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Nathanaël Berestycki

Cambridge, Lent 2009

These notes and other information about the course are available on
www.statslab.cam.ac.uk/∼beresty/teach/StoCal/stocal.html

Christina Goldschmidt, Stefan Grosskinsky, Gregory Miermont, and James Norris have
all contributed to these notes. However, errors are the responsibility of the author only.
Comments and corrections are most welcome and should be sent to N.Berestycki AT
statslab.cam.ac.uk

Date last modified: March 11, 2009

1



Contents

Introduction 3

1 Brownian Motion: definition and first properties 5
1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Wiener’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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Introduction

In this course we will develop the tools needed to handle continuous-time Markov
processes in Rd. We will restrict our attention to continuous processes, although the
theory we develop is also well-suited for dealing with processes that exhibit jumps. The
most basic example of such a process is Brownian motion (Wt, t ≥ 0) with constant
diffusivity a. That is, for all t ≥ 0, Wt ∼ N (0, at). In fact, by the Lévy-Khinchin
Theorem (see Advanced Probability, Chapter 8)

(Xt)t≥0 defined by Xt = Wt + bt

is the most general spatially homogeneous Markov process (meaning, a Markov process
whose transition probabilities are a shift of the transition probabilities starting from
the origin).

Subject to reasonable regularity conditions, the most general inhomogeneous continuous-
time Markov process can be characterized by the diffusivity a(x) and the drift b(x).
The interpretation of these coefficients is that the process follows the solution of an
ordinary differential equation in Rd, ẋ = b(x), which is perturbed by a Brownian noise
with intensity a(x) when the process is in x. Martingales play an important role in
the description of the time evolution of such processes, which is demonstrated in the
following non-rigorous calculation. Suppose that d = 1 and (Xt)t≥0 is characterized by
a(x) and b(x). Conditional on Xs = xs for all s ≤ t

Xt+dt = xt + b(xt) dt + Gt,

where Gt ∼ N
(
0, a(xt) dt

)
. Take f ∈ C2

b (R) (bounded and two times continuously
differentiable). Then by Taylor expansion

E
(
f(Xt+dt)− f(Xt)

∣∣Xs = xs, s ≤ t
)

= E
(
f ′(xt)

(
b(xt) dt + Gt +

1
2
f ′′(xt) G2

t

))
.

Up to order dt this includes the second derivative f ′′, since Gt ∼
√

a(xt) dtN(0, 1) =
O(
√

dt). This fact will be revisited later in a rigorous way as one of the main results
of stochastic calculus (Itô’s formula). Calculating the expectations we get

E
(
f(Xt+dt)− f(Xt)

∣∣ Xs = xs, s ≤ t
)

= Lf(xt) dt ,

where

Lf(x) =
1
2
a(x) f ′′(x) + b(x) f ′(x),

which is also called the generator of the process (Xt)t≥0. It describes the infinitesimal
expected time evolution of the process in the following sense. Consider

Mf
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs) ds .

We have calculated that E
(
Mf

t+dt −Mf
t

∣∣Xs = xs, s ≤ t
)

= 0 for all t, and so the
process (Mf

t )t≥0 is a martingale for all f . This property will often serve to characterize
(Xt)t≥0.
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Organization of the course. The course contains three main parts of unequal size.
In the first part we introduce and study basic properties of Brownian motion, such
as continuity and Markov properties. This serves as a guide throughout the study of
more complex processes later in the course. In the second part, which is the largest, we
define the stochastic integral with resect to semimartingales and use this construction
to prove Itô’s formula. This allows us to study in far more details the properties
of Brownian motion: transience, recurrence, applications to harmonic analysis, and
Girsanov’s theorem. These deep results are an application of the martingale point of
view on Brownian motion, as opposed to the results in the first part of the course,
which are essentially based on the Markov property. Finally, in the third part of this
course, we develop the theory of stochastic differential equations and diffusions. We
use this theory to show that many simple stochastic discrete models can be effectively
studied by taking a diffusion approximation.

Stochastic calculus has very important application in sciences (biology or physics)
as well as mathematical finance. For example, we will develop all the necessary tools to
rigorously prove results like the Black-Scholes formula. But it is also a very beautiful
part of modern probability and has let to a considerable enrichment of the subject
itself.
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1 Brownian Motion: definition and first properties

1.1 Introduction.

This chapter is devoted to the construction and some properties of one of probability
theory’s most fundamental objects. Brownian motion earned its name after R. Brown,
who observed around 1827 that tiny particles of pollen in water have an extremely
erratic motion. It was observed by Physicists that this was due to an important number
of random shocks undertaken by the particles from the (much smaller) water molecules
in motion in the liquid. A. Einstein established in 1905 the first mathematical basis for
Brownian motion, by showing that it must be an isotropic Gaussian process. The first
rigorous mathematical construction of Brownian motion is due to N. Wiener in 1923,
using Fourier theory.

In order to motivate the introduction of this object, we first begin by a ”microscop-
ical” depiction of Brownian motion. Suppose (Xn, n ≥ 0) is a sequence of Rd valued
random variables with mean 0 and covariance matrix σ2Id, which is the identity matrix
in d dimensions, for some σ2 > 0. Namely, if X1 = (X1

1 , . . . , Xd
1 ),

E[Xi
1] = 0, E[Xi

1X
j
1 ] = σ2δij , 1 ≤ i, j ≤ d.

We interpret Xn as the spatial displacement resulting from the shocks due to water
molecules during the n-th time interval, and the fact that the covariance matrix is
scalar stands for an isotropy assumption (no direction of space is privileged).

From this, we let Sn = X1 + · · ·+ Xn and we embed this discrete-time process into
continuous time by letting

B
(n)
t = n−1/2S[nt], t ≥ 0.

Let | · | be the Euclidean norm on Rd and for t > 0 and X, y ∈ Rd, define

pt(x) =
1

(2πt)d/2
exp

(
−|x|

2

2t

)
,

which is the density of the Gaussian distribution N (0, tId) with mean 0 and covariance
matrix tId. By convention, the Gaussian law N (m, 0) is the Dirac mass at m.

Proposition 1.1 Let 0 = t1 ≥ t2 < · · · < tk. Then the finite marginal distributions of
B(n) with respect to times t1, . . . , tk converge weakly as n →∞. More precisely, if F is
a bounded continuous function, and letting x0 = 0, t0 = 0,

E
[
F (B(n)

t1
, . . . , B

(n)
tk

)
]
−→
n→∞

∫

(Rd)k

F (x1, . . . , xk)
∏

1≤i≤k

pσ2(ti−ti−1)(xi − xi−1)dxi.

Otherwise said, (B(n)
t1

, . . . , B
(n)
tk

) converges in distribution to (G1, G2, ..., Gk), which is
a random vector whose law is characterized by the fact that (G1, G2−G1, ..., Gk−Gk−1)
are independent centered Gaussian random variables with respective covariance matrices
σ2(ti − ti−1)Id.
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Proof. With the notations of the theorem, we first check that (B(n)
t1

, B
(n)
t2
−B

(n)
t1

, . . . , B
(n)
tk
−

B
(n)
tk−1

) is a sequence of independent random variables. Indeed, one has for 1 ≤ i ≤ k

B
(n)
ti
−B

(n)
ti−1

=
1√
n

[nti]∑

j=[nti−1]+1

Xj ,

and the independence follows by the fact that (Xj , j ≥ 0) is an i.i.d. family. Even
better, we have the identity in distribution for the i-th increment

B
(n)
ti
−B

(n)
ti−1

d=

√
[nti]− [nti−1]√

n

1√
[nti]− [nti−1]

[nti]−[nti−1]∑

j=1

Xj

and the central limit theorem shows that this converges in distribution to a Gaussian law
N (0, σ2(ti− ti−1)Id). Summing up our study, and introducing characteristic functions,
we have shown that for every ξ = (ξj , 1 ≤ j ≤ k),

E


exp


i

k∑

j=1

ξj(B
(n)
tj
−B

(n)
tj−1

)





 =

k∏

j=1

exp
(
iξj(B

(n)
tj
−B

(n)
tj−1

)
)

−→
n→∞

k∏

j=1

exp (iξj(Gj −Gj−1))

= E


exp


i

k∏

j=1

ξi(Gj −Gj−1)





 ,

where G1, . . . , Gk is distributed as in the statement of the proposition. By Lévy’s
convergence theorem we deduce that increments of B(n) between times ti converge to
increments of the sequence Gi, which is easily equivalent to the statement.

This suggests that B(n) should converge to a process B whose increments are in-
dependent and Gaussian with covariances dictated by the above formula. This will be
set in a rigorous way later in the course, with Donsker’s invariance theorem.

1.2 Wiener’s theorem

We now start to define and study Brownian motion.

Definition 1.1 An Rd-valued stochastic process (Bt, t ≥ 0) is called a standard Brow-
nian motion if it is a continuous process, that satisfies the following conditions:

(i) B0 = 0 a.s.,

(ii) for every 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, the increments (Bt1 − Bt0 , Bt2 −
Bt1 , . . . , Btk −Btk−1

) are independent, and

(iii) for every t, s ≥ 0, the law of Bt+s − Bt is Gaussian with mean 0 and covariance
sId.
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The term “standard” refers to the fact that B1 is normalized to have variance Id, and
the choice B0 = 0.

The characteristic properties (i), (ii), (iii) exactly amount to say that the finite-
dimensional marginals of a Brownian motion are given by the formula of Proposition
1.1. Therefore the law of the Brownian motion is uniquely determined. We now show
Wiener’s theorem that Brownian motion exists!

Theorem 1.2 (Wiener) There exists a Brownian motion on some probability space.

We will first prove the theorem in dimension d = 1 and construct a process (Bt, 0 ≤
t ≤ 1) satisfying the properties of a Brownian motion. This proof is essentially due to
P. Lèvy in 1948. Before we start, we will need the following lemma, which is left as an
exercise.

Lemma 1.3 Let N be a standard Gaussian random variable. Then

x−1 − x−3

√
2π

e−x2/2 ≤ P (N > x) ≤ x−1

√
2π

e−x2/2. (1.1)

Let D0 = {0, 1}, Dn = {k2−n, 0 ≤ k ≤ 2n} for n ≥ 1, and D = ∪n≥0Dn be the set of
dyadic rational numbers in [0, 1]. On some probability space (Ω,F , P ), let (Zd, d ∈ D)
be a collection of i.i.d. random variables all having a Gaussian distribution N (0, 1)
with mean 0 and variance 1. It is a well-known and important fact that if the ran-
dom variables X1, X2, . . . ” are linear combinations of independent centered Gaussian
random variables, then X1, X2, . . . ” are independent if and only if they are pairwise
uncorrelated, namely Cov(Xi, Xj) = E[XiXj ] = 0 for every i 6= j.

We set X0 = 0 and X1 = Z1. Inductively, given (Xn−1
d , d ∈ Dn−1, we build (Xn

d ,
d ∈ Dn) in such a way that (Xn

d , d ∈ Dn) satisfies (i), (ii), (iii) in the definition of the
Brownian motion (where the instants under consideration are taken in Dn).

To this end, take d ∈ Dn \Dn−1, and let d− = d − 2−n and d+ = d + 2−n so that
d−, d+ are consecutive dyadic numbers in Dn−1. Then define:

Xn
d =

Xn−1
d− + Xn−1

d+

2
+

Zd

2(n+1)/2
.

and put Xn
d− = Xn−1

d− and Xn
d+

= Xn−1
d+

. Note that with these definitions,

Xn
d −Xn

d− = (Xn−1
d+

−Xn−1
d− )/2 + Zd/2(n+1)/2

and
Xn

d+
−Xn

d = (Xn−1
d+

−Xn−1
d− )/2− Zd/2(n+1)/2.

It follows that
Nd := (Xn−1

d+
−Xn−1

d− )/2

and
N ′

d = Zd/2(n+1)/2

are by the induction hypothesis two independent centered Gaussian random variables
with variance 2−n−1. From this, one deduces

Cov(Nd + N ′
d, Nd −N ′

d) = Var(Nd)−Var(N ′
d) = 0,
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so that the increments Xn
d −Xn

d− and Xn
d+
−Xn

d are independent with variance 2−n, as
should be. Moreover, these increments are independent of the increments Xn

d′+2−n−1 −
Xn

d′ for d′ ∈ Dn−1, d
′ 6= d− and of Zd′ , d

′ ∈ Dn\Dn−1, d
′ 6= D so they are independent

of the increments Xd′′+2−n −Xd′′ for d′′ ∈ Dn, d′′ /∈ {d−, d}. This allows the induction
argument to proceed one step further.

We have thus defined a process (Xn
d , d ∈ Dn) which satisfies properties (i), (ii) and

(iii) for all dydadic times t1, t2, . . . , tk ∈ Dn. Observe that if D ∈ Dn, Xm
d = Xn

d for all
m ≥ n. Hence for all d ∈ D,

Bd = lim
m→∞Xm

d

is well-defined and the process (Bd, d ∈ D) obviously satisfies (i), (ii) and (iii). To
extend this to a process defined on the entire interval [0, 1], we proceed as follows.
Define, for each n ≥ 0, a process Xn(t), 0 ≤ t ≤ 1 to be the linear interpolation of the
values (Bd, d ∈ Dn) the dyadic times at level n. Note that if d ∈ D, say d ∈ Dm with
m ≥ 0, then for any n ≥ m, Xn(d) = Xm(d) = Bd. Furthermore, define an event An

by

An =
{

sup
0≤t≤1

|Xn(t)−Xn−1(t)| > 2−n/4

}
.

We then have, by Lemma 1.1, if N is a standard gaussian random variable:

P(An) =P




2n−1⋃

j=0

sup
t∈[(2j)2−n,(2j+2)2−n]

|Xn(t)−Xn−1(t)| > 2−n/4




≤
2n−1∑

j=0

P
( |Z(2j+1)2−n |

2(n+1)/2
> 2−n/4

)

≤
2n−1∑

k=0

P(|N | > 2(n+2)/4)

≤ π−1/223n/4 exp(−2n/2)

We conclude that ∞∑

n=0

P(An) < ∞

and by Borel-Cantelli, the events An occur only finitely often. We deduce immediately
that the sequence of functions Xn is almost surely Cauchy in C(0, 1) equipped with the
topology of uniform convergence, and hence Xn converges toward a continuous limit
function (X̃(t), 0 ≤ t ≤ 1) uniformly, almost surely. Since Xn(t) is constantly equal to
Xt for t ∈ D and for n large enough, it must be that Xt = X̃(t) for all t ∈ D. Thus X̃ is
a continuous extension of X, and we still denote this extension by X. We now deduce
properties (i), (ii) and (iii) for X by continuity and the fact that Xn satisfies these
properties. Indeed, let k ≥ 1 and let 0 < t1 < t2 · · · < tk < 1. Fix α1, α2, . . . , αk ≥ 0.
For every 1 ≥ i ≥ k, fix a sequence (d(n)

i )∞t such that limn→∞ d
(n)
i = ti, and assume

(since D is dense in [0, 1]) that d(n) ∈ D and ti−1 < d
(n)
i ≤ ti. Then by Lebesgue’s

dominated convergence theorem:

8



E(eiα1Xt1+iα2(Xt2−Xt1 )+...+iαk(Xtk
−Xtk−1

)

= lim
n→∞E(e

iα1X
d
(n)
1

+iα2(X
d2

(n)−X
d
(n)
1

)+...+iαk(X
d
(n)
k

−X
d
(n)
k−1 )

= lim
n→∞ exp

(
−α2

1

2
d

(n)
1 − . . .− α2

k

2
(d(n)

k − d
(n)
k−1)

)

= exp
(
−α2

1

2
t1 − . . .− α2

k

2
(tk − tk−1)

)

It is now easy to construct a Brownian motion indexed by R+. Simply take inde-
pendent standard Brownian motions (Bi

t, 0 ≤ t ≤ 1), i ≥ 0 as we just constructed, and
let

Bt =
btc−1∑

i=0

Bi
1 + B

btc
t−btc, t ≥ 0.

It is easy to check that this has the wanted properties. Finally, it is straightforward to
build a Brownian motion in Rd, by taking d independent copies B1, . . . , Bd of B and
checking that ((B1

t , . . . , , Bd
t ), t ≥ 0) is a Brownian motion in Rd.

Remark. The extension of (Bd, d ∈ D) could have been obtained by appealing to the
existence of a continuous modification, whose existence is provided by Kolmogorov’s
criterion below.

1.3 Continuity and Hölder continuity of Brownian paths

In the last section we gave a construction of Brownian motion which directly yields
a random process satisfying the three properties defining a a Brownian motion, and
which was at the same time continuous. In fact, and that is the reason why continuity
is part of Definition 1.1, the next theorem will imply that any process satisfying (i),
(ii) and (iii) can be slightly modified so that its trajectories are a.s continuous. The
result is in fact much more general than that. As a consequence, we establish stronger
regularity properties for Brownian motion than mere continuity: we prove that the
path is almost surely Hölder with exponent 1/2 − ε for all ε > 0. To start with, we
need to introduce the concept of version (modification) and indistinguishable versions.

Definition 1.2 If X and X ′ are two processes defined on some common probability
space (Ω,F , P ), we say that X ′ is a version of X if for every t, P (Xt(ω)) = X ′

t(ω)) = 1.

In particular, two versions X and X ′ of the same process share the same finite-
dimensional distribution, however, this does not say that there exists an ω so that
Xt(ω) = X ′

t(ω) for every t. This becomes true if both X and X ′ are a priori known to
be continuous or cadlag, for instance. When the two trajectories coincide almost surely
for all t ≥ 0, we say that X and X ′ are indistinguishable:

Definition 1.3 If X and X ′ are two processes defined on some common probability
space (Ω,F , P ), we say that X ′ is an indistinguishable version of X P (Xt(ω) = X ′

t(ω)
for all t) = 1.
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Note that, up to indistinguishability, there exists at most one continuous modifi-
cation of a given process (Xt, t ≥ 0). Kolmogorov’s criterion is a fundamental result
which guarantees the existence of a continuous version (but not necessarily indistin-
guishable version) based solely on an Lp control of the two-dimensional distributions.
We will apply to Brownian motion below, but it is useful in many other contexts.

Theorem 1.4 (Kolmogorov’s continuity criterion) Let (Xt, 0 ≤ t ≤ 1) be a
stochastic process with real values. Suppose there exist p > 0, c > 0, ε > 0 so that for
every s, t ≥ 0,

E[|Xt −Xs|p] ≤ c|t− s|1+ε.

Then, there exists a modification X̃ of X which is a.s. continuous, and even α-Hölder
continuous for any α ∈ (0, ε/p).

Proof. Let Dn = {k · 2−n, 0 ≤ k ≤ 2n} denote the dyadic numbers of [0, 1] with level
n, so Dn increases as n increases. Then letting α ∈ (0, ε/p), Markov’s inequality gives
for 0 ≤ k < 2n,

P (|Xk2−n−X(k+1)2−n | > 2−nα)E[|Xk2−n−X(k+1)2−n |p] ≤ c2npα2−n−nε ≤ c2−n2−(ε−pα)n.

Summing over Dn we obtain

P

(
sup

0≤k<2n
|Xk2−n −X(k+1)2−n | > 2−nα

)
≤ c2−n(ε−pα),

which is summable. Therefore, the Borel-Cantelli lemma shows that for a.a. ω, there
exits Nω so that if n ≥ Nω, the supremum under consideration is ≤ 2−nα. Otherwise
said, a.s.,

sup
n≥0

sup
k∈{0,...,2n−1}

|Xk2−n −X(k+1)2−n |
2−nα

≤ M(ω) < ∞, a.s.

We claim that this implies that for every s, t ∈ D = ∪n≥0Dn, |Xs−Xt| ≤ M ′(ω)|t−s|α,
for some M ′(ω) < ∞ a.s.

Indeed, if s, t ∈ D, s < t, and let r is the least integer such that t − s > 2−r−1.
Then there exists 0 ≤ k ≤ 2r and integers l, m ≥ 0 such that

s = k2−r − ε12−r−1 − · · · − εl2−r−l

and
t = k2−r + ε′02

−r + ε′12
−r−1 + · · ·+ ε′m2−r−m

with εi, ε
′
i ∈ {0, 1}. For 0 ≤ i ≤ l, let

si = k2−r − ε12−r−1 − · · · − εi2−r−i.

By the triangular inequality

|Xt −Xs| = |Xtm −Xsl
| ≤ |Xt0 −Xs0 |+

l∑

i=1

|Xti −Xti−1 |+
m∑

j=1

|Xsj −Xsj−1 |

≤M(ω)2−rα +
l∑

i=1

M(ω)2−(r+i)α +
m∑

j=1

2−(r+j)αM(ω)

≤M(ω)2−rα(1 + 2(1− 2−α)−1)
≤M ′(ω)|t− s|α
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where M ′(ω) = M(ω)2α(1 + 2(1 − 2−α)−1). Therefore, the process (Xt, t ∈ D) is a.s.
uniformly continuous (and even α-Hölder continuous). Since D is an everywhere dense
set in [0, 1], the latter process a.s. admits a unique continuous extension X̃ on [0, 1],
which is also α-Hölder continuous (it is consistently defined by X̃t = limn Xtn , where
(tn, n ≥ 0)is any D-valued sequence converging to t). On the exceptional set where
(Xd, d ∈ D) is not uniformly continuous, we let X̃t = 0, 0 ≤ t ≤ 1, so X̃ is continuous.
It remains to show that X̃ is a version of X. To this end, we estimate by Fatou’s lemma

E[|Xt − X̃t|p] ≤ lim inf
n

E[|Xt −Xtn |p],

where (tn, n ≥ 0) is any D-valued sequence converging to t. But since E[|Xt−Xtn |p] ≤
c|t− tn|1+ε, this converges to 0 as n →∞. Therefore, Xt = X̃t a.s. for every t.

From now on we will consider exclusively a continuous modification of Brownian
motion, which is unique up to indistinguishability. As a corollary to Kolmogorov’s
criterion, we obtain the aforementioned result on the Hölder properties of Brownian
motion:

Corollary 1.5 Let (Bt, t ≥ 0) be a standard Brownian motion in dimension 1. Almost
surely, B is Hölder-continuous of order α for any 0 < a < 1/2. More precisely, with
probability 1, for

sup
n≤t,s≤n+1

|Bt −Bs|
|t− s|α < ∞. (1.2)

Proof. Let s ≤ t ∈ D, and notice that for every p > 0, since Bt − Bs has the
same law as

√
(t− s)N , (where N is a standard Gaussian random variable), we have

E(|Bt−Bs|p) ≤ M |t− s|1+ε with ε = p/2−1 and M = E(|N |p) < ∞ . For p > 2, ε > 0
and thus X is Hölder of order α for α < ε/p = 1/2 − 1/p. For instance, (1.2) holds
with α = 1/2− 1 = 2p for all p > 2, and hence for any α < 1/2 by taking a countable
intersection of sets of probability 1.

Notice that the above corollary does not say anything about higher-order Hölder
continuity: all we know is that the path is a.s. Hölder of order α < 1/2. The next
result tells us that this is, in some sense, sharp.

Theorem 1.6 Let B be a continuous modification of Brownian motion. Let γ > 1/2.
Then it holds:

P
(
∀t ≥ 0 : lim sup

h→0+

|Bt+h −Bt|
hγ

= +∞
)

= 1

Proof. We first observe that
{
∃t ≥ 0 : lim sup

h→0+

|Bt+h −Bt|
hγ

< ∞
}

⊆
∞⋃

p=1

∞⋃

k=1

∞⋃

m=1

{∃t ∈ [0,m] : |Bt+h −Bt| ≤ phγ ,∀h ∈ (0, 1/k)}.

Therefore, it suffices to show that

P(∃t ∈ [0,m] : |Bt+h −Bt| ≤ phγ ,∀h ∈ (0, δ)) = 0
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for all p ≥ 1,m ≥ 1, δ > 0. For n ≥ 1, 1 ≤ i ≤ mn− 1, define:

Ai,n =
{
∃s ∈

[
i

n
,
i + 1

n

]
: |Bs+h −Bs| ≤ phγ , ∀h ∈ (0, δ)

}
.

It suffices to show:

lim
n→∞

mn−1∑

i=0

P(Ai,n) = 0 (1.3)

Fix a large constant K > 0 to be chosen suitably later. We wish to exploit the fact
that on the event Ai,n many increments must be small. The trick is to be able to fix
in advance the times at which these increments will be too small. More precisely, on
Ai,n, as long as n ≥ (K + 1)/δ, for all 1 ≤ j ≤ K :

0 ≤ i + j

n
− s ≤ K + 1

n
≤ δ

where s is as in the definition of Ai,n. Thus, taking h = (i + j)/n− s, on Ai,n:
∣∣∣B i+j

n
−Bs

∣∣∣ ≤ p

(
i + j

n
− s)

)γ

≤ p

(
K + 1

n

)γ

If 2 ≤ j ≤ K, by the triangular inequality:
∣∣∣B i+j

n
−B i+j−1

n

∣∣∣ ≤ 2p

(
K + 1

n

)γ

Therefore, there exists C > 0 such that for all n ≥ (K + 1)/δ

P(Ai,n) ≤ P



K⋂

j=2

{∣∣∣B i+j
n
−B i+j−1

n

∣∣∣ ≤ 2p

(
K + 1

n

)γ }



≤
K∏

j=2

P
(
|N (0, 1/n)| ≤ 2p

(
K + 1

n

)γ)

≤
[
P

(
|N (0, 1)| ≤ 2p

(
K + 1

n

)γ

n1/2

)]K−1

≤
[
2p

(
K + 1

n

)γ

n1/2

]K−1

=
C

n(γ−1/2)(K−1)

It follows that for all n ≥ (K + 1)/δ :

mn−1∑

i=0

P(Ai,n) ≤ Cm

n(γ−1/2)(K−1)−1

Thus if K is large enough that (γ − 1/2)(K − 1) > 1, the right-hand side tends to
0 for all n ≥ n0 := d(K + 1/δe+ 1. This proves (1.3), and, as a consequence, Theorem
1.4.

As a corollary to the last result, we obtain the celebrated Paley-Wiener-Zygmund
theorem:

Corollary 1.7 Almost surely, t 7→ Bt is nowhere differentiable
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1.4 Basic properties

Let Ω = C(R+,Rd) be the ‘Wiener space’ of continuous functions,endowed with the
product σ-algebra W(or the Borel σ-algebra associated with the compact-open topol-
ogy).

Definition 1.4 (Wiener’s measure) Let (Bt, t ≥ 0) be a Brownian motion, and let
W be the law on Ω of B: that is, for any A ∈ W,

W(A) = P ((Bt, t ≥ 0) ∈ A)

W is called Wiener’s measure.
Of course, the point is that W does not depend on B. We now think of Ω as our

probability space. For ω ∈ Ω define:

Xt(ω) = ω(t), t ≥ 0

to be the canonical process. Then (Xt, t ≥ 0), under the probability measure W, is
a Brownian motion. This is the canonical construction of Brownian motion. (This
construction will come particularly handy when we discuss applications to Girsanov’s
theorem for change of measures.) For x ∈ Rd we also let Wx(dw) be the image measure
of W by (wt, t ≥ 0) 7→ (x + wt, t ≥ 0). A (continuous) process with law Wx(dw) is
called a Brownian motion started at x. We let (FB

t , t ≥ 0) be the natural filtration of
(Bt, t ≥ 0), completed by zero-probability events.

We now state some fundamental results, which are often referred to as the scaling
properties of Brownian motion, or scale-invariance of Brownian motion. They are easy
to prove and are left as an exercise.

Proposition 1.8 Let B be a standard Brownian motion in Rd .

1. Rotational invariance: If U ∈ O(d) is an orthogonal matrix, then UB = (UBt, t ≥
0) is again a Brownian motion. In particular, −B is a Brownian motion.

2. Scaling property: If λ > 0 then (λ−1/2Bλt, t ≥ 0) is a standard Brownian motion

3. Time-inversion: (tB1/t, t ≥ 0) is also a Brownian motion (at t = 0 the process is
defined by its value 0).

We now start to discuss ideas revolving around the Markov property of Brownian
motion and its applications to path properties. We begin with the simple Markov
property, which takes a particularly nice form in this context.

Theorem 1.9 Let (Bt, t ≥ 0) be a Brownian motion, and let s > 0. Then

(B̃t := Bt+s −Bs, t ≥ 0)

is a Brownian motion, independent of the σ − fieldFB
s+ =

⋂
t>sFB

t t.

Proof. Since B̃ is continuous and B̃0 = 0, to show that B̃ is a Brownian motion
it suffices to check that the increments have the correct distribution. However if t ≥
u, B̃t−B̃u = Bs+t−Bs+u so this follows directly from the fact that B itself is a Brownian
motion. It remains to show that B̃ is independent from Fs+ . We start by checking
independence with respect to Fs, for which we can assume d = 1. We will use this easy
lemma, which is an important property worth remembering:
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Lemma 1.10 Let s, t ≥ 0 Then

Cov(Bs, Bt) = s ∧ t.

