

Rn h log hdγ in view of (37) and

E(∞) = lim
t→∞

∫

Rn

Pt(h) log Pt(h)dγ =

∫

Rn

hdγ log

∫

Rn

hdγ

in view of (36). For f bounded and infinitely differentiable E(t) is continuously
differentiable for every t ≥ 0 by standard arguments involving dominated conver-
gence so that

−
∫ ∞

0

d

dt
E(t)dt = E(0) − E(∞)

which implies

Entγ(h) = E(0) − E(∞) = −
∫ ∞

0

d

dt

[∫

Rn

Pt(h) log Pt(h)dγ

]
dt. (45)

Using (40) we have

d

dt
(Pt(h) log Pt(h)) =

d

dt
(Pt(h)) log Pt(h) + Pt(h)

d
dt

Pt(h)

Pt(h)

= LPt(h) log Pt(h) +
d

dt
Pt(h)
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and interchanging differentiation and integration we arrive at

d

dt

[∫

Rn

Pt(h) log Pt(h)dγ

]
=

∫

Rn

LPt(h) log Pt(h)dγ +

∫

Rn

d

dt
Pt(h)dγ.

To the first summand we apply integration by parts from Proposition 4 to obtain
∫

LPt(h) log Pt(h)dγ = −
∫

∇Pt(h) · ∇(log Pt(h))dγ = −
∫ |∇Pt(h)|2

Pt(h)
dγ

For the second summand we interchange integration and differentiation again to
obtain from invariance of γ (i.e. (35)) that

∫
d

dt
Pt(h)dγ =

d

dt
P∞(Pt(h)) =

d

dt
P∞(h) = 0.

We conclude that the integrand in (45) equals

d

dt

∫

Rn

(Pt(h) log Pt(h))dγ = −
∫

Rn

|∇Pt(h)|2
Pt(h)

dγ. (46)

To proceed with the proof, note that the chain rule (and another interchange of
differentiation and integration) clearly implies that

∇Pt(h) = e−tPt(∇h)

so that
|∇Pt(h)| ≤ e−tPt(|∇h|) (47)

Furhermore – writing shorthand v(y) = e−t(·)+(1−e−2t)1/2y – the Cauchy-Schwarz
inequality implies

Pt(|∇h|)2 =

∫
|∇h(v(y))|

√
h(v(y))

h(v(y))
dγ(y) ≤ Pt(h)Pt

( |∇h|2
h

)
. (48)

Combining (45), (46), (47) and (48) we conclude

Entγ(h) =

∫ ∞

0

∫

Rn

|∇Pt(h)|2
Pt(h)

dγdt

≤
∫ ∞

0

e−2t

∫ (
Pt

( |∇h|2
h

))
dγdt =

1

2

∫ |∇h|2
h

dγ

where we have used invariance of γ (i.e., (35)) in the last step. This establishes
(44).

The result for f ∈ W 1
2 (Rn, γ) satisfying f ≥ 0 then follows from Fatou’s lemma

and since one can devise a sequence φi of bounded infinitely differentiable functions
satisfying φi ≥ 1/i s.t. φi → f in ‖ · ‖1,2 and almost everywhere. For an arbitrary
function f ∈ W 1

2 (Rn, γ) the result follows from the fact that |f | ∈ W 1
2 (Rn) and

|∇|f || = |∇f |.
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We note that the same proof implies a log-Sobolev inequality with constant 2/c
for log-concave measures dµ = e−Udλ where Hess(U) ≥ cI. In the proofs one uses,
instead of the Ornstein-Uhlenbeck semigroup, the semigroup with infinitesimal
generator ∆ −∇U · ∇.

4.3 Proof of Borell’s Inequality

We are now in a position to apply the log-Sobolev inequality Theorem 9 to prove
Theorem 10. Let G(t), t ∈ T, be a centered Gaussian process indexed by the
countable set T , and such that supt∈T G(t) < ∞ almost surely. Fix a finite set of
points t1, ..., tn in T and denote by G = (G(t1), ..., G(tn)) the associated Gaussian
random vector with positive semi-definite covariance Γ = V ′V . Now if N is a
random vector in Rn distributed according to the canonical Gaussian measure γ,
then by the usual properties of normal random variables the distribution of V N
is the same as the one of G. Define the mapping

F (x) = max
1≤i≤n

(V x)i, x ∈ R
n, (49)

to which we will apply Theorem 9 with X = Rn and µ = γ. To verify that F is
Lipschitz from Rn to R we use the Cauchy-Schwarz inequality that

|(V x)i − (V y)i| =

∣∣∣∣∣
∑

j

Vi,j(xj − yj)

∣∣∣∣∣ ≤
√∑

j

V 2
i,j|x − y|.

Since furthermore ∑

j

V 2
i,j = V ar(Gti) ≤ σ2

we see that the mapping F is Lipschitz with Lipschitz constant σ and hence satisfies
the conditions of Theorem 9 with K = σ which – combined with Theorem 11 (and
thus C = 1) – gives that

Pr

(
max
1≤i≤n

Gti ≥ E max
1≤i≤n

Gti + r

)
≤ exp

{
− r2

2σ2

}
. (50)

The same inequality applied to −F gives

Pr

(
max
1≤i≤n

Gti ≤ E max
1≤i≤n

Gti − r

)
≤ exp

{
− r2

2σ2

}
. (51)

This is already ’almost’ Borell’s inequality: it holds only for a finite maximum of
points, but the fact that the last bound is completely dimension free already shows
the ’infinite-dimensional nature’ of the inequality.
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To continue with the proof we show that E supt Gt is finite: choose r0 large
enough so that 1− e−r2

0/2σ2
> 1/2 and m large enough so that Pr {supt Gt > m} ≤

1/2 (which is possible since supt Gt is finite almost surely). Then we have from
(51)

1

2
< 1 − e−r2

0/2σ2 ≤ Pr

{
max
1≤i≤n

Gti > E max
1≤i≤n

Gti − r0

}

= Pr

{{
max
1≤i≤n

Gti > E max
1≤i≤n

Gti − r0

}
∩
{

sup
t

Gt ≤ m

}}

+ Pr

{{
max
1≤i≤n

Gti > E max
1≤i≤n

Gti − r0

}
∩
{

sup
t

Gt > m

}}

≤ Pr

{
E max

1≤i≤n
Gti ≤ m + r0

}
+ 1/2

so that
E max

1≤i≤n
Gti ≤ m + r0

(a ’nonrandom’ event A that has positive probability ’happens with probability
one’ since 0 < Pr(A) =

∫
1Ad Pr = 1A

∫
d Pr = 1A = 1). Since m and r0 do not de-

pend on n we can take a finite subset Tn = {t1, ..., tn} ր T such that maxt∈Tn Gt ր
supt∈T Gt and then by monotone convergence also E max1≤i≤n Gti ր E supt Gt to
conclude

E sup
t∈T

G(t) < ∞. (52)

Now to pass from (50) and (51) to Theorem 10 take Tn ր T as above so that, for
every ε > 0

Pr

{
sup
t∈T

Gt − E sup
t∈T

Gt > r + ε

}
≤ lim inf

n
Pr

{
max
t∈Tn

Gt − E sup
t∈T

Gt > r + ε

}

= lim inf
n

Pr

{
max
t∈Tn

Gt − E max
t∈Tn

Gt > r

}

≤ e−r2/2σ2

using (50). Repeating this argument for the lower deviations (using (51)) completes
the proof of Theorem 10.

4.4 Gaussian Measures in Banach Spaces

We shall show here how Theorem 10 implies results for general Banach-space
valued Gaussian random variables. Let (B, ‖ · ‖B) be a (for simplicity) separable
Banach space with norm ‖ · ‖B, and let X : (Ω,A, Pr) → B be a random variable
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(a measurable mapping where B is equipped with its Borel-σ-field). The law of
X is called a centered Gaussian measure γ on B if γ ◦L−1 is normally distributed
with mean zero for every continuous linear functional L : B → R.

If B′ is the dual space of B equipped with its operator norm ‖ · ‖B′ , then we
can use the Hahn-Banach theorem to represent the norm of an element x ∈ B by
‖x‖B = supL:‖L‖B′≤1 |L(x)|. For a Gaussian random variable we thus have

‖X‖B = sup
L:‖L‖B′≤1

|L(X)| (53)

and we can study the supremum of the Gaussian process GL := L(X), L ∈ T
where T = {L : ‖L‖B′ ≤ 1} is the unit ball of B′. For every x ∈ B, the linear
mapping L 7→ L(x) is weak-*-continuous on the weak-*-compact metric space T
and thus the supremum (53) exists (everywhere and hence also almost surely).
By continuity this supremum can be realized as one over a countable subset of
T , which we shall also denote by T . Now Theorem 10 (and the observation that
L ∈ T implies −L ∈ T by linearity so that supL∈T GL = supL∈T |GL|) proves that
any Gaussian random variable in a Banach space has a finite first moment

E‖X‖B < ∞

and satisfies the concentration inequality

Pr {|‖X‖B − E‖X‖B| ≥ r} ≤ 2e−r2/2σ2

(54)

where σ2 = supL∈L EL(X)2 are the ’weak variances’. In other words, the norm of
every Gaussian random variable in a separable Banach space concentrates around
its mean with a perfect ’one-dimensional’ Gaussian tail.

We should note that σ2 is always finite: Since ‖X‖B < ∞ almost surely there
exists M finite such that Pr{‖X‖B > M} ≤ 1/2. For any continuous L ∈ T
we thus have Pr{|f(X)| > M} ≤ 1/2 where M does not depend on L. Let
σ2(L) = EL2(X) so that L(X)/σ(L) is standard normal. Then we can take R
small enough such that

1/2 < Pr {L(X)/σ(L) ≥ R}
= Pr {L(X)/σ(L) ≥ R, |L(X)| ≤ M} + Pr {L(X)/σ(L) ≥ R, |L(X)| > M}
≤ Pr{σ(L) ≤ M/R} + 1/2

so again the ’constant’ event σ(L) ≤ M/R has positive probability and thus
probability one. Since M/R < ∞ does not depend on L we conclude that
supL∈T EL2(X) ≤ M/R < ∞.

We should emphasize again that the estimate (54) does not convey any infor-
mation about the size of E‖X‖B (other than that it is finite). If one needs more
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information about the size of E‖X‖B (in dependence of σ for instance), the answer
depends on the geometry of the Banach space B, and can often be estimated by
direct methods from probability in Banach spaces, see [1], [32]. Alternatively one
can use moment inequalities for suprema of Gaussian processes, see, e.g., [12] and
[39].
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5 Log-Sobolev Inequalities in Product Spaces

5.1 Entropy in product spaces

The reason that Log-Sobolev inequalities are so convenient is that, in addition
to their power to prove concentration results, they are fairly easy to establish
for product measures once they are established for each individual space. This
is essentially a consequence of the fact that ”entropy behaves well with respect
to independence”. Furthermore, we will see that in doing so, the Log-sobolev
constants are dimension-free, so it will suffice to prove a log-Sobolev inequality in
one dimension, from which the infinite-dimensional case follows automatically.

