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Introduction

The probabilistic theory of coalescence, which is the primary subject
of these notes, has expanded at a quick pace over the last decade or
so. I can think of three factors which have essentially contributed
to this growth. On the one hand, there has been a rising demand
from population geneticists to develop and analyse models which
incorporate more realistic features than what Kingman’s coalescent
allows for. Simultaneously, the field has matured enough that a wide
range of techniques from modern probability theory may be success-
fully applied to these questions. These tools include for instance
martingale methods, renormalization and random walk arguments,
combinatorial embeddings, sample path analysis of Brownian motion
and Lévy processes, and, last but not least, continuum random trees
and measure-valued processes. Finally, coalescent processes arise in
a natural way from spin glass models of statistical physics. The
identification of the Bolthausen-Sznitman coalescent as a universal
scaling limit in those models, and the connection made by Brunet
and Derrida to models of population genetics, is a very exciting re-
cent development.

The purpose of these notes is to give a quick introduction to the
mathematical aspects of these various ideas, and to the biological
motivations underlying them. We have tried to make these notes
as self-contained as possible, but within the limits imposed by the
desire to make them short and keep them accessible. Of course, the
price to pay for this is a lack of mathematical rigour. Often we skip
the technical parts of arguments, and instead focus on some of the
key ideas that go into the proof. The level of mathematical prepa-
ration required to read these notes is roughly that of two courses in
probability theory. Thus we will assume that the reader is familiar
with such notions as Poisson point processes and Brownian motion.

Sadly, several important and beautiful topics are not discussed.
The most obvious such topics are the Marcus-Lushnikov processes
and their relation to the Smoluchowski equations, as well as works on
simultaneous multiple collisions. Also not appearing in these notes
is the large body of work on random fragmentation. For all these
and further omissions, I apologise in advance.

A first draft of these notes was prepared for a set of lectures at



IMPA in January 2009. Many thanks to Vladas Sidoravicius and
Maria Eulalia Vares for their invitation, and to Vladas in particular
for arranging many details of the trip. I lectured again on this mate-
rial at Eurandom on the occasion of the conference Young European
Probabilists in March 2009. Thanks to Julien Berestycki and Peter
Mörters for organizing this meeting and for their invitation. I also
want to thank Charline Smadi-Lasserre for a careful reading of an
early draft of these notes.

Many thanks to the people with whom I learnt about coalescent
processes: first and foremost, my brother Julien, and to my other col-
laborators on this topic: Alison Etheridge, Vlada Limic, and Jason
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1 Random exchangeable partitions

This chapter introduces the reader to the theory of exchangeable ran-
dom partitions, which is a basic building block of coalescent theory.
This theory is essentially due to Kingman; the basic result (essen-
tially a variation on De Finetti’s theorem) allows one to think of a
random partition alternatively as a discrete object, taking values in
the set P of partitions of N = {1, 2, . . . , }, or a continuous object,
taking values in the set S0 of tilings of the unit interval (0,1). These
two points of view are strictly equivalent, which contributes to make
the theory quite elegant: sometimes, a property is better expressed
on a random partition viewed as a partition of N, and sometimes it
is better viewed as a property of partitions of the unit interval. We
then take a look at a classical example of random partitions known
as the Poisson-Dirichlet family, which, as we partly show, arises in a
huge variety of contexts. We then present some recent results that
can be labelled as “Tauberian theory”, which takes a particularly
elegant form here.

1.1 Definitions and basic results

We first fix some vocabulary and notation. A partition π of N is
an equivalence relation on N. The blocks of the partition are the
equivalence classes of this relation. We will sometime write i ∼ j or
i ∼π j to denote that i and j are in the same block of π. Unless
otherwise specified, the blocks of π will be listed in the increasing
order of their least elements: thus, B1 is the block containing 1, B2

is the block containing the smallest element not in B1, and so on.
The space of partitions of N is denoted by P. There is a natural
distance on the space P, which is to take d(π, π′) to be equal to 1
over the largest n such that the restriction of π and π′ to {1, . . . , n}
are identical. Equipped with this distance, P is a Polish space. This
is useful when speaking about random partitions, so that we can talk
about convergence in distribution, conditional distribution, etc. We
also let [n] = {1, . . . , n} and Pn be the space of partitions of [n].

Given a partition π = (B1, B2, . . .) and a block B of that partition,
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we denote by |B|, the quantity, if it exists:

|B| := lim
n→∞

Card(B ∩ [n])
n

. (1)

|B| is called the asymptotic frequency of the block B, and is a mea-
sure of its relative size; for this reason we will often refer to it as
its mass. For instance, if π is the partition of N into odd and even
integers, there are two blocks, each with mass 1/2. The following
definition is key to what follows. If σ is a permutation of N with
finite support (i.e., it actually permutes only finitely may points),
and Π is a partition, then one can define a new partition Πσ by ex-
changing the labels of integers according to σ. That is, i, j are in the
same block of Π, if and only if σ(i) and σ(j) are in the same block
of Πσ.

Definition 1.1. An exchangeable random partition Π is a random
element of P whose law is invariant under the action of any permu-
tation σ of N with finite support: that is, Π and Πσ have the same
distribution for all σ.

To put things into words, an exchangeable random partition is a
partition which ignores the label of a particular integer. This sug-
gests that exchangeable random partitions are only relevant when
working under mean-field assumptions. However, this is slightly mis-
leading. For instance, if one looks at the random partition obtained
by first enumerating all vertices of Zd (v1, v2, , . . .) in some arbitrary
order, and then say that i and j are in the same block of Π(ω) if and
only if vi and vj are in the same connected component in a realisa-
tion ω of bond percolation on Zd with parameter 0 < p < 1, then the
resulting random partition is not exchangeable. On the other hand,
if (V1, V2, . . .) are independent random vertices chosen according to
some given distribution on Zd, then the random partition defined
by putting i and j in the same block if Vi and Vj are in the same
connected component, is exchangeable. Indeed, in these notes we
will later see several examples where random partitions arise from a
nontrivial spatial structure.

Kingman’s theorem, which is the main result of this section, starts
with the observation that given a tiling of the unit interval, there is
always a neat way to generate an exchangeable random partition
associated with this tiling. To be formal, let S0 be the space of
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tilings of the unit interval (0, 1), that is, sequences s = (s0, s1, . . .)
with s1 ≥ s2 ≥ . . . ≥ 0 and

∑∞
i=0 si = 1 (note that we do not require

s0 ≥ s1):

S0 =

{
s = (s0, s1, . . .) : s1 ≥ s2 ≥ . . . ,

∞∑

i=0

si = 1

}
.

The coordinate s0 plays a special role in this sequence and this is
why monotonicity is only required starting at i = 1 in this definition.
An element of S0 may be viewed as a tiling of (0,1), where the sizes
of the tiles are precisely equal to s0, s1, . . . the ordering of the tiles
is irrelevant for now, but for the sake of simplicity we will order
them from left to right: the first tile is J0 = (0, s0), the second is
J1 = (s0, s0+s1), etc. Let s ∈ S0, and let U1, U2, . . . be i.i.d. uniform
random variables on (0, 1). For 0 < u < 1 let I(u) ∈ {0, 1, . . .} denote
the index of the component (tile) of s which contains u. That is,

I(u) = inf

{
n :

n∑

i=0

si > u

}
.

Let Π be the random partition defined by saying i ∼ j if and only
if I(Ui) = I(Uj) > 0 or i = j (see Figure 1). Note that in this
construction, if Ui falls into the 0th part of s, then i is guaranteed to
form a singleton in the partition Π. On the other hand, if I(Ui) ≥
1, then almost surely, the block containing i has infinitely many
members, and in fact, by the law of large numbers, the frequency of
this block is well defined and strictly positive. For this reason, the
part s0 of s is referred to as the dust of s. We will say that Π has
no dust if s0 = 0, i.e., if Π has no singleton.

The partition Π described by the above construction gives us an
exchangeable partition, as the law of (U1, . . . , Un) is the same as that
of (Uσ(1), . . . , Uσ(n)) for each n ≥ 1 and for each permutation σ with
support in [n].

Definition 1.2. Π is the paintbox partition derived from s.

The name paintbox refers to the fact that each part of s defines a
colour, and we paint i with the colour in which Ui falls. If Ui falls
in s0, then we paint i with a unique, new, colour. The partition Π
is then obtained from identifying integers with the same colour.
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Figure 1: The paintbox process associates a random parti-
tion Π to any tiling of the unit interval. Here Π|[8] =
({1, 4}, {2}, {3, 7}, {5}, {6}, {8}). Note how 2 and 6 form singletons.

Note that this construction still gives an exchangeable random
partition if s is a random element of S0, provided that the sequence
Ui is chosen independently from s. Kingman’s theorem states that
this is the most general form of exchangeable random partition. For
s ∈ S0, let ρs denote the law on P of a paintbox partition derived
from s.

Theorem 1.1. (Kingman [107]) Let Π be any exchangeable random
partition. Then there exists a probability distribution µ(ds) on S0

such that
P(Π ∈ ·) =

∫

s∈S0

µ(ds)ρs(·).

Sketch of proof. We briefly sketch Aldous’ proof of this result [2],
which relies on De Finetti’s theorem on exchangeable sequences of
random variables. This theorem states the following: if (X1, . . .) is
an infinite exchangeable sequence of real-valued random variables
(i.e., its law is invariant under the permutation of finitely many in-
dices), then there exists a random probability measure µ such that,
conditionally given µ, the Xi’s are i.i.d. with law µ. Now, let Π be an
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exchangeable partition. Define a random map ϕ : N→ N as follows:
if i ∈ N, then ϕ(i) is the smallest integer in the same block as i. Thus
the blocks of the partition Π may be regarded as the sets of points
which share a common value under the map ϕ. In parallel, take an
independent sequence of i.i.d. uniform random variables (U1, . . .) on
[0, 1], and define Xi = Uϕ(i). It is immediate that (X1, . . .) are ex-
changeable, and so De Finetti’s theorem applies. Thus there exists µ
such that, conditionally given µ, (X1, . . .) is i.i.d. with law µ. Note
that i and j are in the same block of Π if and only if Xi = Xj . We
now work conditionally given µ. Note that (X1, . . .) has the same
law as (q(V1), . . .), where (V1, . . .) are i.i.d. uniform on [0, 1], and for
x ∈ R, q(x) = inf{y ∈ R : F (y) > x} and F (x) denotes the cumula-
tive distribution function of µ. Thus we deduce that Π has the same
law as the paintbox ρs(·), where s = (s0, s1, . . .) ∈ S0 is such that
(s1, . . .) gives the ordered list of atoms of µ and s0 = 1−∑∞

i=1 si.

We note that Kingman’s original proof relies on a martingale ar-
gument, which is in line with the modern proofs of De Finetti’s
theorem (see, e.g., Durrett [65], (6.6) in Chapter 4). The interested
reader is referred to [2] and [133], both of which contain a wealth of
information about the subject.

This theorem has several interesting and immediate consequences:
if Π is any exchangeable random partition, then the only finite blocks
of Π are the singletons, almost surely. Indeed if a block is not a
singleton, then it is infinite and has in fact positive, well-defined
asymptotic frequency (or mass), by the law of large numbers. The
(random) vector s ∈ S0 can be entirely recovered from Π: if Π
has any singleton at all, then a positive proportion of integers are
singletons, that proportion is equal to s0. Moreover, (s1, . . .) is the
ordered sequence of nondecreasing block masses. In particular, if
Π = (B1, . . . , ) then

|B1|+ |B2|+ . . . = 1− s0, a.s.

There is thus a complete correspondence between the random ex-
changeable partition Π and the sequence s ∈ S0:

Π ∈ P ←→ s ∈ S0.

Corollary 1.1. This correspondence is a 1-1 map between the law
of exchangeable random partitions Π and distributions µ on S0. This
map is Kingman’s correspondence.
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Furthermore, this correspondence is continuous when S0 is equipped
with the appropriate topology: this is the topology associated with
pointwise convergence of the “non-dust” entries: that is, sε → s as
ε → 0 if and only if, sε

1 → s1, . . . , s
ε
k → sk, for all k ≥ 1 (but not

necessarily for k = 0).

Theorem 1.2. Convergence in distribution of the random partitions
(Πε)ε>0, is equivalent to the convergence in distributions of their
ranked frequencies (sε

1, s
ε
2, . . .)ε>0.

The proof is easy and can be found for instance in Pitman [133],
Theorem 2.3. It is easy to see that the correspondence can not be
continuous with respect to the restriction of the `1 metric to S0 (think
about a state with many blocks of small but positive frequencies and
no dust: this is “close” to the pure dust state from the point of
view of pointwise convergence, and hence from the point of view of
sampling, but not at all from the point of view of the `1 metric).

1.2 Size-biased picking

1.2.1 Single pick

When given an exchangeable random partition Π, it is natural to ask
what is the mass of a “typical” block. If Π has only a finite number of
blocks, one can choose a block uniformly at random among all blocks
present. But when there is an infinite number of blocks, it is not
possible to do so. In that case, one may instead consider the block
containing a given integer, say 1. The partition being exchangeable,
this block may indeed be thought of being a generic or typical block,
and the advantage is that this is possible both when there are finitely
or infinitely many blocks. Its mass is then (slightly) larger than that
of a typical block. When there are only a finite number of blocks, this
is expressed as follows. Let X be the mass of the block containing
1, and let Y be the mass of a randomly chosen block of the random
exchangeable partition Π. Then the reader can easily verify that

P(X ∈ dx) =
x

E(Y )
P(Y ∈ dx), x > 0. (2)

If a pair of random variables (X, Y ) satisfies the relation (2) we say
that X has the size-biased distribution of Y . For this reason, here
we say that X is the mass of a size-biased picked block.
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In terms of the Kingman’s correspondence, X has a natural in-
terpretation when there is no dust. In that case, if Π is viewed as
a random unit partition s ∈ S0, then X is also the length of the
segment containing a point uniformly chosen at random on the unit
interval.

Not surprisingly, many of the properties of Π can be read from the
sole distribution of X. (Needless to say though, the law of X does
not characterize fully that of Π).

Theorem 1.3. Let Π be a random exchangeable partition with ranked
frequencies (Pi)i≥1. Assume that there is no dust almost surely, and
let f be any nonnegative function. Then:

E

(∑

i

f(Pi)

)
=

∫ 1

0

f(x)
x

µ(dx) (3)

where µ is the law of the mass of a size-biased picked block X.

Proof. The proof follows from looking at the function g(x) = f(x)/x,
and observing that E(g(X)) = E(

∑
i Pig(Pi)), which itself is a con-

sequence of Kingman’s correspondence, since the Pi are simply equal
to the coordinates (s1, . . .) of the sequence s ∈ S0, and U1 falls in
each of them with probability si.

Thus, from this it follows that the nth moment of X is related to
the sum of the (n + 1)th moments of all frequencies:

E

(∑

i

Pn+1
i

)
= E(Xn). (4)

In particular, for n = 1 we have:

E(X) = E

(∑

i

P 2
i

)
.

This identity is obvious when one realises that both sides of this
equation can be interpreted as the probability that two randomly
chosen points fall in the same component. This of course also applies
to (4), which is the probability that n+1 randomly chosen points are
in the same component. The following identity is a useful application
of Theorem 1.3:
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Theorem 1.4. Let Π be a random exchangeable partition, and let
N be the number of blocks of Π. Then we have the formula:

E(N) = E(1/X).

To explain the result, note that if we see that the block containing
1 has frequency ε > 0 small, then we can expect roughly 1/ε blocks
in total (since that would be the answer if all blocks had frequency
exactly ε).

Proof. To see this, note that the result is obvious if Π has some dust
with positive probability, as both sides are then infinite. So assume
that Π has no dust almost surely, and let Nn be the number of blocks
of Π restricted to [n]. Then by Theorem 1.3:

E(Nn) =
∑

i

P(part i is chosen among the first n picks)

=
∑

i

E (1− (1− Pi)n)

= E(fn(X)),

say, where

fn(x) =
1− (1− x)n

x
.

Letting n →∞, since X > 0 almost surely because there is no dust,
fn(X) → 1/X almost surely. This convergence is also monotone, so
we conclude

E(N) = E(1/X)

as required.

Theorem 1.4 will often guide our intuition when studying the
small-time behaviour of coalescent processes that come down from
infinity (rigorous definitions will be given shortly). Basically, this is
the study of the coalescent processes close to the time at which they
experience a “big-bang” event, going from a state of pure dust to a
state made of finitely many solid blocks (i.e., with positive mass).
Close to this time, we have a very large number of small blocks. Any
information on N can then be hoped to carry onto X, and conversely.
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1.2.2 Multiple picks, size-biased ordering

Let X = X1 denote the mass of a size-biased picked block. One
can then define further statistics which refine our description of Π.
Recall that if Π = (B1, B2, . . .) with blocks ordered according to their
least elements, then X1 = |B1| is by definition the mass of a size-
biased picked block. Define similarly, X2 = |B2|, . . . , Xn = |Bn|, and
so on. Then (X1, . . .) corresponds to sampling without replacement
the possible blocks of Π, with a size bias at every step.

Note that if Π has no dust, then (X1, . . . , ) is just a reordering of
the sequence (s1, . . . , ) where s denotes the ranked frequencies of Π,
or equivalently the image of Π by Kingman’s correspondence. That
is, there exists a permutation σ : N→ N such that

Xi = sσ(i), i ≥ 1.

This permutation is the size-biased ordering of s. It satisfies:

P(σ(1) = j|s) = sj

Moreover, given s, and given σ(1), . . . , σ(i− 1), we have:

P(σ(i) = j|s, σ(1), . . . , σ(i− 1)) =
sj

1− sσ(1) − . . .− sσ(i−1)
.

Although slightly more complicated, the size-biased ordering of s,
(X1, . . .), is often more natural than the nondecreasing rearrange-
ment which defines s.

As an exercise, the reader is invited to verify that Theorem 1.4 can
be generalised to this setup to yield: if N is the number of ordered
k-uplets of distinct blocks in the random exchangeable partition Π,
then

E(N) = E
(

1
X1 . . . Xk

)
. (5)

This is potentially useful to establish limit theorems for the distri-
bution of the number of blocks in a coalescent, but this possibility
has not been explored to this date.

1.3 The Poisson-Dirichlet random partition

We are now going to spend some time to describe a particular family
of random partitions called the Poisson-Dirichlet partitions. These
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partitions are ubiquitous in this field, playing the role of the normal
random variable in standard probability theory. Hence they arise in
a huge variety of contexts: not only coalescence and population ge-
netics (which is our main reason to talk about them in these notes),
but also random permutations, number theory [62], Brownian mo-
tion [133], spin glass models [40], random surfaces [86]... In its most
general incarnation, this is a two parameter family of random par-
titions, and the parameters are usually denoted by (α, θ). However,
the most interesting cases occur when either α = 0 or θ = 0, and so
to keep these notes as simple as possible we will restrict our presen-
tation to those two cases.