Now, to prove independence of B̃ with repsect to Fs, it suffices to check that the finite-
dimensional marginals are independent: i.e., if s1 ≤ . . . sm ≤ s and t1 ≤ . . . tn, we want
to show that

(Bs1 , . . . , Bsm) and (B̃t1 , . . . B̃tn)

are independent. However, the m+n-coordinate vector (Bs1 , . . . , Bsm) and (B̃t1 , . . . B̃tn)
is a Gaussian vector (since it is the image by a linear application of a Gaussian vector),
and it suffices to check that the covariance of two distinct terms is 0. Since each term
has zero expectation:

Cov(B̃ti , Bsj ) =E(B̃tiBsj )
=E(Bs+tiBsj )− E(BsBsj )
= sj ∧ (s + ti)− (sj ∧ s) = sj − sj = 0

which proves the independence with respect to Fs. If A ∈ Fs+ , we wish to show that
for every continuous functional F : (Rd)k → R continuous and bounded,

E(1{A}F (B̃t1 , . . . , B̃tk)) = P(A)E(F (B̃t1 , . . . , B̃tk))

Now, for any ε > 0, A ∈ Fs+ ⊆ Fs+ε, thus, using the property just proved:

E(1AF (Bt1+s+ε−Bs+ε, . . . , Btk+s+ε−Bs+ε)) = P(A)E(F (Bt1+s+ε−Bs+ε, . . . , Btk+s+ε−Bs+ε))

Letting ε → 0 in the above identity, since B is continuous and F is bounded and
continuous, we have (by Lebesgue’s dominated convergence theorem),

E(1{A}F (B̃t1 , . . . , B̃tk)) = P(A)E(F (B̃t1 , . . . , B̃tk))

as required.

Theorem 1.11 (Blumenthal’s zero-one law) Let B be a standard Brownian mo-
tion. The σ-algebra FB

0+ =
⋂

ε>0FB
ε is trivial i.e. constituted of events of probability 0

or 1.

Proof. By the previous result, (Bt, t ≥ 0) is independent from F0+. However FB∞
contains FB

0+, so this implies that the σ− field F0+ is independent of itself, and P (A) =
P (A ∩ A) = P (A)2 by independence. Thus P (A) is solution to the equation x = x2

whose roots are precisely 0 and 1.

Proposition 1.12 (i) For d = 1 and t ≥ 0, let St = sup0≤s≤t Bs and It = inf0≤s≤t Bs

(these are random variables because B is continuous). Then almost surely, for every
ε > 0, one has
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Sε > 0 and Iε < 0

In particular, a.s. there exists a zero of B in any interval of the form (0, ε), ε > 0
(ii) A.s.,

sup
t≥0

Bt = − inf
t≥0

Bt = +∞

(iii) Let C be an open cone in Rd with non-empty interior and origin at 0 (i.e., a
set of the form {tu : t > 0, u ∈ A} , where A is a non-empty open subset of the unit
sphere of Rd). If

HC = inf{t > 0 : Bt ∈ C}
is the first hitting time of C, then HC = 0 a.s.

Proof. (i) The probability that Bt > 0 is 1/2 for every t, so P (St > 0) ≥ 1/2,
and therefore if tn, n ≥ 0 is any sequence decreasing to 0, P (lim supn{Btn > 0}) ≥
lim supn P (Btn > 0) = 1/2. Since the event lim supn{Btn > 0} is in F0+, Blumen-
thal’s law shows that its probability must be 1. The same is true for the infimum by
considering the Brownian motion −B.

(ii) Let S∞ = supt≥0 Bt. By scaling invariance, for every λ > 0, λS∞ = supt>0 λBt

has same law as supt≥0 Bλ2t = S∞. This is possible only if S∞ ∈ {0,∞} a.s., however,
it cannot be 0 by (i).

(iii) The cone C is invariant by multiplication by a positive scalar, so that P (Bt ∈ C)
is the same as P (B1 ∈ C) for every t by the scaling invariance of Brownian motion.
Now, if C has nonempty interior, it is straightforward to check that P (B1 ∈ C) > 0,
and one concludes similarly as above. Details are left to the reader.

We now want to prove an important analog of the simple Markov property, where
deterministic times are replaced by stopping times. To begin with, we extend a little
the definition of Brownian motion, by allowing it to start from a random location, and
by working with filtrations that are (slightly) larger than the natural filtration of a
standard Brownian motion.

Definition 1.5 We say that B is a Brownian motion (started at X) if (Bt−X, t ≥ 0)
is a standard Brownian motion which is independent of X.

Otherwise said, it is the same as the definition as a standard Brownian motion,
except that we do not require that B0 = 0. If we want to express this on the Wiener
space with the Wiener measure, we have for every measurable functional F : ΩW → R+,

E[F (Bt, t ≥ 0)] = E[F (Bt −B0 + X, t ≥ 0)],

and since (Bt −B0) has law W and since X is independent from (Bt −B0), this is
∫

Rd

P (X ∈ dx)
∫

Ω
W(dw)F (x + w(t), t ≥ 0) =

∫

Rd

P (X ∈ dx)Wx(F ) = E[WX(F )],

where WX(F ) is the random variable ω 7→ WB0(ω)(F ).

Definition 1.6 Let (Ft, t ≥ 0) be a filtration. We say that a Brownian motion B is
an (Ft)-Brownian motion if B is adapted to (Ft), and if B(t) = (Bt+s − Bt, s ≥ 0) is
independent of Ft for every t ≥ 0.
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For instance, if (Ft) is the natural filtration of a 2-dimensional Brownian motion
(B1

t , B2
t , t ≥ 0), then (B1

t , t ≥ 0) is an (Ft)-Brownian motion. If B′ is a standard
Brownian motion and X is a random variable independent of B′, then B = (X +B′

t, t ≥
0) is a Brownian motion (started at B0 = X), and is an (FB

t ) = (σ(X)∨FB′
t )-Brownian

motion. A Brownian motion is always an FB
t )-Brownian motion. If B is a standard

Brownian motion, then the completed filtration Ft = FB
t ∨ N (N being the set of

events of probability 0) can be shown to be right-continuous, i.e. Ft+ = Ft for every
t ≥ 0, and B is an (Ft)-Brownian motion.

Definition 1.7 Let F be a filtration and let T be a stopping time. The σ-field FT is
defined by

FT = {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0}

It is elementary (but tedious) that in the case of filtration generated by a process X,
FT = σ(Xs∧T , s ≥ 0). In particular T and XT are FT -measurable. This corroborates
the intuition that FT is the σ-algebra generated by all the events occurring prior to
time T . We may now state the strong Markov property.

Theorem 1.13 (Strong Markov property) Let (Bt, t ≥ 0) be an (Ft)-Brownian
motion in Rd and T be an (Ft)-stopping time. We let B

(T )
t = BT+t − BT for every

t ≥ 0 on the event {T < ∞}, and 0 otherwise. Conditionally on {T < ∞}, the process
B(T ) is a standard Brownian motion, which is independent of FT . Otherwise said,
conditionally given FT and {T < ∞}, the process (BT+t, t ≥ 0) is an (FT+t)-Brownian
motion started at BT .

Proof. Suppose first that T < ∞ a.s. Let A ∈ FT , and consider times t1 < t2 < · · · <
tp. We want to show that for every bounded continuous function F on (Rd)p,

E[1{A}F (B(T )
t1

, . . . , B
(T )
tp )] = P (A)E[F (Bt1 , . . . , Btp)]. (1.4)

Indeed, taking A = Ω entails that B(T ) is a Brownian motion, while letting A vary
in FT entails the independence of (B(T )

t1
, . . . , B

(T )
tk

) and FT for every t1, . . . tk, hence of
B(T ) and FT .

E[1{A}F (B(T )
t1

, . . . , B
(T )
tp )] = lim

n→∞

∞∑

k=1

E[1{A∩{(k−1)2−n<T≤k2−n}}]F (B(k2−n)
t1

, . . . , B
(k2−n)
tp )]

= lim
n→∞

∞∑

k=1

P (A ∩ {(k − 1)2−n < T ≤ k2−n})E[F (Bt1 , . . . , Btp)]

= P (A)E[F (Bt1 , . . . , Btp)].

where we used the simple Markov property and the fact that A ∩ {(k − 1)2−n < T ≤
k2−ns} ∈ Fk2−n by definition. Finally, if P (T = ∞) > 0, check that (1.4) remains true
when replacing A by A ∩ {T < ∞}, and divide by P ({T < ∞}).

An important example of application of the strong Markov property is the so-called
reflection principle. Recall that St = sup0≤s≤t Bs.
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Theorem 1.14 (Reflection principle) Let 0 < a and b ≤ a, then for every t ≥ 0,

P (St ≥ a,Bt ≤ b) = P (Bt ≥ 2a− b).

Proof. Let Ta = inf{t ≥ 0 : Bt ≥ a} be the first entrance time of Bt in [a,∞) for a > 0.
Then Ta is an (FB

t )-stopping time for every a and Ta < ∞ a.s. since S∞ = ∞ a.s.
where S∞ = limt→∞ St.

Now by continuity of B, BTa = a for every a. We thus have:

P (St ≥ a,Bt ≤ b) = P (Ta ≤ t, Bt ≤ b)

= P (Ta ≤ t, B
(Ta)
t−Ta

≤ b− a)

= P (Ta ≤ t,−B(Ta) ≥ a− b).

Now, by the strong Markov property at time Ta, B
Ta is a Brownian motion independent

of FTa and thus of Ta. In particular, we deduce that the joint law of (Ta, B
(Ta)) is

identical to the joint law of (Ta,−B(Ta)), by symmetry of Brownian motion. It follows
that

P (St ≥ a, Bt ≤ b) = P (Ta ≤ t,−B(Ta) ≥ a− b)
= P (Ta ≤ t, Bt ≥ 2a− b)
= P (Bt ≥ 2a− b).

Corollary 1.15 We have the following identities in distribution: for all t ≥ 0,

St =d |Bt| =d |N (0, t)|.
Moreover, for every x > 0, the random time Tx has same law as (x/B1)2.

Proof. We write, for all t ≥ 0 and all a ≥ 0,

P (St ≥ a) = P (St ≥ a,Bt ≤ a) + P (St ≥ a,Bt ≥ a)
= P (Bt ≥ 2a− a) + P (Bt ≥ a)
= 2P (Bt ≥ a) = P (|Bt| ≥ a)

since when Bt ≥ a, St ≥ a automatically as well. We leave the computation of the
distribution of Tx as an exercise (cf. Example Sheet 1).

We end with a famous result of P . Lévy on the quadratic variation of Brownian
motion. This result plays a fundamental role in the development of the stochastic
integral. Let (Bt, t ≥ 0) be a standard Brownian motion. Let t > 0 be fixed and for
n ≥ 1 let ∆n = {0 = t0(n) < t1(n) < . . . tmn(n) := t} be a subdivision of [0, t], such
that

ηn := max
1≤i≤mn

(ti(n)− ti−1(n)) −→
n→∞ 0.

Theorem 1.16 (Lévy)

lim
n→∞

mn∑

i=1

(Bti −Bti−1)2 = t

The proof is part of Example Sheet 1. (in fact, this convergence holds almost surely
as soon as the subdivisions are nested, but this is much more difficult).
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2 Preliminaries

2.1 The bigger picture, in a nutshell

We will now spend rather a lot of time to give a precise and rigorous construction of the
stochastic integral, for as large a class of processes as possible, subject to continuity.
This level of generality has a price, which is that the construction can appear quite
technical without shedding any light on the sort of processes we are talking about. So
before we embark on this journey, here are a few points which, in my opinion, guide
the whole construction and should also guide your intuition throughout. What follows
is only informal, and in particular, we do not describe issues related to measurability,
and finiteness of the integral.

The real difficulty in the construction of the integral is in how to make sense of
∫ t

0
HsdMs (2.1)

where M is a martingale and H is, say, left-continuous or continuous. Even though
dM does not make sense as a measure (the paths of martingales, just like Brownian
paths, have too wild oscillations for that), it is easy to cook up a definition which
makes intuitive sense when H is a simple process, that is, H takes only finitely many
(bounded) values. Indeed, it suffices to require that the integral process in (2.1) varies
in the same way as M on the intervals over which H is constant, and has jumps when
H does. A natural approach is then to try to extend this definition to more general
classes of processes by “taking a limit” of integrals

∫ t

0
Hn

s dMs →
∫ t

0
HsdMs (2.2)

where the integrands in the left-hand side are simple and approximate H.

In implementing this method, one faces several technical difficulties. The strategy is
to construct a suitable function space where the sequence on the left-hand side of (2.2)
forms a Cauchy sequence. If the function space is complete, the sequence of integrals
has a limit, which we may call the integral of H with respect to M . But we must also
guarantee that this limit does not depend on the approximating sequence. It remains
to find a space which has the desired properties. The key property which we will use
(over and over again) is that martingales have a finite quadratic variation:

[M ]t := lim
n→∞

b2ntc−1∑

k=0

(M(k+1)2−n −Mk2−n)2 (2.3)

exists and is finite, and is nondecreasing in t. Furthermore, one can show (Theorem
3.5) that M2

t − [M ]t is a martingale. Now, when H is simple, it is not hard to convince
yourself that the integral (2.1) must also be a martingale. So what should be the
quadratic variation of

∫ t
0 HsdMs ? Based on the approximation (2.3), the amount of

quadratic variation that we add to the integral between t and t + dt is approximately
H2

t d[M ]t. Hence any sensible definition of the stochastic integral must satisfy
[∫ ·

0
HsdMs

]

t

=
∫ t

0
H2

s d[M ]s (2.4)
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The key insight of Itô was the realization that this property was sufficient to define the
integral. Indeed, using the optional stopping theorem, this is essentially the same as
requiring:

E

((∫ ∞

0
HsdMs

)2
)

= E
(∫ ∞

0
H2

s d[M ]s

)
. (2.5)

Interpreting the right-hand side as an L2 norm on the space of bounded integrands,
this statement is saying that the stochastic integral must be a certain isometry between
Hilbert spaces. The left-hand side shows that the correct space of martingales is the
set of martingales with E([M ]2∞) < ∞, or, equivalently (as it turns out), martingales
which are bounded in L2. This space, endowed with the norm on the left-hand side
of (2.5) is indeed complete and simple processes are dense in it. Formula (2.5) is then
relatively easy to prove for simple processes. This implies, at once, that the sequence in
the left-hand side of (2.2) is Cauchy (and hence has a limit), and the isometry property
shows that this limit cannot depend on the approximating sequence.

At this point we have finished the construction of the stochastic integral for martin-
gales which are bounded in L2. Stopping at suitable stopping times, it is then easy to
extend this definition to general martingales, or indeed to processes known as local mar-
tingales. Adding a “finite variation” component for which the integral (2.1) is defined
as a good old Stieltjes-Lebesgue integral finishes the construction for semi-martingales.

Having spoken about the bigger picture in a nutshell, it is now time to rewind the
tape and go back to the beginning.

2.2 Finite variation integrals

Finite variation processes are essentially those for which the standard notion of integral
(the one you learn about in measure theory courses) is well-defined. Since finite varia-
tion is a pathwise property, we will first establish integrals with respect to deterministic
integrants and lift it to stochastic processes in the last part of this section.
Recall that a function f : R→ R is càdlàg or rcll if it is right-continuous and has left
limits. For such functions we write ∆f(t) := f(t) − f(t−) where f(t−) = lims↑t f(s).
Suppose a : [0,∞) → R is an increasing càdlàg function. Then there exists a unique
Borel measure da on (0,∞) such that da

(
(s, t]

)
= a(t) − a(s), the Lebesgue-Stieltjes

measure with distribution function a. Since da is a proper measure, there is no problem
in defining, for any non-negative measurable function h and t ≥ 0:

(h · a)(t) =
∫

(0,t]
h(s) da(s) . (2.6)

We may extend this definition to a càdlàg function a = a′ − a′′, where a′ and a′′ are
both increasing càdlàg, and to integrable h : [0,∞) → R. Subject to the finiteness of
all the terms on the right we define

h · a = h+ · a′ − h+ · a′′ − h− · a′ + h− · a′′ . (2.7)

where h± := max{±h, 0} are the positive and negative part of h.
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To be able to make this definition we have assumed that a was the difference between
two nondecreasing functions. We now ask for an analytic characterization of those
functions which have this property. If a is a measurable function and I an interval, we
define (with a slight abuse of notation) da(I) := a(sup I)− a(inf I), even though da is
not really a measure.

Lemma 2.1 Let a : [0,∞) → R be càdlàg and define vn(0) = 0, and for all t > 0

vn(t) =
d2nte−1∑

k=0

∣∣a((k + 1)2−n)− a(k2−n)
∣∣ . (2.8)

Then v(t) := lim
n→∞ vn(t) exists for all t ≥ 0 and is nondecreasing in t.

Proof. Let t+n = 2−nd2nte and t−n = 2−n
(d2nte − 1

)
and write

vn(t) =
∑

I∈∆n
inf I<t

∣∣da(I)
∣∣ =

∑
I∈∆n
sup I<t

∣∣da(I)
∣∣ +

∣∣a(t+n )− a(t−n )
∣∣ . (2.9)

where ∆n =
{
(k2−n, (k + 1)2−n] : k ∈ N}

. The first term is nondecreasing in n
by the triangle inequality, and so has a limit as n → ∞. The second converges to∣∣∆a(t)

∣∣ =
∣∣a(t)− a(t−)

∣∣ as a is càdlàg, and so v(t) exists for all t ≥ 0.
Since vn(t) is nondecreasing in t for all n, the same holds for v(t). 2

Definition 2.1 v(t) is called the total variation of a over (0, t] and a is said to be of
finite variation if v(t) < ∞ for all t ≥ 0.

Proposition 2.2 A càdlàg function a : [0,∞) → R can be expressed as a = a′ − a′′,
with a′, a′′ increasing and càdlàg, iff a is of finite variation. In this case, t 7→ v(t) is
càdlàg with ∆v(t) =

∣∣∆a(t)
∣∣ and a± := 1

2(v ± a) are the smallest functions a′ and a′′

with that property.

Proof. Suppose v(t) < ∞ for all t ≥ 0.

Step 1: let us show that v is cadlag. Fix T > 0 and consider

un(t) =
∑

I∈∆n
t<inf I<sup I<T

∣∣da(I)
∣∣ for t ≤ T . (2.10)

un(t) is clearly non-increasing in t, and it is easy to see that it is also right-continuous.
These two properties imply that {t ∈ [0, T ] : un(t) ≤ x} is closed for all x ≥ 0. Now,
just as for vn(t), the sum defining un(t) is nondecreasing in n by the triangular inequal-
ity. Thus for all t ≥ 0, un(t) has a limit as n → ∞ which we may call u(t). We have
that

{
t ∈ [0, T ] : u(t) ≤ x

}
=

⋂

n∈N

{
t ∈ [0, T ] : un(t) ≤ x

}
(2.11)

is closed as a countable intersection of closed sets. This, together with the fact that
u(t) is non-increasing in t, implies that u is right-continuous. Furthermore, observe
that for all t < T :

vn(T ) = vn(t) + un(t) + |a(T+
n )− a(T−n )|, (2.12)
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The final term on the right converges to |∆a(T )| as n → ∞ because a is right-
continuous. Hence for all t < T we have v(t) = v(T ) − u(t) + |∆a(T )| and since T
was arbitrary, v is right-continuous. v has left limits since it is nondecreasing, and
taking the limit n →∞ in (2.9) we get v(t) = v(t−) +

∣∣∆a(t)
∣∣.

Step 2: v = a+− a−. Having made these observations, define two functions a+ and a−

by

a+ =
1
2
(v + a) and a− =

1
2
(v − a) are càdlàg. (2.13)

Since v is càdlàg, then a+ and a− are also càdlàg. It thus suffices to prove that they
are non-decreasing. However, note that for each m ∈ Z+,

dvm(I) =
∣∣da(I)

∣∣ for all I ∈ ∆m

and dvn(I)≥ ∣∣da(I)
∣∣ for all I ∈ ∆m if n ≥ m . (2.14)

Thus da±(I) = 1
2dv(I)± 1

2da(I) ≥ 0 for all I ∈ ⋃
m≥1 ∆m , and so it follows easy

(by right-continuity) that a+ and a− are nondecreasing.

Step 3: minimality. Suppose now a = a′ − a′′ where a′, a′′ are nondecreasing with
a(0) = a′(0) = a′′(0) = 0 without loss of generality. Then for any I ∈ ∆n, n ≥ 0,

∣∣da(I)
∣∣ ≤ da′(I) + da′′(I). (2.15)

Summing over I ∈ ∆n with sup I < t in (2.9), the terms in the sum telescope and we
obtain

vn(t) ≤ a′(t+n ) + a′′(t+n ). (2.16)

Letting n → ∞, the left-hand side converges to v(t) by definition, and the right-hand
side converges to a′(t) + a′′(t) since a′ and a′′ are right-continuous. Note that we can
also write v(t) = a+(t) + a−(t) and hence the last inequality shows

a+(t) + a−(t) ≤ a′(t) + a′′(t)

for all t ≥ 0, Adding and substracting a = a+ − a− = a′ − a′′ on both sides we get
a+(t) ≤ a′(t) and a−(t) ≤ a′′(t) for all t ≥ 0, as required.

Converse: Assume that a = a′ − a′′ for two cadlag nondecreasing functions a′, a′′, and
let us show that v(t) < ∞. This is the easy direction: reasoning as in (2.16) we obtain
that vn(t) ≤ a′(tn) + a′′(tn) and so letting n → ∞, we get v(t) ≤ a′(t) + a′′(t), as
required. 2

Exercise. Let B be a standard Brownian motion. Show that B has infinite variation
almost surely. (Hint: otherwise the quadratic variation would be finite.) Thus to
construct an integral with respect to B one must create something genuinely new.

Suppose now that we have a filtered probability space (Ω,F , (Ft)t≥0,P). Recall that
a process X : Ω× [0,∞) → R is adapted to (Ft)t≥0 if Xt = X(., t) is Ft-measurable for
all t ≥ 0, and X is càdlàg if X(ω, .) is càdlàg for all ω ∈ Ω.
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Definition 2.2 Let A be a càdlàg adapted process. Its total variation process V is
defined pathwise (for each ω ∈ Ω) as the total variation of A(ω, .). We say that A is of
finite variation if A(ω, .) is of finite variation for all ω ∈ Ω.

Lemma 2.3 Let A be a càdlàg adapted process with finite total variation V . Then V
is càdlàg adapted and pathwise nondecreasing.

Proof. Using the same partition as in (2.9) we get

Vt = lim
n→∞ Ṽ n

t +
∣∣∆At

∣∣ (2.17)

where Ṽ n
t :=

2nt−n−1∑

k=0

∣∣A(k+1)2−n − Ak2−n

∣∣ is adapted for all n ∈ N since t−n < t and

∆At is Ft-measurable since A is càdlàg adapted. Thus V is adapted and it is càdlàg
and increasing because V (ω, .) is càdlàg and increasing for all ω ∈ Ω. 2

In the next section we will introduce a suitable class of integrands H for a pathwise
definition of the stochastic integral

(H ·A)(ω, t) =
∫

(0,t]
H(ω, s) dA(ω, s) . (2.18)

2.3 Previsible processes

Definition 2.3 The previsible σ-algebra P on Ω × (0,∞) is the σ-algebra generated
by sets of the form E × (s, t] where E ∈ Fs and s < t. A previsible process H is a
P-measurable map H : Ω× (0,∞) → R.

Proposition 2.4 Let X be càdlàg adapted and Ht = Xt−, t > 0. Then H is previsible.

Proof. H : Ω× (0,∞) → R is left-continuous and adapted.
Set t−n = k2−n when k2−n < t ≤ (k + 1)2−n and

Hn
t = Ht−n =

∞∑

k=0

Hk2−n 1{(k2−n,(k+1)2−n]}(t) . (2.19)

So Hn is previsible for all n ∈ N since Ht−n is Ft−n -measurable as H is adapted and
t−n < t. But t−n ↗ t and so Hn

t → Ht as n → ∞ by left-continuity and H is also
previsible. 2

Proposition 2.5 Let H be a previsible process. Then Ht is Ft−-measurable for all
t > 0, where Ft− = σ(Fs : s < t).

Proof. Optional problem 4 in Example sheet 1 asks for a proof.

Remark. P is the smallest σ-algebra such that all adapted left-continuous processes
are measurable.

Examples. (i) Brownian motion is previsible by Proposition 2.4, since it is con-
tinuous.
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(ii) A Poisson process (Nt)t≥0 or, indeed, any other continuous-time Markov chain
with discrete state space is not previsible, since Nt is not Ft−-measurable.

Proposition 2.6 Let A be a càdlàg adapted finite variation process with total variation
V . Let H be previsible such that for all t ≥ 0 and all ω ∈ Ω

∫

(0,t]

∣∣H(ω, s)
∣∣ dV (ω, s) < ∞ . (2.20)

Then the process defined pathwise by

(H ·A)t =
∫

(0,t]
Hs dAs (2.21)

is well-defined, càdlàg, adapted and of finite variation.

Proof. First note that the integral in (2.21)is well-defined for all t due to the finiteness
of the integral in (2.20). (More precisely, (2.20) implies that all four terms defining
(2.21) in (2.7) are finite).

We now show that (H ·A) is càdlàg for each fixed ω ∈ Ω. We have 1{(0,s]} → 1{(0,t]} as
s ↘ t, 1{(0,s]} → 1{(0,t)} as s ↗ t and

(H ·A)t =
∫

(0,∞)
Hs 1{(0,t]}(s) dAs . (2.22)

Hence, by dominated convergence, the following limits exist

(H ·A)t+ = (H ·A)t and (H ·A)t− =
∫

(0,∞)
Hs 1{(0,t)}(s) dAs , (2.23)

and H ·A is càdlàg with ∆(H ·A)t =
∫
(0,∞) Hs 1{{t}}(s) dAs = Ht∆At .

Next, we show that H · A is adapted via a monotone class argument. Suppose first
H = 1{B×(s,u]} where B ∈ Fs. Then (H · A)t = 1{B}(At∧u − As∧t) which is clearly
Ft-measurable. Now let

Π =
{
B × (s, u] : B ∈ Fs, s < u

}
and (2.24)

A=
{
C ∈ P : (1{C} ·A)t is Ft-measurable

}
(2.25)

so that Π is a π-system and Π ⊆ A. But A ⊆ P = σ(Π) and A is a λ-system.[
Ω× (0,∞) ∈ A; if C ⊆ D ∈ A then

(
(1{D}−1{C}) ·A

)
t
is Ft-measurable, which gives

D \ C ∈ A; if Cn ∈ A with Cn ↗ C then C ∈ A since a limit of measurable functions
is measurable.

]
Hence, by Dynkin’s lemma, σ(Π) ⊆ A. But by definition, σ(Π) = P and A ⊆ P. Thus
A = P. Suppose now that H is non-negative, P-measurable. For all n ∈ N set

Hn := 2−nb2nHc =
∞∑

k=1

2−nk 1{
{
H ∈ [2−nk, 2−n(k + 1))

}
︸ ︷︷ ︸

∈P

} , (2.26)

23



so that (Hn · A)t is Ft-measurable. We have (Hn · A)t ↗ (H · A)t by monotone
convergence (applied for each ω). Hence, (H ·A)t is Ft-measurable. This extends in the
usual way to P-measurable H = H+−H− such that |H| ·V = (H+ ·V )+(H− ·V ) < ∞.

We show finite variation for each fixed ω ∈ Ω. If H± = max{±H, 0}, A± = 1
2(V ± A)

then analogous to (2.7)

H ·A = (H+ ·A+ + H− ·A−)− (H+ ·A− + H− ·A+) . (2.27)

This is the difference of two increasing functions and thus H ·A is of finite variation.2

Example. Suppose that H is a previsible process, such as Brownian motion, and
that

∫

(0,t]
|Hs| ds < ∞ for all ω ∈ Ω and t ≥ 0 . (2.28)

Then
∫
(0,t] Hsds is càdlàg, adapted and of finite variation.

2.4 Local martingales

We work on a filtered probability space (Ω,F , (Ft)t≥0,P) where (Ft)t≥0 satisfies what
is technically known as the usual conditions, i.e. F is P-complete (equivalently, F0

contains all P-null sets), and (Ft)t≥0 is right-continuous in the sense that

Ft = Ft+ :=
⋂
s>t

Fs for all t ≥ 0 . (2.29)

Note for instance that the filtration generated by Brownian motion completed by zero-
probability events satisfies the usual conditions (this is essentially a consequence of the
simple Markov property and Blumenthal’s zero-one law).

Recall that an adapted process X is a martingale if it is integrable
(
E(|Xt|) < ∞

for all t ≥ 0
)

and if

E(Xt|Fs) = Xs a.s. for all s ≤ t . (2.30)

We write M for the set of all càdlàg martingales. The following result is fundamental
and will be used repeatedly in this course.

Theorem 2.7 Optional stopping theorem (OST) Let X be a cadlag adapted in-
tegrable process. Then the following are equivalent:

(i) X is a martingale

(ii) XT = (Xt∧T , t ≥ 0) is a martingale for all bounded stopping times T .

(iii) For all bounded stopping times S, T , E(XT |FS) = XS∧T a.s. .

(iv) E(XT ) = E(X0) for all bounded stopping times T .
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Proof. It is well known that (i) ⇒ . . . ⇒(iv). We show how (iv) implies (i). Let s < t
and fix u > t. Let A ∈ Fs, and define a random time T by saying T = t if A occurs, or
T = u otherwise. Similarly, define S = s if A occurs and S = u otherwise. Note that
both S and T are stopping times, and are bounded. Thus by (iv):

E(XT ) = E(X0) = E(XS). (2.31)

On the other hand,
E(XT ) = E(Xt1{A}) + E(Xu1{Ac})

and similarly:
E(XS) = E(Xs1{A}) + E(Xu1{Ac}).

Plugging this into (2.31) and cancelling the terms E(Xu1{Ac}), we find:

E(Xt1{A}) = E(Xs1{A})

for all s < t and all A ∈ Fs. This means (by definition) that

E(Xt|Fs) = Xs, a.s.

as required. Hence, since X is adapted and integrable, X is a martingale.

It is also the case that M is stable under stopping. This observation leads us to
define a slightly more general class of processes, called local martingales.

Definition 2.4 A càdlàg adapted process X is a local martingale, X ∈ Mloc, if there
exists a sequence (Tn)n∈N of stopping times with Tn ↗∞ such that (XTn

t )t≥0 ∈M for
all n ∈ N. We say that the sequence (Tn)n∈N reduces X.