We consider the following setup. Let (X1, d1, µ1), . . . (Xn, dn, µn) be metric
probability measure spaces and let X = X1 × · · · × Xn and denote the product
measure by µ = µ1 ⊗ . . . ⊗ µn. X is also endowed with a natural ”ℓ2” metric:
that is, for x, y ∈ X, d(x, y)2 =

∑n
i=1 di(xi, yi)

2. We assume that a Log-Sobolev
inequality holds for every space Xi: that is, if f : Xi → R, then

Entµi
(f 2) ≤ 2Ci

∫

Xi

|∇f |2dµi

for some Ci > 0, and where |∇f | is the generalized gradient,

|∇f(x)| = lim sup
y→x

|f(x) − f(y)|
di(x, y)

for x ∈ Xi.

Theorem 12. For any locally Lipschitz function f : X → R, we have

Entµ(f 2) ≤ 2

(
max
1≤i≤n

Ci

)∫

X

|∇f |2dµ

where |∇f |2 =
∑n

i=1 |∇if |2, i.e., the coordinatewise gradient where all variables
except the ith one are frozen.

Proof. The first result is a ”variational” characterization of entropy.

Lemma 3. Let f be a nonnegative random variable on some probability space.
Then

EntP(f) = sup

{∫
fgdP;

∫
egdP ≤ 1

}
. (55)

Proof. By homogeneity we may assume that E(f) = 1, in which case Ent(f) =
E(f log f). By Young’s inequality:

uv ≤ u log u − u + ev,
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we get for
∫

egdP ≤ 1,
∫

fgdP ≤ EntP(f) − 1 +

∫
egdP ≤ EntP(f).

Thus the supremum in the right-hand side of (55) is less or equal than EntP(f).
By considering g = log f , we get the other direction.

The second result is that the entropy is additive in the following sense. Given
x ∈ X, let fi denote the function on Xi defined by freezing all variables except the
ith one. Thus

fi(·) = f(x1, . . . , xi−1, ·, xi+1, . . . , xn).

Lemma 4.

Entµ(f) ≤
n∑

i=1

∫

X

Entµi
(fi)dµ (56)

Proof. This is Proposition 5.6 in Ledoux [31], and we follow his proof. Let g be a
random variable such that

∫
egdµ ≤ 1. For xi, . . . , xn fixed and 1 ≤ i ≤ n, then

define

gi(x1, . . . , xn) = log

∫
eg(y1,...,yi−1,xi,...,xn)dµ1 . . . dµi−1∫
eg(y1,...,yi,xi+1,...,xn)dµ1 . . . dµi

where the the numerator of the fraction is interpreted when i = 1 as g(x1, . . . , xn).
Then by cascading the sum we get

n∑

i=1

gi(x1, . . . , xn) = g(x1, . . . , xn) − log

∫
eg(y1,...,yn)dµ1 . . . dµn ≥ g(x1, . . . , xn)

since we have assumed that
∫

egdµ ≤ 1. Moreover, for any fixed x = (x1, . . . , xn) ∈
X,

∫

Xi

e(gi)idµi =

∫
dµi(zi)

[∫
eg(y1,...,yi−1,zi,xi+1,,...,xn)dµ1 . . . dµi−1∫
eg(y1,...,yi−1,yi,xi+1,,...,xn)dµ1 . . . dµi

]
= 1,

by Fubini’s theorem. It follows that:
∫

fgdµ ≤
n∑

i=1

∫
fgidµ =

n∑

i=1

∫ (∫

Xi

fi(g
i)idµi

)
dµ

≤
n∑

i=1

∫
Entµi

(fi)dµ

which proves Lemma 4.

To finish the proof of Theorem 12, we apply Lemma 4 to f 2 and use the Log-
Sobolev inequality on each Xi. The result follows at once.
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5.2 Further results and applications

We record here some further results on entropy in product spaces, all of which will
be used in proofs below.

Lemma 5. For any real-valued function f defined on Sn and for P = µ1×· · ·×µn,
we have

EntP (ef ) ≤
n∑

i=1

∫
Ri(e

fi)(x)dP (x),

where, for x = (x1, ..., xn),

Ri(e
fi)(x) :=

∫ ∫

fi(xi)≥fi(yi)

[fi(xi) − fi(yi)]
2efi(xi)dµi(xi)dµi(yi),

with fi = f(x1, . . . , xi−1, ·, xi+1, . . . , xn).

Proof. By Lemma 4 it suffices to prove this lemma for n = 1. By Jensen’s inequal-
ity,

EntP (ef) =

∫
fefdP −

∫
efdP log

∫
efdP

≤
∫

fefdP −
∫

efdP

∫
fdP

=
1

2

∫ ∫
[f(x) − f(y)][ef(x) − ef(y)]dP (x)dP (y)

≤
∫ ∫

f(x)≥f(y)

[f(x) − f(y)][ef(x) − ef(y)]dP (x)dP (y)

using Fubini in the last step. But, for v ≥ u,

ev − eu =

∫ v

u

exdx ≤ (v − u)ev

so that (v − u)(ev − eu) ≤ (v − u)2ev, which gives the result.

There is another ’variational’ definition of entropy and its consequence which
is sometimes useful. Let ξ be a convex function on a finite or infinite interval (e.g.,
ξ(u) = u log u on [0,∞)), differentiable on its interior, and let the range of f be
contained in it. Then, assuming existence,

∫
ξ(f)dµ− ξ

(∫
fdµ

)
= inf

t

∫
[ξ(f) − ξ(t) + (t − f)ξ′(t)] dµ.
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To see this note that the integral at the right hand side for t =
∫

fdµ is the left
hand side. Now, note that the convex function y = ξ(x) at

∫
fdµ is larger than

or equal to the value at
∫

fdµ of the tangent line to the graph of this function at
(t, ξ(t)), which gives

ξ

(∫
fdµ

)
≥ ξ(t) +

(∫
fdµ − t

)
ξ′(t),

proving the claim. Applied to entropy, this gives the following ‘variational defini-
tion of entropy’:

Lemma 6. Entµf = inft≥0

∫
[f log f − (log t + 1)f + t] dµ. Here µ is a probability

measure and f ≥ 0.

Corollary 2. Under the hypotheses of Lemma 4, and with φ(u) := e−u + u − 1,
we have (for any λ ∈ R)

EntPeλf ≤
n∑

i=1

∫
φ (λ(f(x) − f(yi(x))) eλf(x)dP (x),

where yi(x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn).

Proof. By Lemma 4, it suffices to consider n = 1, in which case y(x) = 0. By
Lemma 6,

Entµef = inf
t≥0

∫
[fef − (log t + 1)ef + t]dµ = inf

u∈R

∫
φ(f − u)efdµ,

where the last identity results from changing log t to u. Now, take u = f(0).

We finish this section with a concentration result for general functionals of
product measures that can derived from the log-Sobolev theory. It gives a first
rigorous formalization of the intuition mentioned in the introduction that a random
variable that smoothly depends on a large number of independent random variables
is ’essentially’ constant, in a ’dimension-free’ way.

Theorem 13. Let F : [0, 1]n 7→ R be a separately convex (i.e., convex in each
coordinate) and 1-Lipschitz function and let P be a product probability measure on
[0, 1]n. Then, for every r > 0,

P

{
F ≥

∫
FdP + r

}
≤ e−r2/16n.
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Proof. If f is convex in each coordinate and smooth, then

fi(xi) − fi(yi) ≤ (xi − yi)f
′
i(xi),

where we are using the notation of Lemma 5. That lemma gives

EntP (ef) ≤
∫ ∫ n∑

i=1

(xi − yi)
2

(
∂f

∂xi
(x)

)2

ef(x)dP (x)dP (y),

Therefore, we have the log Sobolev inequality for ef :

EntP (ef ) ≤
∫

|∇f(x)|2dP (x).

Now, if f is 1-Lipschitz, |∇f(x)| ≤ 1 a.e. by Rademacher’s theorem, and by
convolving with a Gaussian kernel if necessary, we can assume |∇f(x)| ≤ 1 every-
where. Take f = λF − λ2 (wiht F convolved with a Gaussian kernel if it is not
smooth) to get

EntP (eλF−λ2

) ≤ λ2

∫
eλF−λ2

dP.

Define Λ(λ) =
∫

eλF−λ2
dP . By definition of entropy, the last inequality becomes

∫
eλF−λ2

(λF − λ2)dP − Λ(λ) log Λ(λ) ≤ λ2Λ(λ).

But

Λ′(λ) =
1

λ

∫
(λF − 2λ2)eλF−λ2

dP =
1

λ

∫
(λF − λ2)eλF−λ2

dP − 1

λ
λ2Λ(λ).

This yields the following differential inequality:

λΛ′ − Λ log Λ ≤ 0.

Take H(λ) := 1
λ

log Λ(λ) and note, as in previous theorems that H(0) = limλ→0 H(λ) =
EF. Since

H ′(λ) = − 1

λ2
log Λ(λ) +

1

λ

Λ′(λ)

Λ(λ)
,

the above inequation becomes

H ′(λ) ≤ 0, H(0) = EF.

This means that H(λ) is a non-increasing function and, since H(0) = EF , we
obtain

H(λ) ≤ EF, λ > 0,
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log Λ(λ) ≤ λEF, λ > 0,

EeλF−λ2 ≤ eλEF , λ ≥ 0.

Now, applying this inequality in combination with Chebyshev,

P{F ≥ EF + r} = P{eλF−λ2 ≥ eλEF+λr−λ2} ≤ eλEF

eλEF+λr−λ2 = e−λr+λ2

,

and the result follows by taking λ = r/2. The theorem is proved for F convolved
with a Gaussian kernel in the non-smooth case; convolve with Gaussian kernels
Gh converging in law to δ0 and take limits to complete the proof.
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6 Talagrand’s Inequality for Empirical Processes

6.1 Empirical Processes

Throughout this and the subsequent subsections, let X1, ..., Xn be i.i.d. random
variables taking values in some measurable space S,A and with law P (defined
on A). Denote their joint product law by Pr. Suppose we are given a uniformly
bounded class F of functions defined on S, w.l.o.g. sups∈S supf∈F |f(s)| ≤ 1. The
empirical process is defined as

νn(f) =
√

n

(
1

n

n∑

i=1

(f(Xi) − Ef(X))

)
, f ∈ F . (57)

In words these are centered and scaled sample means indexed by the class of
functions F . Empirical Process Theory studies the probabilistic properties of these
stochastic processes, with a particular view on the uniform fluctuations of νn, that
is, the random variables supf∈F |νn(f)|.

As the index sets F of these processes are abstract we cannot use the classical
theory of stochastic processes (which uses spaces of continuous functions, the cad-
lag space, Skorohod-topologies etc..) We should note that considering ’abstract’
F is not ’general abstract nonsense’, but arises naturally in many situations, par-
ticularly in statistics. Examples are F equal to a family of indicators of subsets
of Rd – for instance {1(−∞,t] : t ∈ Rd}, or convex subsets of Rd, or sets with
smooth boundaries –, as well as various classes of functions: for instance F a
ball in a Lipschitz-space, or F a finite-dimensional vector space of functions, or
F = {K((· − y)/h) : y ∈ R, h > 0}, or F a class of functions indexed by some pa-
rameter space Θ (think of Maximum Likelihood Estimation), and many others. In
a way considering abstract empirical processes is useful in a similar way as it was
to consider abstract Gaussian processes in the previous section, and since sample
means occur almost everywhere in statistics, proves to be broadly applicable.