1.3.1 Case α = 0.

We start with the case α = 0, θ > 0. We recall that a random
variable X has the Beta(a, b) distribution (where a, b > 0) if the
density at x is:

P(X ∈ dx)
dx

=
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1, 0 < x < 1. (6)

Thus the Beta(1, θ) distribution (θ > 0) is the distribution on (0, 1)
with density θ(1− x)θ−1 and this is uniform if θ = 1. If a, b ∈ N the
Beta(a, b) distribution has the following interpretation: take a + b
independent standard exponential random variables, and consider
the ratio of the sum of the first a of them compared to the total
sum. Alternatively, drop a + b random points in the unit interval
and order them increasingly. Then the position of the ath point is a
Beta(a, b) random variable.

Definition 1.3. (Stick-breaking construction, α = 0.) The Poisson-
Dirichlet random partition is the paintbox partition associated with
the nonincreasing reordering of the sequence

P1 = W1,

P2 = (1− P1)W2,

...

Pn+1 = (1− P1 − . . .− Pn)Wn, (7)

where the Wi are i.i.d. random variables

Wi = Beta(1, θ).
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We write Π ∼ PD(0, θ).

To explain the name of this construction, imagine we start with
a stick of unit length. Then we break the stick in two pieces, W1

and 1 − W1. One of these two pieces (W1), we put aside and will
never touch again. To the other, we apply the previous construction
repeatedly, each time breaking off a piece which is Beta-distributed
on the current length of the stick. In particular, note that when
θ = 1, the pieces are uniformly distributed.

While the above construction tells us what the asymptotic fre-
quencies of the blocks are, there is a much more visual and appealing
way of describing this partition, which goes by the name of “Chinese
restaurant process”. Let Πn be the partition of [n] defined induc-
tively as follows: initially, Π1 is the just the trivial partition {{1}}.
Given Πn, we build Πn+1 as follows. The restriction of Πn+1 to [n]
will be exactly Πn, hence it suffices to assign a block to n + 1. With
probability θ/(n + θ), n + 1 starts a new block. Otherwise, n + 1 is
assigned to a block of size m with probability m/(n + θ). This can
be summarized as follows:

{
start new block: with probability θ

n+θ

join block of size m: with probability m
n+θ

(8)

This defines a (consistent) family of partitions Πn, hence there is
no problem in extending this definition to a random partition Π of
P such that Π|[n] = Πn for all n ≥ 1: indeed, if i, j ≥ 1, it suffices
to say whether i ∼ j or not, and in order to be able to decide this,
it suffices to check on Πn where n = max(i, j). This procedure thus
uniquely specifies Π.

The name “Chinese Restaurant Process” comes from the following
interpretation in the case θ = 1: customers arrive one by one in
an empty restaurant which has round tables. Initially, customer 1
sits by himself. When the (n + 1)th customer arrives, she chooses
uniformly at random between sitting at a new table or sitting directly
to the right of a given individual. The partition structure obtained
by identifying individuals sitted at the same table is that of the
Chinese Restaurant Process.

Theorem 1.5. The random partition Π obtained from the Chinese
restaurant process (8) is a Poisson-Dirichlet random partition with
parameters (0, θ). In particular, Π is exchangeable. Moreover, the
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size-biased ordering of the asymptotic block frequencies is the one
given by the stick-breaking order (7).

Proof. The proof is a simple (and quite beautiful) application of
Pólya’s urn theorem. In Pólya’s urn, we start with one red ball and
a number θ of black balls. At each step, we choose one of the balls
uniformly at random in the urn, and put it back in the urn along
with one of the same colour. Pòlya’s classical result says that the
asymptotic proportion of red balls converges to a Beta(1, θ) random
variable. Note also that this urn model may also be formally defined
even when θ is not an integer, and the result stays true in this case.

Now, coming back to the Chinese Restaurant process, consider the
block containing 1. Imagine that to each 1 ≤ i ≤ n is associated a
ball in an urn, and that this ball is red if i ∼ 1, and black otherwise,
say. Note that, by construction, if at stage n, B1 contains r ≥ 1 inte-
gers, then as the new integer n + 1 is added to the partition, it joins
B1 with probability r/(n+ θ) and does not with the complementary
probability. Assigning the colour red to B1 and black otherwise, this
is the same as thinking that there are r red balls in the urn, and
n − r + θ black balls, and that we pick one of the balls at random
and put it back along with one of the same colour (whether or not
this is to join one of the existing blocks or to create a new one!)
Initially (for n = 1), the urn contains 1 red ball and θ black balls.
Thus the proportion of red balls in the urn, Xn(1)/n, satisfies:

Xn(1)
n

−→
n→∞ W1, a.s.

where W1 is a Beta(1, θ) random variable. (This result is usually
more familiar in the case where θ = 1, in which case W1 is simply a
uniform random variable).

Now, observe that the stick breaking construction property is in
fact a consequence of the Chinese restaurant process construction
(8). Let i1 = 1 and let i2 be the first i such that i is not in the
same block as 1. If we ignore the block B1 containing 1, and look
at the next block B2 (which contains i2), it is easy to see by the
same Pólya urn argument that the asymptotic fraction of integers
i ∈ B2 among those that are not in B1, is a random variable W2 with
the Beta(1, θ) distribution. Hence |B2| = (1 − P1)W2. Arguing by
induction as above, one obtains that the blocks (B1, B2, . . .), listed
in order of appearance, satisfy the strick breaking construction (7).



Coalescent theory 19

It remains to show exchangeability of the partition, but this is a
consequence of the fact that, in Pólya’s urn, given the limiting pro-
portion W of red balls, the urn can be realised as an i.i.d. coin-tossing
with heads probability W . It is easy to see from this observation that
we get exchangeability.

As a consequence of this remarkable construction, there is an exact
expression for the probability distribution of Πn. As it turns out,
this formula will be quite useful for us. It is known (for reasons that
will become clear in the next chapter) as Ewens’ sampling formula.

Theorem 1.6. Let π be any given partition of [n], whose block size
are n1, . . . , nk.

P(Πn = π) =
θk

(θ) . . . (θ + n− 1)

k∏

i=1

(ni − 1)!

Proof. This formula is obvious by induction on n from the Chinese
restaurant process construction. It could also be computed directly
through some tedious integral computations (“Beta-Gamma” alge-
bra).

1.3.2 Case θ = 0.

Let 0 < α < 1 and let θ = 0.

Definition 1.4. (Stick-breaking construction, θ = 0). The Poisson-
Dirichlet random variable with parameters (α, 0) is the random par-
tition obtained from the stick breaking construction, where at the ith

step, the piece to be cut off from the stick has distribution Wi ∼
Beta(1− α, iα). That is,

P1 = W1,

...

Pn+1 = (1− P1 − . . .− Pn)Wn, (9)

There is also a “Chinese restaurant process” construction in this
case. The modification is as follows. If Πn has k blocks of size
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n1, . . . , nk, Πn+1 is obtained by performing the following operation
on n + 1:

{
start new block: with probability kα

n

join block of size m: with probability m−α
n .

(10)

It can be shown, using urn techniques for instance, that this con-
struction yields the same partition as the paintbox partition associ-
ated with the stick breaking process (9).

As a result of this construction, Ewens’ sampling formula can also
be generalised to this setting, and becomes:

P(Πn = π) =
αk−1(k − 1)!

(n− 1)!

k∏

i=1

(1− α) . . . (ni − α) (11)

where π is any given partition of [n] into blocks of sizes n1, . . . , nk.

1.3.3 A Poisson construction

At this stage, we have seen essentially two constructions of a Poisson-
Dirichlet random variable with θ = 0 and 0 < α < 1. The first one
is based on the stick-breaking scheme, and the other on the Chinese
Restaurant Process. Here we discuss a third construction which will
come in very handy at several places in these notes, and which is
based on a Poisson process. More precisely, let 0 < α < 1 and let
M denote the points of a Poisson random measure on (0,∞) with
intensity µ(dx) = x−α−1dx:

M(dx) =
∑

i≥1

δYi(dx).

In the above, we assume that the Yi are ranked in decreasing order,
i.e., Y1 is the largest point of M, Y2 the second largest, and so on.
This is possible because a.s. M has only a finite number of points
in (ε,∞) (since α > 0). It also turns out that, almost surely,

∞∑

i=1

Yi < ∞. (12)

Indeed, observe that

E

( ∞∑

i=1

Yi1{Yi≤1}

)
=

∫ 1

0
xµ(dx) < ∞
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and so
∑∞

i=1 Yi1{Yi≤1} < ∞ almost surely. Since there are only a
finite number of terms outside of (0,1), this proves (12). We may
now state the theorem we have in mind:

Theorem 1.7. For all n ≥ 1, let Pn = Yn/
∑∞

i=1 Yi. Then the
distribution of (Pn, n ≥ 1) is that of a Poisson-Dirichlet random
variable with parameters α and θ = 0.

The proof is somewhat technical (being based on explicit density
calculations) and we do not include it in these notes. However we
refer the reader to the paper of Perman, Pitman and Yor [130] where
this result is proved, and to section 4.1 of Pitman’s notes [133] which
contains some elements of the proof.

We also mention that there exists a similar construction in the case
α = 0 and θ > 0. The corresponding intensity of the Poisson point
process M should then be chosen as ρ(dx) = θx−1e−xdx, which was
Kingman’s original definition of the Poisson-Dirichlet distribution
[105]. See also section 4.11 in [9] and Theorem 3.12 in [133], where
the credit is given to Ferguson [83] for this result.

1.4 Some examples

As an illustration of the usefulness of the Poisson-Dirichlet distri-
bution, we give two classical examples of situations in which they
arise, which are on the one hand, the cycle decomposition of random
permutations, and on the other hand, the factorization into primes
of a “random” large integer. A great source of information for these
two examples is [9, Chapter 1], where much more is discussed. In
the next chapter, we will focus (at length) in another incarnation of
this partition, which is that of population genetics via Kingman’s
coalescent. In Chapter 6 we will encounter yet another one, which
is within the physics of spin glasses.

1.4.1 Random permutations.

Let Sn be the set of permutations of S = {1, . . . , n}. If σ ∈ Sn, there
is a natural action of σ onto the set S, which partitions S into orbits.
This partition is called the cycle decomposition of σ. For instance,
if

σ =
(

1 2 3 4 5 6 7
3 2 4 1 7 5 6

)
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then the cycle decomposition of σ is

σ = (1 3 4)(2)(5 7 6). (13)

This simply means that 1 is mapped into 3, 3 into 4 and 4 back into
1, and so on for the other cycles. Cycles are the basic building blocks
of permutations, much as primes are the basic building blocks of in-
tegers. This decomposition is unique, up to order of course. If we
further ask the cycles to be ordered by increasing least elements (as
above), then this representation is unique. Let σ be a randomly cho-
sen permutation (i.e., chosen uniformly at random). The following
result describes the limiting behaviour of the cycle decomposition
of σ. Let L(n) = (L1, L2, . . . , Lk) denote the cycle lengths of σ, or-
dered by their least elements, and let X(n) = (L1/n, . . . , Lk/n) be
the normalized vector, which tiles the unit interval (0, 1).

Theorem 1.8. There is the following convergence in distribution:

X(n) −→d (P1, P2, . . .)

where (P1, . . . , ) are the asymptotic frequencies of a PD(0, 1) random
variable in size-biased order.

(Naturally the convergence in distribution is with respect to the
topology on S0 defined earlier, i.e., pointwise convergence of positive
mass entries: in fact, this convergence also holds for the restriction
of the `1 metric).

Proof. There is a very simple proof that this result holds true. The
proof relies on a construction due to Feller, which shows that the
stick-breaking property holds even at the discrete level. The cycle
decomposition of σ can be realised as follows. Start with the cycle
containing 1. At this stage, the permutation looks like

σ = (1

and we must choose what symbol to put next. This could be any
number of {2, . . . , n} or the symbol which closes the cycle “)”. Thus
there are n possibilities at this stage, and the Feller construction is
to choose among all those uniformly at random. Say that our choice
leads us to:

σ = (1 5
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At this stage, we must choose among a number of possible symbols:
every number except 1 and 5 are allowed, and we are allowed to
close the cycle. Again, one must choose uniformly among those
possibilities, and do so until one eventually chooses to close the cycle.
Say that this happens at the fourth step:

σ = (1 5 2)

At this point, to pursue the construction we open a new cycle with
the smallest unused number, in this case 3. Thus the permutation
looks like:

σ = (1 5 2)(3

At each stage, we choose uniformly among all legal options, which are
to close the current cycle or to put a number which doesn’t appear
in the previous list.

Then it is obvious that the resulting permutation is random: for
instance, if n = 7, and σ0 = (1 3 4)(2)(5 7 6), then

P(σ = σ0) =
1
7
· 1
6
· . . . · 1

2
· 1
1

=
1
7!

because at the kth step of the construction, exactly k numbers have
already been written and thus there n − k + 1 symbols available
(the +1 is for closing the cycle). Thus the Feller construction gives
us a way to generate random permutations (which is an extremely
convenient algorithm from a practical point of view, too).

Now, note that L1, which is the length of the first cycle, has a
distribution which is uniform over {1, . . . , n}. Indeed, 1 ≤ k ≤ n,
the probability that L = k is the probability that the algorithm
chooses among n− 1 options out of n, and then n− 2 out of n− 1,
etc., until finally at the kth step the algorithm chooses to close the
cycle (1 option out of n− k + 1). Cancelling terms, we get:

P(L = k) =
n− 1

n
· n− 2
n− 1

· . . . · n− k + 1
n− k + 2

1
n− k + 1

=
1
n

.

One sees that, similarly, given L1 and {L1 < n}, L2 is uniform on
{1, . . . , n−L1}, by construction. More generally, given (L1, . . . , Lk)
and given that {L1 + . . . ,+Lk < n}, we have:

Lk+1 ∼ Uniform on {1, . . . , n− L1 − . . .− Lk} (14)
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which is exactly the analogue of (7). From this one deduces Theorem
1.8 easily.

1.4.2 Prime number factorisation.

Let n ≥ 1 be a large integer, and let N be uniformly distributed on
{1, . . . , n}. What is the prime factorisation of N? Recall that one
may write

N =
∏

p∈P
pαp (15)

where P is the set of prime numbers and αp are nonnegative integers,
and that this decomposition is unique. To transfer to the language
of partitions, where we want to add the parts rather than multiply
them, we take the logarithms and define:

L1 = log p1, . . . , Lk = log pk.

Here the pi are such that αp > 0 in (15), and each prime p appears
αp times in this list. We further assume that L1 ≥ . . . ≥ Lk.

Theorem 1.9. Let X(n) = (L1/ log n, . . . , Lk/ log n). Then we have
convergence in the sense of finite-dimensional distributions:

X(n) −→ (P̃1, . . .)

where (P̃1, . . .) is the decreasing rearrangement of the asymptotic fre-
quencies of a PD(0, 1) random variable.

In particular, large prime factors appear each with multiplicity 1
with high probability as n →∞, since the coordinates of a PD(0, 1)
random variable are pairwise distinct almost surely. See (1.49) in [9],
which credits Billingsley [33] for this result, and [62] for a different
proof using size-biased ordering.

1.4.3 Brownian excursions.

Let (Bt, t ≥ 0) be a standard Brownian motion, and consider the
random partition obtained by performing the paintbox construction
to the tiling of (0, 1) defined by Z ∩ (0, 1), where

Z = {t ≥ 0 : Bt = 0}
is the zero-set of B.

Let (P1, . . . , ) be the size of the tiles in size-biased order.
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1

Figure 2: The tiling of (0, 1) generated by the zeros of Brownian
motion.

Theorem 1.10. (P1, . . .) has the distribution of the asymptotic fre-
quencies of a PD(1

2 , 0) random variable.

Proof. The proof is not complicated but requires knowledge of ex-
cursion theory, which at this level we want to avoid, since this is
only supposed to be an illustrating example. The main step is to
observe that at the inverse local time τ1 = inf{t > 0 : Lt = 1}, the
excursions lengths are precisely a Poisson point process with inten-
sity ρ(dx) = x−α−1 with α = 1/2. This is an immediate consequence
Itô’s excursion theory for Brownian motion and of the fact that Itô’s
measure ν gives mass

ν(e : |e| ∈ dt) = Ct−3/2

for some C > 0. From this and Theorem 1.7, it follows that the
normalized excursion lengths at time τ1 have the PD(1

2 , 0) distribu-
tion. One has to work slightly harder to get this at time 1 rather
than at time τ1. More details and references can be found in [134],
together with a wealth of other properties of Poisson-Dirichlet dis-
tributions.
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1.5 Tauberian theory of random partitions

1.5.1 Some general theory

Let Π be an exchangeable random partition with ranked frequencies
(P1, . . .), which we assume has no dust almost surely. In applications
to population genetics, we will often be interested in exact asymp-
totics of the following quantities:

1. Kn, which is the number of blocks of Πn (the restriction of Π
to [n]).

2. Kn,r, which is the number of blocks of size r, 1 ≤ r ≤ n.

Obtaining asymptotics for Kn is usually easier than for Kn,r, for
instance due to monotonicity in n. But there is a very nice result
which relates in a surprisingly precise fashion the asymptotics of Kn,r

(for any fixed r ≥ 1, as n → ∞) to those of Kn. This may seem
surprising at first, but we stress that this property is of course a con-
sequence of the exchangeability of Π and Kingman’s representation.
The asymptotic behaviour of these two quantities is further tied to
another quantity, which is that of the asymptotic speed of decay of
the frequencies towards 0. The right tool for proving these results is
a variation of Tauberian theorems, which take a particularly elegant
form in this context. The main result of this section (Theorem 1.11)
is taken from [91], which also contains several other very nice results.

Theorem 1.11. Let 0 < α < 1. There is equivalence between the
following properties:

(i) Pj ∼ Zj−α almost surely as j →∞, for some Z > 0.

(ii) Kn ∼ Dnα almost surely as n →∞, for some D > 0.

Furthermore, when this happens, Z and D are related through

Z =
(

D

Γ(1− α)

)1/α

,

and we have:
(iii) For any r ≥ 1, Kn,r ∼ α(1−α)...(r−1−α)

r! Dnα as n →∞.
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The result of [91] is actually more general, and is valid if one
replaces D by a slowly varying sequence `n. Recall that a function
f is slowly varying near ∞ if for every λ > 0,

lim
x→∞

f(λx)
f(x)

= 1. (16)

The prototypical example of a slowly varying function is the loga-
rithm function. Any function f which may be written as f(x) =
xα`(x), where `(x) is slowly varying, is said to have regular varia-
tion with index α. A sequence cn is regularly varying with index α
if there exists f(x) such that cn = f(n) and f is regularly varying
with index α, near ∞.

Proof. (sketch) The main idea is to start from Kingman’s represen-
tation theorem, and to imagine that the Pj are given, and then see
Πn as the partition generated by sampling with replacement from
(Pj). Thus in this proof, we work conditionally on (Pj), and all
expectations are (implicitly) conditional on these frequencies.