In particular M ⊆ Mloc since any sequence (Tn)n∈N of stopping times reduces X by
OST(ii).
Recall that a family X = (Xi)i∈I of random variables is called uniformly integrable
(UI) if

sup
i∈I
E

(|Xi|1{|Xi|≥λ}
) → 0 as λ →∞ . (2.32)

Lemma 2.8 If X ∈ L1(Ω,F ,P) then the set

X =
{
E(X|G) : G is a sub-σ-algebra of F}

is UI . (2.33)

Proof. See Advanced Probability course.

We now give necessary and sufficient conditions for a local martingale to be a
martingale.

Proposition 2.9 The following statements are equivalent:

(i) X is a martingale
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(ii) X is a local martingale and for all t ≥ 0 the set

Xt =
{
XT : T is a stopping time, T ≤ t

}
is UI . (2.34)

Proof. Suppose (i) holds. By the Optional Stopping Theorem, if T is a stopping time
with T ≤ t, then XT = E(Xt|FT ) a.s.. Thus by Lemma 2.8 Xt is uniformly integrable.
If (ii) holds, suppose (Tn)n≥0 reduces X. Let T be any bounded stopping time, T ≤ t,
say. By the Optional Stopping Theorem applied to the martingale XTn ,

E(X0) = E(XTn
0 ) = E(XTn

T ) = E(XT∧Tn) . (2.35)

Since {XT∧Tn : n ∈ N} is uniformly integrable by assumption, E(XT∧Tn) → E(XT ) as
n →∞. Therefore,

E(XT ) = E(X0).

But then by the Optional Stopping Theorem again, X must be a martingale. 2

An extremely useful consequence of the above is the following:

Corollary 2.10 Let M be a local martingale, and assume that M is bounded. Then
M is a true martingale. More generally, if M is a local martingale such that for all
t ≥ 0, |Mt| ≤ Z for some Z ∈ L1, then M is a true martingale.

Remark. Occasionally, we will need the following stronger version of (iii) in the
Optional stopping theorem: if X is a uniformly integrable martingale, then for any
stopping times S, T

E(XT |FS) = XS∧T (2.36)

almost surely.

Proposition 2.11 A nonnegative local martingale M is a supermartingale.

Proof. This follows simply from the definition of local martingales and Fatou’s lemma
for conditional expectations. 2

Remark. A martingale can be interpreted as the fortune of a player in a fair game. A
local martingale which is not a true martingale, on the other hand, is the fortune of a
player in a game which looks locally fair: unfortunately, this is only because there are
going to be times of huge increases of X followed by an eventual ruin. Overall, as the
above proposition shows, the expected fortune decreases. A local martingale is thus
something akin to a bubble in the market. (Thanks are due to M. Tehranchi for this
analogy).

Proposition 2.12 Let M be a continuous local martingale (M ∈Mc,loc) starting from
0. Set Sn = inf

{
t ≥ 0 : |Mt| = n

}
. Then (Sn)n≥0 reduces M .

Proof. Note that {Sn ≤ t} =
⋂

k∈N

⋃
s∈Q
s≤t

{|Ms| > n− 1/k
} ∈ Ft ,

and so Sn is a stopping time. For each ω ∈ Ω, (Sn(ω), n ≥ 0) must be nondecreasing
by the mean-value theorem since M is continuous, and limn→∞ Sn can only be infinite
by continuity as well. Hence Sn ↗∞ a.s.. Let (Tk)k∈N be a reducing sequence for M ,
i.e. MTk ∈ M. By OST, also MSn∧Tk ∈ M and so MSn ∈ Mloc for each n ∈ N. But
MSn is bounded and so also a martingale. 2
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Theorem 2.13 Let M be a continuous local martingale which is also of finite variation,
and such that M0 = 0 a.s. Then M is indistinguishable from 0.

Remarks.

(i) In particular Brownian motion is not of finite variation.

(ii) This makes it clear that the theory of finite variation integrals we have developed
is useless for integrating with respect to continuous local martingales.

(iii) It is essential to assume that M is continuous in this theorem.

Proof. Let V denote the total variation process of M . Then V is continuous and
adapted with V0 = 0. Set Sn = inf{t ≥ 0 : Vt = n}. Then Sn is a stopping time for all
n ∈ N since V is adapted, and Sn ↗∞ as n →∞ since Vt is nondecreasing and finite
for all t ≥ 0.
It suffices to show MSn ≡ 0 for all n ∈ N. By OST, MSn ∈Mloc. Also

|MSn
t | ≤ |V Sn

t | ≤ n , (2.37)

and so, by Proposition 2.9, MSn ∈M.
Replacing M by MSn we can reduce to the case where M is a bounded martingale of
bounded variation, i.e. V is bounded.

Lemma 2.14 Let M be a martingale and such that for some given s < t, E(M2
s ) < ∞

and E(M2
t ) < ∞. Then

E(M2
t −M2

s |Fs) = E((Mt −Ms)2|Fs), a.s. (2.38)

(This trick will be used over and over again in what follows, so it is a good point to
memorize it).
Proof. By expanding the square (Mt −Ms)2, the right-hand side is equal to

E((Mt −Ms)2|Fs) = E(M2
t |Fs)− 2MsE(Mt|Fs) + M2

s

= E(M2
t |Fs)− 2M2

s + M2
s

= E(M2
t −M2

s |Fs)

as required.
Coming back to the proof of the theorem, fix t > 0 and set tk = kt/N for 0 ≤ k ≤ N .

By (2.38),

E(M2
t ) =E

( N−1∑

k=0

(M2
tk+1

−M2
tk

)
)

= E
( N−1∑

k=0

(Mtk+1
−Mtk)2

)

≤E
(

sup
k<N

|Mtk+1
−Mtk |

︸ ︷︷ ︸
≤Vt≤n

N−1∑

k=0

|Mtk+1
−Mtk |

︸ ︷︷ ︸
≤Vt≤n

)
. (2.39)
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As M is bounded and continuous

sup
k<N

|Mtk+1
−Mtk | → 0 as N →∞ , (2.40)

and so, by bounded convergence,

E
(

sup
k<N

|Mtk+1
−Mtk |

N−1∑

k=0

|Mtk+1
−Mtk |

)
→ 0 as N →∞ . (2.41)

Hence, E(M2
t ) = 0 for all t ≥ 0. Since M is continuous, M is indistinguishable from 0.

2

Definition 2.5 A continuous semimartingale X is an adapted continuous process
which may be written as

X = X0 + M + A with M0 = A0 = 0 , (2.42)

where M ∈Mc,loc and A is a finite variation continuous process.

Note that as a consequence of Theorem 2.13, the decomposition is unique up to indis-
tinguishability. This is known as the Doob-Meyer decomposition.

Remark. The proof of the last theorem tells us something extremely useful for the
following. If tk is the dyadic subdivision, then the calculation shows that

E(M2
t ) = E(

∑

k:tk≤t

(Mtk+1
−Mtk)2)

so there is good reason to believe that if M is say, bounded in L2, then it has finite
quadratic variation Qt and moreover

M2
t −Qt

has constant expectation 0. In fact, we will see that this is indeed the case and M2
t −Qt

is also a martingale.
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3 The stochastic integral

In this section we establish the stochastic integral with respect to continuous semi-
martingales. In places, we develop parts of the theory also for càdlàg semimartingales,
where this involves no extra work. However, parts of the construction will use crucially
the assumption of continuity. A more general theory exists, but it is beyond the scope
of this course.

Recall that we say a process X is bounded in L2 if

sup
t≥0

‖Xt‖2 < ∞ (3.1)

where here and in the rest of the course, for a random variable X:

‖X‖2 := E
(|X|2)1/2

. (3.2)

Write M2 for the set of all càdlàg L2-bounded martingales, and M2
c for the set of

continuous martingales bounded in L2. Recall the following two fundamental results
from Advanced probability:

Theorem 3.1 Let X ∈M2. There exists X∞ ∈ L2 such that

Xt → X∞ a.s. and in L2, as t →∞ . (3.3)

Moreover, Xt = E(X∞|Ft) a.s. for all t ≥ 0.

The second result which we will need is Doob’s L2 inequality:

Theorem 3.2 For X ∈M2,

E
(

sup
t≥0

|Xt|2
)
≤ 4E

(
X2
∞

)
. (3.4)

Similar to the construction to the Lebesgue integral in measure theory, we start by
constructing the stochastic integral when the the integrand is very simple.

3.1 Simple integrands and L2 properties

Definition 3.1 A simple process is any map H : Ω× (0,∞) → R of the form

H(ω, t) =
n−1∑

k=0

Zk(ω)1{(tk,tk+1]}(t) (3.5)

where n ∈ N, 0 = t0 < . . . < tn < ∞ and Zk is a bounded Ftk -measurable random
variable for all k. We denote the set of simple processes by S. Given H ∈ S, we denote
‖H‖∞ = essup|H| the essential supremum of H, i.e., the smallest M > 0 such that
supt≥0 |H(t, ω)| ≤ M almost surely.

Note that S is a vector space and that (by definition) every simple process is previsible.
We now define the stochastic integral for simple processes.
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Definition 3.2 For H =
∑n−1

k=0 Zk 1{(tk,tk+1]} ∈ S and M ∈M2 set

(H ·M)t =
n−1∑

k=0

Zk

(
Mtk+1∧t −Mtk∧t

)
. (3.6)

Proposition 3.3 Let H ∈ S and M ∈M2. Let T be a stopping time. Then

(i) H ·MT = (H ·M)T .

(ii) H ·M ∈M2.

(iii) E
(
(H ·M)2∞

) ≤ ‖H‖2
∞E

(
(M∞ −M0)2

)
.

Proof. (i) For all t ≥ 0 we have

(H ·MT )t =
n−1∑

k=0

Zk

(
MT

tk+1∧t −MT
tk∧t

)
=

=
n−1∑

k=0

Zk

(
Mtk+1∧t∧T −Mtk∧t∧T

)
= (H ·M)t∧T = (H ·M)T

t . (3.7)

(ii) For tk ≤ s ≤ t < tk+1, (H ·M)t − (H ·M)s = Zk(Mt −Ms) , so that

E
(
(H ·M)t − (H ·M)s

∣∣Fs

)
= Zk E(Mt −Ms|Fs) = 0 . (3.8)

This extends easily to general s ≤ t and hence H · M is a martingale. To show it is
bounded in L2, note that if j < k we have the following ”orthogonality relation”:

E
(
Zj(Mtj+1 −Mtj ) Zk(Mtk+1

−Mtk)
)

=

= E
(
Zj(Mtj+1 −Mtj )Zk E

(
Mtk+1

−Mtk

∣∣Ftk

))
= 0 . (3.9)

Thus let t ≥ tn for the moment. To compute E((H ·M)2t ), we expand the square and
use the above orthogonality relation:

E
(
(H ·M)2t

)
=E

(( n−1∑

k=0

Zk(Mtk+1
−Mtk)

)2
)

=
n−1∑

k=0

E
(
Z2

k(Mtk+1
−Mtk)2

)

≤‖H‖2
∞

n−1∑

k=0

E
(
(Mtk+1

−Mtk)2
)

= ‖H‖2
∞E

(
(Mt −M0)2

)
. (3.10)

(On two occasions, we used the trick (2.38)). By Doob’s L2 inequality applied to
M −M0,

sup
t≥0
E

(
(H ·M)2t

) ≤ 4‖H‖2
∞E

(
(M∞ −M0)2

)
. (3.11)

Similarly, if tj ≤ t < tj+1, then

E((H ·M)2t ) ≤ ‖H‖2
∞E((Mt −M0)2).
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Doob’s inequality applies equally well in this case and we conclude, for all t ≥ 0,

sup
t≥0
E

(
(H ·M)2t

) ≤ 4‖H‖2
∞E

(
(M∞ −M0)2

)
.

Hence, H ·M ∈M2.

(iii) Since H ·M ∈M2, it converges to a limit in L2. We may thus let t →∞ in (3.10),
which gives the result. 2

To extend the simple integral defined in the last section, we will need some Hilbert
space properties of the set of integrators we are considering. As before, we work on a
filtered probability space (Ω,F , (Ft)t≥0,P) where (Ft)t≥0 satisfies the usual conditions.

Definition 3.3 For all càdlàg adapted processes X define the triple norm1

‖|X‖| := ‖ sup
t≥0

|Xt|‖2.

We write C2 for the set of all càdlàg adapted processes X such that ‖|X‖| < ∞. On
M2, define the norm ‖X‖ := ‖X∞‖2.

Remark. Note that the function ‖ · ‖ on M2 defines indeed a norm. The only point
which demands justification is the requirement that if ‖M‖ = 0, then M is indistin-
guishable from 0. But if ‖M‖ = 0, then E(M2∞) = 0 so M∞ = 0 a.s. By the martingale
convergence theorem

Mt = E(M∞|Ft) a.s.

so Mt = 0 a.s. as well. Since M is càdlàg, it is indistinguishable from 0.

We may now state some L2 properties which show that the space of square-integrable
martingales can be seen as a Hilbert space. As we will see later, this underlying Hilbert
structure is key to the construction of the stochastic integral (formally, it is defined as
an isometry between Hilbert spaces).

Proposition 3.4 We have

(i) (C2, ‖|.‖|) is complete

(ii) M2 = M∩ C2

(iii) (M2, ‖.‖) is a Hilbert space with M2
c = Mc ∩M2 as a closed subspace

(iv) X 7→ X∞ : M2 → L2(F∞) is an isometry

Proof. (i) Suppose (Xn)n∈N is a Cauchy sequence in (C2, ‖|.‖|). Then we can find a
subsequence (nk)k∈N such that

∑∞
k=1 ‖|Xnk+1 − Xnk‖| < ∞. Then by the triangular

inequality,

∥∥∥
∞∑

k=1

sup
t≥0

∣∣Xnk+1
t −Xnk

t

∣∣
∥∥∥

2
≤

∞∑

k=1

‖|Xnk+1 −Xnk‖| < ∞ (3.12)

1Usual conventions about versions apply, dealing with equivalence classes analogous to Lp-spaces
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and so for almost every ω ∈ Ω,
∞∑

k=1

sup
t≥0

∣∣Xnk+1

t (ω)−Xnk
t (ω)

∣∣ < ∞.

Since the space of cadlag functions equipped with the ‖ · ‖∞ norm is complete, there
exists a càdlàgprocess X such that

(
Xnk

t (ω)
)
k∈N → X(ω) as k →∞ uniformly in t ≥ 0.

Now

‖|Xn −X‖|2 =E
(
sup
t≥0

|Xn
t −Xt|2

)
(3.13)

≤ lim inf
k→∞

E
(
sup
t≥0

|Xn
t −Xnk

t |2) by Fatou’s lemma

= lim inf
k→∞

‖|Xn −Xnk‖|2 → 0 as n →∞ (3.14)

because (Xn)n∈N is a Cauchy sequence. Hence (C2, ‖|.‖|) is complete.

(ii) For X ∈ C2 ∩M we have

sup
t≥0

‖Xt‖2 ≤
∥∥ sup

t≥0
|Xt|

∥∥
2

= ‖|X‖| < ∞ (3.15)

and so X ∈M2. On the other hand, if X ∈M2, by Doob’s inequality,

‖|X‖| ≤ 2‖X‖ < ∞ , and so X ∈ C2 ∩M . (3.16)

(iii) (X, Y ) 7→ E(X∞Y∞) defines an inner product on M2 whose associated norm is
precisely the double norm ‖ · ‖. Moreover, for X ∈M2, we have shown in (ii) that

‖X‖ ≤ ‖|X‖| ≤ 2‖X‖, (3.17)

that is, ‖.‖ and ‖|.‖| are equivalent on M2. Thus M2 is complete for ‖.‖ if and only
if it is complete for ‖|.‖|, and by (i) it is thus sufficient to show that M2 is closed in
(C2, ‖|.‖|). If Xn ∈M2 and ‖|Xn −X‖| → 0 as n →∞ for some X, then X is certainly
càdlàg adapted and L2-bounded. Furthermore, by Jensen’s inequality for conditional
expectations,

∥∥E(Xt|Fs)−Xs

∥∥
2
≤ ∥∥E(Xt −Xn

t |Fs)
∥∥

2
+ ‖Xn

s −Xs‖2

≤‖Xt −Xn
t ‖2 − ‖Xn

s −Xs‖2 (3.18)
≤ 2‖|Xn −X‖| → 0 (3.19)

as n → ∞ and so X ∈ M2. By the same argument M2
c is closed in (M2, ‖.‖), where

continuity of t 7→ Xt(ω) follows by uniform convergence in t.
(iv) For X,Y ∈M2, ‖X − Y ‖ = ‖X∞ − Y∞‖2 by definition. 2

3.2 Quadratic variation

Definition 3.4 For a sequence (Xn)n∈N we say that Xn → X uniformly on compacts
in probability (u.c.p.) if

∀ε > 0 ∀t ≥ 0 : P
(
sup
s≤t

|Xn
s −Xs| > ε

) → 0 as n →∞ . (3.20)
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Theorem 3.5 Quadratic variation
For each M ∈ Mc,loc there exists a unique (up to indistinguishability) continuous
adapted nondecreasing process [M ] such that M2−[M ] ∈Mc,loc and such that [M ]0 = 0
a.s. Moreover, for

[M ]nt :=
b2ntc−1∑

k=0

(
M(k+1)2−n −Mk2−n

)2 (3.21)

we have [M ]n → [M ] u.c.p. as n → ∞. We call [M ] the quadratic variation process
of M .

Example. Let B be a standard Brownian motion. Then we know that (B2
t − t)t≥0 ∈

Mc. But then by Theorem 3.5, t = [B]t.

Lemma. Let M ∈M be bounded. Suppose that l ∈ N and 0 = t0 < t1 < . . . < tl < ∞.

Then E
(( l−1∑

k=0

(Mtk+1
−Mtk)2

)2
)

is bounded.

Proof of the Lemma. First note that

E
(( l−1∑

k=0

(Mtk+1
−Mtk)2

)2
)

=
l−1∑

k=0

E
(
(Mtk+1

−Mtk)4
)
+

+2
l−1∑

k=0

E
(

(Mtk+1
−Mtk)2

l−1∑

j=k+1

(Mtj+1 −Mtj )
2

)
. (3.22)

For each fixed k we have

E
(

(Mtk+1
−Mtk)2

l−1∑

j=k+1

(Mtj+1 −Mtj )
2

)
=

= E
(

(Mtk+1
−Mtk)2E

( l−1∑

j=k+1

(Mtj+1 −Mtj )
2
∣∣∣Ftk+1

))
=

= E
(

(Mtk+1
−Mtk)2E

( l−1∑

j=k+1

(M2
tj+1

−M2
tj )

∣∣∣Ftk+1

))
=

= E
(
(Mtk+1

−Mtk)2E
(
M2

tl
−M2

tk+1

∣∣Ftk+1

))
=

= E
(
(Mtk+1

−Mtk)2(M2
tl
−M2

tk+1
)2

)
. (3.23)

After inserting this in (3.22) we get the estimate

E
(( l−1∑

k=0

(Mtk+1
−Mtk)2

)2
)
≤

≤ E
((

sup
j
|Mtj+1 −Mtj |2 + 2 sup

j
|Mtl −Mtj |2

) l−1∑

k=0

(Mtk+1
−Mtk)2

)
. (3.24)
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Now, M is uniformly bounded by C, say. So using the inequality (x−y)2 ≤ 2(x2 +y2),
we obtain

E
(( l−1∑

k=0

(Mtk+1
−Mtk)2

)2
)
≤ 12C2E

( l−1∑

k=0

(Mtk+1
−Mtk)2

)
=

= 12C2E
(
(Mtl −Mt0)

2
) ≤ 48C4 .

(3.25)

Proof of Theorem 3.5. Wlog we will consider the case M0 = 0.
Uniqueness: If A and A′ are two increasing processes satisfying the conditions for [M ]
then

At −A′t = (M2
t −A′t)− (M2

t −At) ∈Mc,loc (3.26)

is of finite variation and thus A ≡ A′ a.s. by Theorem 2.13.
Existence: First we assume that M is bounded, which implies M ∈ M2

c . Fix T > 0
deterministic. Let

Hn
t = MT

2−nb2ntc =
b2nT c−1∑

k=0

Mk2−n 1{(k2−n,(k+1)2−n]}(t) . (3.27)

Then Hn ∈ S for all n ∈ N. Hence Xn defined by

Xn
t = (Hn ·M)t =

b2nT c−1∑

k=0

Mk2−n

(
M(k+1)2−n∧t −Mk2−n∧t

)
, (3.28)

is in M2
c by Proposition 3.3 and by continuity of M . Recall that ‖Xn‖ = ‖Xn∞‖2 =

‖XT ‖2 since Xn
t is constant for t ≥ T . For n ≥ m we have

‖Xn −Xm‖2 = E
(
((Hn −Hm) ·M)2T

)

≤ E
(

sup
0≤t≤T

|Hn
t −Hm

t |2
b2nT c−1∑

k=0

(M(k+1)2−n −Mk2−n)2
)

≤ E(
sup

0≤t≤T
|Hn

t −Hm
t |4

)1/2E
(( b2nT c−1∑

k=0

(M(k+1)2−n −Mk2−n)2
)2

)1/2

(3.29)

by Hölder’s inequality. Since M is bounded, the second term is bounded by the lemma,
and

E
(

sup
0≤t≤T

|Hn
t −Hm

t |4
)

= E
(

sup
0≤t≤T

|M2−nb2ntc −M2−mb2mtc|4
)
→ 0 (3.30)

as n, m → ∞ by uniform continuity of M on [0, T ] and bounded convergence. Hence
Xn is a Cauchy sequence in

(M2
c , ‖.‖

)
and so, by Proposition 3.4, converges to a limit

Y = (Yt, 0 ≤ t ≤ T ) ∈M2
c . Now for any n and 1 ≤ k ≤ b2nT c,

M2
k2−n − 2Xn

k2−n =
k−1∑

j=0

(M(j+1)2−n −Mj2−n)2 = [M ]nk2−n . (3.31)
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Hence, M2
t − 2Xn

t is increasing along the sequence of times
(
k2−n, 1 ≤ k ≤ b2nT c).

Passing to the limit n →∞, M2
t − 2Xn

t must be a.s. increasing. Set

[M ]t := M2
t − 2Yt, t ∈ [0, T ]

on the set where M2 − 2Y is increasing and [M ] ≡ 0 otherwise. Hence, [M ] is a
continuous increasing process and M2 − [M ] = 2Y is a martingale on [0, T ].

We extend the definition of [M ]t to t ∈ [0,∞) by applying the foregoing for all
T ∈ N. Note that the process [M ] obtained with T is the restriction to [0, T ] of
[M ] defined with T + 1. Now, note that M2

2−nbt2nc converges to M2 u.c.p. by uniform
continuity, and convergence of Xn towards X also holds in the u.c.p. sense since it holds
in the stronger

(M2
c , ‖.‖

)
sense. Thus the theorem is proved when M is bounded.

Now we turn to the general case M ∈Mc,loc. Define

Tn := inf
{
t ≥ 0 : |Mt| ≥ n

}
.

Then (Tn)n∈N reduces M and we can apply the bounded case to MTn , writing An =
[MTn ]. By uniqueness, An+1

t∧Tn
and An

t are indistinguishable. Thus there exists an in-
creasing process A such that for all n ∈ N, At∧Tn and An

t are indistinguishable. Define
[M ]t = At. By construction, (M2

t∧Tn
−At∧Tn)t≥0 ∈Mc and so (M2

t −At)t≥0 ∈Mc,loc,
as required. It remains to show that [M ] is the u.c.p. limit of its dyadic approxima-
tions. Let [M ](m) be the dyadic approximation at stage m. Note that for fixed n ≥ 1,
we have [MTn ]m → [MTn ] u.c.p. as m → ∞ by the bounded case. Since for all fixed
t ≥ 0, P(Tn ≥ 1) → 1 as n →∞, we obtain that [M ]m → [M ] u.c.p. as m →∞.2

Remark. Note that [M ] is nondecreasing and thus of finite variation, and that if T is
any possibly random time, [

MT
]

= [M ]T .

Theorem 3.6 If M ∈M2
c , M2− [M ] is a uniformly integrable martingale. Moreover,

E([M ]∞) = E(M2∞).

Proof. Let Sn = inf
{
t ≥ 0 : [M ]t ≥ n

}
. Sn is a stopping time and [M ]t∧Sn ≤ n.

Thus, the stopped local martingale satisfies
∣∣M2

t∧Sn
− [M ]t∧Sn

∣∣ ≤ n + sup
t≥0

M2
t (3.32)

is bounded by an integrable random variable and thus a true martingale (see remark
after Proposition 2.9). Thus

E
(
[M ]t∧Sn

)
= E(M2

t∧Sn
) for all t ≥ 0 . (3.33)

We take the limit t → ∞, using monotone convergence on the left and dominated
convergence on the right, and then n →∞ by the same arguments to get

E
(
[M ]∞

)
= E(M2

∞) < ∞ . (3.34)

Hence, |M2
t − [M ]t| is dominated by supt≥0 M2

t + [M ]∞ which is integrable. Thus
M2 − [M ] is a true martingale and is uniformly integrable since:

E
(
sup
t≥0

|M2
t − [M ]t|

) ≤ E(
(sup

t≥0
Mt)2 + [M ]∞

) ≤ 5E(M2
∞) < ∞ . 2 (3.35)
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Remark. Some textbooks use the notation 〈M〉 rather than [M ] for the quadratic
variation. In general, 〈M〉 should be previsible and means something slightly different
(beyond the scope of this course), but it coincides with [M ] when M is continuous.

3.3 Itô integrals

Proposition 3.7 Let µ be a finite measure on the previsible σ-algebra P. Then S is a
dense subspace of L2(P, µ).

Proof. As the Zk’s are bounded, it is certainly true that S ⊆ L2(P, µ). Denote by S̄
the closure of S in L2(P, µ). Set

A =
{
A ∈ P : 1{A} ∈ S̄

}
. (3.36)

Then A is a λ-system.
[

Check: 1{Ω×(0,n)} ∈ S so 1{Ω×(0,∞)} ∈ S̄ and Ω× (0,∞) ∈ A;
if C ⊆ D ∈ A then D \ C ∈ A; if Cn ∈ A and Cn ↗ C then C ∈ A since S̄ is the
closure of S in L2(P, µ)

]
. A contains the π-system {B × (s, t] : B ∈ Fs, s ≤ t} ,

which generates P. Hence, by Dynkin’s lemma, A = P. The result now follows since
linear combinations of measurable indicator functions are dense in L2. 2

Given M ∈M2
c , define a measure µ on P by

µ
(
A× (s, t]

)
= E

(
1{A}([M ]t − [M ]s)

)
for all s < t, A ∈ Fs . (3.37)

Since P is generated by the π-system of events of this form, this uniquely specifies µ.
Alternatively, write

µ(dω ⊗ dt) = λ(ω, dt)P(dω) , (3.38)

where λ(ω, .) is the Lebesgue-Stieltjes measure associated to [M ](ω). Thus, for a pre-
visible process H ≥ 0,

∫

Ω×(0,∞)
H dµ = E

(∫ ∞

0
Hs d[M ]s

)
. (3.39)

Definition 3.5 Set L2(M) = L2
(
Ω× (0,∞),P, µ

)
and write

‖H‖2
M = ‖H‖2

L2(M) = E
(∫ ∞

0
H2

s d[M ]s
)

, (3.40)

so that L2(M) is the space of previsible processes H such that ‖H‖2
M < ∞.

Note that the simple processes S ⊆ L2(M) for all M ∈M2
c .

Theorem 3.8 Itô isometry
For every M ∈M2

c there exists a unique isometry I : L2(M) →M2
c such that I(H) =

H ·M for all H ∈ S.
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Proof. Let H =
∑n−1

k=0 Zk 1{(tk,tk+1]} ∈ S. By Proposition 3.3, H ·M ∈M2
c with

‖H ·M‖2 =
n−1∑

k=0

E
(
Z2

k(Mtk+1
−Mtk)2

)
. (3.41)

But M2 − [M ] is a martingale so that

E
(
Z2

k(Mtk+1
−Mtk)2

)
= E

(
Z2

kE
(
(Mtk+1

−Mtk)2
∣∣Ftk

))
=

= E
(
Z2

kE
(
M2

tk+1
−M2

tk

∣∣Ftk

))
= E

(
Z2

k([M ]tk+1
− [M ]tk)

)
, (3.42)

and so ‖H ·M‖2 = E
(∫ ∞

0
H2

s d[M ]s
)

= ‖H‖2
M .

Now let H ∈ L2(M). We have thus defined a function I from S to M2
c , which is an

isometry. However, S is dense in L2(M) = L2(P, µ) by Proposition 3.7. This implies
that there is a unique way to extend I to L2(M) which makes I into an isometry.
Indeed, let H ∈ L2(M). Then there exists Hn a sequence of simple processes such that
Hn → H in L2(M). Then by linearity:

‖I(Hn)− I(Hm)‖ = ‖I(Hn −Hm)‖ = ‖Hn −Hm‖M

so I(Hn) is a Cauchy sequence in (M2
c , ‖ · ‖), which is complete. Therefore, I(Hn)

converges to some limit which we may denote by I(H). It is easy to check that I(H)
does not depend on the sequence Hn chosen to approximate H: if Hn → H and
Kn → H in L2(M), then ‖I(Hn) − I(Kn)‖ = ‖Hn − Kn‖M → 0 as n → ∞, so the
limits of I(Hn) and I(Kn) must be indistinguishable. I(H) is then, indeed, an isometry
on L2(M). For H ∈ S we have consistently I(H) = H ·M by choosing Hn ≡ H. 2

Definition 3.6 We write

I(H)t = (H ·M)t =
∫ t

0
Hs dMs

for all H ∈ L2(M). The process H ·M is Itô’s stochastic integral of H with respect to
M .