It is clear that for a fixed f ∈ F , we have that

νn(f) →d N(0, σ2(f))

as n → ∞ by the central limit theorem, and where σ2(f) = E(f(X)−Ef(X))2. To
make this central limit theorem ’uniform’ in F is a highly nontrivial problem (even
the formulation of it!). As this is not the focus of these lecture notes we refer to
the monograph by Dudley [12] for a rigorous treatment of this problem and of the
theory of empirical processes. Let us mention only that rather specific conditions
have to be imposed on the class F for this ’uniform central limit theorem’ to
hold, and by definition one says that F is a ’Donsker’-class if νn converges in law
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in the space of bounded functions on F (equipped with the uniform norm) to a
generalized Brownian bridge process.

Instead of studying the weak convergence of the empirical process, we ask a
different question here: Can we generalize Hoeffding’s inequality Proposition 2 or
even Bernstein’s inequality to general suprema supf∈F |ν(f)| of empirical processes
(and then also to sums of i.i.d. Banach space valued random variables)? And if
yes, does this result relate to the fact that there is a central limit theorem (so do we
have to require that F is Donsker), or is the concentration of product measures a
general ’dimension-free’ phenomenon unrelated to the central limit theorem? One
of the most striking substantiations of the concentration of measure phenomenon
due to Talagrand [38] is that concentration inequalities for empirical processes can
be proved in generality (without invoking CLT-type conditions).

6.2 Talagrand’s inequality and variations thereof

Talagrand’s inequality for empirical processes in its general form (with universal
constants) [38] is

Theorem 14. [Talagrand’s Inequality] Let F be P -centered, countable and uni-
formly bounded by one. Then there exists an absolute constant K such that

Pr

(∣∣∣∣∣sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣− E sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣

∣∣∣∣∣ > r

)
≤ 1

K
exp

{
− r

K
log
(
1 +

r

EΣ2

)}

where Σ2 = supf∈F
∑n

i=1 f 2(Xi) are the random variances.

The inequality is not stated in a ’Bernstein’-way (as in (11) above), neverthe-
less the exponent has the correct order: if r/EΣ2 is moderate (meaning that the
variances are not too small) then the tail is Gaussian (i.e., the exponent can be
bounded by r2/EΣ2K), whereas if r/EΣ2 is large the tail is of a Poissonian form
r log(1 + r).

As it stands the inequality may not be useful unless one can control the ran-
dom variances. If one is only interested in ’Hoeffding’ type inequalities, then one
can simply estimate EΣ2 ≤ n and obtain an exponent −(r2/Kn) in the above
inequality. However, taking into account the variances of f(X), in particular in
their ’weak’ form

σ2 ≥ sup
f∈F

Ef 2(X), (58)
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is crucial in many situations. Talagrand showed how to do this in [36], as follows:

EΣ2 ≤ nσ2 + E sup
f∈F

∣∣∣∣∣

n∑

i=1

(
f 2(Xi) − Ef 2(X)

)
∣∣∣∣∣

≤ nσ2 + 4E sup
f∈F

∣∣∣∣∣

n∑

i=1

(f(Xi) − Ef(X))

∣∣∣∣∣

where the second inequality follows from a contraction inequality for Rademacher
processes that we shall detail in Subsection 6.4 below.

Working with this bound for EΣ2 one can obtain sharp constants in a Bernstein-
type version of Talagrand’s inequality. This was initiated by [33]. In [6] and [30]
(cf. also [34]) it is proved that

Theorem 15. Let F be P -centered, countable and uniformly bounded by one, and
let σ2 ≥ Ef 2(X). Then

Pr

(
sup
f∈F

n∑

i=1

f(Xi) ≥ E sup
f∈F

n∑

i=1

f(Xi) + r

)
≤ exp

{
− r2

2V + 2
3
r

}

as well as

Pr

(
sup
f∈F

n∑

i=1

f(Xi) ≤ E sup
f∈F

n∑

i=1

f(Xi) − r

)
≤ exp

{
− r2

2V + 2r

}

where V = nσ2 + 2E supf∈F |∑n
i=1 f(Xi)|.

Note that one can easily show that a bound of the above type (with universal
constants) always follows from Theorem 14. Note also that if one prefers to re-
place

∑
f(Xi) by |∑ f(Xi)| one can replace F by F ∪ −F to obtain the desired

result. Specialized to a singleton class F , the upper deviation result retrieves the
one-dimensional Bernstein inequality, so this result is sharp in this sense, and in
fact provides a genuine infinite-dimensional version of Bernstein’s inequality. For
the lower deviations the ’Gaussian’ constant is sharp whereas the Poissonian is 2
instead of 2/3 – this remains an open problem at this stage.

Sometimes it is useful to state the last inequalities in the following (essentially
equivalent) way:

Pr

(
sup
f∈F

n∑

i=1

f(Xi) ≥ E sup
f∈F

n∑

i=1

f(Xi) +
√

2V r +
1

3
r

)
≤ e−r (59)

as well as

Pr

(
sup
f∈F

n∑

i=1

f(Xi) ≤ E sup
f∈F

n∑

i=1

f(Xi) −
√

2V r − r

)
≤ e−r. (60)
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6.3 A Proof of Talagrand’s Inequality

We shall provide here a proof of Theorem 14. We first remark that Talagrand’s
inequality does not follow from Theorem 13, and refined methods are necessary.
Very roughly speaking the idea is prove directly a log-Sobolev type inequality for
the function eλZ ,

Z = sup
f∈F

n∑

i=1

f(Xi),

with Pf = 0. These in turn yield solvable differential inequalities for the Laplace
transform of Z whose solutions give exponential inequalities (recall the ’Herbst
method’).

Obtaining sharp constants in Talagrand’s inequality basically requires a very
careful (and intricate) study of the differential inequalities involved. This has been
done in [33], [6] and [30], but we abstain from it to reduce technicalities. For the
upper deviation version in Theorem 15 sharp constants are available, whereas for
the lower deviations this is only the case for the ’Gaussian’ component, and this
remains an open problem.

The proof below follows Ledoux [31] who invented this proof, and borrows from
the exposition in Giné [17].

6.3.1 A bound for the Laplace transform of empirical processes

We start with an auxiliary result for empirical processes that take only positive
values (i.e. where f ∈ F are all positive functions).

Proposition 5. Let F be a countable collection of measurable functions on S
taking their values in [0, 1]. Set Z = supf∈F

∑n
i=1 f(Xi). Then, for all λ ≥ 0,

EeλZ ≤ e(eλ−1)EZ .

Proof. It suffices to prove this theorem for F finite, say F = {f1, . . . , fN} (by using
approximation arguments as in the proof of Borell’s inequality). For 1 ≤ i ≤ n
and 1 ≤ k ≤ N , set xk

i = fk(Xi), xi = (f1(Xi), . . . , fN(Xi)) ∈ E := [0, 1]N ,
µi = L(xi) and P = µ1 × · · · × µn, a probability measure on En = ([0, 1]N)n, and
x = (x1, . . . , xn) ∈ En. Then

EeλZ =

∫

En

eλZ(x)dP (x)

where

Z(x) := max
1≤k≤N

n∑

i=1

xk
i , x ∈ En.
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By Corollary 2

EntP (eλZ) ≤
n∑

i=1

∫
φ (λ(Z(x) − Z(yi(x))) eλZ(x)dP (x),

where yi(x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn). Let Ak, k = 1, . . . , N , be a partition
of En such that

Ak ⊆ {x ∈ En : Z(x) =

n∑

i=1

xk
i }

(Ak is contained in the set where the maximum is attained at the k-th function).
Let τk = τk(x) = IAk

(x) and τ = (τ1, . . . , τN). Then, since xk
i ≥ 0,

0 ≤ Z(x) − Z(yi(x)) = Z(x) − max
1≤k≤N

∑

1≤j≤n,j 6=i

xk
j ≤

N∑

k=1

τkx
k
i = τ · xi ≤ 1.

Since φ(u) := e−u + u − 1 is convex and 0 at 0, for λ ≥ 0 and u ∈ [0, 1] we have
φ(λu) ≤ uφ(λ). We then conclude from the last two inequalities and Corollary 2,
that

EntP (eλZ) ≤ φ(λ)

n∑

i=1

∫
(τ · xi)e

λZ(x)dP (x) = φ(λ)

∫
Z(x)eλZ(x)dP (x),

since
∑n

i=1 τ · xi =
∑n

i=1

∑N
k=1 τkx

k
i =

∑N
k=1 τk

∑n
i=1 xk

i = Z. This is a kind of
log-Sobolev inequality.

Let Λ(λ) = EeλZ . By definition of entropy,

EntP (eλZ) = E
(
λZeλZ

)
−
(
EeλZ

)
log
(
EeλZ

)
= λΛ′(λ) − Λ(λ) log Λ(λ), λ ≥ 0.

Hence, the log Sobolev type inequality gives

λΛ′(λ) − Λ(λ) logΛ(λ) ≤ φ(λ)Λ′(λ), λ ≥ 0.

or
(1 − e−λ)Λ′(λ) ≤ Λ(λ) log Λ(λ), λ ≥ 0.

With J(λ) = log Λ(λ), this becomes J ′ ≤ (1 − e−λ)−1J , or

(log J)′ ≤ (log(eλ − 1))′, λ ≥ 0.

This can be integrated: for any λ0 > 0 and λ > λ0,

log
J(λ)

J(λ0)
≤ log

eλ − 1

eλ0 − 1
,
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J(λ) ≤ J(λ0)

eλ0 − 1
(eλ − 1).

By l’Hôpital and Taylor development of the logarithm,

lim
λ0→0

J(λ0)

eλ0 − 1
= EZ

(since clearly limλ→0(log EeλZ)′ = EZ).

6.3.2 A Bernstein-type version of Talagrand’s inequality

Theorem 16. Let F be a countable collection of measurable functions on S uni-
formly bounded by one, and set Z = supf∈F

∑n
i=1 f(Xi). Let further Σ2 :=

supf∈F
∑n

i=1 f 2(Xi). Then, for all r > 0,

P{|Z − EZ| ≥ r} ≤ 2 exp

{
− 1

10
min

(
r2

3EΣ2
, r

)}
. (61)

Proof. Again we can take F finite, say F = {f1, . . . , fN}, the case of general F
following from standard approximation arguments. In analogy to the proof of the
previous proposition, set xk

i = fk(Xi), xi = (x1
i , . . . , x

N
i ), x = (x1, . . . , xn) ∈ En,

E = [−1, 1]N , µi = L(f1(Xi), . . . , fN(Xi)), P = µ1 × · · ·×µn, so that Z = Z(x) =
max1≤k≤N

∑n
i=1 xk

i . Using Lemma 5 and its notation we have

EntP (eλZ) = λ2

n∑

i=1

∫ ∫ ∫

λZi(xi)≥λZi(yi)

[Zi(xi)−Zi(yi)]
2eλZi(xi)dµi(xi)dµi(yi)dP (x)

where we recall that for each i the vector y is such that yj = xj for j 6= i and with
yi ∈ [−1, 1]N . [There is a slight abuse of notation as we write y instead of y(i),

simply to avoid having to write y
(i)
i .]