Rather than looking at the partition obtained after n samples, it
is more convenient to look at it after N(n) samples, where N(n) is a
Poisson random variable with mean n. The superposition property
of Poisson random variables implies that one can imagine that each
block j with frequencies Pj is discovered (i.e., sampled) at rate Pj .
Since we assume that there is no dust, this means

∑
j≥1 Pj = 1

almost surely, and hence the total rate of discoveries is indeed 1. Let
K(t) be the total number of blocks of the partition at time t, and
let Kr(t) be the total number of blocks of size r at time t. Standard
Poissonization arguments imply:

K(n)
Kn

→ 1, a.s.

and
Kr(n)
Kn,r

→ 1, a.s.

That is, we may as well look for the asymptotics in continuous Pois-
son time rather than in discrete time. For this we will use the fol-
lowing law of large numbers, proved in Proposition 2 of [91].

Lemma 1.1. For arbitrary (Pj),

K(t)
E(K(t)|(Pj)j≥1)

→ 1, a.s. (17)
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Proof. The proof is fairly simple and we reproduce the arguments of
[91]. Recall that we work conditionally on (Pj), so all the expecta-
tions in the proof of this lemma are (implicitly) conditional on these
frequencies. Note first that if Φ(t) = E(K(t)), then

Φ(t) =
∑

j≥1

1− e−Pjt

and similarly if V (t) = varK(t), we have (since K(t) is the sum of
independent Bernoulli variables with parameter 1− e−Pjt):

V (t) =
∑

j

e−Pjt(1− e−Pjt)

=
∑

j≥1

e−Pjt − e−2Pjt

= Φ(2t)− Φ(t).

But note that Φ is convex: indeed, by stationarity of Poisson pro-
cesses, the expected number of blocks discovered during (t, t + s] is
Φ(s), but some of those blocks discovered during the interval (t, t+s]
were in fact already known prior to t, and hence don’t count in
K(t + s). Thus

V (t) < Φ(t)

and by Chebyshev’s inequality:

P
(∣∣∣∣

K(t)
Φ(t)

− 1
∣∣∣∣ > ε

)
≤ 1

ε2Φ(t)
.

Taking a subsequence tm such that m2 ≤ Φ(tm) < (m + 1)2 (which
is always possible), we find:

P
(∣∣∣∣

K(tm)
Φ(tm)

− 1
∣∣∣∣ > ε

)
≤ 1

ε2m2
.

Hence by the Borel-Cantelli lemma, K(tm)/Φ(tm) −→ 1 almost
surely as m → ∞. Using monotonicity of both Φ(t) and K(t), we
deduce

K(tm+1)
Φ(tm)

≤ K(t)
Φ(t)

<
K(tm+1)
Φ(tm)

.

Since Φ(tm+1)/Φ(tm) → 1, this means both the left-hand side and
the right-hand side of the inequality tend to 1 almost surely as m →
∞. Thus (17) follows.
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Once we know Lemma 1.1, note that

EK(t) =: Φ(t) =
∫ 1

0
(1− e−tx)ν(dx)

where
ν(dx) :=

∑

j≥1

δPj (dx).

Fubini’s theorem implies:

EK(t) = t

∫ ∞

0
e−txν̄(x)dx (18)

where ν̄(x) = ν([x,∞)), so the equivalence between (i) and (ii) fol-
lows from classical Tauberian theory for the monotone density ν̄(x),
together with (17). That this further implies (iii), is a consequence
of the fact that

EKr(t) =
tr

r!

∫ 1

0
xre−txν(dx)

=
tr

r!

∫ 1

0
e−txνr(dx), (19)

where we have denoted

νr(dx) =
∑

j≥1

P r
j δPj (dx).

Integrating by parts gives us:

νr([0, x]) = −xdν̄(x) + r

∫ x

0
ur−1ν̄(x)dx.

Thus, by application of Karamata’s theorem [82] (Theorem 1, Chap-
ter 9, Section 8), we get that the measure νr is also regularly varying,
with index r − α: assuming that ν̄(x) ∼ `(x)x−α as x → 0,

νr([0, x]) ∼ α

r − α
xr−α`(x),

by application of a Tauberian theorem to (19), we get that:

Φr(t) ∼ αΓ(r − α)
r!

tα`(t). (20)
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A refinement of the method used in Lemma 1.1 shows that

Kr(n)
E(Kr(n)|(Pj)j≥1)

→ 1, a.s. (21)

in that case. Putting together (20) and (21), we obtain (iii).

As an aside, note that (as pointed out in [91]), (21) needs not hold
for general (Pj), as it might not even be the case that E(Kr(n)) →∞.

1.5.2 Example

As a prototypical example of a partition Π which verifies the assump-
tions of Theorem 1.11, we have the Poisson-Dirichlet(α, 0) partition.

Theorem 1.12. Let Π be a PD(α, 0) random partition. Then there
exists a random variable S such that

Kn

nα
−→ S

almost surely. Moreover S has the Mittag-Leffer distribution:

P(S ∈ dx) =
1

πα

∞∑

k=1

(−1)k+1

k!
Γ(αk + 1)sk−1 sin(παk).

Proof. We start by showing that nα is the right order of magnitude
for Kn. First, we remark that the expectation un = E(Kn) satisfies,
by the Chinese restaurant process construction of Π, that

un+1 − un = E
(

Knα

n

)
=

αun

n
.

This implies, using the formula Γ(x + 1) = xΓ(x) (for x > 0):

un+1 = un(1 +
α

n
)

= (1 +
α

n
)(1 +

α

n− 1
) . . . (1 +

α

1
)u1

=
Γ(n + 1 + α)

Γ(n + 1)Γ(1 + α)
.

Thus, using the asymptotics Γ(x + a) ∼ xaΓ(x),

un =
Γ(n + α)

Γ(n)Γ(1 + α)
∼ nα

Γ(1 + α)
.
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(This appears on p.69 of [133], but using a more combinatorial ap-
proach).

This tells us the order of magnitude for Kn. To conclude to the
almost sure behaviour, a martingale argument is needed (note that
we may not apply Lemma 1.1 as this result is only conditional on
the frequencies (Pj)j≥1 of Π.) This is outlined in Theorem 3.8 of
[133].

Later (see, e.g., Theorem 4.2), we will see other applications of
this Tauberian theory to a concrete example arising in population
genetics.
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2 Kingman’s coalescent

In this chapter, we introduce Kingman’s coalescent and study its
first properties. This leads us to the notion of coming down from
infinity, which is a “big bang” like phenomenon whereby a partition
consisting of pure dust coagulates instantly into solid fragments. We
show the relevance of Kingman’s coalescent to population models by
studying its relationship to the Moran model and the Wright-Fisher
diffusion and state a result of universality known as Möhle’s lemma.
We derive some theoretical and practical implications of this relation-
ship, such as the notion of duality between Kingman’s coalescent and
the Wright-Fisher diffusion. We then show that the Poisson-Dirichlet
distribution describes the allelic partition associated with Kingman’s
coalescent. As a consequence, Ewens’s sampling formula describes
the typical genetic variation (or polymorphism in biological terms)
of a sample of a population. This result is one of the cornerstones of
mathematical population genetics, and we show a few applications.

2.1 Definition and construction

2.1.1 Definition

Kingman’s coalescent is perhaps the simplest stochastic process of
coalescence. It is easier to define it as a process with values in P,
although by Kingman’s correspondence there is an equivalent version
in S0. Let n ≥ 1. We start by defining a process (Πn

t , t ≥ 0) with
values in the space Pn of partitions of [n] = {1, . . . , n}. This process
is defined by saying that:

1. Initially Πn
0 is the trivial partition in singletons.

2. Πn is a strong Markov process in continuous time, where the
transition rates q(π, π′) are as follow: they are positive if and
only if π′ is obtained from merging two blocks of π, in which
case q(π, π′) = 1.

To put it in words, Πn is a process which starts with a totally
fragmented state, and which evolves with (binary) coalescences. The
evolution may be described by saying that every pair of blocks merges
at rate 1, independently of their size. Because of this last property,
one may think of a block as a particle. Each pair of particles merges
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at rate 1, regardless of any additional structure. When two parti-
cles merge, the pair is replaced by a new particle which is indistin-
guishable from any other particle. Πn is sometime referred to as
Kingman’s n-coalescent or simply an n-coalescent (the definition of
Kingman’s (infinite) coalescent is delayed to Proposition 2.1).

Consistency. A trivial but important property of Kingman’s n-
coalescent is that of consistency: if we consider the natural restriction
of Πn to partitions in Pm, where m < n, we obtain a new random
process Πm,n. The claim is that the distribution of Πm,n exactly the
law of Kingman’s m-coalescent (and is thus independent of n). This
is not a priori obvious, as the projection of a Markov process needs
not even stay Markov. However, it is easy and elementary to verify
the claim.

One important consequence of this property is, by Kokmogrov’s
extension theorem, the following:

Proposition 2.1. There exists a unique in law process (Πt, t ≥ 0)
with values in P, such that the restriction of Π to Pn is an n-
coalescent. (Πt, t ≥ 0) is called Kingman’s coalescent.

To see how this follows from Kolmogorov’s extension theorem, note
that a partition π of N may be regarded as a function from N into
itself: it suffices to assign to every integer i the smallest integer in the
same block of π as i. Hence a coalescing partition process (Πt, t ≥ 0)
may formally be viewed as a process indexed by N taking its values
into E = N[0,∞). The consistency property above guarantees that
the cylinder restrictions (i.e., the finite-dimensional distributions) of
this process are consistent, which in turn makes it possible to use
Kolmogorov’s extension theorem to yield Proposition 2.1.

Quite apart from this “general abstract nonsense”, the consistency
property also suggests a simple probabilistic construction of King-
man’s coalescent, which we now indicate. This construction is in the
manner of graphical constructions for models such as the voter model
(see, e.g., [115] or Theorem 5.3 in these notes), and serves as a model
for the more sophisticated future constructions of particle systems
based on Fleming-Viot processes. The idea is to label every block B
of the partition Π(t) by its lowest element. That is, we construct for
every i ≥ 1, a label process (Xt(i), t ≥ 0), where Xt(i) = j means
that at time t, the lowest element of the block containing i is equal
to j. Thus Xt(i) has the properties that X0(i) = i for every i ≥ 1,
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and Xt(i) can only jump downwards, at times of a coalescence event
involving the block containing i. At each such event Xt(i) jumps
to the lowest element j such that j ∼Π(t+) i. The point is that
(Xt(i), t ≥ 0) can be constructed for every i ≥ 1 simultaneously, as
follows. For every i < j, let τi,j be an exponential random variable.
To define Xt(n), there is no problem in making the above informal
description rigorous: indeed, to define Xt(n), it suffices to look at
the exponential random variables associated with 1 ≤ i < j ≤ n, as
the τi,j with n ≤ i < j cannot affect Xt(n). Thus there can never be
any accumulation point of the τi,j since there are only finitely many
such variables to be considered.

[More formally, let T1 = inf{τi,j , 1 ≤ i < j ≤ n}, and define
recursively

Tk+1 = inf{τi,j : 1 ≤ i < j ≤ n, τi,j > Tk}.

Thus (T1, T2, . . .) is the sequence of times at which there is a potential
coalescence. Let ik, jk be defined by Tk = τik,jk

. Define Xt(i) = i
for all t < T1. Inductively now, if k ≥ 1, and Xt(i) is defined for all
1 ≤ i ≤ n, and all t < Tk. Let I be the set of particles whose label
changes at time Tk:

I = {i ∈ [n] : Xt(T−k ) = jk}.

Define Xt(i) = XT−k
(i) if i /∈ I for all t ∈ [Tk, Tk+1), and put Xt(i) =

ik if i ∈ I, for all t ∈ [Tk, Tk+1).]
Once the label process (Xt(i), t ≥ 0) is defined simultaneously for

all i ≥ 1, we can define a partition Π(t) by putting:

i ∼Π(t) j if and only if Xt(i) = Xt(j). (22)

Moreover, it is obvious from the above description that the dynamics
of (Π(t), t ≥ 0) restricted to Pn is that of an n-coalescent. Thus (22)
is a realisation of Kingman’s coalescent. Note that despite the la-
belling process which seems to favour lower labels rather than upper
labels, the partition Π(t) is, for every t > 0, exchangeable: this fol-
lows from looking at the restriction of Π to [n] for every n ≥ 1 which
contains the support of a permutation σ with finite support. From
the original description of an n-coalescent, it is plain that Πn(t) is
invariant under the permutation σ. Hence Π(t) is exchangeable.
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2.1.2 Coming down from infinity.

We are now ready to describe what is one of Kingman’s coalescent’s
most striking features, which is that it comes down from infinity.
As we will see, this phenomenon states that, although initially the
partition is only made of singletons, after any positive amount of
time, the partition contains only a finite number of blocks almost
surely, which (by exchangeability) must all have positive asymptotic
frequency (in particular, there is no dust almost surely anymore,
as otherwise the singletons would contribute an infinite number of
blocks). Thus, let Nt denote the number of blocks of Π(t).

Theorem 2.1. Let E be the event that for all t > 0, Nt < ∞. Then
P(E) = 1.

In words, coalescence is so strong that all dust has coagulated into
a finite number of solid blocks. We say that Kingman’s coalescent
comes down from infinity. This is a big–bang–like event, which is
indeed reminiscent of models in astrophysics.

Proof. The proof of this result is quite easy, but we prefer to first
give an intuitive explanation for why the result holds true. Note
that the time it takes to go from n blocks to n− 1 blocks is just an
exponential random variable with rate n(n− 1)/2. When n is large,
this is approximately n2/2, so we can expect the number of blocks
to approximately solve the differential equation:





u′(t) = −u(t)2

2
u(0) = +∞.

(23)

(23) has a well-defined solution u(t) = 2/t, which is finite for all t > 0
but infinite for t = 0. This explains why Nt is finite almost surely
for all t > 0. in fact, one guesses from the ODE approximation:

Nt ∼ 2
t
, t → 0 (24)

almost surely. This statement is correct indeed, but unfortunately
it is tedious to make the ODE approximation rigorous. Instead,
to show Theorem 2.1, we use the following simple argument. It is
enough to show that, for every ε > 0, there exists M > 0 such that
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P(Nt > M) ≤ ε. For this, it suffices to look at the restrictions Πn of
Π to [n], and show that

lim sup
n→∞

P(Nn
t > M) ≤ ε. (25)

Here we used the notation Nn
t for the number of blocks of Πn

t . For
every n ≥ 1, let En be an exponential random variable with rate
n(n− 1)/2. Then note that, by Markov’s inequality:

P(Nn
t > M) = P

(
n∑

k=M

Ek > t

)

≤ 1
t
E

(
n∑

k=M

Ek

)

≤ 1
t

∞∑

k=M

2
k(k − 1)

.

The right-hand side of the above inequality is independent of n, and
can be made as small as desired provided M is chosen large enough.
Thus (25) follows.

2.1.3 Aldous’ construction

We now provide two different constructions of Kingman’s coalescent
which have some interesting consequences. The first one is due to Al-
dous (section 4.2 in [5]). Let (Uj)∞j=1 be a collection of i.i.d. uniform
random variables on (0, 1). Let Ej be a collection of independent
exponential random variables with rate j(j − 1)/2, and let

τj =
∞∑

k=j+1

Ek < ∞.

Define a function f : (0, 1) → R by saying f(Uj) = τj for all j ≥ 1,
and f(u) = 0 if u is not one of the Uj ’s. Define a tiling S(t) of (0, 1) by
looking at the open connected components of {u ∈ (0, 1) : f(u) > t}.
See figure 2.1.3 for an illustration.

Theorem 2.2. (S(t), t ≥ 0) has the distribution of the asymptotic
frequencies of Kingman’s coalescent.
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1

t

Figure 3: Aldous’ construction. The vertical sticks are located at
uniform random points on (0, 1). The stick at Uj has height τj .
These define a tiling of (0, 1) as shown in the picture. The tiles
coalesce as t increases from 0 to ∞.

Proof. We offer two different proofs, which are both instructive in
their own ways. The first one is straightforward: in a first step, note
that the transitions of S(t) are correct: when S(t) has n fragments,
one has to wait an exponential amount of time with rate n(n− 1)/2
before the next coalescence occurs, and when it does, given S(t), the
pair of blocks which coalesces is uniformly chosen. (This follows from
the fact that, given S(t), their linear order is uniform). Once this
has been observed, the second step is to argue that the asymptotic
frequencies of Kingman’s coalescent forms a Feller process with an
entrance law given by the “pure dust” state S(0) = (1, 0, . . .) ∈ S0.
(Naturally, this Feller property is meant in the sense of the usual
topology on S0, i.e., not the restriction of the `1 metric, but that
determined by pointwise convergence of the non-dust entries.) This
argumentation can be found for instance in [5, Appendix 10.5]. Since
it is obvious that S(t) → (1, 0, . . .) in that topology as t → 0, we
obtain the claim that S(t) has the distribution of the asymptotic
frequencies of Kingman’s coalescent.

The second proof if quite different, and less straightforward, but
more instructive. Start with the observation that, for the finite n-
coalescent, the set of successive states visited by the process, say
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(Πn, Πn−1, . . . ,Π1) (where for each 1 ≤ i ≤ n, Πi has exactly i
blocks), is independent from the holding times (Hn, Hn−1, . . . , H2)
(this is, of course, not true of a general Markov chain, but holds
here because the holding time Hk is an exponential random variable
with rate k(k − 1)/2 independent from Πk.) Letting n → ∞ and
considering these two processes backward in time, we obtain that for
Kingman’s coalescent the reverse chain (Π1,Π2, . . .) is independent
from the holding times (H2,H3, . . .). It is obvious in the construction
of S(t) that the holding times (H2, . . .) have the correct distribution,
hence it suffices to show that (Π1, . . . , ) has the correct distribution,
where Πk is the random partition generated from S(Tk) by sampling
at uniform random variables (Uj) independent of the time k ≥ 1
(here Tk is a time at which S(t) has k blocks).

To this end, we introduce the notion of rooted segments. A rooted
segment on k points i1, . . . , ik is one of the possible k! linear orderings
of these k points. We think of them as being oriented from left to
right, the leftmost point being the root of the segment. If n ≥ 1 and
1 ≤ k ≤ n, consider the set Rn,k of all rooted segments on {1, . . . , n}
with exactly k distinct connected components (the order of these k
segments is irrelevant). We call such an element a broken rooted
segment.

Lemma 2.1. The random partition associated with a uniform ele-
ment of Rn,k has the same distribution as Πn

k , where (Πn
k)n≥k≥1 is

the set of successive states visited by Kingman’s n-coalescent.