Remark. By Theorem 3.8, this is consistent with our previous definition of H ·M for
H ∈ S.

Proposition 3.9 Let M ∈ M2
c and H ∈ L2(M). Let T be a stopping time. Then

H1(0,T ] ∈ L2(M) and H ∈ L2(MT ), and we have:

(H ·M)T = (H 1{(0,T ]}) ·M = H · (MT ) . (3.43)

Proof. Let H ∈ L2(M). It is trivial to check that H1(0,T ] ∈ L2(M) (to see that it
is previsible, note that 1(0,T ](t) is left-continuous and hence previsible). To see that
H ∈ L2(MT ), note that [MT ] = [M ]T by the discrete approximation in the definition
of quadratic variation, and thus

E
∫ ∞

0
H2

s d[MT ]s = E
∫ T

0
H2

s d[M ]s ≤ E
∫ ∞

0
H2

s d[M ]s < ∞.
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Step 1. Take M ∈ M2
c and suppose first that H ∈ S. If T takes only finitely many

values, H 1{(0,T ]} ∈ S and (H ·M)T = (H 1(0,T ]) ·M is easily checked. For general T ,
set Tn = (2−nd2nT e)∧n which is a stopping time that takes only finitely many values.
Then Tn ↗ T as n →∞ and so

∥∥H 1{(0,Tn]} −H 1{(0,T ]}
∥∥2

M
= E

( ∫ ∞

0
H2

t (1{(0,Tn]} − 1{(0,T ]})2(t) d[M ]t

)
→ 0 as n →∞(3.44)

by dominated convergence, and so H 1{(0,Tn]} ·M → H 1{(0,T ]} ·M in M2
c by Theorem

3.8. But (H ·M)Tn
t → (H ·M)T

t a.s. by continuity and hence, (H ·M)T = (H 1{(0,T ]})·M
since (H ·M)Tn = (H 1{(0,Tn]}) ·M for all n ∈ N by the first part. On the other hand
we already know (H ·M)T = H · (MT ) by Proposition 3.3.

Step 2. Now for H ∈ L2(M) choose Hn ∈ S such that Hn → H in L2(M). Then
Hn ·M → H ·M in M2

c , so (Hn ·M)T → (H ·M)T in M2
c by Doob’s inequality. Also,

∥∥Hn 1{(0,T ]} −H 1(0,T ]

∥∥2

M
= E

(∫ T

0
(Hn −H)2s d[M ]s

)
≤ ‖Hn −H‖2

M → 0(3.45)

as n → ∞, so (Hn1{(0,T ]}) · M → (H 1{(0,T ]}) ·M in M2
c by the isometry property

of Theorem 3.8. Again, by equating the limits of both sequences we get (H ·M)T =
(H 1(0,T ]) ·M . Moreover,

‖Hn −H‖2
MT =E

( ∫ ∞

0
(Hn −H)2s d[MT ]s

)
=

=E
( ∫ T

0
(Hn −H)2s d[M ]s

)
≤ ‖Hn −H‖M → 0 , (3.46)

so Hn · (MT ) → H · (MT ) in M2
c . Hence, (H ·M)T = H · (MT ). 2

Proposition 3.9 allows us to make a final extension of Itô’s integral to locally bounded,
previsible integrands.

Definition 3.7 Let H be previsible. Say that H is locally bounded if there exist
stopping times Sn ↗ ∞ a.s. such that H 1(0,Sn] is bounded for all n ∈ N, i.e. there
exists Cn < ∞ nonrandom such that supt≥0

∣∣Ht 1(0,Sn](t)
∣∣ ≤ Cn a.s.. Note that a

left-continuous process is always previsible and locally bounded.

Definition 3.8 Let H be a previsible locally bounded process and let M ∈ Mc,loc.
Choose stopping times S′n = inf

{
t ≥ 0 : |Mt| ≥ n

} ↗ ∞ a.s., and note that MS′n ∈
M2

c for all n ∈ N. Set Tn = Sn ∧ S′n and define

(H ·M)t :=
(
H 1(0,Tn] ·MTn

)
t

for all t ≤ Tn . (3.47)

Remarks.

(i) The stochastic integral in the right-hand side of (3.47) is well-defined: indeed,
every bounded previsible process is in L2(M) whenever M ∈M2

c . Moreover, with
H 1(0,Sn] also H 1(0,Tn] is bounded and MTn = (MS′n)Tn ∈M2

c , so H1(0,Tn] ·MTn

makes sense (it falls within the category of processes covered by Theorem 3.8).
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(ii) Proposition 3.9 ensures that the right-hand side does not depend on n for all n
large enough that Tn ≥ t.

(iii) Note also that the definition does not depend on the sequence of stopping times
(Tn)n≥0 used to reduce M and H, so long as HTn is bounded and MTn ∈M2

c for
all n ≥ 0. Such a sequence of stopping times is said to localize H and M .

(iv) It is furthermore consistent with our previous definitions of stochastic integral
when M ∈M2

c and H ∈ L2(M).

Proposition 3.10 Let M ∈ Mc,loc and H, K be locally bounded previsible processes.
Let T be a stopping time. Then

(i) (H ·M)T = (H 1(0,T ]) ·M = H · (MT ) ,

(ii) H ·M is a continuous local martingale,

(iii) The quadratic variation of
∫ ·
0 HsdMs is

∫ ·
0 H2

s d[M ]s ,

(iv) H · (K ·M) = (H K) ·M .

Remark. As we will see, martingales are completely characterized by their quadratic
variation, so (iii) is a fundamental property. (In addition, as already discussed infor-
mally at the very beginning of the construction, this property is in some sense what
motivates the entire theory of stochastic integration). (iv) Should be seen as a sort of
stochastic version of the fundamental theorem of calculus, since it is telling us that:

d

(∫ t

0
KsdMs

)
= KtdMt.

Proof. (i) Let us start by checking the first of these equalities. By Proposition 3.9, we
know that

(H1(0,Tn] ·MTn)T = H1(0,T )]1(0,Tn] ·MTn

As n →∞, the left-hand side converges pointwise a.s. to (H ·M)T by definition, while
the right-hand side also converges pointwise a.s. to H1(0,T ] ·M since the sequence (Tn)
also “reduce” H1(0,T ] and M in the sense of Defintion 3.8. The second equality follows
the same argument.

(ii) By (i),

(H ·M)Tn = (H 1(0,Tn]) ·MTn ∈M2
c (3.48)

which implies (ii).

(iii) Assume first that M ∈ M2
c and that H is uniformly bounded in time. For any

stopping time T , we have by the isometry property of Theorem 3.8:

E
(
(H ·M)2T

)
=E

(
(H 1(0,T ] ·M)2∞

)
=

=E
(
(H2 1(0,T ] · [M ])∞

)
= E

(
(H2 · [M ])T

)
(3.49)
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By the optional stopping theorem, we conclude that (H ·M)2−H2·[M ] is a martingale.
Moreover, since H is locally bounded and [M ] continuous one also shows that H2 ·[M ] is
continuous with probability 1. Therefore, by Theorem 3.5, we have [H ·M ] ≡ H2 ·[M ].
In the general case, note that as a consequence of (i) and of the fact that [MT ] = [M ]T ,
we may write

[H ·M ] = lim
n→∞[H ·M ]Tn

= lim
n→∞[(H ·M)Tn ]

= lim
n→∞[H1(0,Tn] ·MTn ]

= lim
n→∞H21(0,Tn] · [M ]Tn (by the above)

= H2 · [M ] (by continuity)

where the limits in these equalities are a.s. pointwise limits.

(iv) The case H, K ∈ S is tedious but elementary. For H,K uniformly bounded and
M ∈ M2

c , there exist Hn,Kn ∈ S, n ∈ N such that Hn → H and Kn → K in L2(M).
Furthermore, we may also assume that ‖Hn‖∞ and ‖Kn‖∞ are uniformly bounded in
n (indeed, truncating Kn at ‖K‖∞+1 can only improve the L2 difference between Kn

and K). We first prove an upper bound on ‖H‖L2(K·M):

‖H‖2
L2(K·M) = E

(
(H2 · [K ·M ])∞

)

by(iii)
= E

(
(H2 · (K2 · [M ]))∞

)
∗= E

(
((H K)2 · [M ])∞

)

= ‖H K‖2
L2(M)

≤ min
{‖H‖2

∞‖K‖2
L2(M), ‖H‖2

L2(M)‖K‖2
∞

}
, (3.50)

where ∗ holds by Optional problem 5 on example sheet 1, since [M ] is nondecreasing
and thus of finite variation. We have Hn · (Kn ·M) = (HnKn) ·M and using (3.50)

∥∥Hn · (Kn ·M)−H · (K ·M)
∥∥ ≤ ∥∥(Hn −H) · (Kn ·M)

∥∥ +
∥∥H · ((Kn −K) ·M)

∥∥
= ‖Hn −H‖L2(Kn·M) + ‖H‖L2((Kn−K)·M)

≤ ‖Hn −H‖L2(M)‖Kn‖∞ + ‖H‖∞‖Kn −K‖L2(M)

→ 0 as n →∞ .

So Hn · (Kn ·M) → H · (K ·M) in M2
c . Similarly, (Hn Kn) ·M → (H K) ·M in

M2
c , which implies the result. 2

Definition 3.9 Let X be a continuous semimartingale X = X0 + M + A with M ∈
Mc,loc, A a finite variation process and M0 = A0 = 0. We set the quadratic variation
of X to be that of its martingale part, [X] := [M ], independently of A.

This definition finds its justification in the fact that
b2ntc−1∑

k=0

(X(k+1)2−n −Xk2−n)2 → [X]t u.c.p. (3.51)
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as n →∞, as is not hard to show.

Definition 3.10 For a continuous semimartingale X and H locally bounded and pre-
visible, we define the stochastic integral

H ·X = H ·M + H ·A , writing also (H ·X)t =
∫ t

0
Hs dXs , (3.52)

where H ·M is Itô’s integral from Definition 3.8 and H ·A is the finite variation integral
defined in Proposition 2.6.We agree that

dZt = Ht dXt means Zt − Z0 =
∫ t

0
Hs dXs

(3.53)

Note that H ·X is already given in Doob-Meyer decomposition and is thus obviously a
continuous semimartingale. Under the additional assumption that H is left-continuous,
one can show that the Riemann sum approximation to the integral converges.

Proposition 3.11 Let X be a continuous semimartingale and H be a left-continuous
adapted process. Then

b2ntc−1∑

k=0

Hk2−n(X(k+1)2−n −Xk2−n) →
∫ t

0
HsdXs u.c.p. as n →∞ . (3.54)

Proof. We can treat the finite variation part X0 + A and the local martingale part M
separately. The first is proved in problem 6 on example sheet 2 (in fact, uniformly on
compacts for all ω). So it suffices to show that

b2ntc−1∑

k=0

Hk2−n(M(k+1)2−n −Mk2−n) → (H ·M)t u.c.p. as n →∞ (3.55)

when M ∈ Mc,loc with M0 = 0. By localization, we can reduce to the case where
M ∈M2

c and Ht is bounded uniformly for t > 0. Let Hn
t = H2−nb2ntc. Then Hn

t → Ht

as n →∞ by left continuity. Now,

(Hn ·M)t =
b2ntc−1∑

k=0

Hk2−n(M(k+1)2−n −Mk2−n) + H2−nb2ntc(Mt −M2−nb2ntc)(3.56)

where, since M is continuous (and therefore almost surely uniformly continuous on any
compact interval), Mt−M2−nb2ntc → 0 u.c.p as n →∞. We can thus ignore the second
term on the right. Now

‖Hn −H‖M = E
( ∫ ∞

0
(Hn

t −Ht)2 d[M ]t

)
→ 0 as n →∞ (3.57)

by bounded convergence and the fact that Hn
t → Ht for every t as n → ∞. By the

isometry property, Hn ·M → H ·M in M2
c . Using Doob’s inequality, it is easy to see

that this implies u.c.p. convergence. 2

To step away from the theory for a moment and look at a concrete example, you should
try your hands at proving the following result. This will be generalized in a moment
in Theorem 3.16 so you can go look for some inspiration there if you are stuck.
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Proposition 3.12 Let (Mt, t ≥ 0) be a continuous local martingale. Then for all t ≥ 0,

M2
t = M2

0 + 2
∫ t

0
MsdMs + [M ]t.

In particular if (Bt, t ≥ 0) is a one-dimensional standard Brownian motion, then

B2
t = 2

∫ t

0
BsdBs + t

is a semi-martingale.

3.4 Covariation

In practice we do not calculate integrals from first principles, but rather use tools of cal-
culus such as integration by parts or the chain rule. In this section we derive these tools
for stochastic integrals, which differ from ordinary calculus in certain correction terms.
A useful tool for deriving these rules will be the covariation of two local martingales.

Definition 3.11 Let M, N ∈Mc,loc, and set

[M,N ] =
1
4
([M + N ]− [M −N ]) (polarization identity) (3.58)

[M, N ] is called the covariation of M and N .

Theorem 3.13 Let M, N ∈Mc,loc. Then we have:

(i) [M, N ] is the unique (up to indistinguishability) continuous adapted process with
finite variation such that M N − [M, N ] is a continuous local martingale started
from 0.

(ii) For n ≥ 1 and for all t ≥ 0, let

[M,N ]nt :=
b2ntc−1∑

k=0

(M(k+1)2−n −Mk2−n)(N(k+1)2−n −Nk2−n) . (3.59)

Then [M, N ]n → [M, N ] u.c.p. as n →∞ ,

(iii) for M, N ∈M2
c , M N − [M, N ] is a UI martingale

(iv) [M, N ] is a symmetric bilinear form.

Proof. (i) Note that M N = 1
4

(
(M + N)2 − (M − N)2

)
It is thus obvious that

MN − [M,N ] is a continuous local martingale. Moreover, finite variation is an obvious
consequence of the definition and uniqueness follows easily from Theorem 2.13.

(ii) and (iii) follow form polarizing the sum (3.59) just as in (3.58) and applying The-
orems 3.5 and 3.6.

For (iv), the symmetry comes from the uniqueness in (i), while the bilinearity also
follows from (i).

Remark. Of course, [M, M ] = [M ].

42



Proposition 3.14 Kunita-Watanabe Identity
Let M, N ∈Mc,loc and H be a locally bounded previsible process. Then

[H ·M, N ] = H · [M,N ] . (3.60)

Proof. We may assume by localization that M,N ∈ M2
c and that H is uniformly

bounded in time. Note that H · [M,N ] is of finite variation, and thus by the uniqueness
of Theorem 3.13 (i), it suffices to prove that

(H ·M)N −H · [M, N ] ∈Mc,loc.

By the optional stopping theorem, it suffices to prove that for all bounded stopping
times T ,

E((H ·M)T NT ) = E((H · [M, N ])T ) (3.61)

and by considering the stopped processes HT ,MT and NT it suffices to prove that
E((H ·M)∞N∞) = E((H · [M, N ])∞). If H is of the form Z1{(s,t]} with Z bounded Fs

measurable, then this identity becomes

E{Z(Mt −Ms)N∞} = E{Z([M, N ]t − [M, N ]s)}.

However, note that since MN − [M, N ] is a martingale, we have:

E{Z(Mt −Ms)N∞} = E{ZMtE(N∞|Ft)} − E{ZMsE(N∞|Fs)}
= E{ZE(MtNt −MsNs|Fs)}
= E{ZE([M,N ]t − [M, N ]s|Fs)}
= E{Z([M,N ]t − [M, N ]s)},

as required. (3.61) then extends by linearity to all H ∈ S. If H is bounded, we may
find a sequence Hn → H in L2(M) such that Hn ∈ S and is uniformly bounded. The
Lebesgue convergence theorem then shows that (3.61) holds. This proves the result. 2

Remark. Note that a consequence of this identity is that [H ·M, H ·N ] = H2 · [M, N ].
As an exercise, try to derive directly the latter identity by polarization arguments.

Definition 3.12 Let X, Y be continuous semi-martingales. We define their covaria-
tion [X, Y ] to be the covariation of their respective martingale parts in the Doob-Meyer
decomposition.

It is not hard to see that limn→∞[X,Y ]n = [X, Y ] u.c.p where

[X, Y ]nt :=
b2ntc−1∑

k=0

(X(k+1)2−n −Xk2−n)(Y(k+1)2−n − Yk2−n).

An important property of the covariation is that two independent semi-martingales have
zero covariation. However, just as there exist many pairs of random variables with zero
correlation which are not independent, the converse is false. A notable exception is the
Lévy characterization of Brownian motion.
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Proposition 3.15 Let X, Y be independent continuous semi-martingales. Then [X, Y ] =
0.

Proof. The case where X, Y ∈ Mc,loc is treated in exercise 13 of Example Sheet 2.
You should think about the case where X, Y are general continuous semi-martingales.
¤
Remark. Note that the Kunita-Watanabe identity [H ·X, Y ] = H · [X, Y ] = [X,H ·Y ]
also holds for continuous semi-martingales.

3.5 Itô’s formula

Theorem 3.16 Integration by parts. Let X, Y be continuous semimartingales.
Then

Xt Yt −X0 Y0 =
∫ t

0
Xs dYs +

∫ t

0
Ys dXs + [X, Y ]t . (3.62)

Proof. Since both sides are continuous in t, it suffices to consider t = M 2−N for
M, N ≥ 1. Note that

Xt Yt −Xs Ys = Xs(Yt − Ys) + Ys(Xt −Xs) + (Xt −Xs)(Yt − Ys) (3.63)

so for n ≥ N

Xt Yt −X0 Y0 =
M2n−N−1∑

k=0

(
Xk2−n(Y(k+1)2−n − Yk2−n) + Yk2−n(X(k+1)2−n −Xk2−n) +

+(X(k+1)2−n −Xk2−n)(Y(k+1)2−n − Yk2−n)
)

u.c.p.−→ (X · Y )t + (Y ·X)t + [X, Y ]t as n →∞ (3.64)

by Proposition 3.11 and Theorem 3.59. 2

Note the extra covariation term which we do not get in the deterministic case. The next
result, Itô’s formula, tells us that a smooth function of a continuous semimartingale is
again a continuous semimartingale and gives us its precise decomposition in a sort of
chain rule.

Theorem 3.17 Itô’s formula
Let X1, X2, . . . , Xd be continuous semimartingales and set X = (X1, . . . , Xd).
Let f ∈ C2(Rd,R). Then

f(Xt) = f(X0) +
d∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s +
1
2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s . (3.65)
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Remarks. (i) In particular, f(X) is a continuous semimartingale with decomposition

f(Xt) = f(X0) +
d∑

i=1

∫ t

0

∂f

∂xi
(Xs) dM i

s

︸ ︷︷ ︸
∈Mc,loc

+

+
d∑

i=1

∫ t

0

∂f

∂xi
(Xs) dAi

s +
1
2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[M i,M j ]s

︸ ︷︷ ︸
finite variation

. (3.66)

where the covariation of the Rd-valued semimartingale X = X0 + A + M is
[Xi, Xj ] = [M i,M j ], due to quadratic variation and the polarization identity

(3.58).

(ii) Intuitive proof by Taylor expansion for d = 1:

f(Xt) = f(X0) +
b2ntc−1∑

k=0

(
f(X(k+1)2−n)− f(Xk2−n)

)
+

(
f(Xt)− f(Xb2ntc2−n)

)
=

= f(X0) +
b2ntc−1∑

k=0

f ′(Xk2−n)
(
X(k+1)2−n −Xk2−n

)
+

+
1
2

b2ntc−1∑

k=0

f ′′(Xk2−n)
(
X(k+1)2−n −Xk2−n

)2 + error terms

u.c.p.−→ f(X0) +
∫ t

0
f ′(Xs) dXs +

1
2

∫ t

0
f ′′(Xs) d[X]s . (3.67)

We will not follow this method of proof, because the error terms are hard to deal
with.

Proof. (for d = 1)
Write X = X0 + M + A, where A has total variation process V . Let

Tr = inf
{
t ≥ 0 : |Xt|+ Vt + [M ]t > r

}
. (3.68)

Then (Tr)r≥0 is a family of stopping times with Tr ↗∞. It is sufficient to prove (3.65)
on the time intervals [0, Tr]. Let A ⊆ C2(R,R) denote the subset of functions f for
which the formula holds. Then

(i) A contains the functions f(x) ≡ 1 and f(x) = x. (ii) A is a vector space.

Below we will show that A is, in fact, an algebra, i.e. in addition

(iii) f, g ∈ A ⇒ f g ∈ A .

Finally we will show that

(iv) if fn ∈ A and fn → f in C2(Br,R) for all r > 0 then f ∈ A, where fn → f in
C2(Br, R) means that ∆n,r → 0 as n →∞ with Br =

{
x : |x| ≤ r

}
and
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∆n,r := max
{

sup
x∈Br

∣∣fn(x)−f(x)
∣∣, sup

x∈Br

∣∣f ′n(x)−f ′(x)
∣∣, sup

x∈Br

∣∣f ′′n(x)−f ′′(x)
∣∣
}

.(3.69)

(i) -(iii) imply thatA contains all polynomials. By Weierstrass’ approximation theorem,
these are dense in C2(Br,R) and so (iv) implies A = C2(Br,R).
Proof of (iii): Suppose f, g ∈ A and set Ft = f(Xt), Gt = g(Xt). Since the formula
holds for f and g, F and G are continuous semimartingales. Integration by parts
(Theorem ??) yields

Ft Gt − F0 G0 =
∫ t

0
Fs dGs +

∫ t

0
Gs dFs + [F, G]t . (3.70)

By Proposition 3.10(iv) we have F ·G = F ·(1 ·G), and using Itô’s formula for (1 ·G)s =
g(Xs)− g(X0) we get again by Proposition 3.10(iv)

∫ t

0
Fs dGs =

∫ t

0
f(Xs) g′(Xs) dXs +

1
2

∫ t

0
f(Xs) g′′(Xs) d[X]s . (3.71)

By the Kunita-Watanabe identity (Proposition 3.14) we have [f ′ ·X,G] = f ′ · [X,G].
Applying this a second time for G leads to

[F, G]t =
[
f ′(X) ·X, g′(X) ·X]

t
=

∫ t

0
f ′(Xs) g′(Xs) d[X]s . (3.72)

Substituting these into (3.70), we obtain Itô’s formula for f g.
Proof of (iv): Let fn ∈ A such that fn → f in C2(Br,R). Then

∫ t∧Tr

0

∣∣f ′n(Xs)− f ′(Xs)
∣∣ dVs +

1
2

∫ t∧Tr

0

∣∣f ′′n(Xs)− f ′′(Xs)
∣∣ d[M ]s ≤

≤ ∆n,r

(
Vt∧Tr +

1
2
[M ]t∧Tr

) ≤ r∆n,r → 0 as n →∞ . (3.73)

and so
∫ t∧Tr

0
f ′n(Xs) dAs +

1
2

∫ t∧Tr

0
f ′′n(Xs) d[M ]s →

∫ t∧Tr

0
f ′(Xs) dAs +

1
2

∫ t∧Tr

0
f ′′(Xs) d[M ]s .

Moreover, MTr ∈M2
c and so

∥∥∥
(
f ′n(X) ·M)Tr − (

f ′(X) ·M)Tr
∥∥∥

2
=E

(∫ Tr

0

(
f ′n(Xs)− f ′(Xs)

)2
d[M ]s

)

≤ ∆2
n,rE

(
[M ]Tr

) ≤ r∆2
n,r → 0, (3.74)

as n → ∞ and so
(
f ′n(X) ·M)Tr → (

f ′(X) ·M)Tr in M2
c . For any fixed r, XTr ∈ Br

and taking the limit n →∞ in Itô’s formula for fn we obtain

f(Xt∧Tr) = f(X0) +
∫ t∧Tr

0
f ′(Xs) dXs +

1
2

∫ t∧Tr

0
f ′′(Xs) d[X]s . (3.75)

2

Remark. For d > 1, (i) becomes ’A contains the constant 1 and the coordinate func-
tions f1(x) = x1, . . . , fd(x) = xd.’ Check that you can then follow the same argument,
dealing with all the different components Xi,M i, [M i, M j ] etc.

46



Corollary 3.18 Let X1, X2, . . . , Xd be continuous semimartingales and set X = (X1, . . . , Xd).
Let f ∈ C2(R+ × Rd,R). Then

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂t
(s, Xs) ds +

d∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXi

s

+
1
2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d[Xi, Xj ]s .

Proof. This is an immediate consequence of (3.65). Indeed, the process t 7→ t is
nondecreasing and so of finite variation, so (t, X1

t , . . . , Xd
t ) is a (d + 1)-dimensional

semi-martingale. The result follows by applying Itô’s formula to this d+1-dimensional
process, and observing that since t 7→ t is of finite variation, it does not contribute to
any of the covariation terms.
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4 Applications to Brownian motion and Martingales

4.1 Brownian martingales

As we will see in a few moments, martingales are very useful to understand (and
ultimately prove results about) the behaviour of random processes. We start our study
of Brownian motion by finding martingales associated with it. If x, y ∈ Cd, we note
〈x, y〉 =

∑d
i=1 xiȳi their complex scalar product.

Theorem 4.1 Let (Bt, t ≥ 0) be an (Ft)-Brownian motion.
(i) If d = 1 and B0 ∈ L1, the process (Bt, t ≥ 0) is a (Ft)-martingale.
(ii) If d = 1 and B0 ∈ L2, the process (B2

t − t, t ≥ 0) is a (Ft)-martingale.
(iii) In any dimension, let u = (u1, . . . , ud) ∈ Cd. If E[| exp(〈u,B0〉)|] < ∞, the

process defined by
Mt = exp(〈u,Bt〉 − tu2/2)

is also a (Ft)-martingale for every u ∈ Cd, where u2 is a notation for
∑d

i=1 u2
i .

Notice that in (iii), we are dealing with C-valued processes. The definition of E[X|G]
the conditional expectation for a random variable X ∈ L1(C) is E[RX|G] + iE[=X|G],
and we say that an integrable process (Xt, t ≥ 0) with values in C, and adapted to
a filtration (Ft), is a martingale if its real and imaginary parts are. Notice that the
hypothesis on B0 in (iii) is automatically satisfied whenever u = iv is purely imaginary,
i.e., v ∈ R.

Proof. (i) If s ≤ t, E[Bt − Bs|Fs] = E[B(s)
t−s] = 0, where B

(s)
u = Bu+s − Bs has mean

0 and is independent of Fs, by the simple Markov property. The integrability of the
process is obvious by hypothesis on B0.

(ii) Integrability is an easy exercise using that Bt − B0 is independent of B0. We
have, for s ≤ t, B2

t = (Bt −Bs)2 + 2Bs(Bt −Bs) + B2
s . Taking conditional expectation

given Fs and using the simple Markov property gives that E[B2
t ] = (t− s) + B2

s , hence
the result. A proof using Itô’s formula is to say that B is an F-local martingale and
hence

B2
t = 2

∫ t

0
BsdBs + t.

Thus Mt =
∫ t
0 BsdBs is an F-local martingale. It thus suffices to show that it is a true

martingale, which can be proved for instance by observing that the quadratic variation
is

[M ]t =
∫ t

0
B2

sds

which has finite expectation for all t > 0 by Fubini’s theorem. By problem 11 in
Example sheet 2, (Ms∧t, s ≥ 0) is a martingale bounded in L2 and hence M is a true
martingale.
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(iii) To check integrability, note that E[exp(λBt)] = exp(tλ2/2) whenever B is a
standard Brownian motion, and since |ez| = eRz, then we have

E(| exp〈u,Bt〉|) = E(| exp〈u, (Bt −B0 + B0)〉|)
= E(| exp〈u,Bt −B0〉|)E(| exp〈u, B0〉|)

= exp(
d∑

i=1

t(Rui)2/2)E| exp〈u,B0〉| < ∞.

To show that M is a martingale, consider Xd+1 = t which is a continuous semi-
martingale. Let f(x1, . . . , xd, xd+1) = exp(

∑d
i=1 uixi − (1/2)u2xd+1). f ∈ C2(Rd+1,C)

so we may apply Itô’s formula and obtain:

Mt = M0 +
∫ t

0

d∑

i=1

ui exp(〈u,Bs〉 − su2/2)dBi
s

since d[Bi, Bj ]t = δi,jdt and [Bi, t] = 0 for all 1 ≤ i, j ≤ d, so that the finite variations
term cancel. It thus suffices to show that:

∫ t
0 ui exp(〈u,Bs〉 − su2/2)dBi

s is a true
martingale. We take the quadratic variation of the real and imaginary parts, and it
suffices by Fubini’s theorem to show that

∫ t

0
E

(
exp(

d∑

i=1

2riB
i
s − s〈u, ū〉2)

)
ds < ∞ (4.1)

where ri is the complex modulus of ui and 〈u, ū〉2 =
∑d

i=1 r2
i . (4.1) follows instantly

from the independence of the coordinates and the fact that E[exp(rBt)] = exp(tr2/2).
¤

A classical application of these martingales is to show the following result, often
referred to as the gambler’s ruin estimates.

Theorem 4.2 Let (Bt, t ≥ 0) be a standard Brownian motion and Tx = inf{t ≥ 0 :
Bt = x}. Then for x, y > 0, one has

P (T−y < Tx) =
x

x + y
, E[Tx ∧ T−y] = xy.