Let us fix i. Let again Ak ⊆ {x : Z(x) =
∑n

i=1 xk
i }, k ≤ N , be a partition of

En, and set τk(x) = 1Ak
(x). For x ∈ Ak we have

Z(x) − Z(y) =

n∑

r=1

xk
r − max

1≤ℓ≤N

n∑

r=1

yℓ
r ≤

n∑

r=1

xk
r −

n∑

r=1

yk
r = xk

i − yk
i ,

since y and x differ only in the i-th coordinate, so that

Z(x) − Z(y) ≤
N∑

k=1

τk(x)(xk
i − yk

i ) (62)

follows (note the lack of absolute values in this inequality). Furthermore we always
have

|Z(x) − Z(y)| ≤ max
k

|xk
i − yk

i | ≤ 2. (63)
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Then, for λ > 0,

∫ ∫

λZi(xi)≥λZi(yi)

[Zi(xi) − Zi(yi)]
2eλZi(xi)dµi(xi)dµi(yi)

≤
∫ ∫ N∑

k=1

τk(x)(xk
i − yk

i )
2eλZi(xi)dµi(xi)dµi(yi)

using (62) together with the fact that Zi(xi) ≥ Zi(yi) on the domain of integration.
Thus, in this case,

EntP (eλZ) ≤ λ2

n∑

i=1

∫ ∫ N∑

k=1

τk(x)(xk
i − yk

i )
2eλZ(x)dP (x)dµi(yi)

= λ2

∫ ∫ n∑

i=1

N∑

k=1

τk(x)(xk
i − yk

i )
2eλZ(x)dP (x)dµi(yi).

Now,

N∑

k=1

τk(x)

n∑

i=1

(xk
i − yk

i )
2 ≤ max

k

n∑

i=1

(xk
i − yk

i )
2 ≤ 2 max

k

n∑

i=1

(xk
i )

2 + 2 max
k

n∑

i=1

(yk
i )

2,

and we get, for λ > 0 as well as trivially for λ = 0,

EntP (eλZ) ≤ 2λ2
[
E(Σ2eλZ) + E(Σ2)E(eλZ)

]
. (64)

For λ < 0, we use (62) with x and y interchanged, and (63), to obtain, for each i,

∫ ∫

λZi(xi)≥λZi(yi)

[Zi(xi) − Zi(yi)]
2eλZi(xi)dµi(xi)dµi(yi)

≤
∫ ∫ N∑

k=1

τk(y)(xk
i − yk

i )
2eλZi(yi)+2|λ|dµi(xi)dµi(yi).

Then, adding over i and integrating, as before, we get, for λ < 0,

EntP (eλZ) ≤ 2λ2e2|λ| [E(Σ2eλZ) + E(Σ2)E(eλZ)
]
. (65)

(64) and (65) give that, for all |λ| ≤ λ0, λ0 to be specified below,

EntP (eλZ) ≤ c0λ
2
[
E(Σ2eλZ) + E(Σ2)E(eλZ)

]
. (66)
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with c0 = 2e2λ0 . This is a kind of modified log Sobolev inequality, and what
remains now is to integrate the corresponding expression for the Laplace transform
of Z̃ = Z − EZ. First we transform it.

Set Λ̃(λ) := EeλZ̃ . Since eλZ̃ = e−λEZeλZ , homogeneity of Ent and (66) give

λΛ̃′(λ) − Λ̃(λ) log Λ̃(λ) = EntP (eλZ̃) ≤ c0λ
2
[
(EΣ2)Λ̃(λ) + E(Σ2eλZ̃)

]
, |λ| ≤ λ0.

(67)
Now we estimate the second summand at the right hand side. Using Young’s
inquality with y = eλZ̃ ≥ 0 and x = Σ2 − (e − 1)EΣ2, we get

E(Σ2eλZ̃) = (e − 1)(EΣ2)EeλZ̃ + E
[
(Σ2 − (e − 1)EΣ2)eλZ̃

]

≤ (e − 1)(EΣ2)EeλZ̃ + λE(Z̃eλZ̃) − EeλZ̃ + EeΣ2−(e−1)EΣ2

.

By Jensen’s inequality, EeλZ̃ ≥ 1 (here we are using EZ̃ = 0) and by Proposition
5 applied to Σ2 we also have

EeΣ2−(e−1)EΣ2 ≤ 1,

which plugged in the previous inequality give

E(Σ2eλZ̃) ≤ (e − 1)(EΣ2)Λ̃(λ) + λΛ̃′(λ), λ ∈ R.

Replacing this in (67) yields a differential inequality that we will be able to inte-
grate:

λΛ̃′ − Λ̃ log Λ̃ ≤ c0λ
2
(
e(EΣ2)Λ̃ + λΛ′

)
, |λ| ≤ λ0. (68)

Set

H(λ) =
1

λ
log Λ̃(λ)

and notice that
H(0) := lim

λ→0
H(λ) = 0

(see the end of the proof of Proposition 5). Since

H ′ = − 1

λ2
log Λ̃ +

1

λ

Λ̃′

Λ̃
=

1

λ2Λ̃
(λΛ̃′ − Λ̃ log Λ̃),

inequality (68) becomes

H ′ ≤ c0

(
eEΣ2 + λ

Λ̃′

Λ̃
+ log Λ̃(λ)

)
, H(0) = 0, |λ| ≤ λ0 (69)
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where we also added c0 log Λ̃(λ) ≥ 0 (cf. Jensen above) on the right hand side. Inte-

grating from 0 to λ (|λ| ≤ λ0), and taking into account that limλ→0 λ−1 log EeλZ̃ =
0, we get

log Λ̃ ≤ c0(eλ
2EΣ2 + λ2 log Λ̃).

If c0λ
2
0 < 1, this is (1 − c0λ

2) log Λ̃ ≤ c0eλ
2EΣ2, that is, with κ0 = c0e/(1 − c0λ

2
0),

Λ̃(λ) ≤ eκ0λ2EΣ2

, |λ| ≤ λ0.

Hence, for 0 ≤ λ ≤ λ0 and r > 0,

P{Z − EZ ≥ r} = P (eλZ̃ ≥ eλr) ≤ exp
(
κ0λ

2EΣ2 − λr
)
,

and for −λ0 ≤ λ ≤ 0,

P{Z − EZ ≤ −r} = P (eλZ̃ ≥ e−λr) ≤ exp
(
κ0λ

2EΣ2 − |λ|r
)
.

Make the natural choice |λ| = r/(2κ0EΣ2) as long as this is dominated by λ0,
that is, for r ≤ 2κ0λ0EΣ2, which gives an exponent of −r2/(4κ0EΣ2), and choose
|λ| = λ0 for r ≥ 2κ0λ0EΣ2, to get an exponent smaller than or equal to λ0r/2, to
get

P{Z − EZ ≥ r} ≤ exp

{
−min

(
r2

4κ0EΣ2
,
λ0r

2

)}

as well as

P{|Z − EZ| ≥ r} ≤ 2 exp

{
−min

(
r2

4κ0EΣ2
,
λ0r

2

)}
.

Constants: the only constraint is c0λ
2
0 = 2e2λ0λ2

0 < 1. One gets some constants,
but not the best. For instance, for λ0 = 1/5 we get

P{|Z − EZ| ≥ r} ≤ 2 exp

{
− 1

10
min

(
r2

3EΣ2
, r

)}
,

which is the desired result.

6.3.3 Completion of the Proof of Theorem 14

To improve the Bernstein-type Theorem 16 to the more general exponent from
Theorem 14, one truncates at a certain level, applies Theorem 16 to the trun-
cated variables, and Proposition 5 to the sums of absolute values of the variables
truncated away from zero.
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Let 0 < ρ ≤ 1 to be chosen below, and define Fρ := {fI|f |≤ρ : f ∈ F},
Zρ := supf∈Fρ

∑n
i=1 f(Xi) and Wρ = supf∈F

∑n
i=1 |f(Xi)|I|f(Xi)|>ρ. Write

P{|Z − EZ| ≥ 4r} ≤ P{|Zρ − EZρ| ≥ r} + P{Wρ + EWρ ≥ 3r}.
By Theorem 16 and homogeneity

P{|Zρ − EZρ| ≥ r} ≤ 2 exp

{
− 1

10
min

(
r2

3EΣ2
,
r

ρ

)}
,

for all r > 0, and. Note further that Proposition 5 implies by Markov’s inequality
and a simple optimization in λ

Pr {Z ≥ EZ + r} ≤ exp {−E(Z)h(r/E(Z))}
for h(u) = (1 + u) log(1 + u). This gives, for r > EWρ

P{Wρ + EWρ ≥ 3r} ≤ P{Wρ ≥ EWρ + r} ≤ exp

{
−r

2
log

(
1 +

r

EWρ

)}
.

Choose then

ρ = ρ(r) = min

(
1,

√
EΣ2

r

)
.

Either ρ = 1 and Wρ = 0 or ρ ≤ 1 and r ≥ EΣ2; in this last case, since Wρ ≤ Σ2/ρ,
we have

r ≥
√

rEΣ2 =
EΣ2

ρ
≥ EWρ, (70)

so, the inequality for Wρ applies in this case. Now, for all u ≥ 0,

u/3 > 12−1 log(1 + 4u),

and we therefore have, in both cases,

r × min

(
1

ρ
,

r

3EΣ2

)
≥ r

12
log

(
1 +

4r

EΣ2

)
.

For the second case, by (70),

log

(
1 +

r

EWρ

)
≥ log

(
1 +

√
r

EΣ2

)
≥ 1

4
log

(
1 +

4r

EΣ2

)
.

Combining we obtain

P{|Z − EZ| ≥ 4r} ≤ 3 exp

{
r

120
log

(
1 +

4r

EΣ2

)}
.

which proves Theorem 14 without absolute values. Applying this theorem to
F ∪−F completes the proof.
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6.4 Moment Bounds via Rademacher Symmetrization

If one wants to apply Talagrand’s inequality Theorem 14, some formidable tasks
remain: First, there is the task to control

E sup
f∈F

n∑

i=1

f 2(Xi) ≤ nσ2 + E sup
f∈F

∣∣∣∣∣

n∑

i=1

(
f 2(Xi) − Ef 2(X)

)
∣∣∣∣∣ (71)

in the case where one needs a result that depends on the weak variances σ2 ≥
supf∈F Ef 2(X) and the bound n is too crude. Second – if one needs information
on the quantity supf∈F |∑n

i=1 f(Xi)| rather than on

sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣− E sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣

then the size of the quantity

E sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣ (72)

has to be estimated. In both cases we have to control the moment of the supremum
of a centered empirical process, and we shall discuss in this subsection some tools
to do this.