Proof. The proof is modeled after [24], but goes back to at least
Kingman [107]. It is obvious that the partition associated with Ξn,
a random element of Rn,n, has the same structure as Πn

n (as both
these are singletons almost surely). Now, let k ≤ n and let Ξ be a
randomly chosen element of Rn,k, and let Ξ′ be obtained from Ξ by
merging a random pair of clusters and choosing one of the two orders
for the merged linear segment at random. Then we claim that Ξ′ is
uniform on Rn,k−1. Indeed, if ξ ¹ ξ′ denotes the relation that ξ′ can
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be obtained from ξ by merging two parts, we get:

P(Ξ′ = ξ′) =
∑

ξ∈Rn,k:ξ¹ξ′
P(Ξ = ξ)P(Ξ′ = ξ′|Ξ = ξ)

=
∑

ξ∈Rn,k:ξ¹ξ′

1
|Rn,k|

1
2

2
k(k − 1)

=
1

|Rn,k|
1

k(k − 1)
|{ξ ∈ Rn,k : ξ ¹ ξ′}|.

The point is that, given ξ′ ∈ Rn,k−1, there are exactly n − k + 1
ways to cut a link from it and obtained a ξ ∈ Rn,k such that ξ ¹ ξ′.
Note that there can be no repeat in this construction, and hence,
|{ξ ∈ Rn,k : ξ ¹ ξ′}| = n − k + 1, which does not depend on ξ′. In
particular,

P(Ξ′ = ξ′) =
n− k + 1

k(k − 1)|Rn,k| (26)

and thus Ξ′ is uniform on Rn,k−1.

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

4 2 3 651

Figure 4: Cutting a rooted random segment.

The lemma has the following consequence. It is easy to see that
a random element of Rn,k may be obtained by choosing a random
rooted segment on [n], and breaking it at k − 1 uniformly chosen
links. Rescaling the interval [0, n] to the interval (0, 1) and letting
n →∞, it follows from this argument that Πk, which is the infinite
partition of Kingman’s coalescent when it has k blocks, has the same
distribution as the unit interval cut at k− 1 uniform random points.
This finishes the proof of Theorem 2.2.
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This theorem, and the discrete argument given in the second proof,
have a number of useful consequences, which we now detail.

Corollary 2.1. Let Tk be the first time that Kingman’s coalescent
has k blocks, and let S(Tk) denote the asymptotic frequencies at this
time, ranked in nonincreasing order. Then S(Tk) is distributed uni-
formly over the (k − 1)-dimensional simplex:

∆k =

{
x1 ≥ . . . ≥ xk ≥ 0 :

k∑

i=1

xi = 1

}
.

We also emphasize that the discrete argument given in the second
proof of Theorem 2.2, has the following nontrivial consequence for
the time-reversal of Kingman’s n-coalescent: it can be constructed as
a Markov chain with “nice”, i.e., explicit, transitions. Let (Ξ1, . . . ,Ξn)
be a process such that Ξk ∈ Rn,k for all 1 ≤ k ≤ n, and defined
as follows: Ξ1 is a uniform rooted segment on [n]. Given Ξi with
1 ≤ i ≤ n − 1, define Ξi+1 by cutting a randomly chosen link from
Ξi. (See Figure 4).

Corollary 2.2. The time-reversal of Ξ, that is, (Ξn, Ξn−1, . . . , Ξ1),
has the same distribution as Kingman’s n-coalescent in discrete time.

As a further consequence of this link, we get an interesting formula
for the probability distribution of Kingman’s coalescent:

Corollary 2.3. Let 1 ≤ k ≤ n. Then for any partition of [n] with
exactly k blocks, say π = (B1, B2, . . . , Bk), we have:

P(Πn
k = π) =

(n− k)!k!(k − 1)!
n!(n− 1)!

k∏

i=1

|Bi|! (27)

Proof. The number of elements in Rn,k is easily seen to be

|Rn,k| =
(

n− 1
k − 1

)
n!
k!

. (28)

Indeed it suffices to choose k − 1 links to break out of n − 1, after
having chosen one of n! rooted segments on [n]. Ignoring the order
of the clusters gives us (28). Since the same partition is obtained by
permuting the elements in a cluster of the broken rooted segment,
we obtain immediately (27).
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It is possible to prove (27) directly on Kingman’s coalescent by
induction, which is the one chosen by Kingman [107] (see also Propo-
sition 2.1 of Bertoin [28]). However this approach requires to guess
the formula beforehand, which is really not that obvious! Induction
works, but doesn’t explain at all why such a formula should hold
true. In fact, miraculous cancellations take place and (27) may seem
quite mysterious. Fortunately, the connection with rooted segments
explains why this formula holds.

Alternatively, we note that, given Corollary 2.1, (27) can be ob-
tained by conditioning on the frequencies of Πk, which are obtained
by breaking the unit interval (0, 1), at k−1 uniform independent ran-
dom points, and then sampling from this partition as in Kingman’s
representation theorem. This has a Dirichlet density with k − 1 pa-
rameters, so such integrals can be computed explicitly, and one finds
(27).

Later, we will describe a construction of Kingman’s coalescent
in terms of a Brownian excursion (or, equivalently, of a Brownian
continuum random tree), which is seemingly quite different. Both
these constructions can be used to study some of the fine properties
of Kingman’s coalescent: see [5] and [16].

2.2 The genealogy of populations

We now approach a theme which is a main motivation for the study of
coalescence. We will see how, in a variety of simple population mod-
els, the genealogy of a sample from that population can be approxi-
mated by Kingman’s coalescent. This will usually be formalized by
taking a scaling limit as the population size N tends to infinity, while
the sample size n is fixed but arbitrarily large. A striking feature
of these results is that the limiting process, Kingman’s coalescent, is
to some degree universal, as shown in the upcoming Theorem 2.5.
That is, its occurrence is little sensitive to the microscopic details of
the underlying probability model, much like Brownian motion is a
universal scaling limit of random walks, or SLE is a universal scaling
limit of a variety of critical planar models from statistical physics.

However, there are a number of important assumptions that must
be made in order for this approximation to work. Loosely speaking,
those are usually of the following kind:

(1) Population of constant size, and individuals typically have few
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offsprings.

(2) Population is well-mixed (or mean-field): everybody is liable
to interact with anybody.

(3) No selection acts on the population.

We will see how each of these assumptions is implemented in a
model. For instance, a typical assumption corresponding to (1) is
that the population size is constant and the number of offsprings of
a random individual has finite variance. Changing other parameters
of the model (e.g., such as overlapping generations or not) will not
make any macroscopic difference, but changing any of those 3 points
will usually affect the genealogy in essential ways. Indeed, much of
the rest of the volume is devoted to studying coalescent processes
in which some or all of those assumptions are invalidated. This will
lead us in general to coalescent with multiple mergers, taking place
in some physical space modeled by a graph. But we are jumping
ahead of ourselves, and for now we first expose the basic theory of
Kingman’s coalescent.

2.2.1 A word of vocabulary

Before we explain the Moran model in next paragraph, we briefly
explain a few notions from biology. From the point of view of ap-
plications, the samples concern not the individuals themselves, but
usually some of their genetic material. Suppose one is interested
in some specific gene (that is to say, a piece of DNA which codes
for a certain protein, to simplify). Suppose we sample n individuals
from a population of size N À n. We will be interested in describ-
ing the genetic variation in this sample corresponding to this gene,
that is, in quantifying how much diversity there is in the sample at
this gene. Indeed, what typically happens is that several individu-
als share the exact same gene and others have different variations.
Different versions of a same gene are called alleles. Here we will im-
plicitly assume that all alleles are selectively equivalent, i.e., natural
selection doesn’t favour a particular kind of allele (or rather, the
individual which carries that allele).

To understand what we can expect of this variation, it turns out
that the relevant thing to analyse is the ancestry of the genes we
sampled, and, more precisely, the genealogical relationships between
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these genes. To explain why this is so, imagine that all genes are very
closely related, say our sample comes from members of one family.
Then we expect little variation as there is a common ancestor to
these individuals going back not too far away in the past. Genes
may have evolved from this ancestor, due to mutations, but since
this ancestor is recent, we can expect these changes to be not very
many. On the contrary, if our sample comes from individuals that
are very distantly related (perhaps coming from different countries),
then we expect a much larger variation.

Ancestral partition. It thus makes sense to desire to analyse
the genealogical tree of our sample. We usually do so by observing
the ancestral partition process. Suppose that we have a certain pop-
ulation model of constant size N which is defined on some interval
of time I = [−T, 0] where T will usually be ∞. Then we can sample
without replacement n individuals from the population at time 0,
say x1, . . . , xn, with n < N , and consider the random partition Πn

t

such that i ∼ j if and only if xi and xj share the same ancestor at
time −t. The process (Πn

t , 0 ≤ t ≤ T ) is then a coalescent process. It
is very important to realise that the direction of time for the coales-
cent process is the opposite of the direction of time for the “natural”
evolution of the population.

Recalling that we only want the ancestry of the gene we are look-
ing at, rather than that of the individual which carries it, simplifies
greatly matters. Indeed, in diploid populations like humans (i.e.,
populations whose genome is made of a number of pairs of homolo-
gous chromosomes, 23 for humans), each gene comes from a single
parent, as opposed to individuals, who come from two parents. Thus
in our sample, we have a number of n genes, and we can go back
one generation in the past and ask who were the “parents” (i.e., the
parent gene) of each of those n genes. It may be that some of these
genes share the same parent, e.g., in the case of siblings. In that case,
the ancestral lineages corresponding to these genes have coalesced.
Eventually, if we go far enough back into the past, all lineages from
our initial n genes, will have coalesced to a most recent common
ancestor, which we can call the ancestral Eve of our sample. Note
that if we sample n individuals from a diploid population such as hu-
mans, we actually have 2n genes each with their genealogical lineage.
Thus from our point of view, there won’t be any difference between
haploid and diploid populations, except that the population size is
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Figure 5: Moran model and associated ancestral partition process.
An arrow indicates a replacement, the direction shows where the
lineage comes from. Here N = 7 and the sample consists of indi-
viduals 1,3,4,5,6. At time t, Πt = {1, 3, 5}, {4, 6}, while at time T ,
ΠT = {1, 3, 4, 5, 6}.

in effect doubled. From now on, we will thus make no distinction
between a gene and an individual.

2.2.2 The Moran and the Wright-Fisher models

The Moran model is perhaps the simplest model which satisfies as-
sumption (1), (2) and (3). In it, there are a constant number of
individuals in the population, N . Time is continuous, and every in-
dividual lives an exponential amount of time with rate 1. When an
individual dies, it is simultaneously replaced by an offspring of an-
other individual in the population, which is uniformly chosen from
the population. This keeps the population size constant equal to N .
This model is defined for all t ∈ R. See the accompanying Figure
5 for an illustration. Note that all three assumptions are satisfied
here, so it is no surprise that we have:

Theorem 2.3. Let n ≥ 1 be fixed, and let x1, . . . , xn be n individuals
sampled without replacement from the population at time t = 0. For
every N ≥ n, let ΠN,n

t be the ancestral partition obtained by declaring
i ∼ j if and only if xi and xj have a common ancestor at time −t.
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Then, speeding up time by (N − 1)/2, we find:

(ΠN,n
(N−1)t/2, t ≥ 0) is an n-coalescent.

Proof. The model may for instance be constructed by considering N
independent stationary Poisson processes with rate 1 (Zt(i),−∞ <
t < ∞)N

i=1. Each time Zt(i) rings, we declare that the ith indi-
vidual in the population dies, and is replaced by an offspring from
a randomly chosen individual in the rest of the population. Since
the time-reversal of a stationary Poisson process is still a stationary
Poisson process, we see that while there are k ≤ n lineages that
have not coalesced by time −t, each of them experiences what was a
death-and-substitution in the opposite direction of time, with rate 1.
At any such event, the corresponding lineage jumps to a randomly
chosen other individual. With probability (k − 1)/(N − 1), this in-
dividual is one of the other k − 1 lineages, in which case there is a
coalescence. Thus the total rate at which there is a coalescence is
k(k−1)/(N −1). Hence speeding time by (N −1)/2 gives us a total
coalescence rate of k(k − 1)/2, as it should be for an n-coalescent
with k blocks.

In the Wright-Fisher model, the situation is similar, but the model
is slightly different. The main difference is that generations are dis-
crete and non-overlapping (as opposed to the Moran model, where
different generations overlap). To describe this model, assume that
the population at time t ∈ Z is made up of individuals x1, . . . , xN .
The population at time t + 1 may be defined as y1, . . . , yN , where
for each 1 ≤ i ≤ N , the parent of yi is randomly chosen among
x1, . . . , xN . Again, the model may be constructed for all t ∈ Z. As
above, all three conditions are intuitively satisfied, so we expect to
get Kingman’s coalescent as an approximation of the genealogy of a
sample.

Theorem 2.4. Fix n ≥ 1, and let ΠN,n
t denote the ancestral parti-

tion at time t of n randomly chosen individuals from the population
at time t = 0. That is, i ∼ j if and only if xi and xj share the same
ancestor at time −t. Then as N →∞, and keeping n fixed, speeding
up time by a factor N :

(ΠN,n
Nt , t ≥ 0) −→d (Πn

t , t ≥ 0)
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where −→d indicates convergence in distribution under the Skorokhod
topology of D([0,∞),Pn), and (Πn

t , t ≥ 0) is Kingman’s n-coalescent.

Proof. (sketch) Consider two randomly chosen individuals x, y. Then
the time it takes for them to coalesce is Geometric with success prob-
ability p = 1/N : indeed, at each new generation, the probability that
the two genes go back to the same ancestor is 1/N since every gene
chooses its parent uniformly at random and independently of one
another. Let TN be a geometric random variable with parameter
1/N . Since

1
N

TN −→d E,

an exponential random variable with parameter 1, we see that the
pair (x, y) coalesces at rate approximately 1 once time is speed up by
N . This is true for every pair, hence we get Kingman’s n-coalescent.

We briefly comment that this is the general structure of limiting
theorems on the genealogy of populations: n is fixed but arbitrary, N
is going to infinity, and after speeding up time by a suitable factor, we
get convergence towards the restriction of a nice coalescing process
on n particles.

Despite their simplicity, the Wright-Fisher or the Moran model
have proved extremely useful to understand some theoretical prop-
erties of Kingman’s coalescent, such as the duality relation which will
be discussed in the subsequent sections of this chapter. However, be-
fore that, we will discuss an important result, due to Möhle, which
gives convergence towards Kingman’s coalescent in the above sense,
for a wide class of population models known as Cannings models and
may thus be viewed as a result of universality.

2.2.3 Möhle’s lemma

We now describe the general class of population models which is
the framework of Möhle’s lemma, and which are known as Cannings
models (after the work of Cannings [50, 51]). As the reader has surely
guessed, we will first impose that the population size stays constant
equal to N ≥ 1, and we label the individuals of this population
1, . . . , N . To define this model, consider a sequence of exchange-
able integer-valued random variables (ν1, . . . , νN ), which have the
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property that
N∑

i=1

νi = N. (29)

The νi have the following interpretation: at every generation, all N
individuals reproduce and leave a certain number of offsprings in the
next generation. We call νi the number of offsprings of individual
i. Note that once a distribution is specified for the law of (νi)N

i=1, a
population model may be defined on a bi-infinite set of times t ∈ Z
by using i.i.d. copies {(νi(t))N

i=1, t ∈ Z}. The requirement (29) corre-
sponds to the fact that the total population size stays constant, and
the requirement that for every t ∈ Z, (νi(t))N

i=1 forms an exchange-
able vector corresponds to the fact that there are no spatial effects
or selection: every individual is treated equally.

Having defined this population dynamics, we consider again the
coalescing process obtained by sampling n < N individuals from the
population at time 0, and considering their ancestral lineages: that
is, let (Πn,N

t , t = 0, 1, . . .) be the Pn-valued process defined by putting
i ∼ j if and only if individuals i and j share the same ancestor
at generation −t. This is the ancestral partition process already
considered in the Moran model and the Wright-Fisher diffusion.

Before stating the result for the genealogy of this process, which
is due to Möhle [122], we make one further definition: let

cN = E
(

ν1(ν1 − 1)
N − 1

)
. (30)

Note that cN is the probability that two individuals sampled ran-
domly (without replacement) from generation 0 have the same par-
ent at generation −1. Indeed, this probability p may be computed
by summing over the possible parent of one of those lineages and is
thus equal to

p = E

(
N∑

i=1

νi

N

νi − 1
N − 1

)
= cN

since E(νi) = E(ν1) by exchangeability. Thus cN is the probability
of coalescence of any two lineages in a given generation. Note that if
we wish to show convergence to a continuous coalescent process, cN

(or rather 1/cN ) gives us the correct time-scale, as any two lineages
will coalescence in a time of order 1 after speeding up by 1/cN . We
may now state the main result of this section:
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Theorem 2.5. (Möhle’s Lemma.) Consider a Cannings model de-
fined by i.i.d. copies {(νi(t))N

i=1, t ∈ Z}. If

E(ν1(ν1 − 1)(ν1 − 2))
N2cN

−→
N→∞

0, (31)

then cN → 0 and the genealogy converges to Kingman’s coalescent.

The formal statement which is contained in the informal wording
of the theorem is that (Πn,N

t/cN
, t ≥ 0), converges to Kingman’s n-

coalescent for every n ≥ 1.
Although the proof is not particularly difficult, we do not include

it in these notes, and refer the interested reader to [122]. However,
we do note that the left hand side of (31) is, up to a scaling, equal
to the probability that three lineages merge in a given generation.
Thus the purpose of (31) is to demand that the rate at which three or
more lineages coalesce is negligible compared to the rate of pairwise
mergers: this property is indeed necessary if we are to expect King-
man’s coalescent in the limit. See Möhle [121] for other criterions
similar to (31).

2.2.4 Diffusion approximation and duality

Consider the Moran model discussed in Theorem 2.3, and assume
that at some time t, say t = 0 without loss of generality, the popula-
tion consists of exactly two types of individuals: those which carry
allele a, say, and those which carry allele A. For instance, one may
think that allele a is a mutation which affects a fraction 0 < p < 1
of individuals. How does this proportion evolve with time? What is
the chance it will eventually invade the whole population?

From the description of the Moran model itself, it is easy to see
that, in the next dt units of time (with dt infinitesimally small), if
Xt is the fraction of individuals with allele a, we have, if Xt = x:

Xt+dt =





x + 1
N with probability Nx(1− x)dt + o(dt)

x− 1
N with probability Nx(1− x)dt + o(dt)

x with probability 1− 2Nx(1− x)dt + o(dt).

Indeed, Xt may only change by +1/N if an individual from the A
population dies (which happens at rate N(1−x)) and is replaced with
an individual from the a population (which happens with probability
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x). Hence the total rate at which Xt increases by 1/N is Nx(1−x).
Similarly, the total rate of decrease by 1/N is x(1 − x), since for
this to occur, an individual from the a population must die and be
replaced by an individual from the A population.

Thus we see that the expect drift is

E(dXt|σ(Xs, 0 ≤ s ≤ t)) = 0

and that

var(dXt|σ(Xs, 0 ≤ s ≤ t)) =
2
N

Xt(1−Xt)dt + o(dt).