Proof. Let T = T−y ∧ Tx, which is a stopping time. Moreover, BT is bounded
(by max(x, y)) so we may apply the optional stopping theorem to find that E(BT ) =
E(B0) = 0. On the other hand, E(BT ) = −yp + x(1 − p), where p = P (T−y < Tx) is
the probability of interest to us. Thus py = (1 − p)x and the first statement follows
easily. For the second statement, observe that B2

t∧T − (t ∧ T ) is a martingale (since
martingales are stable by stopping) and thus

E(B2
t∧T ) = E(t ∧ T ).

We may let t → ∞ since the left-hand side is bounded and the right-hand side is
monotone, and deduce that

E(B2
T ) = E(T )
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Using the first statement,

E(B2
T ) =

x

x + y
y2 +

y

y + x
x2 = xy

and the claim follows. ¤
Similarly,

Theorem 4.3 The Laplace transform of Tx for x ∈ R is given by E(e−qTx) = e−|x|
√

2q.
Moreover, the random variable T = Tx ∧ T−y has a Laplace transform given by

E(e−qT ) =
sinh(

√
2qx) + sinh(

√
2qy)

sinh(
√

2q(x + y))

and when y = x, T is independent from the event {T−x < Tx}.
Proof. The first statement follows directly from the optional stopping theorem and
the fact that eλBt−(λ2/2)t is a martingale. The second statement is a bit more involved.
Let

Mt = e−λ2t/2 sinh(λ(Bt + y))

is also a martingale since it can be written as

1
2
e−λ2t/2eλ(Bt+y) − 1

2
e−λ2t/2e−λ(Bt+y)

which is the sum of two martingales. Now, stopping at T = T−x ∧ Ty, M is bounded
so we can use the optional stopping theorem to obtain:

sinh(λy) = E(sinh(λ(BT + y))e−Tλ2/2)

= E(sinh(λ((x + y))e−Tλ2/21{Tx>T−y})

Thus:
E(e−Tλ2/21{Tx>T−y}) =

sinh(λy)
sinh(λ(x + y))

.

By symmetry,

E(e−Tλ2/21{T−y>Tx}) =
sinh(λx)

sinh(λ(x + y))
.

Adding up the two terms,

E(e−Tλ2/2) =
sinh(λy) + sinh(λx)

sinh(λ(x + y))

When x = y, it suffices to check that

E(e−Tλ2/21{T−y>Tx}) = E(e−Tλ2/2)P (T−y < Tx) =
1
2
E(e−Tλ2/2)

which is easy to check. ¤
Another family of martingales is provided by the result below. This is the first

hint of a deep connection between Brownian motion and second-order elliptic partial
differential operators, a theme which we will explore in greater detail later on in the
course. (This also connects to the theory of martingale problems developed by Stroock
and Varadhan, which has proved to be one of the most successful tools in probability
theory).
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Theorem 4.4 Let (Bt, t ≥ 0) be a (Ft)-Brownian motion. Let f(t, x) : R+ × Rd → C
be continuously differentiable in the variable t and twice continuously differentiable in
x. Then,

Mf
t = f(t, Bt)− f(0, B0)−

∫ t

0
ds

(
∂

∂t
+

1
2
∆

)
f(s,Bs) , t ≥ 0

is a (Ft)-local martingale, where ∆ =
∑d

i=1
∂2

∂x2
i

is the Laplacian operator acting on
the spatial coordinate of f . If moreover, the first derivatives are uniformly bounded on
every compact interval (that is, for all T > 0,

sup
t∈[0,T ]

sup
x∈Rd

∣∣∣∣
∂f

∂xi
(t, x)

∣∣∣∣ < ∞

for all 1 ≤ i ≤ d), then Mf is a true martingale.

Proof. By Itô’s formula,

Mf
t =

∫ t

0

d∑

i=1

∂f

∂xi
(s,Bs)dBi

s

is indeed a local martingale. The fact it is a true martingale when the first partial
derivatives are uniformly bounded on every compact time interval, follows from the
fact that the quadratic variation of Mf is bounded on on every compact time interval,
and hence it is a true martingale (even bounded in L2) on every compact time interval.

4.2 Martingales characterized by their quadratic variation

We work on a filtered probability space (Ω,F , (Ft)t≥0,P) where (Ft)t≥0 satisfies the
usual conditions.

Theorem 4.5 Lévy’s characterization of Brownian motion
Let X1, . . . , Xd ∈Mc,loc. The two following statements are equivalent.

(i) For all t ≥ 0, [Xi, Xj ]t = δijt.

(ii) X = (X1, . . . , Xd) is a Brownian motion in Rd.

Proof. It suffices to show that, for 0 ≤ s ≤ t, Xt −Xs ∼ N
(
0, (t− s)I

)
and the incre-

ment is independent of Fs. By uniqueness of characteristic functions, this is equivalent
to showing that for all s ≤ t and for all θ ∈ Rd,

E
(
exp(i〈θ,Xt −Xs〉)

∣∣Fs

)
= exp

(− 1
2‖θ‖2(t− s)

)
. (4.2)

(Here 〈·, ·〉 is the usual scalar product on Rd and ‖θ‖ is the Euclidean norm). Fix
θ ∈ Rd and set

Yt = 〈θ, Xt〉 = θ1X
1
t + . . . + θdX

d
t

. Then Y is a local martingale, and by the assumptions and the bilinearity of the
covariation, [Y ] =

∑d
i=1 θ2

i t = t‖θ‖2. Define also and

Zt = exp
(
iYt + 1

2 [Y ]t
)

= exp
(
i〈θ, Xt〉+ 1

2 |θ|2t
)

.
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By Itô’s formula, it is easy to check that Z is a local martingale. Moreover, Z is
bounded on [0, t] for all t ≥ 0 (since [Y ]t = ‖θ‖2t) and so is a true martingale by
Proposition 2.9. Hence, E(Zt|Fs) = Zs, or equivalently:

E
(

Zt

Zs

∣∣∣∣Fs

)
= 1, a.s.

(4.2) follows directly. 2

Proposition 4.6 Let B be a Brownian motion and let h be a deterministic function in
L2(R+,B, λ) with Lebesgue measure λ. Set X =

∫∞
0 hs dBs. Then X ∼ N

(
0, ‖h‖2

2

)
.

Proof. Let Mt =
∫ t
0 hs dBs. Then M ∈ Mc,loc and (since [h · B] = h2 · [B]) we have

[M ]t =
∫ t
0 h2

s ds . Now let Zt = exp
(
iuMt + 1

2u2[M ]t
)

. This is in Mloc as in the
proof of Lévy’s characterization and, as it is uniformly bounded by exp

(
1
2u2‖h‖2

2

)
, is

in fact in M2. Hence,

1 = E(Z0) = E(Z∞) = E
(
exp(iuX)

)
exp

(
1
2u2‖h‖2

2

)
. (4.3)

2

Theorem 4.7 Dubins-Schwarz Theorem
Let M ∈ Mc,loc with M0 = 0 and [M ]∞ = ∞ a.s.. Set τs = inf

{
t ≥ 0 : [M ]t > s

}
,

Bs = Mτs. Then τs is an (Ft)t≥0-stopping time. If Gs = Fτs then (Gs)s≥0 is a filtration
and B is a (Gt)t≥0-Brownian motion. Moreover Mt = B[M ]t.

Remark. So any continuous local martingale is a (stochastic) time-change of Brownian
motion. In this sense, Brownian motion is the most general continuous local martingale.

Proof. Since [M ] is continuous and adapted, τs is a stopping time, and since [M ]∞ = ∞
it must be that τs < ∞ a.s. for all s ≥ 0. We start the proof by the following lemma.

Lemma 4.8 B is a.s. continuous

Proof. Note that s 7→ τs is càdlàg and nondecreasing and thus B is càdlàg. So it
remains to show Bs− = Bs for all s > 0, or equivalently Mτs− = Mτs , where

τs− = inf
{
t ≥ 0 : [M ]t = s

}
(4.4)

and note that τs− is also a stopping time. Let s > 0. We need to show that M is
constant between τs− and τs whenever τs− < τs, i.e. whenever [M ] is constant. Note
that (M2−[M ])τs is uniformly integrable since E([M τs ]∞) < ∞. Hence, by the optional
stopping theorem (the uniformly integrable version 2.36), we get:

E
(
M2

τs
− [M ]τs

∣∣Fτs−
)

= M2
τs− − [M ]τs− .

But by assumption, [M ]τs = [M ]τs− and M is a martingale, we obtain

E
(
M2

τs
−M2

τs−

∣∣Fτs−
)

= E
(
(Mτs −Mτs−)2

∣∣Fτs−
)

= 0
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and so M is a.s. constant between τs− and τs. This proves that B is almost surely
continuous at time s. To prove that B is a.s. continuous simultaneously for all s ≥ 0,
note that if Tr = inf{t > 0 : Mt 6= Mr} and Sr = inf{t > 0 : [M ]t 6= [M ]r} then the
previous argument says that for all fixed r > 0 (and hence for all r ∈ Q+), Tr = Sr a.s.
But observe that Tr and Sr are both càdlàg. Thus equality holds almost surely for all
r ≥ 0 and hence almost surely, M and [M ] are constant on the same intervals. This
implies the result. ¤

We also need the following lemma.

Lemma 4.9 B is adapted to (Gt)t≥0.

Proof. It is trivial to check that (Gs)s≥0 is a filtration. Indeed, if S ≤ T a.s. are two
stopping times for the complete filtration (Ft), and if A ∈ FS , then for all t ≥ 0,

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t}

up to zero-probability events. The first event in the right-hand side is in Ft by assump-
tion, and the second is also in Ft since T is a stopping time. Since (Ft) is complete,
we conclude that A ∈ FT as well, and hence FS ⊆ FT . From this, since τr ≤ τs

almost surely if r ≤ s, (Gs) is a filtration. It thus suffices to show that if X is a càdlàg
adapted process and T is a stopping time, then XT1{T<∞} is FT -measurable. Note
that a random variable Z is FT -measurable if Z1{T≤t} ∈ Ft for every t ≥ 0. If T only
takes countably many values {tk}∞k=1, then

XT1{T<∞} =
∞∑

k=1

Xtk1{T=tk}

so it is trivial to check that XT1{T<∞} is FT -measurable, since every term in the above
sum is. In the general case, let Tn = 2−nd2nT e where dxe denotes smallest n ∈ Z+ with
n ≥ x. Then Tn is also a stopping time, finite whenever T < ∞, and such that Tn ≥ T
while Tn → T almost surely. Thus for all u ≥ 0, and for all n ≥ 1, XTn1{Tn≤u} is Fu-
measurable. Furthermore, by right-continuity of X, limn→∞XTn1{Tn≤u} = XT1{T<u}.
Thus XT1{T<u} is Fu-measurable. Naturally, XT1{T=u} = Xu1{T=u} is also Fu-
measurable, so we deduce that XT1{T≤u} is Fu-measurable. ¤

Having proved this lemma, we can now finish the proof of the Dubins-Schwarz
theorem. Fix s > 0. Then [M τs ]∞ = [M ]τs = s, by continuity of [M ]. Thus by example
sheet 2, problem 11, M τs ∈M2

c since E
(
[M τs ]∞

)
< ∞. In particular, (Mt∧τs , s ≥ 0) is

uniformly integrable by Doob’s inequality. Applying the uniformly integrable version
of the optional stopping theorem (2.36) a first time, we obtain

E(Mτs |Fτr) = Mτr

a.s. and thus B is a G-martingale. Furthermore, since M τs ∈ M2
c , by Theorem 3.6,(

M2 − [M ]
)τs is also a uniformly integrable martingale. By (2.36) again, for r ≤ s,

E(B2
s − s|Gr) = E

(
(M2 − [M ])τs

∣∣Fτr

)

= M2
τr
− [M ]τr = B2

r − r .
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Hence, B ∈ Mc with [B]s = s and so, by Lévy’s characterization, B is a (Gt)t≥0-
Brownian motion. 2

Before we head on to our next topic, here are a few complements to this theorem, given
without proof. The first result is a strengthening of the Dubins-Schwarz theorem.

Theorem 4.10 (Dubins-Schwarz) Let M be a continuous local martingale with M0 = 0
a.s. Then we may enlarge the probability space and define a Brownian motion B on it
in such a way that

M = B[M ]t a.s. for all t ≥ 0.

More precisely, taking an independent Brownian motion β, if

Bs =

{
Mτs for s ≤ [M ]∞
M∞ + βs−[M ]∞ for all s ≥ [M ]∞

then B is a Brownian motion and for all t ≥ 0, Mt = B[M ]t.

See Revuz-Yor (Chapter V, Theorem (1.10)) for a proof.

Remark. One informal (but very informative!) conclusion that one can draw from
this theorem is the fact that the quadratic variation should be regarded as a natural
clock for the martingale. This is demonstrated for instance in the following theorem.

Theorem 4.11 Let M be a continuous local martingale. Then

(i) P ( lim
t→∞ |M |t = ∞) = 0

(ii) {ω : lim
t→∞Mt exists and is finite} = {ω : [M ]∞ < ∞} up to null events.

(iii) {[M ]∞ = ∞} = {lim sup
t→∞

Mt = +∞ and lim inf
t→∞ Mt = −∞} up to null events.

Another fundamental application of the Lévy characterization is the following re-
sult, which tells us that Brownian motion is conformally invariant. That is, given a
conformal mapping f between two simply-connected planar domains D and D′, the
trajectories of a Brownian motion in D′ (that is, stopped upon reaching the boundary
∂D′) are the image by f of Brownian motion in D, up to reparametrization.

Theorem 4.12 Let d = 2 and identify R2 with the complex field C. Let f : D → D′ be
a conformal map (i.e., complex analytic). Let z ∈ D and let τD = inf{t > 0 : Bt /∈ D}.
Then there exists a nondecreasing random function (σ(t), t ≥ 0) such that (f(Bσ(t)), t ≥
0) has the same distribution as (B′

t∧τD′ , t ≥ 0) where B′ is a Brownian motion started
from f(z).

The proof is one of the exercises of Example Sheet 3, where you will be asked to
explicit the stochastic time-change σ(t). It will be useful to recall the Cauchy-Riemann
equations for complex analytic functions: if f = u + iv is a complex-differentiable
function with real and imaginary parts u and v, then

{
∂u
∂x = ∂v

∂y
∂u
∂y = − ∂v

∂x
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from which it follows by further differentiation that both u and v are harmonic functions
(i.e., ∆u ≡ ∆v ≡ 0) all over D). Applying Itô’s formula and the Cauchy-Riemann
equations shows that the real and imaginary parts of f(Bt) have zero covariation and
that they have identical quadratic variation. Applying the ideas of the Dubins-Schwartz
theorem yields the result.

In principle, Theorem 4.12 (in combination with the famous Riemann mapping
theorem) can be used to extract all the information we need about the behaviour of
Brownian motion. For instance, the exit distribution from a domain D is simply the
conformal image of the uniform measure of the circle by a map from the disc to this
domain.

Remark. The ramifications of this result are huge. On the one hand, it serves as a
bridge between probability and complex analysis, and in the example sheet you will
prove a result of complex analysis just using Brownian motion. This connection is one
aspect of the deep connection between random processes and harmonic analysis (which
will be further developed later on). On the other hand, conformal invariance of Brow-
nian motion, already observed by Paul Lévy in the 1940’s, can be seen as the starting
point of one of the most fascinating recent theories developed in probability, which is
that of SLE (for Schramm-Loewner Evolution) and conformally invariant processes in
the plane.

4.3 Recurrence and Transience of Brownian motion

As explained in the introduction to these notes, Brownian motion is the scaling limit
of d−dimensional random walks (this theorem will actually be proved in its strong
form in the next subsection). One of the most striking results about random walks is
Polya’s theorem which says that simple random walk is recurrent in dimension 1 and
2, while it is transient in dimension 3. What is the situation for Brownian motion?
Being the scaling limit of simple random walk, one might expect the answer to be the
same for Brownian motion. It turns out that this is almost the case: there is however
something subtle happening in dimension 2. In the planar case, Brownian motion is
neighbourhood-recurrent (it visits any neighbourhood of any point “infinitely often”)
but almost surely does not hit any point chosen in advance.

We work with the Wiener measure W on the space of continuous functions, and
recall that Wx denote the law of a Brownian motion started at x. Let Ex denote the
expectation under this probability measure. In the sequel, B(x, r) and B̄(x, r) denote
the Euclidean ball of radius r about x ∈ Rd.

Theorem 4.13 (i) If d = 1, Brownian motion is point-recurrent in the sense that:

W0 − a.s. for all x ∈ R, {t ≥ 0 : Bt = x} is unbounded

(ii) If d ≥ 3, Brownian motion is transient, in the sense that ‖Bt‖ → ∞ almost surely
as t →∞.

(iii) If d = 2, Brownian motion is neighbourhood-recurrent, in the sense that for every
x ∈ Rd, every open set is visited infinitely often Wx-almost surely. Equivalently,
for any ε > 0,

{t ≥ 0 : ‖Bt‖ < ε} is unbounded
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Wx-almost surely for every x ∈ R2. However, points are polar in the sense that
for every x ∈ R2,

W0(Bt = x for some t > 0) = 0.

Proof. (i) is a consequence of (ii) in Proposition ??.

(ii) Let B = (B1, . . . , Bd) be a d-dimensional Brownian motion with d ≥ 3. Clearly it
suffices to prove the result for d = 3 since

‖Bt‖2 ≥ R2
t :=

3∑

i=1

‖Bi
t‖2

and we are precisely claiming that the right-hand side tends to infinity as t →∞. Now,
for d = 3, a simple calculation shows that if f(x) = 1/‖x‖, then ∆f = 0. Thus by Itô
s formula,

1/Rt is a local martingale.

Since it is nonnegative, it follows from Proposition 2.14 that it is a supermartingale.
Being nonnegative, the martingale convergence theorem tells us that it has an almost
sure limit M as t →∞, and it suffices to prove that M = 0 almost surely. Now on the
event {M > 0}, Rt must be bounded, and thus so is |B1

t |. This has probability 0 by (i)
and hence M = 0 a.s.

(iii) Let d = 2 and let B be a planar Brownian motion. Assume without loss of
generality that B0 = 1. We are going to establish that starting from there, B will never
hit 0 but will come close to it “infinitely often” (or rather, “unboundedly often”). For
k ∈ Z, let Rk = ek and let

τk = inf{t ≥ 0 : ‖Bt‖ = Rk}

and let
τ = τ−∞ = inf{t ≥ 0 : ‖Bt‖ = 0}.

Our first goal will be to show that τ = ∞, almost surely. Define a sequence of stopping
times Tn as follows: T0 = 0, and by induction if Zn = ‖BTn‖ then

Tn+1 = inf{t ≥ Tn, ‖Bt‖ ∈ {e−1Zn, eZn}}.

Notice that if k,m ≥ 1 are two large integers, the probability that τ−k < τm is the
probability that Zn visits e−k before em. Put it another way, it is also the probability
that (log Zn, n ≥ 0) visits −k before m.

On the other hand, by Itô’s formula, Mt = log ‖Bt∧τ‖ is a local martingale since

(x, y) 7→ log(x2 + y2) is harmonic on R2

Since Mt is bounded on [Tn; Tn+1], it follows from the Optional Stopping Theorem that
given log Zn = k ∈ Z,

P (log Zn+1 = k + 1| log Zn = k) = P (log Zn+1 = k − 1| log Zn = k) = 1/2.
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Moreover, the strong Markov property of Brownian motion implies that (log Zn, n ≥ 0)
is a Markov chain. In other words, (log Zn, n ≥ 0) is nothing but simple random walk
on Z. In particular, it is recurrent. Therefore, for any m ≥ 0,

P (τ−k < τm) → 0

as k →∞. Therefore,
P (τ < τm) = 0

for all m ≥ 0. This implies that τ = ∞ almost surely since τm → ∞ as m → ∞. On
the other hand, this argument shows that τk < ∞ for all k ∈ Z, and there are infinitely
many times that B visits this ball after returning to a radius greater than 1. Thus the
set of times such that Bt ∈ B(0, Rk) is unbounded a.s. ¤
Remark. Notice that (iii) implies the fact that {t ≥ 0 : Bt ∈ B(x; ε) is unbounded
for every x ∈ R2 and every ε > 0, almost surely. Indeed, one can cover R2 by a count-
able union of balls of a fixed radius). In particular, the trajectory of a 2-dimensional
Brownian motion is everywhere dense. On the other hand, it will a.s. never hit a
fixed countable family of points (except maybe at time 0), like the points with rational
coordinates!

4.4 Donsker’s invariance principle

The following theorem completes the description of Brownian motion as a ‘limit’ of
centered random walks as depicted in the beginning of the chapter, and strengthens
the convergence of finite-dimensional marginals to that convergence in distribution.

We endow C([0, 1],R) with the supremum norm, and recall (see the exercises on
continuous-time processes) that the product σ-algebra associated with it coincides with
the Borel σ-algebra associated with this norm. We say that a function F : C([0, 1]) → R
is continuous if it is continuous with respect to this norm. Often, functions F defined
on C will be called functionals. For instance, the supremum of a path on the interval
[0,1] is a (continuous) functional.

Theorem 4.14 (Donsker’s invariance principle) Let (Xn, n ≥ 1) be a sequence of
R-valued integrable independent random variables with common law µ, such that

∫
xµ(dx) = 0 and

∫
x2µ(dx) = σ2 ∈ (0,∞).

Let S0 = 0 and Sn = X1 + . . . + Xn, and define a continuous process that interpolates
linearly between values of S, namely

St = (1− {t})Sbtc + {t}Sbtc+1 t ≥ 0,

where btc denotes the integer part of t and {t} = t− btc. Then

S[N ] :=
(

SNt√
σ2N

, 0 ≤ t ≤ 1
)

converges in distribution to a standard Brownian motion between times 0 and 1, i.e.
for every bounded continuous function F : C([0, 1]) → R,

E
[
F (S[N ])

]
→

n→∞ E0[F (B)].
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Notice that this is much stronger than what Proposition 1.1 says. Despite the slight
difference of framework between these two results (one uses càdlàg continuous-time
version of the random walk, and the other uses an interpolated continuous version),
Donsker’s invariance principle is stronger. For instance, one can infer from this theorem
that the random variable N−1/2 sup0≤n≤N Sn converges to sup0≤t≤1 Bt in distribution,
because f 7→ sup f is a continuous operation on C([0, 1],R). Proposition 1.1 would be
powerless to address this issue.

The proof we give here is an elegant demonstration that makes use of a coupling of
the random walk with the Brownian motion, called the Skorokhod embedding theorem.
It is however specific to dimension d = 1. Suppose we are given a Brownian motion
(Bt, t ≥ 0) on some probability space (Ω,F , P ).

Let µ+(dx) = P (X1 ∈ dx)1{x≥0}, µ−(dy) = P (−X1 ∈ dy)1{y>0} define two non-
negative measures. Assume that (Ω,F , P ) is a rich enough probability space so that
we can further define on it, independently of (Bt, t ≥ 0), a sequence of independent
identically distributed R2-valued random variables ((Yn, Zn), n ≥ 1) with distribution

P((Yn, Zn) ∈ dxdy) =
1
C

(x + y)µ+(dx)µ−(dy),

where C > 0 is the appropriate normalizing constant that makes this expression a
probability measure (this is possible because X has a well-defined expectation).

We define a sequence of random times, by T0 = 0, T1 = inf{t ≥ 0 : Bt ∈ {Y1,−Z1}},
and recursively,

Tn = inf{t ≥ Tn−1 : Bt −BTn−1 ∈ {Yn,−Zn}}.

By (ii) in Proposition ??, these times are a.s. finite, and they are stopping times with
respect to the filtration (Ft). We claim that

Lemma 4.15 (Skorokhod’s embedding) The sequence (BTn , n ≥ 0) has the same law
as (Sn, n ≥ 0). Moreover, the intertimes (Tn − Tn−1, n ≥ 1) form a sequence of inde-
pendent random variables with same distribution, and expectation E[T1] = σ2.

Proof. Let FB be the filtration of the Brownian motion, and for each n ≥ 0, introduce
the filtration Gn = (Gn

t , t ≥ 0) defined by

Gn
t = FB

t ∨ σ(Y1, Z1, . . . , Yn, Zn).

Since (Yi, Zi) are independent from FB, (Bt, t ≥ 0) is a Gn-Brownian motion for every
n ≥ 0. Moreover, Tn is a stopping time for Gn. It follows that if B̃t = (BTn+t−BTn , t ≥
0) then B̃ is independent from Gn

Tn
. Moreover, (Yn+1, Zn+1) is independent both from

Gn
Tn

and from B̃, therefore (Tn+1 − Tn), which depends only on B̃ and (Yn+1, Zn+1) is
independent from Gn

Tn
. In particular, (Tn+1−Tn) is independent from σ(T0, T1, . . . , Tn).

More generally, we obtain that the processes (Bt+Tn−1 −BTn−1 , 0 ≤ t ≤ Tn − Tn−1) are
independent with the same distribution.

It therefore remains to check that BT1 has the same law as X1 and E[T1] = σ2.
Remember from Proposition 4.2 that given Y1, Z1, the probability that BT1 = Y1 is
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Z1/(Y1 + Z1), as follows from the optional stopping theorem. Therefore, for every
non-negative measurable function f , by first conditioning on (Y1, Z1), we get

E[f(BT1)] =E
[
f(Y1)

Z1

Y1 + Z1
+ f(−Z1)

Y1

Y1 + Z1

]

=
∫

R+×R∗+

1
C

(x + y)µ+(dx)µ−(dy)
(

f(x)
y

x + y
+ f(−y)

x

x + y

)

=
1
C

∫

R+×R∗+
µ+(dx)µ−(dy)(yf(x) + xf(−y))

=
1
C

∫

R+

µ+(dx)f(x)
∫

R∗+
yµ−(dy) +

1
C

∫

R∗+
µ−(dy)f(−y)

∫

R+

xµ+(dx)

Now observe that since E(X1) = 0, it must be the case that
∫

R+

xµ+(dx) =
∫

R∗+
yµ−(dy) = C ′,

say, and thus, the left hand side is equal to

E[f(BT1)] =
C ′

C

∫

R+

(f(x)µ+(dx) + f(−x)µ−(dx))

=
C ′

C

∫

R
f(x)µ(dx)

=
C ′

C
E[f(X1)].

By taking f ≡ 1, it must be that C ′ = C, and hence BT1 has the same law as X1.
For E[T1], recall from Proposition 4.2 that E[inf{t ≥ 0 : Bt ∈ {x,−y}}] = xy, so by a
similar conditioning argument as above,

E[T1] =
∫

R+×R∗+

1
C

(x + y)xyµ+(dx)µ−(dy)

=
1
C

∫

R+

x2µ+(dx)
∫

R∗+
yµ−(dy) +

1
C

∫

R∗+
y2µ−(dy)

∫

R+

xµ+(dx)

=
C ′

C

∫

R
x2µ(dx)

=
C ′

C
σ2

but since we already know that C ′ = C, this shows that E(T1) = σ2, as claimed. ¤
We will need another lemma, which tells us that the times Tm are in a fairly strong

sense localized around there mean mσ2.

Lemma 4.16 We have the following convergence as N →∞:

N−1 sup
0≤n≤N

|Tn − σ2n| → 0 a.s. (4.5)
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Proof. By the strong law of large numbers, note that Tn/n → σ2 almost surely.
Thus, fix ε > 0. Then there exists N0 = N0(ε, ω) such that if n ≥ N0, |n−1Tn−σ2| ≤ ε.
Thus if N0 ≤ n ≤ N , then

N−1|Tn − nσ2| ≤ n

N
ε ≤ ε

Moreover, N−1 sup0≤n≤N0
|Tn−nσ2| tends to 0 almost surely as N →∞, so this implies

(4.5). ¤

Proof of Donsker’s invariance principle. We suppose given a Brownian motion
B. For N ≥ 1, define B

(N)
t = N1/2BN−1t, t ≥ 0, which is a Brownian motion by

scaling invariance. Perform the Skorokhod embedding construction on B(N) to obtain
variables (T (N)

n , n ≥ 0). Then, let S
(N)
n = B

(N)

T
(N)
n

. Then by Lemma 4.15, (S(N)
n , n ≥ 0) is

a random walk with same law as (Sn, n ≥ 0). We interpolate linearly between integers
to obtain a continuous process (S(N)

t , 0 ≤ t ≤ 1) which thus has the distribution as
(St, 0 ≤ t ≤ 1). Finally, let

S̃
(N)
t =

S
(N)
Nt√
σ2N

, t ≥ 0

and T̃
(N)
n = N−1T

(N)
n . Finally, let B′

t = Bσ2t/
√

σ2, which is also a Brownian motion.
We are going to show that the supremum norm

‖B′
t − S̃

(N)
t ‖∞ →p 0

as N →∞, where →p denotes convergence in probability.
First recall what we have proved in (4.5), and note that this implies convergence in

probability. Since (T (N)
n , n ≥ 0) has the same distribution as (Tn, n ≥ 0) we infer from

this that for every δ > 0, letting δ′ = δσ2 > 0, we have:

P

(
N−1 sup

0≤n≤N
|T (N)

n − nσ2| ≥ δ′
)

→
N→∞

0.

Therefore dividing by σ2:

P

(
sup

0≤n≤N
|T̃ (N)

n /σ2 − n/N | ≥ δ

)
→

N→∞
0.

Now, note that if t = n/N , then

S̃
(N)
t =

S
(N)
n√
Nσ2

=
B

(N)

T̃
(N)
n√
σ2

= B′
T̃

(N)
n /σ2

.