6.4.1 Rademacher Processes

A key technique in the theory of empirical processes is Rademacher symmetriza-
tion. This was first introduced into empirical processes in the classical paper [21]
and we show how this applies in the context of Talagrand’s inequality.

Let εi, i = 1, ..., n, be i.i.d. Rademacher random signs (taking values −1, 1 with
probability 1/2), independent of the X ′

is, defined on a large product probability
space with product probability Pr, denote the joint expectation by E, and by Eε

and EX the corresponding expectations w.r.t. the εi’s and the Xi’s respectively.
The following symmetrization inequality holds for random variables in arbitrary
normed spaces, but we state it for the supremum norm relevant in empirical process
theory: For F a class of functions on (S,A), define ‖H‖F = supf∈F |H(f)| .

Lemma 7. Let F be a uniformly bounded P -centered class of functions defined
on a measurable space (S,A). Let εi be i.i.d. Rademachers as above, and let
ai, i = 1, ..., n be any sequence of real numbers. Then

1

2
E

∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥

n∑

i=1

f(Xi)

∥∥∥∥∥
F

≤ 2E

∥∥∥∥∥

n∑

i=1

εi(f(Xi) + ai)

∥∥∥∥∥
F

. (73)
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Proof. Let us assume for simplicity that F is countable (so that we can neglect
measurability problems). Since EXf(Xi) = 0 for every f, i, the first inequality
follows from

E

∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

= EεEX

∥∥∥∥∥
∑

i:εi=1

f(Xi) −
∑

i:εi=−1

f(Xi)

∥∥∥∥∥
F

≤ EεEX

∥∥∥∥∥
∑

i:εi=−1

f(Xi) + EX

∑

i:εi=1

f(Xi)

∥∥∥∥∥
F

+ EεEX

∥∥∥∥∥
∑

i:εi=1

f(Xi) + EX

∑

i:εi=−1

f(Xi)

∥∥∥∥∥
F

≤ 2E

∥∥∥∥∥

n∑

i=1

f(Xi)

∥∥∥∥∥
F

where in the last inequality we have used Jensen’s inequality and convexity of the
norm. To prove the second inequality, let Xn+i, i = 1, ..., n be an independent copy
of X1, ..., Xn. Then, proceeding as above,

E

∥∥∥∥∥

n∑

i=1

f(Xi)

∥∥∥∥∥
F

= E

∥∥∥∥∥

n∑

i=1

(f(Xi) − Ef(Xn+i)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥

n∑

i=1

(f(Xi) + ai) −
n∑

i=1

(f(Xn+i) + ai)

∥∥∥∥∥
F

which clearly equals

EεEX

∥∥∥∥∥
∑

i:εi=1

εi(f(Xi)+ai−f(Xn+i)−ai)−
∑

i:εi=−1

εi(f(Xi)+ai−f(Xn+i)−ai))

∥∥∥∥∥
F

.

Now Pr being a product probability measure with identical coordinates, it is in-
variant by permutations of the coordinates, so that we may interchange f(Xi) and
f(Xn+i) for the i′s where εi = −1 in the last expectation. This gives that the
quantity in the last display equals

EεEX

∥∥∥∥∥

n∑

i=1

εi(f(Xi) + ai − f(Xn+i) − ai)

∥∥∥∥∥
F

≤ 2E

∥∥∥∥∥

n∑

i=1

εi(f(Xi) + ai)

∥∥∥∥∥
F

which completes the proof.

This simple but very useful result says that we can always compare the size of
the expectation of the supremum of an empirical process to a symmetrized process.
The idea usually is that the symmetrized ’Rademacher process’ has, conditional on
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the Xi’s, a very simple structure. One can then derive results for the Rademacher
process and integrate the results over the distribution of the Xi’s.

Let us illustrate this by an example, which is a contraction principle for Rademacher
processes due to Kahane [28] that we state here without proof. See [32], p.112, for
a proof.

Theorem 17 (Contraction Principle for Rademacher Processes). Let F : R+ →
R+ be convex and increasing. Let ϕi : R → R, φ(0) = 0, be contractions (i.e., such
that |ϕi(s) − ϕi(t)| ≤ |s − t|) and let T be a bounded subset of Rn. Let (εi)

n
i=1 be

i.i.d. Rademachers. Then

EF

(
1

2
sup

t=(t1,...,tn)∈T

∣∣∣∣∣

n∑

i=1

εiφ(ti)

∣∣∣∣∣

)
≤ EF

(
sup

t=(t1,...,tn)∈T

∣∣∣∣∣

n∑

i=1

εiti

∣∣∣∣∣

)

Combining this with Lemma 7 we can reduce the moment of the centered
random variances in (71) to the usual moment of the empirical process.

Proposition 6. Let F be as in Lemma 7 and satisfying in addition that supf∈F ‖f‖∞
is bounded by one. Then

E sup
f∈F

∣∣∣∣∣

n∑

i=1

(
f 2(Xi) − Ef 2(X)

)
∣∣∣∣∣ ≤ 16E sup

f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣ .

Proof. We first use Lemma 7 with ai = −Ef 2(Xi) to obtain

E sup
f∈F

∣∣∣∣∣

n∑

i=1

(
f 2(Xi) − Ef 2(X)

)
∣∣∣∣∣ ≤ 2E sup

f∈F

∣∣∣∣∣

n∑

i=1

εif
2(Xi)

∣∣∣∣∣ = 4E sup
f∈F

∣∣∣∣∣

n∑

i=1

εi(f
2(Xi)/2)

∣∣∣∣∣ .

Now apply Theorem 17 with ti = f(Xi), T = {(f(Xi) : i = 1, ..., n) : f ∈ F} ⊂ Rn

and ϕi(s) = ϕ(s) = min(s2/2, 1) which satisfies ϕ(0) = 0 as well as |φ(s)−φ(t)| =
|(t − s)(t + s)/2| ≤ |t − s| so that the r.h.s. of the last display is bounded by

8E sup
f∈F

∣∣∣∣∣

n∑

i=1

εif(Xi)

∣∣∣∣∣ ≤ 16E sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣

where the last inequality follows from the first part of Lemma 7 (’desymmetriza-
tion’).

6.4.2 Moment Bounds for Empirical Processes

The question then in the application of Talagrand’s inequality is how we can
estimate the size of E supf∈F |∑n

i=1 f(Xi)|? Here the ’geometry’ and ’size’ of the
set F cannot be neglected.
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A classical approach comes from empirical processes and works with ’entropy
methods’ – entropy here meaning a measure of the size in an infinite-dimensional
set: Define N(ε,F , L2(Q)) to be the minimal number of balls needed to cover the
class F by balls of radius less than ε in the L2(Q) norm, where Q is some probability
measure on (S,A). The logarithm of this covering number is sometimes called the
entropy of F w.r.t. L2(Q), the origin of this name being due to Kolmogorov, who
was aware of the possible confusion.

This way of measuring the size of classes of functions is at the heart of the
study of the central limit theorem for empirical processes, but can be applied to
moment bounds as well. The proof uses chaining techniques and Rademacher
symmetrization, but does not belong to this course.

Theorem 18. Suppose F is P -centered and uniformly bounded by one, and denote
by Pn = 1

n

∑n
i=1 δXi

the empirical measure associated with the sample. Suppose

log N(ε,F , L2(Pn)) ≤ H(1/ε) (74)

for every n and some regularly varying function H that is zero on [0, 1/2] and
increasing on [1/2,∞). Denote by σ2 ≥ Ef 2(X) the usual weak variances. Then
there exists a constant C(H) such that

E

∥∥∥∥∥

n∑

i=1

f(Xi)

∥∥∥∥∥
F

≤ C(H)
(√

nσ
√

H(2/σ) + H(2/σ)
)

.

This theorem has a fairly long history. While it roots go back to Dudley’s
famous paper [10], with subsequent work in [36], [13], this general version is due to
[18]. There is also some work on the constants in this inequality in the appendix
of [19]. Remarkably [18] show that the above theorem is sharp at least if the first
term in the upper bound is dominant (and if the estimate for H is sharp).

While working with covering numbers with respect to the L2(Pn) metrics is
useful for sharp formulations (Talagrand calls this ’random geometry’), to apply
this theorem it is usually more practical to estimate the ’uniform’ covering numbers
supQ log N(ε,F , L2(Q)). This is usually still a formidable task, but empirical
process theory provides several tools for this – from combinatorics, approximation
theory, geometry etc. There is a rich and applicable number of examples as well as
a general theory, which however, cannot be covered here. We refer to [12] for a very
comprehensive account. For instance for all the examples of classes of functions
mentioned in the introduction to this section sharp uniform entropy bounds exist
in the literature.

6.4.3 A ’statistical version’ of Talagrand’s Inequality

The moment bounds from the last subsection could be used to estimate the moment
E ‖∑n

i=1 f(Xi)‖F by an upper bound that depends only on σ and n. However,
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what does one do if this bound turns out not to be sharp, or if one does not obtain
a bound at all? In statistical applications it is often sufficient to have a good
’random’ estimate of E ‖∑n

i=1 f(Xi)‖F . An interesting idea in this direction – due
to Koltchinskii (see, e.g., [29] and also his forthcoming St.Flour lecture notes) is
the following: Let us assume for the moment that F is not P -centered, so that we
want to control

E

∥∥∥∥∥

n∑

i=1

(f(Xi) − Ef(Xi))

∥∥∥∥∥
F

.

The ’statistician’ usually does not know this quantity (due to the two expecta-
tions). However, by Lemma 7 with ai = −Ef(Xi) this quantity is less than or
equal to

2E

∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

, (75)

and by virtue of Talagrand’s inequality for the two-sample empirical process εi, Xi,
the random quantity ∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

,

which is usually computable for the statistician, concentrates around the expecta-
tion featuring in (75). Using these ideas we can prove, starting from (59) and (60),
the following result. We do not care too much about optimality of the constants
here, but it should be clear that they are of a ’small’ numerical form.

Proposition 7. Let F be a countable class of functions uniformly bounded by 1/2,
and let

σ2 ≥ sup
f∈F

Ef 2(X)

be the weak variances. We have for every n ∈ N and x > 0

Pr

{∥∥∥∥∥
1

n

n∑

i=1

(f(Xi) − Ef(X))

∥∥∥∥∥
F

≥ 6

∥∥∥∥∥
1

n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

+ 10

√
(x + log 2)σ2

n
+ 22

x + log 2

n

}
≤ e−x

Proof. Let us define Z = E ‖∑n
i=1(f(Xi) − Ef(X))‖F , then we have from (60)
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that

e−x ≥ Pr
{
Z ≤ EZ −

√
2x (nσ2 + 2EZ) − x

}

≥ Pr
{
Z ≤ EZ −

√
2xnσ2 −

√
4xEZ − x

}

≥ Pr
{
Z ≤ 0.5EZ −

√
2xnσ2 − 3x

}
(76)

= Pr

{∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F
≤ 0.5E

∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F
−
√

2xσ2

n
− 3x

n

}

where we have used
√

a + b ≤ √
a +

√
b as well as

√
ab ≤ a+b

2
. By the same

reasoning we have from (59)

Pr

{∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F
≥ 1.5E

∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F

+

√
2xσ2

n
+

7x

3n

}
.