By routine arguments of martingale methods (such as in [75]), it
is easy to conclude that, speeding time by N/2, Xt converges to a
nondegenerate diffusion:

Theorem 2.6. Let (XN
t , t ≥ 0) be the fraction of individuals carry-

ing the a allele at time t in the Moran model, started from XN
0 =

p ∈ (0, 1). Then

(XN
Nt/2, t ≥ 0) −→d (Xt, t ≥ 0)

in the Skorokhod topology of D(R+,R), where X solves the stochastic
differential equation:

dXt =
√

Xt(1−Xt)dWt; X0 = p (32)

and W is a standard Brownian motion. (32) is called the Wright-
Fisher diffusion.

Note that the Wright-Fisher diffusion (32) has infinitesimal gen-
erator

Lf(x) =
1
2
x(1− x)

d2

dx2
. (33)

Remark 2.1. In some texts different scalings are sometimes con-
sidered, usually due to the fact that the “real” population size for
humans (or any diploid population) is 2N when the number of indi-
viduals in the population is N . These texts sometime don’t slow down
accordingly the scaling of time, in which case the limiting diffusion
is:

dXt =

√
1
2
Xt(1−Xt)dWt; X0 = p

which is then called the Wright-Fisher diffusion. This unimportant
change of constant explains discrepancies with other texts.
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As we will see, this diffusion approximation has many consequences
for questions of practical importance, as several quantities of inter-
est have exact formulae in this approximation (while in the discrete
model, these quantities would often be hard or impossible to compute
exactly). There are also some theoretical implications, of which the
following is perhaps the most important. This is a relation of duality,
in the sense used in the particle systems literature ([115]), between
Kingman’s coalescent and the Wright-Fisher diffusion. Intuitively,
the Wright-Fisher diffusion describes the evolution of a subpopula-
tion forward in time, while Kingman’s coalescent describes ancestral
lineages backward in time, so this relation is akin to a change of
direction of time. The precise result is as follows:

Theorem 2.7. Let E→ and E← denote respectively the laws of a
Wright-Fisher diffusion and of Kingman’s coalescent. Then, for all
0 < p < 1, and for all n ≥ 1, we have:

E→p ((Xt)n) = E←n
(
p|Πt|

)
(34)

where |Πt| denotes the number of blocks of the random partition Πt.

Proof. (sketch) Consider a Moran model with total population size
N ≥ 1, and consider a subpopulation of allele a individuals obtained
by flipping a coin for every individual with success probability p.
Choose n individuals at random out of the total population at time
Nt/2. What is the chance of the event E that these n individuals
carry the a allele? On the one hand, this can be computed by going
backward in time Nt/2 units of time: by Theorem 2.3, there are
then approximately |Πt| ancestral lineages, where Π is Kingman’s
n-coalescent, and each of them carries the a allele with probability
p. If each of them carries the a allele, then their descendant also
carries the allele a, so

P(E) ≈ E←n (p|Πt|).

On the other hand, by Theorem 2.6, at time tN/2 we know that the
proportion of a individuals in the population is approximately Xt.
Thus the probability of the event E is, as N →∞, approximately

P(E) ≈ E→p (Xn
t ).

Equating the two approximations yields the result.
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The relationship (34) is called a duality relation. In general, two
processes X and Y with respective laws E← and E→ are said to be
dual if there exists a function ψ(x, y) such that for all x, y:

E→x (ψ(Xt, y)) = E←y (ψ(x, Yt)). (35)

In our case Xt is the Wright-Fisher diffusion and Nt = Yt is the
number of blocks of Kingman’s coalescent, and ψ(x, n) = xn. In
particular, as n varies, (34) fully characterizes the law of Xt, as it
characterizes all its moments.

As an aside, this is a general feature of duality relations: as y
varies, the E→x (ψ(Xt, y)) characterizes the law of Xt started from x.
In particular, relations such as (35) are extremely useful to prove
uniqueness results for martingale problems. This method, called
the duality method, has been extremely successful in the literature
of interacting particle systems and superprocesses, where it is of-
ten relatively simple to guess what martingale problem a certain
measure-valued diffusion should satisfy, but much more complex to
prove that there is a unique in law solution to this problem. Having
uniqueness usually proves convergence in distribution of a certain
discrete model towards the continuum limit specified by the martin-
gale problem, so it is easy to see why duality can be so useful. For
more about this, we refer the reader to the relevant discussion in
Etheridge [72].

We stress that duals are not necessarily unique: for instance, King-
man’s coalescent is also dual to a process known as the Fleming-Viot
diffusion, which will be discussed in a later section as it will have im-
portant consequences for us.

We now illustrate Theorems 2.6 and 2.7 with some of the promised
applications to questions of practical interest. Consider the Moran
model of Theorem 2.3. The most obvious question pertains to the
following: if the a population is thought of as a mutant from the A
population, what is the chance it will survive forever? It is easy to see
this can only occur if the a population invades the whole population
and all the residents (i.e., the A individuals) die out. If so, how long
does it take?

Let XN
t denote the number of a individuals in a Wright-Fisher

model with total population size N and initial a population XN
0 =

pN , where 0 < p < 1. Note that XN
t is a finite Markov chain with

only two traps, 0 and N . Thus XN := limt→∞XN
t exists almost
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surely and is equal to 0 or N . Let D be the event that XN = 0 (this
is event that the a alleles die out), and let S be the complementary
event (this is the event that a wipes out A). In biological terms, the
time at which this occurs, say TN , is known as the fixation time.

Theorem 2.8. We have:

P(S) = p; P(D) = 1− p. (36)

Moreover, the fixation time TN satisfies:

E(TN ) ∼ −N(p log p + (1− p) log(1− p)). (37)

Proof. The first part of the result follow directly from the observation
that XN

t is a bounded martingale and the optional stopping theorem
at time T . For the second part, we use the diffusion approximation
of Theorem 2.6 and content ourselves with verifying that for the
limiting Wright-Fisher diffusion, the expected time T to absorption
at 0 or 1 is

E(T ) = −2(p log p + (1− p) log(1− p)). (38)

Technically speaking, there is some further work to do such a check-
ing that 2TN/N → T in distribution and in expectation, but we are
not interested in this technical point here. Note that for a diffusion,
if f(p) is the expected value of T starting from p, then f(p) satisfies:

{
Lf(p) = −1;
f(0) = f(1) = 0,

(39)

where Lf(x) = 1
2x(1−x)f ′′(x) is the generator of the Wright-Fisher

diffusion. To see where (39) comes from, observe that, for any ε > 0,
and for all 0 < x < 1,

f(x) = Ex(T ) = Ex(Ex(T |Fε)),

where Fε = σ(Xs, s ≤ ε). Thus by the Markov property, letting
Pf(x) be the semigroup of the diffusion X:

f(x) = Ex(ε + EXε(T ))
= ε + Ex(f(Xε))
= ε + Pεf(x)
= ε + f(x) + εLf(x) + o(ε)
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where the last equality holds since Lf(x) = limε→0
Pεf−f

ε . Since
this last equality must be satisfied for all ε > 0, we conclude, after
canceling the terms f(x) on both sides of this equation and dividing
by ε:

1 + Lf(x) = 0

for all x ∈ (0, 1), which, together with the obvious boundary condi-
tions f(0) = f(1) = 1, is precisely (39).

Now, (39) can be solved explicitly and the solution is indeed (38),
hence the result.

For p = 1/2, we get from Theorem 2.8 that

E(TN ) ∼ 1.38N

or, for diploid populations with N individuals, E(TN ) ∼ 2.56N . As
Ewens [80, Section 3.2] notes, this long mean time is related to the
fact that the spectral gap of the chain is small.

In practice, it is often more interesting to compute the expected
fixation time (and other quantities) given that the a allele succeeded
in invading the population. In that case it is possible to show:

E(TN |S) ∼ −N(1− p)
p

log(1− p).

See, e.g., [66, Theorem 1.32].

2.3 Ewens’ sampling formula

We now come to one of the true cornerstones of mathematical pop-
ulation genetics, which is Ewens’ sampling formula for the allelic
partition of Kingman’s coalescent (these terms will be defined in
a moment). Basically, this is an exact formula which governs the
patterns of genetic variation within a population satisfying all three
basic assumptions leading to Kingman’s coalescent. As a result, this
formula is widely used in population genetics and in practical studies;
its importance and impact are hard to overstate.

2.3.1 Infinite alleles model

We now define one of the basic objects of this study, which is the al-
lelic partition. It is based on a model called the infinite alleles model
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which we now describe. Imagine that, together with the evolution
of a population forwards in time (such as considered in the Moran
model or in the Wright-Fisher model, say), there exists a process by
which mutations occur and which induces differences between the al-
lele observed in a child from that of his parent. If we consider a large
gene, (i.e., one which consists of a fairly large DNA sequence), it is
reasonable to assume that the mutation will make a change never
seen before and never to be reproduced again by a future mutation,
that is, every mutation generates a new, unique allele. To simplify
extremely, imagine we are looking at the genealogy of a gene coding
for, say, eye colour. We may imagine that, initially, all individuals
carry the same allele, i.e., have the same eye colour (say brown).
Then as time goes by, a mutation occurs, and the child of a cer-
tain individual carries a new colour, maybe blue. His descendants
will also all have blue eyes, and descendants of other individuals will
carry brown eyes, until one of them gets a new mutation, giving him
say green eyes, which he will in turn transmit to his children, and
so on and so forth. The allelic partition is the one that results when
we identify individuals carrying the same eye colour (or, more gener-
ally, the same allele at the observed gene). We describe this partition
through a vector, called the allele frequency spectrum, which simply
counts the number of different alleles with a given multiplicity: that
is, ai is the number of distinct alleles which are shared by exactly i
individuals. See Figure 6 for an illustration of the allelic partition.

For instance, (the two following datasets are taken from [66], and
were gathered respectively by [57] and [150]), in a study of n = 60
drosophilae (D. persimilis), the allelic partition was represented by,

a1 = 18, a2 = 3, a4 = 1, a32 = 1.

That is, 1 allele was shared by 32 individuals, 1 allele was shared
by 4 individuals, 3 alleles were found in pairs of individuals, and 18
individuals had a unique allele. Thus the associated partition had
18 + 3 + 1 + 1 = 23 blocks. In another, larger study of Drosophila
(D. pseudobscura), on n = 718 individuals:

a1 = 7, a2 = a3 = a5 = a6 = a8 = a9 = a26 = a36 = a37 = 1,

a82 = 2, a149 = 1, a266 = 1.
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Figure 6: The allelic partition generated by mutations (squares).

2.3.2 Ewens sampling formula

Given the apparent difference between these two data sets, what can
we expect from a typical sample? It is natural to assume that muta-
tions arrive at constant rate in time, and, that, for many populations,
assumptions (1), (2) and (3) are satisfied so that the genealogy of
a sample is defined by Kingman’s coalescent. Thus, we will assume
that, given the coalescence tree of a sample (obtained from King-
man’s coalescent), mutations fall on the coalescence tree according
to a Poisson point process with constant intensity per unit length,
which we define to be θ/2 for some θ > 0, for reasons that will be
clear in a moment. We may then look at the (random) allelic par-
tition that this model generates, and ask what does this partition
typically look like. See Figure 6 for an illustration.

Note that, Πn defines a consistent family of partitions as n in-
creases, so one may define a random partition Π, called the allelic
partition, such that Πn = Π|[n] for all n ≥ 1.

Theorem 2.9. Let Π be the allelic partition obtained from King-
man’s coalescent and the infinite alleles model with mutation rate
θ/2. Then Π has the law of a Poisson-Dirichlet random partition
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with parameter θ. In particular, the probability that A1 = a1, A2 =
a2, . . . , An = an, is given by:

p(a1, . . . , an) =
n!

θ(θ + 1) . . . (θ + n− 1)

n∏

j=1

(θ/j)aj

aj !
. (40)

Proof. We first note that (40) is simply a reformulation of Ewens’
sampling formula in Theorem 1.6, taking into account the combina-
torial factors needed when describing Π indirectly through the sum-
mary statistics (a1, . . . , an), which is the traditional data recorded.
Note in particular that (40) shows that the vector (A1, . . . , An) has
the distribution of independent Poisson random variables Z1, . . . , Zn

with parameters θ/j, conditioned on the event that
∑n

j=1 jZj = n.

A particularly simple and elegant proof that Π has the Poisson-
Dirichlet (0, θ) consists in showing directly that Π can be constructed
as a Chinese Restaurant Process with parameter θ. Suppose the
coalescence tree is drawn with the root at the bottom and the n
leaves at the top (like a real-life tree!) To every leaf of the tree,
there is a unique path between it and the root, and there is a unique
first mutation mark on this path, which we run from the leaf to the
root, i.e. top to bottom (if no such mark exists, we may consider
extending the coalescence tree by adding an infinite branch from
the root, on which such a mark will always exist almost surely).
Note that to describe the allelic partition Πn, it suffices to know to
know the portion of the coalescence tree between all the leaves and
their first marks, and do not care about later coalescence events or
mutations (here, time is also running in the coalescence direction,
i.e., from top to bottom). This consideration leads us to associate
to the marked coalescence tree a certain forest, i.e., a collection of
trees, which are subtrees from the coalescence tree and contain all
the leaves and their nearest marks.

Define 0 < Tn < Tn−1 < . . . T2 < T1 to be the times at which
there is an event which reduces the number of branches in the forest
described above. These events may be of two types: either a coales-
cence or a mutation (which “kills” the corresponding branch). In ei-
ther case, the number of branches decreases by 1, so there are exactly
n such times until there are no branches left. The Chinese Restau-
rant Process structure of the partition is revealed when we try to
describe this forest from bottom to top, by looking at what happens
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at the reverse times T1, T2, . . . , Tn. At each time Tm, 1 ≤ m ≤ n,
we may consider the partition Πn

m, which is the partition defined by
the m lineages uncovered by time Tm. At time T1, we are adding a
lineage which may be considered the root of this forest. Naturally,
the partition it defines is just {1}. Suppose now that m ≥ 1, and
we are looking at the distribution of the partition Πn

m+1, given Πn
m.

This (m + 1)th lineage disappeared from the forest for either of two
reasons: either by coalescence, or by mutation. If it was a mutation,
then we know this lineage will open a new block of the partition
Πn

m+1. If, however, it was by a coalescence, then our (m + 1)th cus-
tomer joins one of the existing blocks. It remains to compute the
probabilities of these events. Note that between times Tm and Tm+1

there are precisely m + 1 other lineages. Suppose the cluster sizes of
Πn

m are respectively n1, . . . , nk. The total rate of coalescence when
there are m + 1 lineages is m(m + 1)/2, and the total mutation rate
is (m + 1)θ/2. It follows that,

P(new block|Πn
m) =

θ(m + 1)/2
m(m + 1)/2 + θ(m + 1)/2

=
θ

m + θ
.

Indeed, the event that there is a coalescence or a mutation at time Tm

rather than a mutation, is independent of Πn
m by the strong Markov

property of Kingman’s coalescent at time Tm+1. Similarly,

P(join block of size ni|Πn
m) =

m(m + 1)/2
m(m + 1)/2 + θ(m + 1)/2

ni

m
(41)

=
ni

m + θ
.

Indeed, in order to join a table of size ni, first a coalescence must have
occurred (this is the first term in the right-hand side of (41)), then
we note that conditionally on this event, the new lineage coalesced
with a randomly chosen lineage, and thus a particular group of size ni

was chosen with probability nj/m. We recognize here the transitions
of the Chinese Restaurant Process, so by Theorem 1.5 we get the
desired result.

Remarkably, when W. Ewens [79] found this formula (40), this
was without the help of Kingman’s coalescent, although clearly this
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viewpoint is a big help. There exist numerous proofs of Ewens sam-
pling formula for the infinite alleles model, of which several can be
found in [95], together with some interesting extensions.

2.3.3 Some applications: the mutation rate

We briefly survey some applications of the above result. One chief
application of Theorem 2.9 is the estimation of the mutation rate θ/2.
Note that, by Ewens’ sampling formula, the conditional distribution
of π given the number of blocks Kn is

P(Πn = π|Kn = k) = cn,k

k∏

i=1

ni! (42)

where cn,k =
∑

?

∏k
i=1 ni! where the sum is over all partitions with

k blocks. Equivalently, since
∑n

j=1 aj = k,

p(a1, . . . , an|k) = c′n,k

n∏

j=1

(1/j)aj

aj !
(43)

for a different normalizing constant c′n,k. The striking feature of
(42) and (43) is that both right-hand sides do not depend on θ. In
particular, we can not learn anything about θ beyond what we can
tell from simply looking at the number of blocks. In statistical terms,
Kn is a sufficient statistics for θ. This raises the question: how to
estimate θ from the number of blocks?

Theorem 2.10. let Π be a PD(θ) random partition, and let Πn be
its restriction to [n], with Kn blocks. Then

Kn

log n
−→ θ, a.s. (44)

as n →∞. Moreover,

Kn − θ log n√
θ log n

−→d N (0, 1). (45)

Proof. (44) is an easy consequence of the Chinese Restaurant Process
construction of a PD(θ) random partition. Indeed, let Ii be the
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indicator random variable that customer i opens a new block. Then
Kn =

∑n
i=1 Ii and the random variables Ii are independent, with

P(Ii = 1) =
θ

θ + i− 1
.

Thus E(Kn) ∼ θ log n,, and var(Kn) ≤ E(Kn). Find a subsequence
nk such that k2 ≤ E(Knk

) < (k + 1)2. (Thus if θ = 1, nk = e2k

works.) By Chebyshev’s inequality:

P
(∣∣∣∣

Knk

log(nk)
− θ

∣∣∣∣ > ε

)
≤ var(Knk

)
ε2(log nk)2

≤ 2θ

ε2k2

for every ε > 0. By the Borel-Cantelli lemma, there is almost sure
convergence along the subsequence nk. Now, using monotonicity of
Kn and the sandwich theorem, we see that for n such that nk ≤ n <
nk+1, we get

Knk

log(nk+1)
≤ Kn

log n
≤ Knk+1

log(nk)

but since 1 ≤ log(nk+1)
log(nk) ≤ (k+1)2

k2 → 1, we see that both left- and
right-hand sides of the inequalities converge to θ almost surely. This
proves (44). The central limit theorem (45) follows from a similar
application of the Lindeberg-Feller theorem for triangular arrays of
independent random variables (see Theorem 4.5 in [65]).