Thus, by continuity, if t ∈ [n/N, (n + 1)/N ], there exists u ∈ [T (N)
n /σ2, T

(N)
n+1/σ2] such

that S
(N)
t = B′

u. Therefore, for all ε > 0 and all δ > 0, the event
{

sup
0≤t≤1

|S̃(N)
t −B′

t| > ε

}
⊆ KN

δ ∪ LN
δ,ε,
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where

KN
δ =

{
sup

0≤n≤N
|T̃ (N)

n /σ2 − n/N | > δ

}

and
LN

δ,ε = {∃ t ∈ [0, 1], ∃u ∈ [t− δ, t + δ + 1/N ] : |B′
t −B′

u| > ε}.
We already know that P (KN

δ ) → 0 as N → ∞. For LN
δ,ε, since B′ is a.s. uniformly

continuous on [0, 1], by taking δ small enough and then N large enough, we can make
P (LN ) as small as wanted. More precisely, if

L2δ,ε = {∃ t ∈ [0, 1], ∃u ∈ [t− 2δ, t + 2δ] : |B′
t −B′

u| > ε}.

then for N ≥ 1/δ, LN
δ,ε ⊆ L2δ,ε, and thus for all δ > 0:

lim sup
N→∞

P
(
‖S̃(N) −B′‖∞ > ε

)
≤ P(L2δ,ε)

However, as δ → 0, P (L2δ,ε) → 0 by almost sure continuity of B′ on (0, 1) and the fact
that these events are decreasing. Hence it must be that

lim sup
N→∞

P
(
‖S̃(N) −B′‖∞ > ε

)
= 0.

Therefore, (S̃(N), 0 ≤ t ≤ 1) converges in probability for the uniform norm to (Bt, 0 ≤
t ≤ 1), which entails convergence in distribution. This concludes the proof. ¤

4.5 Brownian motion and the Dirichlet problem

Let D be a connected open subset of Rd for some d ≥ 1 (though the story is interesting
only for d ≥ 2). We will say that D is a domain. Let ∂D be the boundary of D. We
denote by ∆ the Laplacian on Rd.

Definition 4.1 Let g : ∂D → R be a continuous function. A solution of the Dirichlet
problem with boundary condition g on D is a function u : D → R of class C2(D)∩C(D),
such that {

∆u = 0 on D
u|∂D = g.

(4.6)

A solution of the Dirichlet problem is the mathematical counterpart of the following
physical problem: given an object made of homogeneous material, such that the tem-
perature g(y) is imposed at point y of its boundary, the solution u(x) of the Dirichlet
problem gives the temperature at the point x in the object when equilibium is attained.

As we will see, it is possible to give a probabilistic resolution of the Dirichlet problem
with the help of Brownian motion. This is essentially due to Kakutani. We let Ex be
the law of the Brownian motion in Rd started at x. In the remaining of the section,
let T = inf{t ≥ 0 : Bt /∈ D} be the first exit time from D. It is a stopping time, as it
is the first entrance time in the closed set Dc. We will assume that the domain D is
such that P (T < ∞) = 1 to avoid complications. Hence BT is a well-defined random
variable.

We will need the following generalization of Itô’s formula:
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Lemma 4.17 Let D be a domain (open and connected subset of Rd) which is a proper
subset. Let f : D → R be a C2 function on D. Then if X is a semimartingale such that
X0 ∈ D almost surely, and if T = inf{t ≥ 0 : Xt /∈ D} then we have:

f(Xt) =
∫ t

0

d∑

i=1

∂f

∂xi
(Xs)dXi

s +
1
2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d[Xi, Xj ]s

almost surely for all t < T .

Proof. We may assume without loss of generality that Xi ∈ M2
c for each 1 ≤ i ≤ d.

Let n ≥ 1 and define Tn = inf{t ≥ 0 : d(Xt, D
c) ≤ 1/n}. Then Tn ≤ T almost surely

and Tn is nondecreasing, hence L = limn→∞ Tn exists. We have L ≤ T by passing
to the limit in Tn ≤ T , and we also claim that L ≥ T . Indeed, since the distance
is a continuous function, d(XL, Dc) = 0. Note that d(XL, Dc) = infy∈Dc d(XL, y) =
infy∈Dc∩B̄(XL,1) d(XL, y). Since D is open, Dc ∩ B̄(XL, 1) is compact and thus this
distance is attained. This means that XL ∈ Dc which implies L ≥ T . Thus L = T .

Now, let us introduce a sequence of functions (ϕm)m≥1 which are C∞-approximations
of the identity (such as the Gaussian kernel with variance 1/m.) Consider the function

fn,m = (f1{Dn}) ? ϕm

where Dn is the subdomain Dn = {x ∈ D : d(x,Dc) > 1/n} and ? denotes the
convolution of two functions, i.e., f ? g(x) =

∫
Rd f(y)g(x− y)dy. Since ϕm is C∞, and

since convolution is a regularizing operation, the function fn,m is C∞ for all n,m. Thus
we can apply Itô’s formula to fn,m. Stopping at time Tn, we get:

fn,m(Xt∧Tn) =
∫ t∧Tn

0

d∑

i=1

∂fn,m

∂xi
(Xs)dXi

s +
1
2

d∑

i,j=1

∫ t∧Tn

0

∂2fn,m

∂xi∂xj
(Xs)d[Xi, Xj ]s. (4.7)

However, since f is C2 inside D, we have for all x ∈ Dn:

∂fn,m

∂xi
(x) = ϕm ?

∂f

∂xi

and
∂2fn,m

∂xi∂xj
(x) = ϕm ?

∂2f

∂xi∂xj
(x).

Since ϕm is an approximation of the identity, this means that as m →∞,

∂fn,m

∂xi
(x) → ∂f

∂xi
(x), and

∂2fn,m

∂xi∂xj
(x) → ∂2f

∂xi∂xj
(x)

pointwise in D. This implies that one can take the limit m →∞ in (4.7). Indeed, the
second term

∫ t∧Tn

0

∂2fn,m

∂xi∂xj
(Xs)d[Xi, Xj ]s →

∫ t∧Tn

0

∂2f

∂xi∂xj
(Xs)d[Xi, Xj ]s
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converges because of the Lebesgue convergence theorem since each Xi ∈ M2
c . To see

that the first term also converges, apply the isometry property of the stochastic integral
and the Lebesgue convergence theorem:

∥∥∥∥
(

∂fn,m

∂xi
− ∂f

∂xi

)
(X) ·Xi

∥∥∥∥
2

X

= E

(∫ Tn

0

(
∂fn,m

∂xi
− ∂f

∂xi

)2

(Xi
s)d[X]s

)
→ 0.

Thus we get the desired formula for all t ≤ Tn almost surely. Letting n → ∞ finishes
the proof. ¤

In the sequel, | · | is the Euclidean norm on Rd. The goal of this section is to prove
the following result:

Theorem 4.18 Suppose that g ∈ C(∂D,R) is bounded, and assume that D satisfies a
local exterior cone condition (l.e.c.c.), i.e. for every y ∈ ∂D, there exists a nonempty
open convex cone with origin at y such that C ∩ B(y, r) ⊆ Dc for some r > 0. Then
the function

u : x 7→ Ex [g(BT )]

is the unique bounded solution of the Dirichlet problem (4.6). In particular, if D is
bounded and satisfies the l.e.c.c., then u is the unique solution of the Dirichlet problem.

We start with a uniqueness statement.

Proposition 4.19 Let g be a bounded function in C(∂D,R). Set

u(x) = Ex [g(BT )] .

If v is a bounded solution of the Dirichlet problem, then v = u.

In particular, we obtain uniqueness when D is bounded. Notice that we do not
make any assumption on the regularity of D here besides the fact that T < ∞ a.s.
Proof. Let v be a bounded solution of the Dirichlet problem. Let Tn = inf{t ≥
0 : d(Xt, D

c) < 1/n}. Since ∆v = 0 inside D, we know by Lemma 4.17 that Mt =
v(Bt∧Tn) − v(B0) is a local martingale started at 0 (here, B0 = x almost surely).
Moreover, since v is bounded, M is a true martingale which is uniformly integrable.
Applying the optional stopping theorem (2.36) at the stopping time Tn,

E(MTn) = Ex(v(BTn)− v(x)) = Ex(g(BTn))− v(x) = 0.

Since Tn → T almost surely as n →∞, and since v is continuous on C(D̄), we get:

v(x) = Ex(g(BT ))

as claimed.
¤

For every x ∈ Rd and r > 0, let σx,r be the uniform probability measure on the
sphere Sx,r = {y ∈ Rd : |y−x| = r}. It is the unique probability measure on Sx,r that is
invariant under isometries of Sx,r. We say that a locally bounded measurable function
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h : D → R is harmonic on D if for every x ∈ D and every r > 0 such that the closed
ball B(x, r) with center x and radius r is contained in D,

h(x) =
∫

Sx,r

h(y)σx,r(dy).

Proposition 4.20 Let h be harmonic on a domain D. Then h ∈ C∞(D,R), and
∆h = 0 on D.

Proof. Let x ∈ D and ε > 0 such that B(x, ε) ⊆ D. Then let ϕ ∈ C∞(R,R) be
non-negative with non-empty compact support in [0, ε[. We have, for 0 < r < ε,

h(x) =
∫

S(0,r)
h(x + y)σ0,r(dy).

Multiplying by ϕ(r)rd−1 and integrating over r ∈ (0, ε) gives

ch(x) =
∫

B(0,ε)
ϕ(|z|)h(x + z)dz,

where c > 0 is some constant, where we have used the fact that
∫

Rd

f(x)dx = C

∫

R+

rd−1dr

∫

S(0,r)
f(ry)σ0,r(dy)

for some C > 0. Therefore, ch(x) =
∫
B(x,ε) ϕ(|z − x|)h(z)dz =

∫
Rd ϕ(|z − x|)h(z)dz

since ϕ is supported on B(0, ε). By derivation under the
∫

sign, we easily get that h is
C∞. (Indeed, we may assume that r 7→ ϕ(r1/2) is C∞). Another way to say this is to
say that ch(x) = ϕ̃ ? h where ϕ̃(z) = ϕ(|z|). If r 7→ ϕ(r1/2) is C∞, then ϕ̃ ∈ C∞(Rd,R)
and thus, the convolution being a regularizing operation, this implies ϕ̃?h ∈ C∞(D,R).
Thus h ∈ C∞(D,R).

Next, by translation we may suppose that 0 ∈ D and show only that ∆h(0) = 0.
we may apply Taylor’s formula to h, obtaining, as x → 0,

h(x) = h(0) + 〈∇h(0), x〉+
d∑

i=1

x2
i

∂2h

∂x2
i

(0) +
∑

i 6=j

xixj
∂2h

∂xi∂xj
(0) + o(|x|2).

Now, integration over S0,r for r small enough yields
∫

Sx,r

h(x)σ0,r(dx) = h(0) + Cr∆h(0) + o(r2),

where Cr =
∫
S0,r

x2
1σ0,r(dx), as the reader may check that all the other integrals up to

the second order are 0, by symmetry. Now, it is easy to see that there exists c > 0 such
that Cr ≥ cr2 for all 0 ≤ r ≤ 1. Since the left-hand side is h(0) and the error term on
the right-hand side is o(r2) = o(Cr), it follows that ∆h(0) = 0. ¤

Therefore, harmonic functions are solutions of certain Dirichlet problems.
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Proposition 4.21 Let g be a bounded measurable function on ∂D, and let T = inf{t ≥
0 : Bt /∈ D}. Then the function h : x ∈ D 7→ Ex[g(BT )] is harmonic on D, and hence
∆h = 0 on D.

Proof. For every Borel subsets A1, . . . , Ak of Rd and times t1 < . . . < tk, the map

x 7→ Px(Bt1 ∈ A1, . . . , Btn ∈ An)

is measurable by Fubini’s theorem, once one has written the explicit formula for this
probability. Therefore, by the monotone class theorem, x 7→ Ex[F ] is measurable for
every integrable random variable F , which is measurable with respect to the product
σ-algebra on C(R,Rd). Moreover, h is bounded by assumption.

Now, let S = inf{t ≥ 0 : |Bt−x| ≥ r} the first exit time of B form the ball of center
x and radius r. Then by (ii), Proposition 1.12, S < ∞ a.s. By the strong Markov
property, B̃ = (BS+t, t ≥ 0) is an (FS+t) Brownian motion started at BS . Moreover,
the first hitting time of ∂D for B̃ is T̃ = T − S. Moreover, B̃

T̃
= BT , so that

Ex[g(BT )] = Ex[g(B̃
T̃
)] =

∫

Rd

Px(BS ∈ dy)Ey[g(BT )1{T<∞}],

and we recognize
∫

Px(BS ∈ dy)h(y) in the last expression.
Since B starts from x under Px, the rotation invariance of Brownian motion shows

that BS −x has a distribution on the sphere of center 0 and radius r which is invariant
under the orthogonal group, so we conclude that the distribution of BS is the uniform
measure on the sphere of center x and radius r, and therefore that h is harmonic on
D. ¤

It remains to understand whether the function u of Theorem 4.18 is actually a
solution of the Dirichlet problem. Indeed, is not the case in general that u(x) has limit
g(y) as x ∈ D,x → y, and the reason is that some points of ∂D may be ‘invisible’ to
Brownian motion. The reader can convince himself, for example, that if D = B(0, 1) \
{0} is the open ball of R2 with center 0 and radius 1, whose origin has been removed,
and if g = 1{0}, then no solution of the Dirichlet problem with boundary constraint
g exists. The probabilistic reason for that is that Brownian motion does not see the
boundary point 0. This is the reason why we have to make regularity assumptions on
D in the following theorem.

Proof of Theorem 4.18.
It remains to prove that under the l.e.c.c., u is continuous on D, i.e. u(x) converges

to g(y) as x ∈ D converges to y ∈ ∂D. In order to do that, we need a preliminary
lemma. Recall that T is the first exit time of D for the Brownian path.

Lemma 4.22 Let D be a domain satisfying the l.e.c.c., and let y ∈ ∂D. Then for
every η > 0, Px(T < η) → 1 as x ∈ D → y.

Proof. Let Cy = y + C be a nonempty open convex cone with origin at y such that
Cy ⊆ Dc (we leave as an exercise the case when only a neighborhood of this cone around
y is contained in Dc). Then it is an elementary geometrical fact that there exists a
nonempty open convex cone C ′ with origin at 0 such that for every δ > 0 small enough,
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we can find an ε = ε(δ) > 0 such that if C ′
x = x + C ′, then (C ′

x \ B(x, δ)) ⊆ Cy for all
x ∈ B(y, ε).

[Here is a justification. Assume without loss of generality that y = 0 to simplify, and
fix δ > 0. Let O be an open set in the unit sphere such that C = {λz, z ∈ O, λ > 0}.
There exists α > 0 and another open set O′ in the unit sphere such that O′ ⊆ O and
if z ∈ S0,1 with d(z, O′) ≤ α then z ∈ O. (For instance consider the intersection of the
sphere with two concentric open balls centered at some z0 ∈ O, and take O′ the smaller
of the two balls intersected with S). Now, choose ε = δα/4. Let x ∈ B(0, ε), and let us
show that (x + C ′) \B(x, δ) ⊆ C where C ′ is the cone generated by O′ originating at 0
(which does not depend on δ). For y ∈ O′, let z = (x+λy)/r where r = ‖x+λy‖, then
z ∈ S0,1. Moreover, note that by the triangular inequality |r− λ| ≤ ε. Thus if r ≥ δ/2,

‖y − z‖ = ‖y − 1
r
(λy + x)‖

=
1
r
‖(r − λ)y − x‖

≤ 2
δ
((r − λ) + ε)

≤ 4ε

δ
≤ α

by definition of ε. Hence z ∈ O and hence x+λy = rz ∈ C. Now, if ε is further chosen
such that ε ≤ δ/2, then for all x ∈ B(0, ε) and for all u ∈ (x + C ′) \B(x, δ), r = ‖u‖ ≤
δ/2 automatically by the triangular inequality, and thus the previous conclusion u ∈ C
holds. We have shown that (x + C ′) \B(x, δ) ⊆ C as desired.]

Now by (iii) in Proposition 1.12, if

Hδ
C′ = inf{t > 0 : Bt ∈ C ′ \B(0, δ)},

then
P0(Hδ

C′ < η) → P0(HC′ < η) = 1 as δ ↓ 0.

Therefore, for all α > 0 there exists δ > 0 such that P(Hδ
C′ ≤ η) ≥ 1 − α. Choosing

ε = ε(δ) associated with this δ, we find that for every x ∈ B(y, ε), we have by translation
invariance, and letting TK be the hitting time of a set K,

Px(T > η) ≤ Px(TC′x\B(x,δ) > η)

= P0(Hδ
C′ > η)

≤ α (by our choice of δ).

This means that Px(T > η) → 0 as x → y, which proves the lemma. ¤

We can now finish the proof of Theorem 4.18. Let y ∈ ∂D. We want to estimate
the quantity Ex[g(BT )]− g(y) for some x ∈ D. For η, δ > 0, let

Aη,δ =

{
sup

0≤t≤η
|Bt − x| ≥ δ/2

}
.
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This event decreases to ∅ as η ↓ 0 because B has continuous paths. Now, for any
δ, η > 0,

Ex[|g(BT )− g(y)|] =Ex[|g(BT )− g(y)| ; {T ≤ η} ∩Ac
δ,η]

+Ex[|g(BT )− g(y)| ; {T ≤ η} ∩Aδ,η]
+Ex[|g(BT )− g(y)| ; {T ≥ η}]

Fix ε > 0. We are going to show that each of these three quantities can be made < ε/3
for x close enough to y. Since g is continuous at y, for some δ > 0, |y − z| < δ with
y, z ∈ ∂D implies |g(y)− g(z)| < ε/3. Moreover, on the event {T ≤ η} ∩Ac

δ,η, we know
that |BT − x| < δ/2, and thus |BT − y| ≤ δ as soon as |x − y| ≤ δ/2. Therefore, for
every η > 0, the first quantity is less than ε/3 for x ∈ B(y, δ/2).

Next, if M is an upper bound for |g|, the second quantity is bounded by 2MP (Aδ,η).
Hence, by now choosing η small enough, this is < ε/3.

Finally, with δ, η fixed as above, the third quantity is bounded by 2MPx(T ≥ η).
By the previous lemma, this is < ε/3 as soon as x ∈ B(y, α) ∩ D for some α > 0.
Therefore, for any x ∈ B(y, α ∧ δ/2) ∩D, |u(x)− g(y)| < ε. This entails the result. ¤

Corollary 4.23 A function u : D → R is harmonic in D if and only if it is in C2(D,R),
and satisfies ∆u = 0.

Proof. Let u be of class C2(D,R) and be of zero Laplacian, and let x ∈ D. Let ε be
such that B(x, ε) ⊆ D, and notice that u|B(x,ε) is a solution of the Dirichlet problem
on B(x, ε) with boundary values u|∂B(x,ε). Then B(x, ε) satisfies the l.e.c.c., so that
u|B(x,ε) is the unique such solution, which is also given by the harmonic function of
Theorem 4.18. Therefore, u is harmonic on D. ¤

4.6 Girsanov’s theorem

Given a local martingale M , one may define an exponential martingale associated with
it, which will play a crucial role in what follows.

Definition 4.2 Let M ∈ Mc,loc with M0 = 0. Set Zt = exp
(
Mt − 1

2 [M ]t
)
. By Itô’s

formula

dZt = Zt

(
dMt − 1

2d[M ]t
)

+ 1
2Zt d[M ]t = Zt dMt , (4.8)

and so Z ∈ Mc,loc. We call Z the exponential martingale of M (sometimes also called
the stochastic exponential of M) and write Z = E(M).

We start by the following inequality which will be useful in the proof of Girsanov’s
theorem, but is also interesting in its own right.

Proposition 4.24 Exponential martingale inequality
Let M ∈Mc,loc with M0 = 0. Then for all x > 0, u > 0,

P
(

sup
t≥0

Mt > x , [M ]∞ ≤ u
)
≤ e−x2/(2u). (4.9)
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Proof.
Fix x > 0 and set T = inf{t ≥ 0 : Mt ≥ x}. Fix θ ∈ R and set

Zt = exp
(
θMT

t − 1
2θ2[M ]Tt

)
. (4.10)

Then Z ∈ Mc,loc and |Z| ≤ eθx. Hence, Z ∈ M2
c and, by OST, E(Z∞) = E(Z0) = 1.

For u > 0 we get by Markov’s inequality

P
(
sup
t≥0

Mt > x , [M ]∞ ≤ u
) ≤ P(

Z∞ ≥ eθx− 1
2
θ2u

) ≤ e−θx+ 1
2
θ2u . (4.11)

Optimizing in θ gives θ = x/u and the result follows. (It is also possible to use the
Dubins-Schwarz theorem if we allow a multiplicative constant on the right-hand side
of the inequality). 2

Proposition 4.25 Let M ∈Mc,loc with M0 = 0 and suppose that [M ] is a.s. uniformly
bounded. Then E(M) is a UI martingale.

Proof. Let C be such that [M ]∞ ≤ C a.s. By the exponential martingale inequality,
for all x > 0

P
(

sup
t≥0

Mt ≥ x
)

= P
(

sup
t≥0

Mt ≥ x, [M ]∞ ≤ C
)
≤ e−x2/(2C) . (4.12)

Now, sup
t≥0

E(M)t ≤ exp
(

sup
t≥0

Mt

)
and

E
(

exp
(
sup
t≥0

Mt

))
=

∫ ∞

0
P
(

sup
t≥0

Mt≥ log λ
)

dλ

≤ 1+
∫ ∞

1
e−(log λ)2/(2C)dλ < ∞ . (4.13)

Hence, E(M) is UI and, by Proposition 2.9, E(M) is a martingale. 2

Girsanov’s theorem is a result which relates absolute continuous changes of the
underlying probability measure P to changes in the drift of the process. In order
to see where this deep result comes from on a simple example where one can compute
everything by hand, consider the following. Let σ > 0 and b 6= 0, and let Xt = σBt +bt.
Then we claim that the law of X is absolutely continuous with respect to the law of
Brownian motion Yt = σBt with speed σ (but without drift), so long as we restrict
ourselves to events of Ft for some fixed t > 0. Indeed, if n ≥ 1 and 0 = t0 < t1 <
. . . tn = t and x0 = 0, x1, . . . , xn ∈ R, then we have:

P(Xt1 = x1, . . . , Xtn = xn) = C exp

(
−

n−1∑

i=0

(xi+1 − xi − b(ti+1 − ti))2

2σ2(ti+1 − ti)

)
n∏

i=1

dxi

where C is a factor depending on t1, . . . , tn and σ, whose value is of no interest to us.
It follows that

P(Xt1 = x1, . . . , Xtn = xn)
P(Yt1 = x1, . . . , Ytn = xn)

= e−Z
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where

Z =
n−1∑

i=0

(xi+1 − xi − b(ti+1 − ti))2

2σ2(ti+1 − ti)
− (xi+1 − xi)2

2σ2(ti+1 − ti)

=
n−1∑

i=0

− b

σ2
(xi+1 − xi) +

1
2σ2

b2(ti+1 − ti)

−→ −
∫ t

0
σ−2bdYs +

1
2

∫ t

0
b2σ−2ds as n →∞.

(We have written the last bit as a convergence although there is an exact equality,
since it should be clear from this calculation that when σ and b depend on the position
x (which is precisely what defines the SDE’s developed in the next chapter), then a
similar convergence holds.) Thus if Q is the law of X, and P the law of Y ,

dQ
dP

∣∣∣∣
Ft

= exp
(∫ t

0

b

σ
dBs −

∫ t

0

b2

2σ2
ds

)

= E(σ−1Y )t

So we have written the density of X with respect to Y as an exponential martingale.
The point of view of Girsanov’s theorem is a slightly different perspective, essen-

tially the other side of the same coin. We will consider changes of measures given by
a suitable exponential martingale, and observe the effect on the drift. It is of funda-
mental importance in mathematical finance (in the context of “risk neutral measures”).
Remember that for two probability measures P1,P2 on a measurable space (Ω,F), P1

is absolutely continuous with respect to P2, P1 ¿ P2, if

P2(A) = 0 ⇒ P1(A) = 0 for all A ∈ F . (4.14)

In this case, by the Radon-Nikodym theorem, there exists a density f : Ω → [0,∞) which
is F-measurable and P2 unique almost surely (and hence P1 unique almost surely as
well), such that P1 = f P2. That is, for all A ∈ F ,

P1(A) =
∫

Ω
f(ω)1{A}(ω)dP2(ω).

f is also called the Radon-Nikodym derivative, and we denote:

dP1

dP2

∣∣∣∣
F

= f

(Note that in general, the density f depends on the σ-field F).

Theorem 4.26 Girsanov’s theorem
Let M ∈ Mc,loc with M0 = 0. Suppose that Z = E(M) is a UI martingale. We can
define a new probability measure P̃¿ P on (Ω,F) by

P̃(A) = E(Z∞ 1A) , A ∈ F . (4.15)

Then for every X ∈ Mc,loc(P), X − [X,M ] ∈ Mc,loc(P̃). Moreover the quadratic
variation of X under P and of X− [X,M ] under P̃ are identical P and P̃ almost surely.
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Proof. Since Z is UI, the limit Z∞ = limt→∞ Zt exists P-almost surely, Z∞ ≥ 0 and
E(Z∞) = E(Z0) = 1. Thus P̃(Ω) = 1, P̃(∅) = 0 and countable additivity follows by
linearity of expectation and the monotone convergence theorem. P̃(A) =

∫
A Z∞dP = 0

if P(A) = 0 so P̃¿ P.
Let X ∈Mc,loc and set

Tn = inf
{
t ≥ 0 :

∣∣Xt − [X,M ]t
∣∣ ≥ n

}
. (4.16)

Since X − [X, M ] is continuous, P(Tn ↗ ∞) = 1 with implies P̃(Tn ↗ ∞) = 1. So to
show that Y = X − [X, M ] ∈Mc,loc(P̃), it suffices to show that

Y Tn = XTn − [XTn , M ] ∈Mc(P̃) for all n ∈ N . (4.17)

Replacing X by XTn , we reduce to the case where Y is uniformly bounded. By the
integration by parts formula and the Kunita-Watanabe identity,

d(Zt Yt) = YtdZt + Zt dYt + d[Zt, Yt]
= YtZtdMt + Zt(dXt − d[Xt,Mt]) + Zt d[Mt, Xt]
= YtZtdMt + ZtdXt (4.18)

and so Z Y ∈Mc,loc(P) . Also
{
ZT : T is a stopping time

}
is UI .

So since Y is bounded,
{
ZT YT : T is a stopping time

}
is UI . Hence, Z Y ∈Mc(P).

But then for s ≤ t,

Ẽ(Yt − Ys | Fs) =E
(
Z∞(Yt − Ys)

∣∣Fs

)
(4.19)

=E
(
Zt Yt − Zs Ys

∣∣Fs

)
= 0 (4.20)

since Z Y ∈ Mc(P). Therefore, Y ∈ Mc(P̃) as required. The fact that the quadratic
variation [Y ] is the same under P̃ as it comes from the discrete approximation under P:

[Y ]t = [X]t = lim
n→∞

b2ntc−1∑

k=0

(X(k+1)2−n −Xk2−n)2

P-u.c.p. Thus there exists a subsequence nk for which the convergence holds P-almost
surely uniformly on compacts. Since P̃ is absolutely continuous with respect to P this
limit also holds P̃ almost surely for this particular subsequence. Since the whole se-
quence converges in probability to [Y ] in the P̃-u.c.p. sense (by general theory, since
Y ∈Mc,loc(P̃)), this uniquely identifies the limit, and hence the quadratic variation [Y ]
under P̃ has the same value as under P. 2

Corollary 4.27 Let B be a standard Brownian motion under P and M ∈Mc,loc such
that M0 = 0. Suppose Z = E(M) is a UI martingale and P̃(A) = E(Z∞ 1A) for all
A ∈ F . Then B̃ := B − [B,M ] is a P̃-Brownian motion.

Proof. Since B̃ ∈ Mc,loc(P̃) by Theorem 4.26 and has [B̃]t = [B]t = t, by Lévy’s
characterization, it is a Brownian motion. 2
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Remark. This corollary should be read backward: if X is a Brownian motion, then
changing the measure by the exponential martingale E(M), X = X̃ + [X,M ] where
X̃ is a Brownian motion under the new measure. So the old process (which was just
Brownian motion) becomes under the new measure a Brownian motion plus a “drift”
term given by the covariation [X,M ].

Let (W,W,W) be the Wiener space. (Recall that W = C
(
[0,∞),R

)
, W = σ(Xt :

t ≥ 0) where Xt : W → R with Xt(w) = w(t). The Wiener measure W is the unique
probability measure on (W,W) such that (Xt)t≥0 is a Brownian motion started from
0.)

Definition 4.3 Define the Cameron-Martin space

H =
{

h ∈ W : h(t) =
∫ t

0
φ(s) ds for some φ ∈ L2

(
[0,∞)

)}
. (4.21)

For h ∈ H, write ḣ = φ the derivative of h.

Theorem 4.28 Girsanov, Cameron-Martin theorem
Fix h ∈ H and set Wh to be the law on (W,W) of (Bt + h(t), t ≥ 0) where Bt is a
Brownian motion: that is, for all A ∈ W,

Wh(A) =W
({w ∈ W : w + h ∈ A}). (4.22)

Then Wh is a probability measure on (W,W) and Wh ¿ W with Radon-Nikodym
density

dWh

dW

∣∣∣∣
W

= exp
( ∫ ∞

0
ḣ(s) dXs − 1

2

∫ ∞

0
ḣ(s)2 ds

)
. (4.23)

Remark. So if we take a Brownian motion and shift it by a deterministic function
h ∈ H then the resulting process has a law which is absolutely continuous with respect
to that of the original Brownian motion.