(77)
To prove the proposition, observe

Pr

{∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F
≥ 6

∥∥∥∥
1

n

∑
εif(Xi)

∥∥∥∥
F

+ 10

√
xσ2

n
+

22x

n

}

≤ Pr

{∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F
≥ 3E

∥∥∥∥
1

n

∑
εif(Xi)

∥∥∥∥
F

+ 1.5

√
xσ2

n
+ 0.15

22x

n

}

+ Pr

{
6

∥∥∥∥
1

n

∑
εif(Xi)

∥∥∥∥
F
− 3E

∥∥∥∥
1

n

∑
εif(Xi)

∥∥∥∥
F

< −8.5

√
xσ2

n
− 0.85

22x

n

}

≤ Pr

{∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F
≥ 1.5E

∥∥∥∥
1

n

∑
(f(Xi) − Pf)

∥∥∥∥
F

+

√
2xσ2

n
+

7x

3n

}

+ Pr

{∥∥∥∥
1

n

∑
εif(Xi)

∥∥∥∥
F

< 0.5E

∥∥∥∥
1

n

∑
εif(Xi)

∥∥∥∥
F
−
√

2xσ2

n
− 3x

n

}

where we have used Lemma 7. The first quantity on the r.h.s. of the last inequality
is less than or equal to e−x by using the bound (77). For the second term, note
that (76) applies to the randomized sums

∑n
i=1 εif(Xi) as well by just taking the

class of functions
G = {g(τ, x) = τf(x) : f ∈ F} ,

τ ∈ {−1, 1}, instead of F and the probability measure P̄ = 2−1(δ−1 + δ1) × P
instead of P . It is easy to see that σ can be taken to be the same as for F , so
that (76) applies. This gives the overall bound 2e−x, and a change of variables in
x gives the final bound.
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6.5 Sums of i.i.d. Banach-Space valued Random Variables

Similar to Subsection 4.4 above, one can ask how results for empirical processes
carry over to sums of i.i.d. Banach space valued random variables. Suppose we
are given a sequence of i.i.d. centered random variables X, X1, ..., Xn taking val-
ues in the (for simplicity again separable) Banach space (B, ‖ · ‖B), and assume
furthermore that the variables are bounded by one: ‖X‖B ≤ 1. [Centered means
here EX = 0 in the Bochner sense but it suffices by boundedness of X to check
that Ef(X) = 0 for every f ∈ B′.] Then taking F to be the unit ball of B′ as
in Subsection 4.4 above, we see that supf∈F |f(X)| ≤ ‖f‖′B‖X‖B = 1, so that the
class F is uniformly bounded by one. Furthermore the norm of the sample mean
satisfies ∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
B

= sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣
and Talagrand’s inequality Theorem 14 gives us, for some universal constant K,
that

Pr

{∣∣∣∣∣

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
B

− E

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
B

∣∣∣∣∣ ≥ r

}
≤ 1

K
exp

{
− r2

Kn

}
,

a genuine analogue of Hoeffding’s inequality in infinite dimensions. This can be
used to prove, for instance, under sharp conditions (using truncation), the law
of the iterated logarithm in Banach spaces. It also implies a law of large num-
bers in Banach spaces (just use Borell-Cantelli), although clearly the boundedness
assumption on X is not necessary.

Moreover, if we take into account the random variances, and using Proposition
6, then

Pr

{∣∣∣∣∣

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
B

− E

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
B

∣∣∣∣∣ ≥ r

}
≤ 1

K
exp

{
− r

K
log
(
1 +

r

EΣ2

)}

where

EΣ2 ≤ nσ2 + 16E

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
B

with σ2 ≥ supL:‖L‖′B≤1 EL2(X) the weak variances. The moments E ‖∑n
i=1 Xi‖B

can be directly controlled by using techniques from probability in Banach spaces
(taking into account the geometry of B). We refer to [1] and [32] for results of
this type. One can alternatively try to use Theorem 18 with F equal to the unit
ball of B′ to control moments of norms of sums of i.i.d. Banach space random
variables. This will be particularly useful when B is far away from a Hilbert space
(and hence has no ’nice’ geometry), for instance if B equals the space C(K) of
continuous functions on K for K some compact metric space.
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6.6 Estimation of a Probability Measure

Talagrand’s inequality was partly motivated by concrete problems in statistics (see
[2] and in particular [34]), and has since found an enormous amount of applications
in statistics, which cannot be summarized here. To give a flavour of some of
the results that can be proved using Talagrand’s inequality, we shall discuss in
this section a theorem that sheds new light on the most fundamental problem of
statistics – estimation of the distribution of a random variable.

Suppose we are given a sample X1, ..., Xn of i.i.d. random variables each of
which has law P with distribution F (t) = P (X ≤ t). The classical theorems of
mathematical statistics attempt to establish that the empirical distribution func-
tion

Fn(t) =
1

n

n∑

i=1

1(−∞,t](Xi)

is the optimal estimator for F . There are results on this fact from Doob, Kol-
mogorov, Smirnov, Donsker, Dvoretzky, Kiefer, Wolfowitz, Dudley and many oth-
ers between the 30s and the 60s. One of the main theorems of this theory is the
’asymptotic minimaxity’ of Fn, proved by Dvoretzky, Kiefer and Wolfowitz [9]:
Denote by P the set of all distributions on R, and by T the set of all ’estimators’
(all real-valued measurable functions of the sample X1, ..., Xn and t). Then

lim
n

supF∈P EF supt∈R
|Fn(t) − F (t)|

infTn∈T supF∈P EF supt∈R |Tn(t) − F (t)| = 1. (78)

The conclusion is that if nothing is known apriori about the distribution of F ,
then the empirical distribution Fn cannot be improved upon as an estimator (at
least for large samples). This result is mirrored in Donsker’s functional central
limit theorem which says that

√
n(Fn − F ) →d GP in ℓ∞(R) (79)

where ℓ∞(R) is the space of bounded functions on R, and where GP is the P -
Brownian bridge.

However, the sample may contain more information – for instance one may be
interested in estimating the density f of F as well. Clearly the statistician usu-
ally does not know that F has a density, and indeed even if a density exists the
statistical performance of any estimator heavily depends on the regularity prop-
erties of f : To understand this phenomenon, define for any nonnegative integer s
the spaces Cs(R) of all bounded continuous real-valued functions that are s-times
continuously differentiable on R, equipped with the norm

‖f‖s,∞ =
∑

0≤α≤s

‖Dαf‖∞ .
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For noninteger s > 0, set

‖f‖s,∞ :=
∑

0≤α≤[s]

‖Dαf‖∞ + sup
x 6=y

∣∣D[s]f(x) − D[s]f(y)
∣∣

|x − y|s−[s]

and define
Cs(R) =

{
f ∈ C

[s](R) : ‖f‖s,∞ < ∞
}

, (80)

where [s] denotes the integer part of s.
One can then prove (see [27]) that

lim
n

(
n

log n

)t/(2t+1)

inf
Tn∈T

sup
f :‖f‖t,∞≤D

Ef sup
x∈R

|Tn(x) − f(x)| ≥ c(D) > 0 (81)

so that the best rate of consistency (convergence) that any estimator for f can
achieve depends on t. Now constructing an estimator that achieves this rate of
convergence is not simple, and will usually require knowledge of t (which the
statistician scarcely has).

Using Talagrand’s inequality and methods from nonparametric statistics devel-
oped in the last 20 years, one can prove the following result, which shows that one
can construct a purely-data-driven estimator F̂n which is as good as the empirical
distribution function for estimating F (cf. (79)) but also optimally estimates the
density f of F , if it exists, but without any apriori information required! In this
sense F̂n strictly outperforms the empirical distribution function.

Theorem 19. Let X1, ..., Xn be i.i.d. on R with common law P . For any given T
there exists a (purely-data-driven) estimator F̂n such that

√
n
(
F̂n − F

)
→d GP in ℓ∞(R),

the convergence being uniform over the set of all probability measures P on R,
in any distance that metrizes convergence in law. If furthermore P possesses a
bounded and uniformly continuous density f with respect to Lebesgue measure,
then

{the Lebesgue density f̂n of F̂n exists}
eventually, and

‖f̂n − f‖∞ = oP (1).

If, in addition, f ∈ Ct(R) for some 0 < t ≤ T , then also

‖f̂n − f‖∞ = OP

((
log n

n

)t/(2t+1)
)

.
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The paper [19] is entirely devoted to the proof of this theorem, and it would
require another lecture course to be covered in all detail. But we should note that
it heavily uses Talagrand’s inequality at several instances. In [20] a more concrete
construction of the estimator F̂n is given by using wavelet theory.
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A Concentration inequalities for Wigner random

matrices

The goal of random matrix theory is the study of the statistical properties of the
eigenvalues of an N × N matrix, whose entries are random variables with a given
probability law, in the limit N → ∞.

Here, I am going to discuss so called Wigner random matrices, whose entries
are, up to some symmetry constraints, independent and identically distributed
random variables. In particular, I am going to consider hermitian Wigner matrices
(but the results I will present can be easily extended to real symmetric matrices).

Definition 4. A hermitian Wigner matrix is an N ×N matrix H = (hij)1≤i≤j≤N

such that

hij =
1√
N

(xij + iyij) for all 1 ≤ i < j ≤ N

hii =
xii√
N

for 1 ≤ i ≤ N

where {xij , yij, xii} is a collection of real independent identically distributed random
variables with E xij = 0 and E x2

ij = 1/2.

Remark 4. The diagonal element are often assumed to have a different distribu-
tion, with E xii = 0 and E x2

ii = 1. All results I will present remain true with this
different convention.

Remark 5. Note that the entries scale with the dimension N . The scaling is
chosen so that, in the limit N → ∞, all eigenvalues of H remain bounded. To see
that this is the correct scaling, observe that

E

N∑

α=1

λ2
α = ETrH2 = E

∑

ij

|hij |2 = N2
E |hij |2

where λα, for α = 1, . . . , N are the eigenvalues of H. If all λα stay bounded and
of order one in the limit of large N , we must have E TrH2 ≃ N and therefore
E |hij|2 ≃ N−1.

Example. The Guassian Unitary Ensemble (GUE) has probability density given
by

P (H)dH = const e−
N
2
TrH2

dH
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where dH =
∏N

i<j dhijdh∗
ij

∏N
i=1 dhii is the Lebesgue measure on R

N2
. It is simple

to check that the Guassian Unitary Ensemble is an ensemble of hermitian Wigner
matrices, where the entries {xij , yij} have probability density function g(x) =
const ·e−x2

and the diagonal entries {xii} have probability density function g̃(x) =
const · e−x2/2.

A.1 Wigner’s semicircle law

The first rigorous result in random matrix theory was proven by Wigner in 1955.
Wigner proved the convergence of the density of the eigenvalues (sometimes called
denstiy of states) towards the famous semicircle law. Fix E ∈ R, and consider the
interval of size η > 0 centered at E, Iη = [E − η/2, E + η/2]. Let N [Iη] denote the
number of eigenvalues of H inside Iη. The density of eigenvalues in the interval
Iη is then given by N [Iη]/Nη (we divide by N to obtain a quantity of order one,
because the typical distance between eigenvalues is of order 1/N). Wigner showed
that, for every δ > 0,

lim
η→0

lim
N→∞

P

(∣∣∣∣
N [Iη]

Nη
− ρsc(E)

∣∣∣∣ ≥ δ

)
= 0 (82)

where ρsc(E) = (2π)−1
√

1 − E2/4 for |E| ≤ 2 and ρsc(E) = 0 otherwise.