As Durrett [66] observes, while Theorem 2.10 is satisfactory from
a theoretical point of view, as it provides us with a way to estimate
the mutation rate θ, in practice the convergence rate of 1/

√
log n is

very slow: it takes n = e100 to get a standard deviation of about 0.1.
In fact, it can be shown using Ewens’ sampling formula that the

maximum-likelihood estimator of θ is the value θ̂ which makes E(Kn)
equal to the observed number of blocks. In that case, the variance
of that estimator is also roughly the same, as it can be shown using
general theory of maximum likelihood (see below Theorem 1.13 in
[66])

var(θ̂) =
(

1
θ2

var(Kn)
)−1

∼ θ

log n

which is the same order of magnitude as before, i.e., very slow. Other
ideas to estimate θ can be used, such as the sample homozigosity:
this is the proportion of pairs of individuals who share the same allele
in our sample. See [66, Section 1.3] for an analysis of that functional.
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2.3.4 The site frequency spectrum

Along with the infinite alleles model, there is a different model for
genetic variation, called the infinite sites model. For arbitrary rea-
sons, we have decided to spend less time on this model than on the
infinite alleles model, and the reader wanting to move on to the next
subject is invited to do so. However, this model will come back as
a very useful theoretical tool in later models of Λ-coalescents, as it
turns out to be closely related to the infinite alleles model but is
partly easier to analyse.

The infinite sites model looks at a type of data which is altogether
different from the one we were trying to model with the infinite alleles
model. Suppose we look at a fixed chromosome (rather than a fixed
locus on that chromosome). We are interested in seeing which sites
of the chromosome are subject to variation. Suppose, for instance
that the chromosome is made of 10 nucleotides, i.e., is a word of 10
letters in the alphabet A,T,C,G. In a sample of n individuals, we can
observe simultaneously these 10 nucleotides. It then makes sense
to ask which of those show variation: for instance, we may observe
that nucleotide 5 is the same in all individuals, while number 3 has
different variants present in a number of individuals, say k. These k
individuals don’t necessarily have the same nucleotide 3 or at other
places, and so it would seem that by observing this data we gain
more insight about the genealogical relationships of the individuals
in our sample (as we can observe several loci at once!) but it turns
out that this is not the case.

The infinite sites model starts with the assumption that each new
mutation affects a new, never touched before or after, site (locus)
of the chromosome. This mutation is transmitted unchanged to all
the descendants of the corresponding individual, and will be visi-
ble forever. Hence mutations just accumulate, instead of erasing
each other. Our assumptions will still be that the mutation rate
is constant, and that, given the coalescence tree on n individuals
(a realisation of Kingman’s n-coalescent), mutations fall on it as a
Poisson point process with constant intensity θ/2 per unit length.
In this model, there is no natural partition to define, but it makes
sense to ask:

1. what is the total number of sites Sn at which there is some
variation?
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2. What is the number Mj(n) of sites at which exactly j individ-
uals have a mutation?

Sn is called the number of segregating sites and is often referred to
in the biological literature as SNPs for Single Nucleotide Polymor-
phism. The statistics (M1(n),M2(n), . . . , Mn(n)) is called the site
frequency spectrum of the sample. Note that

∑n
j=1 Mj(n) = Sn.

Note also that Sn may be constructed simultaneously for all n ≥ 1
by enlarging the sample and using the consistency of Kingman’s co-
alescent.

Theorem 2.11. We have:

Sn

log n
−→ θ, a.s. (46)

as n →∞, and furthermore for all j ≥ 1:

E(Mj(n)) =
θ

j
. (47)

Proof. Naturally, the reader is invited to make a parallel with The-
orem 2.10. The result (46) is conceptually slightly simpler, as given
the coalescence tree, Sn is simply a Poisson random variable with
mean θLn/2, where Ln is the total length of the tree, i.e., the sum
of the lengths of all the branches in the tree. But observe that while
there are k lineages, the time it takes to get a coalescence is exponen-
tial with mean 2/(k(k−1)). Thus since there are exactly k branches
during this interval of times, we get:

E(Ln) =
n∑

k=2

k
2

k(k − 1)
= 2

n−1∑

j=1

1
j

= 2hn−1

where hn is the harmonic series. Thus

E(Sn) = E(E(Sn|Ln)) =
θ

2
E(Ln) = θhn−1

∼ θ log n.

Easy large deviations for sum of exponential random variables and
Poisson random variables, together with the Borel-Cantelli lemma,
show the strong law of large numbers (46).
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For the site frequency spectrum, we use the Moran model em-
bedding of Kingman’s coalescent (Theorem 2.3). Let N denote the
population size, and let n = N be the sample size: that is, the sample
is the whole population. Recall that the genealogy of these n indi-
viduals, sped up by a factor (N − 1)/2, is a realisation of Kingman’s
n-coalescent. Note that if a mutation appears at time −t, the prob-
ability that it affects exactly k individuals is precisely pt(1, k) where
pt(x, y) denotes the transition probabilities of the discrete Markov
chain which counts the number of individuals carrying that muta-
tion. Since mutations only accumulate, we get by integration over
t :

E(Mj(n)) =
∫ ∞

0
pt(1, j)θdt = θG(1, k) (48)

where G(x, y) is the Green function of the Markov chain, which
computes the total expected number of visits to y started from x.
(Since this chain gets absorbed in finite time (and finite expectation)
to the state N or 0, the Green function is finite. It is moreover easy
to compute this Green function explicitly. Let Ĝ denote the Green
function for the discrete time chain, X̂. Note that

G(x, y) =
1

q(y)
Ĝ(x, y) (49)

where q(y) is the total rate at which the chain leaves state y. In our
case, that is 2y(N − y)/N . Now, note that Ĝ(k, k) is 1/p where p is
the probability of never coming back to k starting from k. Indeed, the
number of visits to k started from k is geometric with this parameter.
When the chain leaves k, it is equally likely to go up or down. Using
the fact that X̂ is a martingale, and the optional stopping theorem
such as in Theorem 2.8, we get:

p =
1
2

1
k

+
1
2

1
N − k

=
2N

k(N − k)
.

Thus
Ĝ(k, k) =

k(N − k)
2N

. (50)

Now, note that by the Markov property,

Ĝ(1, k) = P(Tk < T0)Ĝ(k, k) =
1
k
Ĝ(k, k)



Coalescent theory 63

and thus we get:

Ĝ(1, k) =
2(N − k)

N
.

Remembering (49):

G(1, k) =
1
k
. (51)

Using (48), this completes the result.
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3 Λ-coalescents

In this chapter we introduce the Λ-coalescent processes, also known
as coalescents with multiple collisions. We show a useful and intu-
itive construction of these processes in terms of a certain Poisson
point process, and analyse the phenomenon of coming down from
infinity for these processes. We explain the relevance of these pro-
cesses to the genealogy of populations through two models, one due
to Schweinsberg, and another one due to Durrett and Schweinsberg:
as we will see, these processes describe the genealogy of a popu-
lation either when there is a very high variability in the offspring
distribution, or if we take in to account a form of selection and re-
combination (these terms will be defined below). Finally, we give a
brief introduction to the work of Bertoin and Le Gall about these
processes.

3.1 Definition and construction

3.1.1 Motivation

We saw in the previous chapter how Kingman’s coalescent is a suit-
able approximation for the genealogy of a sample from a population
which satisfies a certain number of conditions such as constant pop-
ulation size, mean-field interactions and neutral selection, as well as
low offspring variability. When these assumptions are not satisfied,
i.e., for instance, when size fluctuations cannot be neglected, or when
selection cannot be ignored, we need some different kind of coales-
cence process to model the genealogy. Assume for instance that the
population size has important fluctuations. E.g., assume that from
time to time there are “bottlenecks” in which the population size is
very small, due to periodical environmental conditions for instance.
In our genealogy, this will correspond to times at which a large pro-
portion of the lineages will coalesce. Similarly, if there is a large
impact of selection, individuals who get a beneficial mutation will
quickly recolonize an important fraction of the population, hence we
will observe multiple collision when tracing the ancestral lineages at
this time. Large variability in offspring distribution such as many
coastal marine species also leads to the same property that many
lineages may coalesce at once. In those situations, Kingman’s coa-
lescent is clearly not a suitable approximation and one must look for
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coalescent processes which allow for multiple mergers.

3.1.2 Definition

Of course, from the point of view of sampling, it still makes sense to
require that our coalescing process be Markovian and exchangeable,
and also that it defines a consistent process: that is, there exists an
array of numbers (λb,k)2≤k≤b which gives us the rate at which any
fixed k-tuple of blocks merges when there are b blocks in total. To ask
that it is consistent is to ask that these numbers do not depend on
n (the sample size), and that the numbers λb,k satisfy the recursion:

λb,k = λb+1,k + λb+1,k+1. (52)

Indeed, a given group of k blocks among b may coalesce in two ways
when reveal an extra block b+1: either these k coalesce by themselves
without the extra block, or they coalesce together with it. (For
reasons that will be clear later, at the moment we do not allow for
more than 1 merger at a time: that is, several blocks are allowed to
merge into 1 at a given time, but there cannot be more than 1 such
merger at any given time). We will refer to coalescent processes with
no simultaneous mergers as simple.

Definition 3.1. A family of n-coalescents is any family of simple,
Markovian, Pn-valued coalescing processes (Πn

t , t ≥ 0), such that Πn
t

is exchangeable for any t ≥ 0 and consistent in the sense that the
law of Πn restricted to [m] is that of Πm, for every 1 ≤ m ≤ n. It is
uniquely specified by an array of numbers satisfying the consistency
condition (52), where for 2 ≤ k ≤ b:

λb,k = merger rate of any given k-tuple of blocks among b blocks.

Naturally, given any consistent family of n-coalescents, there exists
a unique in law Markovian process Π with values in P such that the
restriction of Π to Pn has the law of Π.

Definition 3.2. The process (Πt, t ≥ 0), is a Λ-coalescent, or coa-
lescent with multiple collisions.
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3.1.3 Pitman’s structure theorems

Multiple collisions, of course, refer to the fact there are times at
which more than 2 blocks may merge, but also implicitly to the fact
that such mergers do not occur simultaneously. (Processes without
this last restriction have also been studied, most notably in [143].
They have enjoyed renewed interest in recent years, see, e.g., Taylor
and Veber [149] or Birkner et al. [35]).

The name of Λ-coalescent, however, may seem mysterious to the
reader at this point. It comes from the following beautiful character-
isation of coalescents with multiple collisions, which is due to Pitman
[131].

Theorem 3.1. Let Π be a coalescent with multiple collisions associ-
ated with the array of numbers (λb,k)2≤k≤b. Then there exists a finite
measure Λ on the interval [0, 1], such that:

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx) (2 ≤ k ≤ b). (53)

The measure Λ uniquely characterizes the law of Π, which is then
called a Λ-coalescent.

Proof. (sketch) Pitman’s proof is based on De Finetti’s theorem for
exchangeable sequences of 0’s and 1’s: it turns out that (52) is pre-
cisely the necessary and sufficient condition to have:

µi,j = E(Xi(1−X)j), i, j ≥ 0.

for some random variable 0 ≤ X ≤ 1, where µi,j = λi+j+2,j+2. (See
(23)-(25) in [131]).

This proof is clean but not very intuitive. We will launch below
into a long digression about this result, which we hope has the merit
of explaining why this result is true, even though, unfortunately this
heuristics does not seem to yield a rigorous proof. However, along
the way we will also uncover a useful probabilistic structure beneath
(53), which will then be used to produce an elegant construction of
Λ-coalescents.

The bottom line of this explanation is that Theorem 3.1 should be
regarded as a Lévy-Itô decomposition for the process Π. The main
reason for this as follows. Because we treat blocks as exchangeable
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particles (in particular, we do not differentiate between an infinite
block and a block of size 1), it is easy to convince oneself that a coa-
lescent with multiple collisions (Πt, t ≥ 0) (in the sense of definition
3.2), is a Lévy process, in the sense that for every t, s ≥ 0 we may
write, given Ft = σ(Πs, s ≤ t):

Πt+s = Πt ? Π′s (54)

where Π′s is independent from Ft and has the same distribution as
Πs. Here, the ? operation is defined as follows: for a partition π =
(B1, . . .) and a partition π′ = (B′

1, . . .), the partition ρ = π ? π′ is
defined by saying that we coagulate all the blocks of π whose labels
are in the same block of π′: for instance if i and j are in the same
block of π′, then Bi and Bj will be subsets of a single block of ρ. The
operation ? is noncommutative and does not turn P into a group.
However, it does turn it into what is known in abstract algebra as a
monoid (i.e., the operation is associative and has a neutral element
which is the trivial partition into singletons).

The identity (54) says that (Πt, t ≥ 0) may be considered a Lévy
process in the monoid (P, ?). At this point, it is useful to remind the
reader what is a Lévy processes: a real-valued process (Xt, t ≥ 0) is
called Lévy if it has independent and stationary increments: for every
t ≥ 0, the process (Xt+s−Xt, s ≥ 0) is independent from Ft and has
same distribution as the original process X. The simplest example of
Lévy processes are of course Brownian motion and the simple Poisson
process (an excellent introduction to Lévy processes can be found in
[27]). The most fundamental result about Lévy processes is the Lévy-
Itô decomposition, which says that any real-valued Lévy process can
be decomposed as a sum of a Brownian motion, a deterministic drift,
and compensated Poisson jumps. The simplest way to express this
decomposition is to say that the characteristic function of Xt may
written as:

E(eiqXt) = exp(tψ(q))

where

ψ(u) = c1iq − c2
q2

2
+

∫ ∞

−∞
eiqx − 1− qx1{|x|<1}ν(dx). (55)

Here, c1 ∈ R, c2 ≥ 0 and ν(dx) is any measure on R such that
∫

R
(|x|2 ∧ 1)ν(dx) < ∞. (56)
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A measure which satisfies (56) is called a Lévy measure, and the
formula (55) is called the Lévy-Khintchin formula. It says in partic-
ular that the evolution of X is determined by a Brownian evolution
together jumps and deterministic drift, where the rate at which the
process makes jumps of size x is precisely ν(dx). The integrability
condition (56) is precisely what must be satisfied in order to make
rigorous sense of that description through a system of compensation
of these jumps by a suitable drift.

The notion of Lévy process can be extended to a group G, where
here we require only the process X to satisfy that X(t)−1X(t + s)
is independent from Ft, and has the same distribution as X(s), for
every s, t ≥ 0. Without entering into any detail, when the group
G is (locally compact) abelian, the Fourier analysis approach to the
Lévy-Khintchin formula (55) is easy to extend (via the characters
of G, which are then themselves a locally compact abelian group)
and yields a formula similar to (55). In noncommutative setups, this
approach is more difficult but nonetheless there exist some important
results such as a result of Hunt for Lie groups [100]. (I learnt of this
in a short but very informative account [7]).

I am not aware of any result in the case where the group G is
replaced by a non-abelian monoid such as P, but it is easy to imagine
that any Lévy process in P (i.e., a process which satisfies (54) may
be described by a measure ν on the space P, which specifies the
infinitesimal rate at which we multiply the current partition Πt by
π:

ν(dπ) = rate: Πt → Πt ? π. (57)

Now, note that in our situation, we have some further information
available: we need our process to be exchangeable, and to not have
more than 1 merger at a time, i.e., to be what we called simple. Thus
ν must be supported on measures with only one nontrivial block, and
must be exchangeable. By De Finetti’s theorem, the only possible
way to do that is to have a (possibly random) number 0 < p < 1,
and have every integer i take part into that block by tossing a coin
with success probability p. Let κp denote this random partition.

Definition 3.3. The operation π 7→ π ? κp is called a p-merger of
the partition π.

In words, for every block of the partition π, we toss a coin whose
probability of heads is p. We then merge all the blocks that come
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up heads. That is, we coalesce a fraction p of all blocks through
independent coin toss. Therefore, we see that (57) transforms into:
given a coalescent with multiple collision (Πt, t ≥ 0), there exists a
measure ν on [0, 1], such that

at rate ν(dp) : perform a p-merger.

If this is indeed the case, then note that the numbers λb,k satisfy:

λb,k =
∫ 1

0
pk(1− p)b−kν(dp).

This is now looking very close to the statement of Theorem 3.1. It
remains to see why ν(dp) may be written as p−2Λ(dp) where Λ is a
finite measure. (This is, naturally, the equivalent of the integrability
condition (56) in this setup). However, this is easy to see: imagine
that there are currently n blocks. If p is very small, in fact small
enough that only 1 block takes part in the p-merger, then we may as
well ignore this event since it has no effect on the process. In order
to have a well-defined process, thus suffices that the rate at which
at least two blocks merge is finite (when there is a finite number of
blocks), and thus this condition reads:

∫ 1

0

(
n

2

)
p2ν(dp) < ∞. (58)

Naturally, this is the same as asking that ν(dp) can be written as
p−2Λ(dp) for some finite measure Λ. Thus

λb,k =
∫ 1

0
pk−2(1− p)b−kΛ(dp) (59)

for some finite measure Λ on [0,1]. This is precisely the content of
Theorem 3.1.

I do not know whether this approach has ever been made rigor-
ous (or has ever been attempted). The problem, of course, is that
the Lévy-Itô decomposition (57) is not known a priori for general
monoids. This is a pity, as I think this approach is more satisfying.

However, all this digression has not been in vain, as on the way we
have discovered the probabilistic structure of a general Λ-coalescent.
It also gives us a nice construction of such processes in terms of a
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Poisson point process. This construction is often referred to as the
Poissonian construction. (As explained above in length, this should
really be regarded as the Lévy-Itô decomposition of the Lévy process
(Πt, t ≥ 0). We summarise it below. The construction is easier when
Λ has no mass at 0: Λ({0}) = 0.

Theorem 3.2. Let Λ be a measure on [0, 1] such that Λ({0}) = 0.
Let (pi, ti)i≥1 be the points of a Poisson point process on (0, 1] ×
R+ with intensity p−2Λ(dp) ⊗ dt. The process (Πt, t ≥ 0) may be
constructed by saying that, for each point (pi, ti) of the point process,
we perform a pi-merger at time ti.

Recall that a p-merger is simply defined by saying that we merge
a proportion p of all blocks by independent coin-toss. This con-
struction is well-defined because the restriction Πn of Π to Pn is
well-defined for every n ≥ 1, thanks to the remark that the total
rate at which pairs coalesce is finite (58). As usual, since the re-
strictions Πn are consistent, this uniquely defines a process Π on P,
which has the property that Π|[n] = Πn.

We stress that this structure theorem is often the key to proving
results about Λ-coalescents, so we advise the reader to make sure
this sinks through before proceeding further. At the risk of boring
the reader, here it is again in simple words: a coalescent process
with multiple collisions is entirely specified by a finite measure Λ on
(0,1): p−2Λ(dp) gives us the rate at which a fraction p of all blocks
coalesces (at least when Λ({0}) = 0).