Proof. SetWt = σ(Xs, s ≤ t) and Mt =
∫ t
0 φ(s) dXs. Then M ∈M2

c

(
W,W, (Wt)t≥0,W

)
and

[M ]∞ =
∫ ∞

0
φ(s)2 ds =: C < ∞ . (4.24)

By Proposition 4.25, E(M) is a UI martingale, so we can define a new probability
measure P ¿W on (W,W) by

dP
dW

(ω)= exp
(
M∞(ω)−1

2
[M ]∞(w)

)
=exp

(∫ ∞

0
φ(s)dXs(ω)−1

2

∫ ∞

0
φ(s)2ds

)
(4.25)

and X̃ = X − [X,M ] ∈ Mc,loc(P) by Girsanov’s theorem. Since X is a W-Brownian
motion, by Corollary 4.27, X̃ is a P-Brownian motion. But by the Kunita-Watanabe
identity,

[X,M ]t = [X,φ ·X]t
= φ · [X, X]t

=
∫ t

0
φ(s) ds = h(t)
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hence we get that X̃(ω) = X(ω)− h = ω − h. Hence, under P, X = X̃ + h, where X̃
is a P-Brownian motion. Therefore, Wh = P on F∞ = W:

P(A) = P({ω : ω ∈ A}) = P({ω : X̃(ω) + h ∈ A})

=W({ω : ω + h ∈ A}) =Wh(A)

as required. 2.

One of the most important applications of Girsanov’s theorem is to the study of Brown-
ian motion with constant drift. Indeed, applying the previous result with φ(s) = 1{s≤t}
gives us the following corollary (check it!)

Corollary 4.29 Let γ 6= 0 and let Wγ be the law of (Xt + γt, t ≥ 0) under W. Then
for all t > 0, and for any A ∈ Ft,

Wγ(A) = EW
(
1{A} exp(γXt − 1

2
γ2t)

)
. (4.26)

This allows us to compute functionals of Brownian motion with drift in terms of Brow-
nian motion without drift – a very powerful technique. You will see some applications
of this result in Example Sheet 3.
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5 Stochastic Differential Equations

Suppose we have a differential equation, say dx(t)
dt = b

(
x(t)

)
, or, in integral form,

x(t) = x(0) +
∫ t

0
b
(
x(s)

)
ds , (5.1)

which describes a system evolving in time, be it the growth of a population, the tra-
jectory of a moving object or the price of an asset. Taking into account random per-
turbations, it may be more realistic to add a noise term:

Xt = X0 +
∫ t

0
b(Xs) ds + σBt , (5.2)

where B is a Brownian motion and σ is a constant controlling the intensity of the noise.
It may be that this intensity depends on the state of the system, in which case we have
to consider an equation of the form

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dBs , (5.3)

where the last term is, of course, an Itô integral. (5.3) is a stochastic differential
equation and may also be written

dXt = b(Xt) dt + σ(Xt) dBt . (5.4)

5.1 General definitions

Let B be a Brownian motion in Rm with m ≥ 1. Let d ≥ 1 and suppose

σ(x) =
(
σij(x)

)
1≤i≤d
1≤j≤m

: Rd → Rd×m

and
b(x) =

(
bi(x)

)
1≤i≤d

: Rd → Rd

are given Borel functions, bounded on compact sets. Consider the equation in Rd:

dXt = σ(Xt) dBt + b(Xt) dt , (5.5)

which may be written componentwise as

dXi
t =

m∑

j=1

σij(Xt) dBj
t + bi(Xt) dt , 1 ≤ i ≤ d . (5.6)

This general SDE will be called E(σ, b). A solution to E(σ, b) in (5.5) consists of

• a filtered probability space
(
Ω,F , (Ft)t≥0,P

)
satisfying the usual conditions;

• an (Ft)t≥0-Brownian motion B = (B1, . . . , Bm) taking values in Rm;
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• an (Ft)t≥0-adapted continuous process X = (X1, . . . , Xd) ∈ Rd such that

Xt = X0 +
∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds . (5.7)

When, in addition, X0 = x ∈ Rd, we say that X is a solution started from x.

There are several different notions of existence and uniqueness for SDE’s, and we need
to carefully distinguish between the various modes in which solutions can exist and be
unique.

Definition 5.1 Let E(σ, b) be the SDE in (5.5).

• We say that E(σ, b) has a solution if for all x ∈ Rd, there exists a solution to the
SDE started from x.

• There is uniqueness in law if all solutions to E(σ, b) started from x have the same
distribution.

• There is pathwise uniqueness if, when we fix
(
Ω,F , (Ft)t≥0,P

)
and B then any

two solutions X and X ′ satisfying X0 = X ′
0 a.s. are indistinguishable from one

another.

• We say that a solution X of E(σ, b) started from x is a strong solution if X is
adapted to the natural filtration of B.

Remark. In general, σ(Bs, s ≤ t) ⊆ Ft and a solution might not be measurable with
respect to the Brownian motion B. A strong solution depends only on x ∈ Rd and the
Brownian motion B, and is moreover non-anticipative: if the path of B is known up to
time t, then so is the path of X up to time t. We will term weak any solution that is
not strong.

Example. It is possible to have existence of a weak solution and uniqueness in law
without pathwise uniqueness. Suppose β is a Brownian motion in R with β0 = x. Set

Bt =
∫ t

0
sgn(βs) dβs where sgn(x) =

{−1 if x ≤ 0
1 if x > 0

. (5.8)

In problem 3 on example sheet 2, we showed that
(
sgn(βt)

)
t≥0

is previsible, so that
the Itô integral is well defined and B ∈ Mc,loc. By Lévy’s characterization, B is a
Brownian motion started from 0, since [B]t = [β]t = t. It is also true that

βt = x +
∫ t

0
sgn(βs) dBs. (5.9)

(Indeed, by definition dBs = sgn(βs)dβs so multiplying by sgn(βs) yields sgn(βs)dBs =
dβs.) Hence, β is a solution to the SDE

dXt = sgn(Xt) dBt , X0 = x . (5.10)

Thus (5.10) has a weak solution. Applying Lévy’s characterization again, it is clear
that any solution must be a Brownian motion and so there is uniqueness in law. On the

74



other hand, pathwise uniqueness does not hold: Suppose that β is a solution to (5.10)
with β0 = 0. Then both β and −β are solutions to (5.10) started from 0. Indeed, we
may write

−βt = −
∫ t

0
sgn(βs)dBs

=
∫ t

0
sgn(−βs)dBs + 2

∫ t

0
1{βs=0}dBs.

The second term is a local martingale since it is an integral with respect to B. The
quadratic variation of this local martingale is 4

∫ t
0 1{βs=0}ds which is 0 almost surely

by Fubini’s theorem (since β must be a Brownian motion by Lévy’s characterization).
Hence this local martingale is indistinguishable from 0, and −β is a solution to (5.10).
It also turns out that β is not a strong solution to (5.10).

The following theorem (whose proof is omitted) shows however that there is no coun-
terexample in the opposite direction.

Theorem 5.1 (Yamada-Watanabe) Let σ, b be measurable functions. If pathwise
uniqueness holds for E(σ, b) and there exist solutions, then there is also uniqueness in
law. In this case, for every filtered probability space (Ω,F , (Ft)t≥0,P) and every Ft-
Brownian motion B, and for every x ∈ Rd, there exists a strong solution X to E(σ, b).

In particular pathwise uniqueness is stronger than weak uniqueness, provided that there
exist solutions.

5.2 Lipschitz coefficients

For U ⊆ Rd and f : U → Rd, say f is Lipschitz with Lipschitz constant K < ∞ if
∣∣f(x)− f(y)

∣∣ ≤ K|x− y| for all x, y ∈ U , (5.11)

where |.| denotes the Euclidean norm on Rd. (If f : U → Rd×m then the left-hand
side is the Euclidean norm in Rd×m). The key result of this section will be that SDE
with Lipschitz coefficients have pathwise unique solutions which are furthermore always
strong.

We start preparing for this result by recalling two important results which will be
used in the proof.

Theorem 5.2 Contraction Mapping Theorem
Let (X, d) be a complete metric space and F : X → X. Suppose that the iterated
function Fn is a contraction for some n ∈ N, i.e.

∃r < 1 ∀x, y ∈ X : d
(
Fn(x), Fn(y)

) ≤ r d(x, y) . (5.12)

Then F has a unique fixed point.
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Remark. This theorem is most well-known when F itself is contractive, rather than
Fn. However, the theorem for n ≥ 1 easily follows from the n = 1 result. Indeed, if
n ≥ 1 and Fn is contractive, then (by the theorem for n = 1) Fn must have a unique
fixed point x. We claim that x is also a fixed point of F . Indeed, let x1 = F (x), x2 =
F 2(x), . . . , xn−1 = Fn−1(x). Then since Fn(x) = x, we have

Fn(x1) = F (Fn−1(x1))
= F (Fn(x))
= F (x) = x1

so x1 is a fixed point of Fn as well. But Fn has a unique fixed point, so x = x1.
Therefore, F (x) = x1 = x and x1 is a fixed point of F .

Lemma 5.3 Gronwall’s Lemma
Let T > 0 and let f be a non-negative bounded measurable function on [0, T ]. Suppose
that

∃a, b ≥ 0 ∀t ∈ [0, T ] : f(t) ≤ a + b

∫ t

0
f(s) ds . (5.13)

Then f(t) ≤ a exp(b t) for all t ∈ [0, T ]. In particular if a = 0 then f = 0.

Theorem 5.4 Suppose that σ : Rd → Rd×m and b : Rd → Rd are Lipschitz. Then
there is pathwise uniqueness for the SDE

dXt = σ(Xt) dBt + b(Xt) dt . (5.14)

Moreover, for each filtered probability space
(
Ω,F , (Ft)t≥0,P

)
and each (Ft)t≥0-Brownian

motion B, there exists a strong solution to the SDE started from x, for any x ∈ Rd.

Proof. (for d = m = 1). Fix
(
Ω,F , (Ft)t≥0,P

)
and B. Let (FB

t )t≥0 be the natural
filtration generated by B so that FB

t ⊆ Ft for all t ≥ 0. Suppose that K is the Lipschitz
constant for σ and b.
Pathwise uniqueness:
Suppose X and X ′ are two solutions on

(
Ω,F , (Ft)t≥0,P

)
with X0 = X ′

0 a.s.. Fix M
and let

τ = inf
{
t ≥ 0 : |Xt| ∨ |X ′

t| ≥ M
}

. (5.15)

Then Xt∧τ = X0 +
∫ t∧τ

0
σ(Xs) dBs +

∫ t∧τ

0
b(Xs) ds , and similarly for X ′.

Let T > 0. If 0 ≤ t ≤ T then, since

(x + y)2 ≤ 2(x2 + y2) (5.16)
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for all x, y ∈ R, we have:

E
(
(Xt∧τ −X ′

t∧τ )
2
)

≤ 2E
((∫ t∧τ

0

(
σ(Xs)− σ(X ′

s)
)
dBs

)2
)

+ 2E
((∫ t∧τ

0

(
b(Xs)− b(X ′

s)
)
ds

)2
)

≤ 2E
( ∫ t∧τ

0

(
σ(Xs)− σ(X ′

s)
)2

ds

)
+ 2TE

( ∫ t∧τ

0

(
b(Xs)− b(X ′

s)
)2

ds

)

(by the Itô isometry and the Cauchy-Schwarz inequality)

≤ 2K2(1 + T )E
(∫ t∧τ

0
(Xs −X ′

s)
2 ds

)
(by the Lipschitz property)

≤ 2K2(1 + T )
∫ t

0
E

(
(Xs∧τ −X ′

s∧τ )
2
)
ds. (5.17)

Let f(t) = E
(
(Xt∧τ −X ′

t∧τ )
2
)
. Then f(t) is bounded by 4M2 and

f(t) ≤ 2K2(1 + T )
∫ t

0
f(s) ds . (5.18)

Hence, by Gronwall’s lemma, f(t) = 0 for all t ∈ [0, T ]. So Xt∧τ = X ′
t∧τ a.s. and,

letting M,T →∞, we obtain that X and X ′ are indistinguishable.
Existence of a strong solution:
We start by constructing a weak solution as a fixed point of a certain mapping. Let
(Ω,F , (Ft),P) be a filtered probability space and let B be a Brownian motion. Write
CT for the set of continuous processes X : [0, T ] → R adapted to (Ft) such that

‖|X‖|T :=
∥∥ sup

t≤T
|Xt|

∥∥
2

< ∞ (5.19)

and C for the set of continuous adapted processes X : [0,∞) → R such that

‖|X‖|T < ∞ for all T > 0 . (5.20)

Recall from Proposition 3.4 that
(CT , ‖|.‖|T

)
is complete. Let C′T = CT ∩ {X0 = x}, and

let Φ be a mapping defined on C′T by;

Φ(X)t = x +
∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds for all t ≤ T . (5.21)

Note that a solution to E(σ, b) is a fixed point of Φ. We start by showing that if
X ∈ C′T , then so is Φ(X). For all y ∈ R,

∣∣σ(y)
∣∣ ≤ ∣∣σ(0)

∣∣ + K|y| ,
∣∣b(y)

∣∣ ≤ ∣∣b(0)
∣∣ + K|y| . (5.22)

Suppose X ∈ CT for some T . Let Mt =
∫ t
0 σ(Xs) dBs, 0 ≤ t ≤ T . Then [M ]T =∫ T

0 σ(Xs)2 ds and so by (5.16)

E
(
[M ]T

) ≤ 2T
(|σ(0)|2 + K2‖|X‖|2T

)
< ∞ . (5.23)

Hence, by example sheet 2, problem 11, (Mt)0≤t≤T is a martingale bounded in L2. So
by Doob’s L2 inequality and (5.23)

E
(

sup
t≤T

∣∣∣
∫ t

0
σ(Xs) dBs

∣∣∣
2
)
≤ 8T

(∣∣σ(0)
∣∣2 + K2‖|X‖|2T

)
< ∞ . (5.24)
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Therefore (Mt, t ≥ 0) belongs to CT . Similarly, by (5.22), (5.16) and the Cauchy-
Schwarz inequality:

E
(

sup
t≤T

∣∣∣
∫ t

0
b(Xs) ds

∣∣∣
2
)
≤ TE

(∫ T

0

∣∣b(Xs)|2 ds

)

≤ 2T 2
(∣∣b(0)

∣∣2 + K2‖|X‖|2T
)

< ∞ . (5.25)

Therefore, (
∫ t
0 b(Xs)ds, t ≥ 0) belongs to CT as well. By the triangular inequality, it

follows that Φ(X) ∈ CT and thus Φ(X) ∈ C′T since by definition Φ(X)0 = x. Now, let
X, Y ∈ C′T . By Doob’s inequality again and (5.17),

‖|Φ(X)− Φ(Y )‖|2T = E

(
sup

0≤t≤T
|Φ(X)s − Φ(Y )s|2

)
(5.26)

≤ 2E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
σ(Xs)dBs −

∫ t

0
σ(Ys)dBs

∣∣∣∣
2
)

(5.27)

+ 2E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
b(Xs)ds−

∫ t

0
b(Ys)ds

∣∣∣∣
2
)

(5.28)

≤ 2K2(4 + T )
∫ T

0
E(|Xt − Yt|2)dt

≤ 2K2(4 + T )︸ ︷︷ ︸
CT

∫ T

0
‖|X − Y ‖|2t dt (5.29)

By induction using (5.29), we have for all n ≥ 0 that

‖|Φn(X)− Φn(Y )‖|2T ≤Cn
T ‖|X − Y ‖|2T

∫ T

0

∫ tn−1

0
...

∫ t2

0
dt1...dtn−1

=
Cn

T Tn

n!
‖|X − Y ‖|2T by symmetry. (5.30)

For n sufficiently large, Φn is a contraction on the complete metric space
(C′T , ‖|.‖|T

)
.

Hence, by the Contraction Mapping Theorem, Φ has a unique fixed point which we may
call X(T ) ∈ C′T . By uniqueness of this fixed point, X

(T )
t = X

(T ′)
t for all t ≤ T ∧ T ′ a.s.

and so we may consistently define X ∈ C by

Xt = X
(N)
t for t ≤ N, N ∈ N . (5.31)

This is the pathwise unique solution to the SDE started from x. It remains to prove
that it is (FB

t )t≥0-adapted. Define a sequence (Y n)n≥0 in CT by

Y 0 ≡ x , Y n = Φ(Y n−1) for n ≥ 1 . (5.32)

Then Y n is (FB
t )t≥0-adapted for each n ≥ 0. Since X = Φn(X) for all n ≥ 0 by (5.30)

we have

‖|X − Y n‖|2T ≤
Cn

T Tn

n!
‖|X − x‖|2T . (5.33)
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Hence, Y n → X in CT and thus Y n
t → Xt in probability for a fixed t > 0. Thus

there exists a subsequence nk such that Y nk
t → Xt almost surely. Since Y nk

t is FB
t -

measurable, then so is Xt. Therefore X is (FB
t )t≥0-adapted and the proof of this

theorem is finished. 2

Remark. The uniqueness of the fixed point in the contraction mapping theorem can
not be invoked directly to prove pathwise uniqueness of the solutions. What this result
give is pathwise uniqueness of solutions in CT for any T > 0. So if we knew a priori
that any solution belongs to CT , we could invoke this result. (Note that our proof that
Φ(X) ∈ CT relies on the fact that X is already assumed to be in CT ). Thus a byproduct
of our proof is that indeed any solution belongs to CT for any T > 0.

Corollary 5.5 Let σij , bi be Lipschitz functions on Rd for 1 ≤ i, j ≤ d. Then every
solution to Ex(σ, b) is strong, and there is uniqueness in distribution for the solutions
to E(σ, b).

Proof. The proof of the theorem constructs a strong solution for every filtered
probability space and Brownian motion defined on it. On the other hand there is
pathwise uniqueness of solutions so any solution must be strong. By the Yamada-
Watanabe theorem, it also follow from existence of solutions and pathwise uniqueness
that uniqueness in distribution holds.

Example. Ornstein-Uhlenbeck process
Fix λ ∈ R and consider the SDE in R2

dVt = dBt − λVt dt , V0 = v0 , dXt = Vt dt, X0 = x0 . (5.34)

When λ > 0 this models the motion of a pollen grain on the surface of a liquid, and
λ then represents the viscosity of that liquid. X represents the x-coordinate of the
grain’s position and V represents its velocity in the x-direction.−λV is the friction
force due to viscosity. Whenever |V | becomes large, the system acts to reduce it.
(This is a much more realistic model of random motion from a physical point of view
than Brownian motion which oscillates too widly!) V is called the Ornstein-Uhlenbeck
(velocity) process. Then there is pathwise uniqueness for this SDE. In fact, this is a
rare example of a SDE we can solve explicitly, see example sheet 4.

5.3 Strong Markov property and diffusion processes

In an ordinary differential equation, the future of the trajectory of a particle is entirely
determined by its present position. The stochastic analogue for stochastic differential
equations is true as well: solutions to SDE’s have the strong Markov property, i.e.,
the distribution of their future depends only on their present position. (In fact, SDE
solutions should be viewed as the prototypical example of a strong Markov process.)

Theorem 5.6 (Strong markov property). Assume that σ and b are two Lipschitz
functions. Then for all x ∈ Rd, if Xx denotes a weak solution started from x to E(σ, b),
if F is any measurable nonnegative functional on C([0,∞),Rd) then almost surely:

E
[
F (Xx

T+t, t ≥ 0) |FT

]
= E[F (Xy

t , t ≥ 0)]
∣∣
y=XT

. (5.35)
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Proof. As we will see, the strong Markov property is a relatively straightforward
consequence of Corollary 5.5. Let Yt = Xx

T+t. Since X is a solution to Ex(σ, b), we
have

Xx
T+t −Xx

T =
∫ T+t

T
σ(Xx

s )dBs +
∫ T+t

T
b(Xx

s )ds (5.36)

To make the change of variable u = t + T , we use the following Lemma:

Lemma 5.7 Let H be a previsible locally bounded process, and let X be a continuous
local martingale. If T is a stopping time and X(T ) = (Xt+T −XT , t ≥ 0) then

∫ t+T

T
HsdXs =

∫ t

0
HT+udX(T )

u

Proof. The proof of this lemma is an easy application of the monotone class theorem
after observing that the statement is trivial for processes of the form H = 1{A×(s,t]}
where A ∈ Fs. ¤

Thus, if y = XT , then making the change of variable in (5.36) we get:

Yt = y +
∫ t

0
σ(Yu)dB(T )

u +
∫ t

0
b(Yu)du

where B
(T )
t = BT+t − BT is a Brownian motion independent from FT . Y is adapted

to the filtration (FT+u, u ≥ 0) which satisfies the usual conditions. Therefore, the
previous theorem applies and Y is adapted to (Gt)t≥0, where for all t > 0, Gt is the
σ-field generated by XT and B

(T )
s , s ≤ t. Thus, we can write (Yt)t≥0 as a certain

deterministic and measurable functional Φ of its starting point XT and the driving
Brownian motion, Φ

(
XT , B(T )

)
. Furthermore, note that by definition Φ(y,B) is the

unique solution to Ey(σ, b) corresponding to the driving Brownian motion B. Hence (by
weak uniqueness) Φ(y, B) has the same law as Xy. Since B(T ) is independent from FT ,
it is independent from XT (because X is adapted to F). It follows that the left-hand
side of (5.35) may be computed as:

E [F (Yt, t ≥ 0)|FT ] = E
[
F

(
Φ

(
XT , B(T )

))
|FT

]

= E
[
F

(
Φ

(
y,B(T )

))]∣∣∣
y=XT

a.s.

= E[F (Xy
t , t ≥ 0)]|y=XT

a.s.

which is exactly the content of the strong Markov property. ¤
In the remainder of this course we now provide a brief introduction to the theory of

diffusion processes, which are Markov processes characterized by martingale properties.
We first construct these processes with SDE’s and then move on to describe some
fundamental connection with PDE’s. In the next section we show how diffusions arise
as scaling limits of Markov chains.

Define, for f ∈ C2(Rd),

Lf(x) =
1
2

d∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj
+

d∑

i=1

bi(x)
∂f

∂xi
(5.37)
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where ai,j(x) is a bounded measurable function called the diffusivity and b(x), another
bounded measurable function, is called the drift. We assume that (ai,j(x))i,j is a
symmetric nonnegative matrix for all x ∈ Rd.

Definition 5.2 Let (Ω,F , (Ft),P) be a filtered probability space satisfying the usual
conditions. Say that a process X = (Xt, t ≥ 0) is an L-diffusion if for all f ∈ C2

b (Rd),
the process Mf is a martingale, where for all t ≥ 0:

Mf
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds. (5.38)

For the moment, we don’t know whether such processes exist, and we haven’t shown
any sort of uniqueness. The following result takes care of the existence part.

Theorem 5.8 Let X be a solution (in Rd) to the SDE

dXt = σ(Xt)dBt + b(Xt)dt

where B is a (Ft)-Brownian motion in Rd, and where σ = (σi,j(x))1≤i,j≤d and b =
(bi(x))1≤i≤d are bounded measurable. Then for all f ∈ C1,2(R+ × Rd),

Mf
t = f(t,Xt)− f(0, X0)−

∫ t

0

(
∂f

∂t
+ Lf

)
(s,Xs)ds (5.39)

is a local martingale, where a = σσT . In particular, if the coefficients σ, b are bounded,
then X is an L-diffusion.

This results follows simply from an application of Itô’s formula.

Remarks.

1. If ai,j is uniformly positive definite (that is, there exists ε > 0 such that

ξiaij(x)ξj ≥ ε‖ξ‖2

for all ξ ∈ Rd and all x ∈ Rd), then a has a positive-definite square root matrix
σ. If a is furthermore Lipschitz, then it can be shown that σ(x) is also Lipschitz.
It follows that if a, b are bounded Lipschitz functions and a is uniformly positive
definite, then L-diffusions exist, by Theorem 5.4, for any given starting point X0.

2. Brownian motion in Rd is an L-diffusion for L = 1
2∆.

3. In the language of Markov processes, we say that L is the infinitesimal generator
of X. Intuitively, Lf(x) describes the infinitesimal expected change in f(X) given
that Xt = x. That is,

lim
ε→0

E
(

f(Xt+ε)− f(Xt)
ε

∣∣∣∣Ft, Xt = x

)
= Lf(x)

for every f ∈ C1,2
b (Rd).
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5.4 Some links with PDEs

In this section we state a theorem which we do not prove due to time constraints.
(Parts of this result are easy and other less trivial...)

Theorem 5.9 Let D be an open set in Rd. Let L be defined by (5.37) for uniformly
positive definite Lipschitz bounded coefficients a, b. Let g ∈ C(∂D) and let φ ∈ C(D)
such that both φ and g are bounded. Define:

u(x) = Ex

(∫ T

0
φ(Xs)ds + g(XT )

)
, x ∈ D

where X is an L-diffusion and T = inf{t > 0 : Xt /∈ D}. Then u is the unique
continuous function on D which is solution to the Dirichlet problem:

{
Lu + φ = 0 in D

u = g on ∂D.

Another link is provided by the following Cauchy problem – that is, an evolution
problem for which the initial condition is prescribed.

Theorem 5.10 Let g : Rd → R be a given continuous bounded function, and let X be
an L diffusion where L satisfies the same assumptions as in Theorem 5.9. Then if we
define:

u(t, x) = Ex(g(Xt)) for all t ≥ 0, x ∈ Rd

then u is the unique solution in C1,2(R+ × Rd) to the problem:




∂u

∂t
= Lu on R+ × Rd

u(0, ·) = g on Rd.

One word about the proof of the uniqueness part: let v be a solution to this problem, and
let u be our candidate. Let us show that v = u. Fix T > 0 and let f(t, x) = v(T − t, x).
Applying Theorem 5.8 to the function f , we see that

Mt = v(T − t,Xt), 0 ≤ t ≤ T

is a martingale. Thus
Mt = E(MT |Ft) a.s.

and it follows that v(T − t,Xt) = Ex(g(XT )|Ft), almost surely. However, we know that
X is Markovian so the right-hand side of this equation can also be written:

v(T − t,Xt) = EXt(g(XT−t)), a.s.

Writing y = Xt and s = T − t (which is arbitrary since T is arbitrary) we have:

v(s, y) = Ey(g(Xs)).
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It can be shown that the support of the distribution of Xt is Rd (this a consequence of
uniform positive definiteness). It thus follows that this equation must be true for all
y ∈ Rd. The uniqueness part of the Theorem is proved.

Remark. Note that the Cauchy problem may reformulated as a Dirichlet problem in
Rd+1 by changing L into

L̃ = L− ∂

∂t

Fix a point (t, x) ∈ Rd+1. By Theorem 5.9, the solution u(t, x) is given by E(X̃T ) where
X is the diffusion with generator L̃. This corresponds to adding a coordinate Xd+1 to
the diffusion X, such that Xd+1

s = Xd+1
0 −s, that is, time is decreasing at speed 1. The

time T corresponds to the first time that the “time” coordinate hits 0, i.e., time t if we
start from (x, t). The other d coordinates are then distributed according to Px(Xt ∈ ·).
This proves Theorem 5.10, given Theorem 5.9.

Example. Let (Bt, t ≥ 0) be a 3-dimensional Brownian motion with B0 = 0. Let
τ = inf{t > 0 : ‖Bt‖ = 1}. Compute E(τ). Answer: Let Rt = ‖Bt‖. Then an
application of Itô’s formula shows that

dRt = dBt +
1
Rt

dt.

It follows that (Rt, t ≥ 0) is a diffusion process on (0,∞), with generator:

L =
1
2

d2

dx2
+

1
x

d

dx

Thus if φ ≡ 1 and g ≡ 0 in the previous theorem, E0(τ) = u(0) where u(x) = Ex(τ) is
a function solving:

Lu = −1, for all x ∈ (0, 1).

Solving this ODE yields that if f = u′ then

f(x) = (−2
3
x3 − c)x−2

for some constant c ∈ R, so integrating:

u(x) = −1
3
x2 +

c

x
+ c′

for a constant c′ ∈ R. But we note that c must be equal to 0. Indeed, otherwise
E0(τ) = ∞ by the monotone convergence theorem, and if we apply the Markov property
at time t > 0, we get

E0(τ) = E0(τ1{τ<t}) + E0(τ1{τ≥t})

≤ t +
∫ 1

0
P0(τ > t; Rt ∈ dx)(t + Ex(τ))

≤ t + t +
∫ 1

0
4πx2dx

e−x2/2t

(2πt)3/2
Ex(τ)
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If c 6= 0, then Ex(τ) ∼ c/x as x → 0. This means that the integral on the right-
hand side is finite and hence E0(τ) < ∞, which is a contradiction. Thus c = 0 and
Ex(τ) < ∞.

Thus
u(x) = −1

3
x2 + c′

and since u(1) = 0 we have u(x) = 1
3(1− x2). Hence E0(τ) = 1/3.

Exercise. The above calculation is not rigorous because of the singularity of 1/x at
0 (hence the SDE is not even properly defined at 0, let alone Lipschitzian...) Make it
rigorous by considering the diffusion Rt started at level ε and taking D′ = (ε′, 1) with
ε′ ¿ ε. Letting ε′ and ε → 0, recover the fact that E0(τ) = 1/3.

We now present a result called the Feynman-Kac formula, which is a systematic
way of solving a class of PDE’s by using Brownian motion.

Theorem 5.11 Let f ∈ C2
b (Rd) and let V ∈ L∞(Rd), that is, V is uniformly bounded.

For all t, x ≥ 0, let

u(t, x) = Ex

(
f(Bt) exp

(∫ t

0
V (Bs)ds

))

Then u is the unique solution w ∈ C1,2
b (R+ × Rd) :





∂u

∂t
=

1
2
∆u + V u on R+ × Rd

u(0, ·) = f on Rd.