Remark 6. More generally, Wigner proved that, for every fixed η > 0 and δ > 0,

lim
N→∞

P

(∣∣∣∣∣
N [Iη]

Nη
−
∫ E+η/2

E−η/2

ρsc(s)ds

∣∣∣∣∣ ≥ δ

)
= 0 .

Remark 7. Note that the semicircle law is independent of the particular law of
the matrix entries (under the assumption that Exij = 0 and Ex2

ij = 1/2).

Remark 8. Note that Wigner’s result concerns the density of states (density of
eigenvalues) in intervals containing typically order N eigenvalues. In (82), the
order of the limit is important. It tells us that we let N → ∞ keeping η fixed.
In this sense, Wigner’s result is about the convergence to the semicircle law on
macroscopic intervals.

Several questions emerge naturally from Wigner’s result. Is it possible to show
convergence to the semicircle law for the density on smaller intervals, containing
less than order N eigenvalues? Is it possible to prove that the density of states
concentrates around its mean value? How large are the fluctuation of the density
around the semicircle law or around its average value?
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A.2 A general concentration inequality for eigenvalues

The next theorem is a first (but, as we will see, not final) answer to these questions.

Theorem 20 (Guionnet, Zeitouni; see [23]). Suppose that the law of the entries
{xij , yij, xii} satisfies the logarithmic Sobolev inequality with constant c > 0. Then,
for any Lipshitz function f : R → C, and δ > 0, we have that

P (|Tr f(H) − E Tr f(H)| ≥ δN) ≤ 2e
− N2δ2

4c|f |2
L . (83)

Moreover, for any k = 1, . . . , N , we have

P (|f(λk(H)) − E f(λk(H))| ≥ δ) ≤ 2e
− Nδ2

4c|f |2
L . (84)

In order to prove this theorem, we want to use the observation of Herbst that
Lipshitz functions of random matrices satisfying the log-Sobolev inequality exhibit
Gaussian concentration. This result was stated and proved in Theorem 9, adn we
rephrase it here for the convenience of the reader:

Theorem 21 (Herbst). Suppose that P satisfies the log-Sobolev inequality on RM

with constant c. Let G : RM → R be a Lipshitz function with constant |G|L. Then,
for every δ > 0,

P (|G(x) − EP G(x)| ≥ δ) ≤ 2e
− δ2

2c|G|2
L .

Since Trf(H) =
∑

α f(λα), we see that Trf(H) is a Lipshitz function of the
eigenvalues of H , if f is Lipshitz. The question is whether or not the eigenvalues
of H are Lipshitz function of the matrix entries. If yes, then Trf(H) is a Lipshitz
function of the matrix entries, and concentration follows by Theorem 21. In other
words, to complete the proof of Theorem 20, we need to show that the eigenvalues
of H are Lipshitz functions of its entries. To this end, we will use the following
lemma.

Lemma 8 (Hoffman-Wielandt). Let A, B be N × N hermitian matrices, with
eigenvalues λA

1 ≤ λA
2 ≤ · · · ≤ λA

N and λB
1 ≤ λB

2 ≤ · · · ≤ λB
N . Then

N∑

i=1

|λA
j − λB

j |2 ≤ Tr (A − B)2 .

Proof. Since
∑N

i=1(λ
A
i )2 = Tr A2 and

∑N
i=1(λ

B
i )2 = Tr B2, it is enough to show

that

Tr AB ≤
N∑

i=1

λA
i λB

i .
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Suppose now that A = UADAU∗
A, B = UBDBU∗

B, with UA, UB unitaries and DA =
diag (λA

1 , . . . , λA
N), and DB = diag (λB

1 , . . . , λB
N). Then, introducing the unitary

matrix V = U∗
AUB, we find that

Tr AB = Tr DAV DBV ∗ =
∑

i,j

λA
i λB

j |vij |2

≤ max

{
∑

i,j

λA
i λB

j wij : wij ≥ 0,
∑

i

wij = 1 for all j,
∑

j

wij = 1 for all i

}
.

To conclude the proof of the lemma, it suffices to show that W = 1 is a maximizer.
To this end, let W = (wij) be any maximizer. If w11 6= 0, there exist j, k s.t.

w1j > 0 and wk1 > 0. Let ν = min(w1j , wk1) and define a new matrix W̃ = (w̃ij)
by

w̃11 = w11 + ν, w̃kj = wkj + ν,

w̃1j = w1j − ν, w̃k1 = wk1 − ν

and w̃ℓ,m = wℓ,m for all remaining ℓ, m. Then, we observe that
∑

i,j

λA
i λB

i (w̃ij − wij) = ν
(
λA

1 λB
1 + λA

k λB
j − λA

1 λB
j − λA

k λB
1

)

= ν(λA
1 − λA

k )(λB
1 − λB

j ) ≥ 0 .

Hence W̃ is also maximal. Repeating this procedure at most 2N − 2 times we
arrive at a maximizer with w11 = 1. Repeating the same procedure for all diagonal
elements, we show that W = 1 is a maximizer.

Corollary 3. Let X = ({xij, yij, xii}) ∈ RN2
and let λα(X), 1 ≤ α ≤ N be the

eigenvalues of the Wigner matrix H = H(X). Let g : RN → R be Lipshitz with
constant |g|L. Then the map RN2 ∋ X → g(λ1(X), . . . , λN(X)) ∈ R is Lipshitz
with coefficient

√
2/N |g|L. In particular if f : R → R is Lipshitz with constant

|f |L, the map R
N2 ∋ X → Tr f(H) is Lipshitz with constant

√
2|f |L.

Proof. Let Λ = (λ1, . . . , λN). Observe that

|g(Λ(X))− g(Λ(X ′))| ≤ |g|L ‖Λ(X) − Λ(X ′)‖2 = |g|L

√√√√
N∑

i=1

|λi(X) − λi(X ′)|2

≤ |g|L
√

Tr(H(X) − H(X ′))2 = |g|L
√∑

i,j

|hij(X) − hij(X ′)|2

≤
√

2/N |g|L‖X − X ′‖
RN2 .

(85)
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Since g(Λ) := Tr f(H) =
∑N

j=1 f(λj) is such that

|g(Λ)− g(Λ′)| ≤ |f |L
N∑

j=1

|λj − λ′
j | ≤

√
N |f |L ‖Λ − Λ′‖RN

we see that g is a Lipshitz function on RN with constant
√

N |f |L. Combined with
(85), this completes the proof of the corollary.

We are now ready to show Theorem 20.

Proof of Theorem 20. Let X = ({xij , yij, xii}) ∈ RN2
. Let G(X) = Tr f(H(X)).

Then G is Lipshitz with constant
√

2|f |L. Hence, by Theorem 21, we find

P (|Tr f(H) − ETr f(H)| ≥ δN) ≤ 2e
− δ2N2

4c|f |2
L .

To prove (84), we observe that, by Corollary 3, the function G(X) = f(λk(X)) is
Lipshitz with constant

√
2/N |f |L. Hence (84) follows by Theorem 21.

Applications of Theorem 20. From (84), choosing f(s) = s, we find immediately
that, for any j = 1, . . . , N ,

P (|λj − E λj| ≥ δ) ≤ 2e−
Nδ2

4c . (86)

This inequality implies that the fluctuations of the j-th eigenvalue around its
average value are at most of the order N−1/2. Since the distance between eigenvalue
is much smaller we actually expect the fluctuations to be much smaller. In fact,
it is known that, if λN denotes the largest eigenvalue of H ,

lim
N→∞

P
(
N2/3(λN − 2) ≥ s

)
= FTW(s) (87)

where the Tracy-Widom distribution FTW is given by

FTW(s) = e−
R ∞
s

dx (x−s)q2(x)

with q being the solution of the equation q′′(x) = xq(x) + q3(x) with q(x) ≃ Ai(x)
as x → ∞ (Ai is the Airy function). The convergence to the Tracy Widom
distribution was first proven by Tracy-Widom for GUE, and then extended by
Soshnikov (see [35] and references therein) to a large class of Wigner matrices. Eq.
(87) implies in particular that the fluctuations of λN are of order N−2/3. In the
bulk of the spectrum, fluctuations should be even smaller, since eigenvalues are
closer. For GUE, it was proven by Gustavsson (see [24]) that, as N → ∞

λj − t(j)
log1/2 N

4(1−t(j)2)N

→ N(0, 1)
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in distribution. Here t(j) is the location, according to the semicircle law, of the
j-th eigenvalue of H , and j = j(N) is chosen so that j(N)/N → a ∈ (0, 1) as
N → ∞. Hence in this case the fluctuations of λj are of the order (log N)1/2/N .

Theorem 20 can also be used to get concentration of the density of states.
There is here a little obstacle, which follows by the observation that

N [Iη]

Nη
=

1

Nη
Tr χ(|H − E| ≤ η)

and that the characteristic function χ(|x − E| ≤ η is not Lipshitz. To circumvent
this problem, it is useful to approximate the density of states by the imaginary
part of the trace of the resolvent. The idea here is that χ(|x| ≤ η) ≃ η2/(x2 + η2).
This leads to

N [Iη]

Nη
≃ 1

Nη
Tr

η2

(H − E)2 + η2
=

1

N
Im Tr

1

H − E − iη
.

It is a fact that concentration bounds for the r.h.s. can then be translated into
concentration bounds for the density of states N [Iη]/Nη. We will not go into these
details; instead, we will look for concentration bounds for the imaginary part of
the trace of (H − E − iη)−1.

Taking f(s) = (s − E − iη)−1, it follows that f is Lipshitz with constant η−2.
Therefore, (83) implies that

P

(∣∣∣∣
1

N
Im Tr

1

H − E − iη
− E

1

N
Im Tr

1

H − E − iη

∣∣∣∣ ≥ δ

)
≤ 2e−

δ2N2η4

4c . (88)

This immediately implies that the fluctuations of the imaginary part of the resol-
vent at distances η ≃ 1 from the real axis are of order N−1 with Gaussian tails
(the same bound can then be obtained for the density of states on intervals of
size η ≃ 1). This result is optimal. Note that (88) implies concentration also for
the density of states on intervals of size N−1/2 ≪ η ≪ 1, which do not contain a
macroscopic number of eigenvalues. The estimate (88), on the other hand, does
not say anything about the density of states on intervals of size η ≪ N−1/2.

A.3 Concentration of eigenvalues at the right scale

This remark leads to two natural questions. Is it possible to establish convergence
to the semicircle law for the density of states on scales N−1/2 ≪ η ≪ 1 for which
we know (by (88)) that the density concentrates around its average? Is it possible
to get concentration and convergence to the semicircle for η ≪ N−1/2? As long as
η ≫ N−1, the interval Iη contains a large number of eigenvalues (which converges
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to infinity as N → ∞). For this reason, we should expect that, for η ≫ N−1,
concentration around the average and convergence to the semicircle law hold. We
will see that this is indeed the case. The first ingredient to prove these facts is an
upper bound on the density of states on small intervals.