The case where Λ has an atom at 0, say Λ({0}) = ρ for some
ρ > 0, is not much different. It can be seen from (53) that this
number comes into play only if k = 2: that is, for binary mergers.
It is easy to see what happens: decomposing

Λ(dp) = ρδ0(dp) + Λ̂(dp) (60)

where Λ̂ has no mass at 0, the dynamics of (Πt, t ≥ 0) can be de-
scribed by saying that, in addition to the Poisson point process of
p-mergers governed by p−2Λ̂(dp), every pair of blocks merges at rate
ρ. More formally:

Corollary 3.1. Let Λ be a measure on (0,1) and let ρ := Λ({0}).
Let (pi, ti)i≥1 be the points of a Poisson point process on (0, 1]×R+

with intensity p−2Λ̂(dp)⊗dt, where Λ̂ is defined by (60). The process
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(Πt, t ≥ 0) may be constructed by saying that, for each point (pi, ti) of
the point process, we perform a pi-merger at time ti, and, in addition,
every pair of blocks merges at rate ρ.

Thus, the presence of an atom at zero adds a “Kingman compo-
nent” to the Λ̂-coalescent. We will see below that, indeed, when Λ
is purely a Dirac mass at 0, the corresponding Λ-coalescent is King-
man’s coalescent (sped up by an appropriate factor corresponding to
the mass of this atom).

To conclude this section on Pitman’s structure theorems, we give
the following additional interpretation for the significance of the mea-
sure Λ.

Theorem 3.3. Let Λ be a finite measure on [0, 1] with no mass at
zero. Let (Πt, t ≥ 0) be a Λ-coalescent. Let T be the first time that
1 and 2 are in the same block. Then T is an exponential random
variable with parameter Λ([0, 1]). Moreover, if F is the fraction of
blocks that take part in the merger occurring at time T , then F is a
random variable in (0, 1), with law:

P(F ∈ dx) =
Λ(dx)

Λ([0, 1])
. (61)

In other words, the finite measure Λ, normalised to be a probability
measure, gives us the law of the fraction of blocks that are coalescing,
when two given integers first become part of the same block.

Proof. The proof is obvious from Theorem 3.2. Until 1 and 2 coa-
lesce, their respective blocks are always B1 and B2 because of our
convention to label blocks by increasing order of their least elements.
Given an atom of size p, the probability that 1 and 2 coalesce is
precisely p2. Thus, define a thinning of the Poisson point process
(t′i, p

′
i), where each mark (ti, pi) is kept with probability p2

i . By clas-
sical theory of Poisson point processes, the resulting point process is
also Poisson, but with intensity measure Λ(dp) ⊗ dt. Thus the rate
at which they coalesce is precisely Λ([0, 1]), and the first point of this
process has a distribution which is proportional to Λ.

3.1.4 Examples

It is high time to give a few examples of Λ-coalescents. Naturally,
the main example of a Λ-coalescent is that of Kingman’s coalescent:
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Example 1. Let Λ be the unit Dirac mass at 0:

Λ(dx) = δ0(dx).

In that case, (53) translates into λb,k = 0 except if k = 2, in which
case λb,2 = 1. Thus the corresponding Λ-coalescent is nothing but
Kingman’s coalescent (every pair of blocks is merging at rate 1).

Example 2. Another measure which will play an important role
towards the end of these notes will be the case where Λ(dx) = dx is
the uniform measure on (0, 1). In this case the Λ-coalescent is known
as the Bolthausen-Sznitman coalescent , and the transition rates λb,k

can be computed more explicitly as

λb,k =
(k − 2)!(b− k)!

(b− 1)!
=

[
(b− 1)

(
b− 2
k − 2

)]−1

, 2 ≤ k ≤ b. (62)

The Bolthausen-Sznitman coalescent first arose in connection with
the physics of spin glass, an area about which we will say a few words
at the end of these notes. But this is not the only area for which
this process is relevant: for instance, we will see that it describes
the statistics of a certain combinatorial model of random trees and
is thought to be a universal scaling limit in a wide variety of mod-
els which can be described by “random travelling waves”: all those
topics will be (briefly) discussed in that last chapter.

Example 3. Let 0 < α < 2. Assume that Λ(dx) is the Beta(2−α, α)
distribution:

Λ(dx) =
1

Γ(2− α)Γ(α)
x1−α(1− x)α−1dx. (63)

The resulting coalescent is simply called the Beta-coalescent with
parameter α. It is an especially important family of coalescent pro-
cesses, for both theoretical and practical reasons: on the one hand
we will see that they are related to the genealogy of populations
with large variation in the offspring distribution, and on the other
hand, they are intimately connected with the properties of an object
known as the stable Continuum Random Tree. This correspondence
and its consequences will be discussed in the next chapter.

Example 4. A peculiar coalescent arises if Λ is simply taken to be a
Dirac mass at p = 1. In that case, nothing happens for an exponen-
tial amount of time with mean 1, at which point all blocks coalesce
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into 1. The corresponding coalescent tree is then star-shaped : there
is one root and an infinite amount of leaves connected to it. For this
reason some authors call this process the star-shaped coalescent

Let 0 < α < 2, and consider the Beta-coalescent (Πt, t ≥ 0) de-
fined by (63) in Example 3. Note that when α = 1, this is just
the Bolthausen-Sznitman coalescent, while when α → 2−, the Beta
distribution is an approximation of the Dirac mass, and hence if µα

denotes the distribution (63), we have:

µα ⇒ δ0, (α → 2).

where ⇒ is the vague convergence (convergence in distribution).
Thus one should think of a Beta-coalescent with 1 < α < 2 as
some kind of interpolation between Kingman’s coalescent and the
Bolthausen-Sznitman coalescent. In fact, we have:

Theorem 3.4. Let (Π(α)
t , t ≥ 0) denote a Beta-coalescent with 1 <

α < 2. Then as α → 2 from below, we have:

(Π(α)
t , t ≥ 0) −→d (Πt, t ≥ 0),

where Π is Kingman’s coalescent, and −→d stands for convergence
in distribution in the Skorokhod space D(R+,P).

An illustration of this result is given in Figure 7, which was gen-
erated by Emilia Huerta-Sanchez, whom I thank very much for al-
lowing me to use this picture.

3.1.5 Coming down from infinity

Fix a finite measure Λ on [0, 1], and consider a Λ-coalescent (Πt, t ≥
0). One of the first things we saw for Kingman’s coalescent is that it
comes down from infinity, meaning that almost surely after any pos-
itive amount of time, the total number of blocks has been reduced
to a finite number (Theorem 2.1). Given that in Kingman’s coales-
cent only binary mergers are possible, and that here we may have
many more more blocks merging at once, one may naively think that
this should be also true for every Λ-coalescent. In fact, such is not
the case, and whether or not a given Λ-coalescent comes down from
infinity depends on the measure Λ. This is part of a more general
paradox, which we will describe in more details later, that Kingman’s
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Figure 7: The Beta-coalescent for two different values of the pa-
rameter α: top, α = 1.2; bottom α = 1.9. Courtesy of Emilia
Huerta-Sanchez.
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coalescent is actually the one in which coalescence is strongest (see
Corollary 4.2).

It is easy to see that there exists some Λ-coalescents which do not
come down from infinity. Indeed, for some measures Λ, Πt has a
positive fraction of dust for every t > 0 almost surely (and hence an
infinite number of blocks):

Theorem 3.5. Let D be the event that for every t > 0, Πt has some
singletons. Then P(D) = 1 if and only if

∫ 1

0
x−1Λ(dx) < ∞. (64)

In the opposite case, P(D) = 0.

Proof. (sketch) If this integral is finite, then the rate at which a
given block takes part in a merger is finite, and so after any given
amount of time, there remains a positive fraction of singletons that
have never taken part in a merger. The converse uses a zero-one
law for Π along the lines of Blumenthal’s zero-one law (details in
[131]).

For instance, if α < 1, then the Beta-coalescent has a positive
fraction of singletons at all times, while this fails if α ≥ 1. In par-
ticular, the Bolthausen-Sznitman coalescent does not have any dust.
We will see below that the Bolthausen-Sznitman coalescent (which,
we remind the reader, corresponds to the case α = 1 of the Beta-
coalescent) is a two-sided borderline case, in the sense that it does
not come down from infinity but has no dust. However if α is larger
than 1, then the corresponding coalescent comes down from infinity
(Corollary 3.2), and if it is smaller then the coalescent has dust with
probability 1.

What are the conditions on Λ to ensure coming down from infinity?
The first thing that is needed is to say that, if the number of blocks
becomes finite, this can only happen instantly near time zero, except
in the case of the star-shaped coalescent.

Theorem 3.6. Assume that Λ({1}) = 0. Let E be the event that
for every t > 0, Πt has only finitely many blocks. Let F be the event
that Πt has infinitely many blocks for all t > 0. Then

P(E) = 1 or P(F ) = 1.
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If P(E) = 1 we say that the coalescent comes down from infinity,
and if P(F ) = 1 we say that the process stays infinite.

Clearly, the assumption Λ({1}) = 0 is essential, or otherwise we
get a coalescence of all blocks in finite positive time. This possibil-
ity being taken away, the argument is a (fairly simple) application
of the zero-one law mentioned above together with the consistency
property. See [131] for details.

[131] left open the question of finding a practical criterion for de-
ciding whether a given Λ-coalescent comes down from infinity. The
first answer came from the PhD thesis of Jason Schweinsberg, who
proved a necessary and sufficient condition for this. We describe his
result now. Given a finite measure Λ, let λb,k denote the rate (53)
and let

λb =
b∑

k=2

(
b

k

)
λb,k. (65)

Note that λb is the total coalescence rate when there are b blocks. It
turns out that the relevant quantity is the number

γb =
b∑

k=2

(k − 1)
(

b

k

)
λb,k. (66)

To explain the relevance of this quantity, note that if there are cur-
rently Nt = b blocks, then after dt units of time

E(Nt+dt|Nt = b) = b− γbdt (67)

since if a k-tuple of blocks merges, then this corresponds to a decrease
of Nt by (k−1). Define a function γ : R+ → R by putting γ(b) := γbbc
for all b ∈ R+. Following the differential equation heuristics (23) al-
ready used for Kingman’s coalescent, we see that if u(t) = E(Nt),
from (67) we expect u(t) to approximately solve the differential equa-
tion: {

u′(t) = −γ(u(t));
u(0) = ∞.

(68)

Forgetting about problems such as discontinuities of γ and rigour in
general, we get by solving formally the differential equation (68):

∫ t

0

u′(s)
γ(u(s))

ds = −t (69)



Coalescent theory 77

so that making the change of variable x = u(s),
∫ ∞

u(t)

dx

γ(x)
= t. (70)

We see hence that u(t) is finite if and only if
∫∞ dx

γ(x) < ∞. Remem-
bering that γ(x) = γbxc leads us to Schweinsberg’s criterion [142]:

Theorem 3.7. Let Λ be a finite measure on [0, 1]. The associated
Λ-coalescent comes down from infinity if and only if

∞∑

b=2

γ−1
b < ∞. (71)

Proof. (sketch) We will sketch the important steps that lead to The-
orem 3.7. The first one is to define Tn which is the time it takes to
coalesce all n first integers. Then we have naturally, 0 = T1 ≤ T2 ≤
. . . ≤ Tn, and note that the coalescent comes down from infinity if
and only if T∞ := limn→∞ Tn < ∞ almost surely.

Assume that (71) holds. Fix n ≥ 1 and consider the restriction
Πn of Π to [n]. Let R0 = 0, and define Ri to be sequence of times at
which Πn loses at least one block, and if there is only one block left
then define Ri = Ri−1. Thus Rn−1 = Tn as after n− 1 coalescences
we are sure to be done. Thus if Li = Ri − Ri−1 we have E(Tn) =∑n−1

i=1 E(Li). Now, conditioning upon Ni−1 := NTi−1 the number of
blocks at time Ti−1, we see that Li is exponentially distributed with
rate λNi−1 so long as Ni−1 > 1. Thus

E(Tn) =
n−1∑

i=1

E(λN−1
i−1

1{Ni−1>1}). (72)

Observe that, if Ji = Ni−1−Ni is the decrease of N at this collision,
we have

P(Ji = k − 1|Ni−1 = b) =
(

b

k

)
λb,k

λb

and thus E(Ji|Ni−1 = b) = γb/λb. Plugging this into (72) yields:

E(Tn) =
n−1∑

i=1

E(γ−1
Ni−1

E(Ji|Ni−1))
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since when Ni−1 = 1, Ji = 0 anyway. It follows that

E(Tn) = E(
n−1∑

i=1

γ−1
Ni−1

Ji). (73)

Looking at the random variable in the expectation of the right-hand
side in (73), X =

∑n
i=1 γ−1

Ni−1
Ji, we see that, intuitively speaking this

random variable is very close to
∑n

b=2 γ−1
b , as γ−1

Ni−1
will be repeated

exactly Ji times. Thus if Ji isn’t too big and if γb doesn’t have too
wild a behaviour, it is easy to understand how this yields the desired
result. For instance, we get an easy upper-bound by monotonicity:
some simple convexity arguments show that γb is nondecreasing with
b, and hence

X = γ−1
Ni−1

Ji ≤
Ni∑

j=Ni−1

γ−1
j

Thus under the assumption (71), we get by the monotone conver-
gence theorem E(T∞) < ∞ and thus the coalescent comes down from
infinity.

The other direction is a little more delicate, and the main thing to
be proved is that if the coalescent comes down from infinity, i.e., if
T∞ < ∞, then in fact this random variable must have finite expec-
tation. Granted that, a dyadic argument applied to (73) does the
trick. Thus we content ourselves with verifying:

Lemma 3.1. The coalescent comes down form infinity if and only
if E(T∞) < ∞.

Proof. Let Am be the event that Tm > Tm−1, that is, at time Tm−1,
Πm still has two blocks. Then the expected time it takes for these
two blocks to coalesce is just λ−1

2,2 =: ρ. Thus

E(T∞) =
∞∑

m=2

E(Tm − Tm−1) = ρ
∞∑

m=2

P(Am).

Hence, assuming E(T∞) = ∞, we get
∑∞

m=2 P(Am) = ∞. An ap-
plication of the martingale version of the Borel-Cantelli lemma then
shows that Am occurs infinitely often almost surely. When this is so,
T∞ is greater than an infinite number of i.i.d. nonzero exponential
random variables, and hence T∞ = ∞ almost surely. This finishes
the proof of Lemma 3.1.
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The reader is referred to the original paper [142] for more details
about the rest of the proof.

As an application of this criterion, it is easy to conclude:

Corollary 3.2. Let 0 < α < 2. The Beta-coalescent with parameter
α comes down from infinity if and only if α > 1. In particular, the
Bolthausen-Sznitman coalescent does not come down from infinity.

We will see later that another (equivalent) criterion for coming
down from infinity is that

∫ ∞

1

dq

ψ(q)
< ∞

where ψ(q) =
∫ 1
0 (e−qx − 1 + qx)x−2Λ(dx) is the Laplace exponent

of a certain Lévy process. As we will see, this criterion is related to
critical properties of continuous-state branching processes. There is
in fact a strong connection between Λ-coalescents and these branch-
ing processes; this connection will be explored in the next section,
and hence this will give a different proof of Theorem 3.7. Along
the way, we will be able to make rigorous the limit theorem which
is suggested by the heuristic approach outlined before this theorem:
that is, for small times t > 0:

Nt ≈ u(t), where
∫ ∞

u(t)

db

γ(b)
= t. (74)

3.2 A Hitchhiker’s guide to the genealogy

This section is devoted to the study of a few simple models where the
genealogy is well-approximated by Λ-coalescents. There are a num-
ber of models where such convergence is discussed. For instance,
Sagitov [139] gave a simple model which is closely related in spirit
to the first one we will be studying. (Remarkably, that paper was
published simultaneously to that of Pitman [131] and, although in-
dependent, it also contained a definition of Λ-coalescents, so that
both Pitman and Sagitov share the credit for the discovery of this
process). We have chosen to discuss two main models. These are:

1. a Galton-Watson model due to Schweinsberg [144] where the
offspring distribution is allowed to have heavy tails,
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2. A model with selection and recombination (also known as hitch-
hiking), studied by Durrett and Schweinsberg [68].

We also note that recently, Eldon and Wakeley [70] came up with
a model which illustrates further the impact of offspring variability
and gives rise to Λ-coalescents for the genealogies. Some biological
and statistical implications of these findings are discussed in [70] and
[71].

3.2.1 A Galton-Watson model

We now describe the population model that we will work with in
this section. This is a model derived from the well-known Galton-
Watson branching process, but, unlike these processes, the popula-
tion size is kept constant by a sampling mechanism: we assume that
the offspring distribution of an individual has mean 1 < µ < ∞,
so that by the law of large numbers, if there are N individuals in
the population at some time t, then the next generation consists of
approximately Nµ > N individuals. Instead of keeping all those
Nµ individuals alive, we declare that only N of them survive, and
they are chosen at random among the Nµ individuals of that genera-
tion. Thus the population size is constant equal to N . Formally, the
model is defined generation by generation, in terms of i.i.d. offsprings
X1, . . . , XN (where the distribution of X allows for heavy tails and
is specified later), and from random variables (νi)N

i=1 which are ex-
changeable and have the property that

∑N
i=1 νi = N . The variable νi

corresponds to the actual offspring number of individual i after the
selection step. Note that this population model may be extended to
a bi-infinite set of times Z by using i.i.d. copies {(νi(t))N

i=1, t ∈ Z}:
thus this model belongs to the class of Cannings populations models
discussed in Theorem 2.5.

Having defined this population dynamics, we consider as usual the
coalescing process obtained by sampling n < N individuals from the
population at time 0, and considering their ancestral lineages: that
is, let (Πn,N

t , t = 0, 1, . . .) be the Pn-valued process defined by putting
i ∼ j if and only if individuals i and j share the same ancestor at
generation −t. This is the by-now familiar ancestral partition. We
now specify the kind of offspring distribution we have in mind for
the Galton-Watson process, which allows for heavy-tails. We assume
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that there exists α ≥ 1 and C > 0 such that for all x ≥ 0:

P(X > x) ∼ Cx−α. (75)

One can also think of the case

P(X = x) ∼ C ′x−α−1, (76)

although (75) is a slightly weaker assumption and so we prefer to
work with it. When α > 1, µ := E(X) < ∞ and we further assume
that E(X) > 1, so that the underlying Galton-Watson mechanism is
sueprcritical. Recall that in Cannings models, the correct time scale
is given by the inverse coalescence probability c−1

N , where:

cN = E
(

ν1(ν1 − 1)
N − 1

)
. (77)

As was already discussed, cN is the probability that two randomly
sampled without replacement at random from generation 0 have the
same parent at generation −1, and thus it is the probability of coa-
lescence of any two lineages. Schweinsberg’s result states that there
is a phase transition at α = 2 for the behaviour of the genealogies.

Theorem 3.8. Assume (75) and µ > 1. For any n ≥ 1, as N →∞:

1. If α ≥ 2, the genealogy converges to Kingman’s coalescent.

2. If 1 ≤ α < 2, the genealogy converges a Beta-coalescent with
parameter α.

As usual, the formal statement which is contained in the informal
wording of the theorem is that, in the case α ≥ 2, (Πn,N

t/cN
, t ≥ 0), con-

verges to Kingman’s n-coalescent for every n ≥ 1, while it converges
to the restriction of a Beta-coalescent to [n] if α ∈ [1, 2).