Proof. Here again, the uniqueness part is an easy application of Itô’s formula. Let
u be a solution and let Mt = u(T − t, Bt)Et where Et = exp(

∫ t
0 V (Bs)ds) is of finite

variation. By Itô’s formula:

dMt = ∇u(T − t, Bt)EtdBt +
(
−u̇ +

1
2
∆u + V u

)
(T − t, Bt)Etdt

= ∇u(T − t, Bt)EtdBt

since the second term is equal to 0 (because u is a solution to the PDE problem). Thus
M is a local martingale, and it is uniformly bounded on [0, T ], hence a true martingale.
By the Optional Stopping Theorem:

u(T, x) = Ex(M0) = Ex(MT ) = Ex(f(BT )ET )

which is precisely the claim.

Remark. This formula turns out to be very useful when applied the other way round:
in fact, it was originally introduced to compute expectations involving exponential
functionals of Brownian motion, which tend to occur frequently in mathematical finance
and in statistical mechanics, where V is a potential. (This is presumably why Feynman
got interested in this problem). Then we can write:

Ex

(
exp

{
−β

∫ T

0
V (Xs)ds

}
f(XT )

)
= u(x, T )

84



where
∂u

∂t
=

1
2
∆u− βuV on R+ × Rd

and u(x, 0) = f(x) for all x ∈ Rd. This often makes these computations easier, by
bringing in techniques that were developed in analysis (e.g., Fourier analysis). In
mathematical finance, the Feynman-Kac formula allows to compute the Black-Scholes
formula for the price of a call in terms of a certain PDE. This point of view is in some
sense dual to ours, and it is a great advantage to have these two approaches for what
is, fundamentally, the same object.
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6 Diffusion approximation

6.1 Martingale problems.

Let σi,j(x)1≤i,j≤d and (bi(x))1≤i≤d) be a family of bounded and measurable functions
with values in R. Let a(x) = σ(x)σT (x). (Here again we assume that x ∈ Rd, so
m = d).

Definition 6.1 We say that a process X = (Xt, t ≥ 0) with values in Rd, together with
a filtered probability space (Ω, (Ft),P), solves the martingale problem M(a, b) if for all
1 ≤ i, j ≤ d, (

Xi
t −

∫ t

0
bi(Xs)ds; t ≥ 0

)

and (
Xi

tX
j
t −

∫ t

0
ai,j(Xs)ds; t ≥ 0

)

are local martingales.

Of course, the second condition means that [Xi, Xj ]t =
∫ t
0 ai,j(Xs)ds.

For instance, if σ, b are in addition Lipschitz, then there exists (Ω, X, (F)t≥0) and
an (Ft)-Brownian motion (Bt, t ≥ 0) solution to the stochastic differential equation:

dXt = σ(Xt) · dBt + b(Xt)dt.

X then solves the martingale problem M(a, b). In fact, note that any (weak) solution
to E(σ, b) gives a solution to the martingale problem M(a, b). Rather remarkably, these
are the only solutions.

Theorem 6.1 Let a = σσT and let X and (Ω, (Ft),P) be a solution to M(a, b). Then
there exists an (Ft)-Brownian motion (Bt, t ≥ 0) in Rd defined on an enlarged proba-
bility space, such that (X, B) solves E(σ, b).

Proof. Assume first that σ is invertible for every x ∈ Rd. Then define Y i
t =

Xt
i −

∫ t
0 bi

s(Xs)ds, so that Y i ∈Mc,loc. Define:

Bi
t =

∫ t

0

d∑

k=1

σ−1
i,k (Xs)dY k

s

Thus Bi ∈Mc,loc and we have

[Bi, Bj ]t =
d∑

k,`=1

∫ t

0
σ−1

i,k (Xs)σ−1
j,` (Xs)ak,`(Xs)ds = δi,jt

so by Lévy’s characterization, B is an Brownian motion in Rd.
Moreover, by the “stochastic version of the fundamental theorem of calculus”,

∫ t

0
σ(Xs)dBs = Yt − Y0 = Xt −

∫ t

0
b(Xt)dt. (6.1)
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Indeed the ith component of the left-hand side may be written as

d∑

j=1

∫ t

0
σi,j(Xs)dBj

s =
∫ t

0

d∑

j,k=1

σi,jσ
−1
j,kdY k

s =
∫ t

0
dYs.

But (6.1) is simply the statement that (X, B) solves E(σ, b).
When σ is not everywhere invertible, we proceed like in the generalized version

of Dubins-Schwartz’s (when [M ]∞ is not assumed to be infinity) and let the Brownian
motion evolve independently when s is such that σ(Xs) is not invertible. See pp.190-191
of Revuz-Yor for the details and Durrett, p.200 for the case d = 1. ¤

Theorem 6.1 shows that there is a one-to-one correspondence between solutions to
the stochastic differential equation E(σ, b) and the martingale problem M(a, b). In
particular, there is uniqueness in distribution to the solutions of E(σ, b), if and only if
the solutions to the martingale problem M(a, b) are unique, where uniqueness means
that all solutions to M(a, b) with identical starting points have the same law.

6.2 Notions of weak convergence of processes

In this section we describe some basic results in the theory of weak convergence of
processes, which we do not prove due to the time constraints. We will however use these
results in the next section about the convergence of Markov chains towards solutions
of certain stochastic differential equations.

The point of view here is similar to the one in Donsker’s theorem. We view a process
as a random variable with values in the space Ω of trajectories. We thus need to recall
a few notions about weak convergence in general metric space. Let (S, d) be a metric
space. The distance function d(x, y) satisfies d(x, y) = 0 if and only if x = y; d(x, y) ≥ 0;
d(x, z) ≤ d(x, y) + d(y, z). The open ball B(x, r) is the set {y ∈ S : d(x, y) < r}. The
Borel σ-field is the field generated by all open sets.

The notion of convergence in distribution is defined in terms of test functions, which
are only required to be bounded and continuous (for the topology of S):

Definition 6.2 Let (µn)n≥1 be a sequence of probability distributions on S. We say
that µn → µ weakly as n → ∞, if

∫
S fdµn → ∫

S fdµ as n → ∞ for all bounded
continuous functions f . If µn is the law of a random variable Xn and µ that of a
random variable X, we say that Xn → X in distribution (or in law).

There are a number of ways one can reformulate the notion of weak convergence in
terms of the mass assigned to events that are either closed or open. If A ⊆ S, we recall
the definition of the frontier of A, which is the set ∂A := Ā \ int(A).

Theorem 6.2 Let (Xn)n≥1 be a sequence of random variables with values in S. The
following are equivalent.

(i) Xn → X in distribution.

(ii) For all closed set K, lim supn→∞ P(Xn ∈ K) ≤ P(X ∈ K).

(iii) For all open set O, lim infn→∞ P(Xn ∈ O) ≥ P(X ∈ O).
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(iv) For all sets A such that P(X ∈ ∂A) = 0, lim supn→∞ P(X ∈ A) = P(X ∈ A).

(v) For all sets A such that P(X ∈ ∂A) = 0, limn→∞ P(X ∈ A) = P(X ∈ A).

(vi) For any bounded function f , denote by Df the set of discontinuities of f . Then
for any f such that P(X ∈ Df ) = 0, E(f(Xn)) → E(f(X)) as n →∞.

It is important to note that the random variables Xn need not be related in any
particular way. In fact they may even be defined on different probability spaces. How-
ever, it turns out that (provided the metric space is sufficiently nice), one can always
choose a common probability space for the random variables and define a sequence of
random variables Yn with law identical to Xn, in such a way that convergence occurs
almost surely. This is the content of the “Skorokhod representation theorem”, which
we may occasionally need.

Lemma 6.3 Suppose S is complete and separable. If µn → µ weakly then there exists
random variables Yn defined on Ω = [0, 1] equipped with the Lebesgue measure P, such
that Yn

d= µn for all n ≥ 1, and limn→∞ Yn = Y , P-almost surely, where Y
d= µ.

We now specialize to the case where the random variables Xn take values in the
space C of continuous trajectories over the compact interval [0, 1]. This is precisely the
point of view in Donsker’s theorem. We equip C with the distance of the sup-norm:

d(f, g) = ‖f − g‖∞ = sup
t∈[0,1]

|f(t)− g(t)|.

This turns C into a complete, separable metric space, on which it makes sense to talk
about weak convergence.

Example. If (Sn, n ≥ 0) is a simple random walk on Z, then by Donsker’s theorem:
(S[N ]

t , 0 ≤ t ≤ 1), converges weakly towards a Brownian motion on [0, 1], where S
[N ]
t =

N−1/2SNt.

Exercise. Use Donsker’s theorem and (vi) in Theorem 6.2 to show that if LN is the
last time before time N that Sn = 0:

LN = max{n ≤ N : Sn = 0},

then LN/N → L in distribution, where L is the last zero of a Brownian motion before
time 1. (By an exercise in the first example sheet, this has the arcsine law). The issue
here is that the functional which associates to a path ω ∈ C its last zero L(ω) before
time 1, is not continuous with respect to the topology of C: for instance, consider the
sequence of function fε(t) = εt, 0 ≤ t ≤ 1, as ε → 0. However, it turns out that the set
of functions for which L is discontinuous has zero Wiener measure, and so the functions
LN/N also converge in distribution to L.

A classical trick in analysis for proving convergence of a sequence xn towards a limit
x is to prove that (a) the sequence takes its values in a compact set, and (b) there can
only be one subsequential limit. It is usually part (a) which demands slightly harder
work to establish, as part (b) follows from usually softer arguments (you typically have
identified the limit at this stage). Fortunately there is a general criterion and fairly easy
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to use in practice, which tells us when the set K = {xn}∞n=1 is compact (or, actually,
precompact, meaning that K̄ is compact). When this happens, we say that the sequence
of processes (Xn)n≥1 is tight. This criterion consists in, roughly speaking, showing that
the process doesn’t oscillate too wildly. This is the content of the following theorem.
For a continuous path ω(t), t ∈ [0, 1], let

oscδ(ω) = sup{|ω(s)− ω(t)| : |s− t| ≤ δ}.

oscδ is simply the modulus of continuity of the path ω, at precision δ.

Theorem 6.4 Suppose that (Xn)n≥1 is a sequence of processes with values in C. Then
Xn is tight, if and only if for each ε > 0, there exists n0, M ≥ 1 and δ > 0 such that:

(i) P(|Xn(0)| > M) ≤ ε for all n ≥ n0.

(ii) P(oscδ > ε) ≤ ε.

To summarize, to show that a sequence converges weakly in C, it suffices to prove
that (i) and (ii) hold above and that there is a unique weak subsequential limit.
This is for instance the case if one has already established convergence of the finite-
dimensional distributions, i.e., convergence of the k-dimensional vector (Xn

t1 , . . . , X
n
tk

)
towards (Xt1 , . . . , Xtk), for any k ≥ 1 and any choice of “test times” t1, . . . , tk. This
could have been a possible route for proving Donsker’s theorem, as convergence of
finite-dimensional distributions is easy to establish.

Note that condition (i) in the above theorem says that the starting point of the
process Xn(0) takes values in a compact set with arbitrarily high probability. This is
usually trivial since in general, the starting point of a process is a deterministic point
such as 0.

In the next section, we will prove weak convergence of certain rescaled Markov
chains towards diffusion processes. For this, we will usually use the fact that any weak
subsequential limit must satisfy the associated martingale problem M(a, b) for which
sufficient smoothness of the coefficients proves uniqueness in distribution. However
there is one (small) additional difficulty in this case: it will be more natural to work with
right-continuous processes Xn rather than with the linear-interpolation of Xn, which
typically loses some of the Markov property. Let D be the space of right-continuous
paths on [0, 1]. Without entering into the details, D can also be equipped with a
complete separable metric d, which is called the Skorokhod topology. It can also be
proved that if a sequence of right-continuous processes Xn satisfy (i) and (ii) in Theorem
6.4, then Xn is also tight and any subsequential limit X must be continuous, in the
sense that P(X ∈ C) = 1. Furthermore, weak convergence with respect to the Skorkhod
topology towards a continuous process X, implies weak convergence in C of the linear
interpolations. Another fact which will be needed is that if xn → x in the Skorokhod
topology, then xn(t) → x(t) for all t ≥ 0.

6.3 Markov chains and diffusions

The result which we now discuss is due to Stroock and Varadhan (Chapter 11 in [4]),
and shows a link between rescaled Markov chains and certain diffusion processes. It
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is applicable in a remarkably wide variety of contexts, of which we will only have the
time to give one example. Our treatment follows rather closely the book of Durrett [1]
which can be used to look up additional details.

While the idea for the statement of the result is in fact fairly simple, there is quite
a bit of notation to introduce. We assume that a certain Markov chain is given to us.
A certain scaling parameter h > 0 is going to 0, and we assume that the chain has
already been rescaled, so it takes it values in a certain set Sh ⊆ Rd. We will denote
this Markov chain by (Y h

n , n ≥ 1). The transition probabilities of Y are given by a
transition kernel Πh which may depend on h > 0:

P(Y h
n+1 ∈ A|Y h

n = x) = Πh(x,A).

We define the random process on [0, 1] by

Xh
t = Y h

hbt/hc, t ∈ [0, 1]

so that Xh is almost surely right-continuous and is constant between two successive
jumps of the chain, which may occur every h units of time for the process Xh. We let
Kh denote the rescaled transition kernel:

Kh(x, dy) =
1
h

Πh(x, dy).

Roughly, the conditions of the theorem states that “the infinitesimal mean variance of
the jumps of X when X = x are approximately given by b(x) and σ(x), respectively”.
The conclusion states that Xh converges weakly towards the solution of M(a, b).

For 1 ≤ i, j ≤ d, define:

ai,j =
∫

|y−x|≤1
(yi − xi)(yj − xj)Kh(x, dy)

bh
i (x) =

∫

|y−x|≤1
(yi − xi)Kh(x, dy)

∆h
ε (x) = Kh(x, B(x, ε)c).

Suppose that aij and bi are continuous coefficients on Rd for which the martingale
problem M(a, b) is well posed, i.e., for each x ∈ Rd there is a unique in distribution
process (Xt, 0 ≤ t ≤ 1) such that X0 = x almost surely, and

Xi
t −

∫ t

0
bi(Xs)ds and Xi

tX
j
t −

∫ t

0
aij(Xs)ds

are both local martingales.

Theorem 6.5 Suppose that the above holds, and that for every 1 ≤ i, j ≤ d, and every
R > 0, every ε > 0,

(i) limh→0 sup|x|≤R |ah
ij(x)− aij(x)| = 0.

(ii) limh→0 sup|x|≤R |bh
i (x)− bi(x)| = 0.
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(iii) limh→0 sup|x|≤R ∆h
ε (x) = 0.

Then if Xh
0 = xh → x0, we have (Xh

t , 0 ≤ t ≤ 1) → (Xt, 0 ≤ t ≤ 1) weakly in D, and
in particular, the linear interpolations of Y h converge weakly in C.

The rest of this section is devoted to a proof of this result. By localization, one may
replace (i), (ii) and (iii) by the following stronger conditions:

(i) limh→0 supx∈Rd |ah
ij(x)− aij(x)| = 0.

(ii) limh→0 supx∈Rd |bh
i (x)− bi(x)| = 0.

(iii) limh→0 supx∈Rd ∆h
ε (x) = 0.

(iv) Moreover, ah
i,j , bh

i , ∆h are uniformly bounded in h and x.

Step 1. Tightness

Let f be a bounded and measurable function. Define the operator Lh by

Lhf(x) =
∫

Kh(x, dy)(f(y)− f(x)). (6.2)

This is the “generator” of the process: this represents the infinitesimal change in the
function f when the process is at x. In particular, note that the process

f(Y h
k )−

k−1∑

j=0

hLhf(Y h
j ), k = 0, 1, . . . (6.3)

is a (discrete-time) martingale. For our proof of tightness we are going to need an
estimate on the time needed by the chain to make a deviation of size roughly ε > 0,
when it starts at position y ∈ Rd. To do this, we introduce a function g : R → R
such that g ∈ C2, 0 ≤ g ≤ 1 and g(x) = 0 if x ≥ 1, while g(0) = 1. We also define
for x ∈ Rd, fε(x) = g(|x|2/ε2) which is also C2, and becomes 0 when |x| ≥ ε, and let
fy,ε(x) = fε(y − x).

Lemma 6.6 There exists Cε > 0 such that |Lhfy,ε(x)| ≤ Cε for all y, x ∈ Rd.

Proof. This is simply an application of Taylor expansion. For t ∈ [0, 1] let φ(t) =
fy,ε(x + t(y − x)). Then by Taylor’s theorem, there exists cx,y ∈ [0, 1] such that

fy,ε(y)− fy,ε(x) = φ(1)− φ(0) = φ′(0) +
1
2!

φ′′(cx,y)

=
d∑

i=1

(yi − xi)Dif(x) +
d∑

1≤i,j

(yi − xi)(yj − xj)Dijf(zxy)

where f ≡ fy,ε and Di and Dij stand for ∂f
∂xi

and ∂2f
∂xi∂xj

respectively, while zxy =
x + cxy(y − x).
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To obtain Lhf , we integrate the above with respect to Kh(x, dy), and get:

Lhfy,ε(x) =
∫

Kh(x, dy)(fy,ε(y)− fy,ε(x))

≤
∣∣∣∣∣∇fy,ε(x) ·

∫

|y−x|≤1
(y − x)Kh(x, dy)

∣∣∣∣∣

+

∣∣∣∣∣∣

∫

|y−x|≤1

∑

i,j

(yi − xi)(yj − xj)Dijfy,ε(zxy)Kh(x, dy)

∣∣∣∣∣∣
+ 2‖fy,ε‖∞Kh(x,B(x, 1)c).

Let Aε = supx∇fy,ε(x), let Bε = supz ‖Dijf(z)‖, where:

‖mij‖ := sup
u∈Rd:|u|=1

|〈u,Mu〉|; M = (mij).

Thus by Cauchy-Schwarz,
∣∣∣∣∣∣
∑

i,j

(yi − xi)(yj − xj)Dijfy,ε(zxy)

∣∣∣∣∣∣
≤ |y − x|2‖Dijfy,ε(zxy)‖

hence

Lhfy,ε(x) ≤ Aε

∣∣∣∣∣
∫

|y−x|
(y − x)Kh(x, dy)

∣∣∣∣∣

+ Bε

∫

|y−x|≤1
|y − x|2Kh(x, dy) + 2Kh(x,B(x, 1)c).

Since
∫
|y−x|≤1(y − x)Kh(x, dy) = b(x) and

∫
|y−x|≤1 |y − x|2Kh(x, dy) =

∑
i a

h
ii(x) and

since we have assumed in (iv) that all those quantities were uniformly bounded, we
have proved the lemma. ¤

To estimate oscδ(Xh), we introduce the following random variables: τ0 = 0,

τn = inf{t ≥ τn−1 : |Xh
t −Xh

τn−1
| ≥ ε},

N = min{n : τn > 1}
σ = min{τn − τn−1 : 1 ≤ n ≤ N}

and, finally
θ = max{|Xh(t)−Xh(t−)| : 0 < t ≤ 1}.

The relation between these random variables and tightness is provided by the following
lemma:

Lemma 6.7 Assume that σ > δ and that θ ≤ ε. Then oscδ(Xh) ≤ 4ε.
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Proof. The proof is straightforward. We want to show that for all s, t ∈ [0, 1] with
|s − t| ≤ δ, |Xh(s) − Xh(t)| ≤ 4ε. The point is that since |s − t| ≤ δ < σ, s and t
can only span at most one of the interval τn−1, τn, and by definition of these stopping
times, everything behaves well on those intervals. Thus if τn−1 ≤ s < t < τn, then
|f(s)− f(t)| ≤ 2ε. If on the other hand, τn−1 ≤ s < τn ≤ t, then

|f(s)− f(t)| ≤ |f(s)− f(τn−1)|+ |f(t)− f(τn)|
+ |f(τn)− f(τ−n )|+ |f(τ−n )− f(τn−1)|
≤ 4ε.

We now use this to prove the tightness estimate. Since it is assumed that the
starting point Xh

0 = xh
0 is nonrandom and converges towards a fixed x0, it suffices to

prove the statement about oscillations: for all ε, there exists δ > 0 and h0 such that
for all h ≤ h0,

P(oscδ(Xh) ≥ ε) ≤ ε.

Thus it follows to prove that for all h sufficiently small and for δ small enough, Py(θ >
ε/4) → 0 as h → 0, and Py(σ > δ) → 0 for h → 0 for all y ∈ Rd. The first one is very
simple: since there are at most 1/h time steps in the unit interval [0, 1], a simple union
bound yields

Py(θ > ε) ≤ 1
h

sup
x

Πh(x,B(x, ε)c) ≤ sup
x

∆h
ε (x) → 0

by (iii). The second one requires more arguments. We follow the elegant argument
introduced by Stroock and Varadhan (Theorem 1.4.6). The first step is to estimate
Py(τ1 ≤ u) for small u. Note that by Lemma 6.6, the process

fy,ε(Y h
k ) + Cεk, k = 0, 1, . . .

is a submartingale. Thus letting τ = τ1, and using the Optional stopping theorem at
τ ∧ u,

Ey

{
fy,ε(Y h

τ∧u) + Cε(τ ∧ u)
}
≥ 1.

Since τ ∧ u ≤ u and since on the event that τ ≤ u, we have that |Y h
τ∧u − y| ≥ ε, so

fy,ε(Y h
τ∧u) = 0, we have:

Py(τ ≤ u) ≤ Ey

{
1− fy,ε(Y h

τ∧u)
}
≤ Cεu.

This has the following consequence: for all u > 0, letting p = Py(τ ≤ u):

Ey(e−τ ) ≤ P(τ ≤ u) + e−uPy(τ ≤ u)
≤ p + e−u(1− p) ≤ e−u + p(1− e−u)
≤ e−u + pu + o(u) ≤ 1− u + pu + o(u)
≤ 1− u(1− p) + o(u).

Since p ≤ Cεu, this means Ey(e−τ ) ≤ λ where λ < 1 is independent of y and δ: indeed,
one can choose u small enough that Ey(e−τ ) ≤ 1− u/2 < 1. Now, iterating and using
the strong Markov property at times τ1, . . . , τn, which are stopping times,

Ey(e−τn) ≤ λn
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since λ does not depend on y, and thus by Markov’s inequality:

Py(N > n) = Py(τn < 1 ≤ Py(e−τn ≥ e−1)
≤ eEy(e−τn) ≤ eλn.

We finish by saying that

Py(σ ≤ δ) ≤ k sup
x
Px(τ ≤ δ) + Py(N > k)

≤ Cεkδ + eλk.

Thus we take k large enough that eλk < ε/2 and then pick δ small enough that
Cεkδ < ε/2. We are then done for the proof of tightness.

Step 2. Uniqueness of the weak subsequential limits.

Since we have assumed that the martingale problem M(a, b) was well posed, it suf-
fices to show that the limit of any weakly convergent subsequence solves the martingale
problem M(a, b). Our first step for doing so is to show that the generator of the Markov
chain Lh converges in a suitable sense to the generator L of the diffusion:

Lf(x) =
1
2

d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x)

Lemma 6.8 Let f ∈ C2
K be twice differentiable and with compact support. Then

Lhf(x) → Lf(x) uniformly over x ∈ Rd as h → 0.

Proof. Going back to our Taylor expansion of Lhf(x), and recalling the definition of
bh
i (x) and aij(x), we may write:

Lhf(x) =
d∑

i=1

bh
i (x)Dif(x)

+
∫

|y−x|≤1

d∑

i,j=1

(yi − xi)(yj − xj)Dijf(zxy)Kh(x, dy)

+
∫

|y−x|>1
[f(y)− f(x)]Kh(x, dy)

The final term in the right-hand side converges to 0 uniformly in x by assumption (iii)
with ε = 1. To deal with the first term, note that

∣∣∣∣∣
d∑

i=1

bh
i (x)Dif(x)−

d∑

i=1

bi(x)Dif(x)

∣∣∣∣∣ ≤ sup
1≤i≤d

|bh
i (x)− bi(x)|

d∑

i=1

‖Dif‖∞

which converges to 0 uniformly in x by assumption (ii) (since f ∈ C2
K). It remains to
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deal with the central term. Recalling the definition of ah
ij(x), we get:

∣∣∣∣∣∣

∫

|y−x|≤1

d∑

i,j=1

(yi − xi)(yj − xj)Dijf(zxy)Kh(x, dy)−
d∑

i,j=1

aij(x)Dijf(x)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

d∑

i,j=1

ah
ij(x)Dijf(x)−

d∑

i,j=1

aij(x)Dijf(x)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫

|y−x|≤1

d∑

i,j=1

(yi − xi)(yj − xj)[Dijf(zxy)−Dijf(x)]Kh(x, dy)

∣∣∣∣∣∣
.

The first term converges to 0 uniformly in x by (i) and the fact that the derivatives of
f are uniformly bounded. The second term can be split in an integral over |y − x| > ε
and |y − x| ≤ ε. The first one converges to 0 uniformly in x ∈ Rd thanks to (iii) and
the fact that the integrand is bounded. For the other term, let

Γ(ε) = sup
1≤i,j≤d

sup
|y−x|≤ε

|Dijf(zxy)−Dijf(x)|.

Then sice zxy lies on the segment between x and y, and since Dijf is continuous on the
compact set K (and hence uniformly continuous), Γ(ε) → 0 as ε → 0. On the other
hand,

∣∣∣∣∣∣

∫

|y−x|≤1

d∑

i,j=1

(yi − xi)(yj − xj)[Dijf(zxy)−Dijf(x)]Kh(x, dy)

∣∣∣∣∣∣

≤Γ(ε)
∫

|y−x|≤ε
|y − x|2Kh(x, dy) by Cauchy-Schwarz’s inequality,

so the proof of the lemma is complete. ¤
We now use this lemma to conclude the proof of Theorem 6.5. Fix hn → 0 such

that Xhn → X weakly (in D) as n →∞. (Recall that Xh is defined as Xh
t = Y h

hbt/hc.)
Fix s < t. Then for any continuous functional F : D → R which is measurable with
respect to Fs, we have, since Lh is the discrete generator of Y ,

f(Xhn
khn

)−
k−1∑

j=0

hnLhnf(Xhn
jhn

), k = 0, 1, . . .

is a martingale. In particular, taking k = kn such that khn > s, i.e., kn = ds/hne, and
taking `n similarly so that `nhn > t, i.e., `n = dt/hne, we get

Ex


F (Xhn)



f(Xhn

`nhn
)− f(Xhn

knhn
)−

`n−1∑

j=kn

hnLhnf(Xhn
jhn

)






 = 0.

By using the Skorokhod representation theorem, one may find Y n such that Y n d= Xhn

and Y n → Y almost surely, where Y
d= X. We recognize a Riemann sum in this
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expectation. Since almost sure convergence in D implies almost sure convergence of
the marginals, we conclude by the Lebesgue convergence theorem that

Ex

(
F (X)

{
f(Xt)− f(Xs)−

∫ t

s
Lf(Xu)du

})
= 0.

Since F is an arbitrary continuous function on D, it follows that

f(Xt)−
∫ t

0
Lf(Xu)du, t ≥ 0

is a martingale for all f ∈ C2
K . Since the martingale problem has a unique solution, the

desired conclusion follows. This ends the proof of Theorem 6.5. ¤

6.4 Example.

This result has literally thousands of practical applications, and we show one particu-
larly simple such application.

The Ehrenfest chain. This is a Markov chain which models a box filled with gas
molecules which is divided in two equal pieces, and where gas molecules can be ex-
changed between the two pieces through a small hole. Mathematically, we have two
urns with a total of 2n balls (molecules). At each time step we pick one ball uniformly
at random among the 2n balls of the urn, and move it to the other urn (we think of this
event as a certain gas molecule going through that hole). Let Y n

t denote the number
of molecules in the left urn.

Define a normalized process Xn
t = (Y n

btnc − n)/
√

n, and assume for instance that
Y n

0 = n, i.e., equal number of molecules in each urn.

Theorem 6.9 The process (Xn
t , 0 ≤ t ≤ 1) converges weakly to an Orstein-Uhlenbeck

diffusion (Xt, 0 ≤ t ≤ 1) with unit viscosity, i.e., the pathwise unique solution to

dXt = −Xtdt + dBt, X0 = 0.

Thus the number of molecules in each urn never deviates too much from n. Writing
Kn(x, dy) = nΠn(x, dy),
Proof. The state space for Y n is Sn = {k/

√
n : −n ≤ k ≤ n}. The transition

probability Πn of Y n is given

Πn(x, x + n−1/2) =
n− x

√
n

2n
, Πn(x, x− n−1/2) =

n + x
√

n

2n

Here d = 1, and the expected infinitesimal drift

b̂n(x) =
∫

(y − x)Kn(x, dy) = n

{
n−1/2 n− x

√
n

2n
− n−1/2 n + x

√
n

2n

}
= −x,

while the infinitesimal variance

ân(x) =
∫

(y − x)2Kn(x, dy) = n

{
n−1 n− x

√
n

2n
+ n−1 n + x

√
n

2n

}
= 1.
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It follows without difficulty that the truncated expected drift and variance, respectively
bn(x) =

∫
|y−x|≤1(y − x)2Kn(x, dy) and an(x) =

∫
|y−x|≤1(y − x)2Kn(x, dy), satisfy:

an(x) → 1; bn(x) → −x

uniformly on every compact set. Since the coefficients of the Ornstein-Uhlenbeck dif-
fusion are Lipschitz, there is pathwise uniqueness for the associated SDE and thus
uniqueness in distribution. Therefore, (Xn

t , 0 ≤ t ≤ 1) converges to (Xt, 0 ≤ t ≤ 1)
weakly, by Theorem 6.5.

This finishes the lecture notes for this course. I hope you’ve enjoyed it!
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