Theorem 22. Suppose that the random variables {xij, yij, xii} have Gaussian de-

cay (in the sense that, for some δ > 0, E eδx2
ij < ∞). Then there exist constants

K0 > 0 and c, C < ∞ such that

P

(N [E − η/2, E + η/2]

Nη
≥ K

)
≤ Cec

√
KNη (89)

for all E ∈ R, η = η(N) ≥ (log N)2/N , N ≥ 2, and K ≥ K0.

Remark 9. Under somehow stronger assumptions on the law of {xij , yij, xii}, one
can improve (89) to

P

(N [E − η/2, E + η/2]

Nη
≥ K

)
≤ CecKNη .

Remark 10. It is possible to extend these bounds to the case η(N) = K/N for a
large, but fixed K (independent of N). Intervals of size K/N typically contain a
finite number of eigenvalues.

Proof of Theorem 22. We use the inequality (with Iη = [E − η/2, E + η/2])

N [Iη]

Nη
≤ C

N
Im Tr

1

H − E − iη
=

C

N
Im

N∑

j=1

1

H − E − iη
(j, j) . (90)

Now observe that, for example for j = 1,

1

H − E − iη
(1, 1) =

1

h11 − z − a · (B − z)−1a

where a = (h21, . . . , hN−1,1) ∈ CN−1 is the first column of H , after removing the
diagonal element h11, and B is the (N − 1) × (N − 1) minor of H , obtained by
removing the first line and column. If we denote by µα and vα the eigenvalues and
, respectively, the eigenvectors of B, we find that

1

H − E − iη
(1, 1) =

1

h11 − z −∑α
|a·vα|2
µα−z

.

Note that a is independent of µα and vα. Therefore,

E |a · vα|2 = E

∑

i,j

aiājvα(i)vα(j) = N−1 .
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We define ξα = N |a · vα|2. Then we have Eξα = 1 and

1

H − E − iη
(1, 1) =

1

h11 − z − 1
N

∑
α

ξα

µα−z

. (91)

Taking the absolute value, we find that

Im
1

H − E − iη
(1, 1) ≤ 1

η + η
N

∑
α

ξα

(µα−E)2+η2

≤ Nη∑
α:|µα−E|≤η ξα

.

(92)

Now we observe that, since the eigenvalues of H are interlaced with the eigenvalues
of B, |{α : |µα − E| ≤ η}| ≥ N − 1. On the other hand, we observe that, for any
m = 1, . . . , N ,

m∑

j=1

ξαj
=

m∑

j=1

|b · vαj
|2 = ‖Pmb‖2

where b =
√

N a is a vector in CN−1 with independent and identically distributed
components such that E bj = 0 and E |bj|2 = 1, and Pm is the orthogonal projection
of rank m, projecting into the space spanned by the vαj

, j = 1, . . . , m (remark that
the bj are independent of the vαj

). It is simple to check that E ‖Pmb‖2 = m. We
need to know that the probability for ‖Pmb‖ ≤ m/2 is very small. Concentration
estimates for quadratic forms are well-known. To get the desired bound, we can
use the following lemma proven by Hanson-Wright, and extended by Wright to
variable which are not necessarily symmetric.

Lemma 9 (Hanson-Wright, Wright, see [25, 40]). Let Xi, i = 1, . . . , N be a se-
quence of independent and identically distributed random variables with EXi = 0.
There exists a constant C > 0 such that

P

(
N∑

i,j=1

aij (XiXj − EXiXj) ≥ δ

)
≤ e−C min(δ/‖A‖,δ2,‖A‖2

HS)

where ‖A‖ denotes the operator norm of the matrix A = (|aij |)i<j and ‖A‖HS =
(
∑

i,j |aij|2)1/2 is its Hilbert-Schmidt norm.

Using this lemma, with A = (|∑α vα(i)vα(j)|), we find ‖A‖ ≤ √
m and

‖A‖2
HS ≤ m, and thus

P
(∣∣‖Pmb‖2 − m

∣∣ ≥ δ
)
≤ e

−C min
“

δ
m

, δ2

m2

”

.
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With δ = m/2, we find

P
(
‖Pmb‖2 ≤ m/2

)
≤ e−C

√
m

since we are interested in the regime with m ≫ 1.

From (90) and (92), we find

N [Iη]

Nη
≤ C

N

N∑

j=1

Nη
∑

α:|µ(j)
α −E|≤η

ξ
(j)
α

where ξ
(j)
α =

√
N |a(j) · v(j)

α |2, and a(j) is the j-th column of H without the diagonal

entry hjj, µ
(j)
α , v

(j)
α are the eigenvalues and eigenvectors of the minor B(j) of H

obtained by removing the j-th line and the j-th column. Therefore

P

(N [Iη]

Nη
≥ K

)
≤ P


N [Iη] ≥ KNη and ∃j = 1, . . . , N :

∑

α:|µ(j)−E|≤η

ξ(j)
α ≤ KNη

2




= NP


N [Iη] ≥ KNη and

∑

α:|µ(1)−E|≤η

ξ(1)
α ≤ KNη

2




≤ Ne−C
√

KNη ≤ Ce−c
√

KNη

where we used the fact that KNη ≥ K(log N)2, for a sufficiently large K, to
absorb the factor of N in the exponential.

Using the upper bound on the density given by Theorem 22, it is immediately
possible to improve the concentration estimate (88). Let

f ({xij , yij, xii}) =
1

N
Tr

1

H − E − iη
.
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Assuming that the entries satisfy a Poincaré inequality, we have that

var (f) = E

∣∣∣∣
1

N
Tr

1

H − E − iη
− E

1

N
Tr

1

H − E − iη

∣∣∣∣
2

≤ C
∑

i<j





∣∣∣∣∣
∂

∂xij

(
1

N

∑

α

1

λα − E − iη

)∣∣∣∣∣

2

+

∣∣∣∣∣
∂

∂yij

(
1

N

∑

α

1

λα − E − iη

)∣∣∣∣∣

2




+
∑

i

∣∣∣∣∣
∂

∂xii

(
1

N

∑

α

1

λα − E − iη

)∣∣∣∣∣

2

=
C

N2

∑

α,β

1

(λα − E − iη)2(λβ − E + iη)2

×
{
∑

i<j

∂λα

∂xij

∂λβ

∂xij

+
∂λα

∂yij

∂λβ

∂yij

+
∑

i

∂λα

∂xii

∂λβ

∂xii

}
.

We find

∑

i<j

∂λα

∂xij

∂λβ

∂xij

+
∂λα

∂yij

∂λβ

∂yij

+
∑

i

∂λα

∂xii

∂λβ

∂xii

=
1

N

∑

i,j

vα(i)vα(j)vβ(j)vα(i) =
δα,β

N

and therefore

var (f) ≤ C

N3

∑

α

1

|λα − E − iη|4 . (93)

Using the trivial bound |λα − E − iη| ≥ η, we find

var (f) ≤ C

N2η4
(94)

which implies that the fluctuations of the density of states are small as long as
η ≫ N−1/2; this is the same result as in (88). But now, using the upper bound
on the density, we can improve (94). In fact, we only have to use the bound
|λα − E − iη| ≥ η for those α for which |λα − E| ≤ η; the upper bound implies
that, with very high probability, there are not more than CNη such α’s. Hence,
making use of the upper bound, we find

var (f) ≤ CNη

N3η4
=

C

N2η3
(95)

which is small, for η ≫ N−2/3. This argument can be made rigorous using a dyadic
decomposition (see Theorem 3.1 in [14]). Note, also, that the bound (95) can be
exponentiated, if we assume that the entries satisfy a log-Sobolev inequality (the
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simplest proof consists in applying an inequality by Bobkov-Götze, see [3]). We
find (see Theorem 3.1 in [14])

P

(∣∣∣∣
1

N
Tr

1

H − E − iη
− E

1

N
Tr

1

H − E − iη

∣∣∣∣ ≥ ε

)
≤ e−cNηε min{(log N)−1,Nη2ε}

(96)
for every ε > 0 which implies concentration for all η ≫ N−2/3.

The concentration bound (96) is still not optimal. As mentioned above, one
expect concentration of the density of states (and convergence to the semicircle
law) for arbitrary intervals of size η ≫ N−1. It turns out that the right approach
to get concentration on these small scales consists in proving first the convergence
to the semicircle law. For intervals away from the edges, the convergence to the
semicircle law on these small scales is established in the following theorem.

Theorem 23. [Theorem 4.1 in [15]] Assume that the random variables {xij , yij, xii}
have Gaussian decay at infinity. Let

mN (z) =
1

N
Tr

1

H − z

and

msc(z) =

∫
dy

ρsc(y)

y − z
.

Then, for any κ > 0 there exist C, c < ∞ such that

P

(
sup

E∈(−2+κ,2−κ)

|mN(E + iη) − msc(E + iη)| ≥ δ

)
≤ Ce−cδ

√
Nη

for all δ ≤ Cκ, (log N)4/N ≤ η ≤ 1, N ≥ 2.

Remark 11. mN , msc are known as the Stieltjes transforms of the empirical
eigenvalue measure

µN(x) =
1

N

∑

α

δ(λα − x)

and, respectively, of the semicircle law. The convergence of the Stieltjes transform
implies convergence for the density of states. We find (see Theorem 4.1 in [15])

P

(
sup

E∈(−2+κ,2−κ)

∣∣∣∣
N [E − η/2, E + η/2]

Nη
− ρsc(E)

∣∣∣∣ ≥ δ

)
≤ Ce−cδ2

√
Nη .
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Remark 12. In particular, Theorem 23 implies that

|EmN (z) − msc(z)| ≤ C√
Nη

for all z = E + iη with E ∈ (−2 + κ, 2 − κ) and (log4 N)/N ≤ η ≤ 1. Therefore,
we obtain the concentration bound

P

(
sup

E∈(−2+κ,2−κ)

|mN (E + iη) − EmN (E + iη)| ≥ δ

)
≤ Ce−cδ

√
Nη . (97)

Remark 13. It is possible, with some more work, to extend the result of Theorem
23 and the concentration bound (97) to the microscopic scale η = K/N , with large
but fixed K; see Theorem 3.1 in [15]. This scale is then optimal; for η ≤ N−1, the
typical number of eigenvalues in the interval Iη = [E − η/2, E + η/2] is very small
and the fluctuations of the density are certainly important.

A complete proof of Theorem 23 can be found in [15]. The main idea of the
proof is that the Stieltjes transform of the semicircle law satisfy a self-consistent
equation

msc(z) +
1

z + msc(z)
= 0

which is stable away from the edges. This implies that to prove that |mN (z) −
msc(z)| is small , it is enough to show that |mN(z)+ (z +mN(z))−1| is small. This
follows making use of expressions like (91). An important ingredient of this proof
is the upper bound on the density of states obtained in Theorem 22.

80



References
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