Remark 3.1. Note that α = 2 is precisely the critical value which
delimitates the convergence of the rescaled random walks (Sn :=∑n

i=1 Xi) towards a Brownian motion or a Lévy process with jumps.
As we will see in the next chapter and in the appendix, this is not a
coincidence: Galton-Watson trees can be described in terms of pro-
cesses known as height functions, or contour processes, which are
close relative of random walks with step distribution X. If this step
distribution is in the domain of attraction of a normal random vari-
able, we thus expect a tree which is close to the Brownian continuous
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random tree, for which the genealogy is closely related to Kingman’s
coalescent, as is proved in [16] and will be shown later in these notes.
On the contrary, if the step distribution is in the domain of a stable
random variable with index 1 < α < 2, then the limiting tree is called
the stable continuum random tree and its genealogy is known to be
given by Beta-coalescents ([20]), as will be discussed in more details
later on.

Remark 3.2. When α < 1, the coalescent obtained from the ances-
tral partitions converges to a coalescent with simultaneous multiple
collisions. As we do not enter in the detail of these processes in these
notes, we only refer the reader to part (d) of Theorem 4 in [144].

Proof. We will go over a few of the important steps of the proof
of Theorem 3.8, leaving as usual the more difficult details for the
interested reader to find out in the original paper [144].

Case 1. Let α ≥ 2. The main idea is to use Möhle’s lemma
(Theorem 2.5). Thus it suffices to check that (31) holds. Recall that
this condition states that

E(ν1(ν1 − 1)(ν1 − 2))
N2cN

→ 0

as N →∞. It is easy to see that this can be rephrased as:

N

cN
E

(
X1(X1 − 1)(X1 − 2)

S3
N

1{SN≥N}

)
−→

N→∞
0, (78)

where X1 is the offspring number of individual 1 before selection,
and SN = X1 + . . . + XN . Now, it is easy to see, when α > 2, that
cN = E(X1(X1 − 1)/S2

N ) ∼ c/N for some c > 0. Thus (78) reduces
to showing that

N2E
(

X1(X1 − 1)(X1 − 2)
S3

N

1{SN≥N}

)
−→ 0.

However,

X1(X1 − 1)(X1 − 2)
S3

N

1{SN≥N} ≤
X3

1

max(X3
1 , N3)

and thus

E
(

X1(X1−1)(X1−2)
S3

N

1{SN≥N}

)
≤

N∑

k=0

k3

N3
P(X =k) + P(X > N)
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Multiplying by N2 and using (75) it is easy to see that this converges
to 0, and hence the condition in Möhle’s lemma (31) is verified.

Case 2. Assume that 1 < α < 2. There are two steps to ver-
ify. The first one is to compute the asymptotics of cN , the scale
parameter.

Lemma 3.2. We have the asymptotics, as N →∞:

cN ∼ CN1−ααµ−αB(2− α, α) (79)

where B(2− α, α) := Γ(α)Γ(2− α).

Proof. (sketch) Note that

cN ∼ E
(

X1(X1 − 1)
S2

N

1{Sn≥N}

)
.

Write SN = X1 + S′N , where S′N = X2 + . . . XN . By the law of large
numbers, S′N ≈ Nµ, so

cN ≈ E
(

X(X − 1)
(X + M)2

)

with M = Nµ. Thus (79) follows from the statement

lim
M→∞

Mα−1E
(

X(X − 1)
(X + M)2

)
= CαB(α, 2− α). (80)

This is purely a statement about the distribution of X, which is
shown by tedious but elementary manipulations.

The second ingredient of the proof is to show a limit theorem for
the probability that there is a p-merger for some 0 < p < 1 at a
given generation. Note that this is essentially the same as asking
that X1/SN ≥ p.

Lemma 3.3.

lim
N→∞

N

cN
P(

X1

SN
≥ p) =

1
B(2− α, α)

∫ 1

p
y1−α(1− y)α−1y−2dy. (81)

Proof. (sketch) To explain how this comes about, we follow the same
heuristic as above, and write:

X1

SN
≈ X1

X1 + Nµ
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so that:

P
(

X1

SN
≥ p

)
≈ P

(
X1

X1 + Nµ
≥ p

)

= P
(

X1 ≥ p

1− p
µN

)
.

Using the assumption (75), we deduce, using Lemma 3.2:

N

cN
P

(
X1

SN
≥ p

)
≈ 1

αB(2− α, α)

(
1− p

p

)α

.

Using the substitution z = (1−y)/y in the integral of (81), the right-
hand side can be rewritten as a Beta-integral, so this is precisely what
was requested.

The last lemma shows that the infinitesimal rate of a p-merger
is, for any 0 < p < 1, approximately what it would be if this was
a Beta-coalescent. From there, is not hard to conclude to the case
2 of Theorem 3.8 (the i.i.d. structure of the generations gives the
asymptotic Markov property of the coalescent). Thus the proof is
complete.

Remark 3.3. Theorem 3.8 should be compared to the earlier paper
of Sagitov [139]: in that paper, general Cannings model are consid-
ered and it is shown that the genealogy could converge to any Λ-
coalescent under the appropriate assumptions. (This is what led him
to define Λ-coalescents in the first place, as opposed to the more
“abstract” route based on consistency and exchangeability which was
followed by Pitman and in these notes). His main assumption is
that N2σ2(N)P(ν1 > Nx) → ∫ 1

x y−2Λ(dy), together with some addi-
tional moment assumptions. The model of Theorem 3.8 is of course
a particular case of the Cannings model, however checking this main
assumption is where all the work lies.

3.2.2 Selective sweeps

In this section we describe the effect of a phenomenon called selective
sweeps on the genealogy of a population. As usual we will start by
explaining what we are trying to model (that will lead us to the
notion of recombination, hitchhiking and selective sweeps, all these
being fundamental concepts in population genetics) and then explain
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the mathematical model and associated results, which are due to
Durrett and Schweinsberg [68].

This model is our first which doesn’t ignore selection. When a
favourable allele is generated through mutation, it quickly spreads
out to the whole population (this is easy to see with variations of
the Moran model: suppose at each step we have a higher chance to
kill an A individual than an a individual: such a selective advantage
quickly drives the A population out with positive probability). When
we look at the ancestral lineages, what happens is that all lineages
quickly coalesce into one, which is the lineage corresponding to the
individual that got the mutation. Thus we have approximately a
star coalescent at this time, which isn’t so interesting. However,
some interesting things occur when we look at another location of
the genome (one says locus). The reason why this is interesting is
that there are some nontrivial correlations between the genotypes of
an individual at different locations.

The main mechanism which gives rise to this correlation is called
recombination. This is a type of mutation which rearranges large
portions of one’s genetic material: more precisely, it causes two ho-
mologous chromosomes to exchange genetic material. As a result,
a chromosome that is transmitted to a recombinant’s offspring con-
tains genetic material both from the mother and the father (whereas
normally, it is only that of one of the two parents). Recombination
is a truly fundamental process of life, as it guarantees a mixing of
the genetic material.

Suppose a selective sweep occurred at some locus α, where the
allele a, being favourable, drove out the resident A population, and
consider a different locus β along the same chromosome, this one
being selectively neutral. Now, in a sample of the population, after
the sweep, most people descend from the initial mutant that got the
favourable a allele at locus α. On the face of it, one would thus
expect that at locus β, everybody should get the same allele as the
one that this individual had at locus β (say b). However, because
of recombination, some individuals got their genetic material at the
locus β from individuals which may not have been a descendant from
the original mutant. As a consequence, a fraction of individuals “es-
cape” the selective sweep. Let Θ be the random ancestral partition,
which (as usual) tells us which individuals from the sample of size n
have the same ancestors at the time of the advantageous mutation.
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Then this elementary reasoning shows that this random partition is
likely to be “close” to the partition κp which defines p-mergers: that
is, with one nontrivial block B which contains a positive fraction p of
all integers, selected by independent coin-tossing (in our description,
1−p is the probability to escape the sweep). Of course, this demands
some care, as there can be several sources of error in this reasoning
(for instance, once a lineage escapes the sweep by recombination,
the parent of the recombinant could himself be a descendant of the
initial mutant, or individuals who escape the sweep may coalesce
together - however, all those things are unlikely if the sweep occurs
rapidly compared to the time scale of Kingman’s coalescent).

The fact that different loci are not independent is called Linkage
desequilibrium so we have seen how recombination is a (main) con-
tributor of this desequilibrium. That a selectively neutral allele can
quickly invade a large part of the population due to linkage desequi-
librium (for instance through recombination with a favourable allele)
is known as Genetic Hitchhiking . I believe that the first rigorous in-
vestigation of this phenomenon goes back to Maynard-Smith and
Haigh [118] in 1974, which was another cornerstone of theoretical
population genetics.

Model. It is time to define a model and state a first theorem.
First, let 0 < s < 1 be the selective advantage of the allele a: we work
with a Moran model with selection, which says that every time an a is
replaced by an A individual, this change is rejected with probability
s. Let 0 < r < 1 be the recombination probability at locus β: in our
setting, this means that when a new individual is born, it adopts
the genetic material of his parent at both loci most of the time,
but with probability r, the allele at locus β comes from a different
parent who is selected uniformly at random in the population (this
is because we are treating the two parents as two separate members
of the population).

Theorem 3.9. (Durrett and Schweinsberg [67], [68])
Let p = exp(−r(log N)/s). Assume that there exists C1 such that
r < C1/ log N . Then there exists C > 0 such that, conditionally
given that allele a eventually invaded the whole population:

dTV (Θ, κp) <
C

log N
. (82)
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Here dTV denote the total variation distance between the law of
the random partition Θ and that of the p-merger partition κp:

dTV (Θ, κp) = sup
π∈Pn

|P(Θ = π)− P(κp = π)|.

We note that martingale arguments imply that the probability that
allele a eventually invades the whole population (and thus that a
selective sweep occurs) is

s

1− (1− s)N
,

which is approximately s if s is large compared to 1/N , or approxi-
mately 1/N if s is smaller.

While Theorem 3.9 tells us what the genealogies look like between
the beginning of the selective sweep and its end, in reality that is not
what we care about: we do not simply wish to trace ancestral lineages
back to the most recent selective sweep, but we wish to describe the
entire genealogical tree of the sample of the population we are looking
at. In that case, it is more likely that the genealogy has been affected
by a series of selective sweeps that have occurred at various portions
of the genome. We still assume that the locus we are considering
is neutral, but study the combined effects of recombination after a
series of selective sweeps. Of course, we cannot expect the selective
advantage s and recombination probability r to be the same during
all those events: this depends on the type of mutation, but also
on the position of this advantageous mutation with respect to the
observed locus: the further away this advantageous mutation occurs,
the smaller the recombination probability r. This led Gillepsie [89]
to propose the following:

Model. We run the usual Moran model dynamics. In addition,
the chromosome is identified with the interval I = [−L,L] and we
observe the locus at position x = 0. Mutations occur as a point
process

P =
∑

i≥1

δ(ti,xi,si)

on the state space [0,∞) × [−L,L] × (0, 1). The first coordinate
stands for time, the second for the position on the chromosome,
and the third coordinate s is the selective advantage associated with
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this mutation. We assume that P is a Poisson point process, whose
intensity measure K is given by:

K(dt, dx, ds) = dt⊗ µ(dx, ds)

where the measure µ(dx, ds) governs the rate of beneficial mutations
with selective advantage s occurring at position x. We also assume
given a function r : [−L,L] → (0, 1), which tells us what is the
recombination probability r when there is a mutation at position
x along the chromosome. The function r that we have in mind is
something like r(x) = r|x| (i.e., the recombination probability is
proportional to the distance), but we will simply assume that:

1. r(0) = 0;

2. r is decreasing on [−L, 0] and increasing on [0, L].

In general, we will work with a Poisson point process P = PN where
the subscript indicates a possible dependence on the total popula-
tion size N , and will do so consistently throughout the rest of this
section. Strictly speaking, one must also specify if a selective sweep
starts when a previous one hasn’t already been completed. Here we
will simply reject this possibility (in the regime we will study, this
possibility is too infrequent anyway).

We may now state Durrett and Schweinsberg’s key approximation
for this model (Theorem 2.2 in [68]):

Theorem 3.10. Assume that the functions rN is such that (log N)rN

converges uniformly towards a function R : [−L,L] → (0,∞) satis-
fying (i) and (ii). Suppose also that NµN converges weakly to a
measure µ. Then the genealogies, sped up by a factor of N , con-
verge (for finite-dimensional distributions) to a Λ-coalescent, where
Λ = δ0 + x2η(dx), where

η([y, 1]) =
∫ L

−L

∫ 1

0
s1{e−r(x)/s≥y}µ(dx, ds). (83)

The term “s” in the integrand corresponds to requiring that the
sweep is successful, and the other term comes directly from Theorem
3.9. Note that (as noted in [68]) the finite-dimensional distribution
convergence may not be strengthened to a Skorkohod-type conver-
gence, as there are in reality several transitions occurring “simulta-
neously” when there is a single selective sweep.
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To get some intuition for (83), it helps to consider a few examples.
If all mutations have the same selective advantage s, and if rN (x) =
r/ log N for some fixed r > 0, with all mutations occurring at rate
α/N for some α > 0, then the measure η which appears in Theorem
3.10 is a point mass at p = e−r/s of mass sα.

If now µ(dx, ds) = αdx⊗δs (that is, the selective advantage is still
constant and the mutation rate is constant along the chromosome,
with total rate αL/N), and if r is constant, then Λ = δ0 +Λ0 and Λ0

has density cy for e−rL/s < y < 1 and 0 otherwise, with c = e2αs2/r.
In particular, as L → ∞ (infinitely long chromosomes) this is the
measure Λ0(dy) = cydy for all 0 < y < 1.

Finally, note that any measure Λ which contains a unit mass at 0
may arise in Theorem 3.10 (see example 2.5 in [68]).

Comments

1. The upper-bound in Theorem 3.9 is of size 1/ log N , which, in
practice, is not that small. Durrett and Schweinsberg prove that
a better approximation can be obtained by using a coalescent with
simultaneous multiple collisions.

2. Etheridge, Pfaffelhuber and Wakolbinger [74] independently (and
simultaneously) obtained some equivalent approximations but using
a quite different route.

3.3 Some results by Bertoin and Le Gall

In this section, we briefly go over some of the results proved by
Bertoin and Le Gall in their papers [30] and [31]. This section is
intended to give a bird’s eye view on this part of their work, which
would take more time to cover properly. This section does not cover
the work of [29] and [32] (the former will be discussed towards the end
of the notes in connection with the Bothausen-Sznitman coalescent,
while the latter will be discussed in the next section with the fine
asymptotics of Λ-coalescents).

The first observation of Bertoin and Le Gall is that any Λ-coalescent
process may be realised as a stochastic flow in the classical sense of
Harris [98]. The state space of the flow is the so-called space of
bridges, that is, càdlàg nondecreasing functions going from 0 to 1 on
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the interval (0, 1):

B = {f : [0, 1] → [0, 1] cadlag nondecreasing ;
f(0) = 0 and f(1) = 1}. (84)

This point of view allows to define a measure-valued process called
the (generalized) Fleming-Viot process, which is a neat way of gener-
alising the notion of duality to Λ-coalescents. The stochastic differ-
ential equations which describe the generalized Fleming-Viot process
(i.e., the equivalent of the Wright-Fisher diffusion in this context) is
then studied, and finally this is used to come back to Kingman’s
coalescent and show a surprising connection to a coalescing flow of
particles on the circle. We will follow a somewhat different order of
presentation, starting with Fleming-Viot processes, partly because
of their importance in what follows.

3.3.1 Fleming-Viot processes

The idea behind Fleming-Viot process is quite simple, but unfor-
tunately things often look messy when written down. We will try
to stay as informal as possible, following for instance Etheridge’s
excellent discussion of the subject [72].

Suppose we consider the population dynamics given by the Moran
model, with a total population size equal to N , run for an undeter-
mined but finite amount of time. Suppose that in addition to the
data of the ancestral lineages, we add another information, which
is the allelic type carried by each individual. Of course, this de-
pends on the initial allelic type of every individual in the popula-
tion at the beginning of times. To make things simple, we imagine
that, initially, all the N individuals carry different types. We la-
bel them, e.g., A1(0), A2(0), . . . , AN (0), and note that it absolutely
doesn’t matter what is the state space of the variables Ai(0). For
the sake of convenience we choose them to be independent random
variables U1, . . . , UN , uniformly distributed on (0,1). These types
are then transferred to the offsprings of individuals according to the
population dynamics, and this gives us for every time t a collec-
tion {Ai(t)}N

i=1. Each of the Ai(t) is thus an element of the initial
collection A1(0), . . . , AN (0).

Consider the distribution of allelic types at some time t > 0:
how does this look like? The first thing to note is that the vector
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(A1(t), A2(t), . . . , AN (t)) is exchangeable. This suggests considering
the measure

µN (t) =
1
N

N∑

i=1

δAi(t) (85)

and taking a limit as N → ∞. Indeed, if we speed up time by a
factor N , nothing prevents us from defining directly a sequence of
labels {Ai(t)}∞i=1 for all t > 0 which has the following dynamics:

1. Initially Ai(0) = Ui is a collection of i.i.d. uniform random
variables Ui on (0, 1).

2. At rate 1, for each i < j, Aj(t) becomes equal to Ai(t).

Note then that the sequence Ai(t) is an infinite exchangeable se-
quence, so we can apply De Finetti’s theorem, which tells us that
for each fixed t > 0, the empirical distribution of labels µN defined
in (85) has a weak limit almost surely. In fact, the next result gives
a stronger statement. To state it we need the following notations: if
n ≥ 1, and f(x1, . . . , xn) is any continuous function on [0, 1]n, one
may define a function F on measures µ on [0,1] by saying

F (µ) =
∫

. . .

∫
f(x1, . . . , xn)µ(dx1) . . . µ(dxn). (86)

The function F may be interpreted as follows: given a measure µ
on [0, 1], sample n points (x1, . . . , xn) distributed according to µ
and evaluate f(x1, . . . , xn). The expectation of this random variable
(conditionally given µ) is equal to F (µ). Further, if x = (x1, . . . , xn) ∈
Rn, let xi,j denote the element x′ ∈ Rn with all coordinates x′k = xk

except x′j = xi. That is, it is x but where xj is replaced with xi.

Theorem 3.11. As N →∞, (µN (t), t ≥ 0) converges almost surely
towards a measure-valued strong Markov process (µt, t ≥ 0), called
the Fleming-Viot diffusion. Initially, µ0 is the uniform measure on
(0,1), but for any fixed t > 0, the measure µt consists exactly of
finitely many atoms. Moreover, it has a generator L defined by the
following property: if F is a function of the form (86), then

LF (µ) =
∫

. . .

∫ ∑

1≤i<j≤n

(f(xi,j)− f(x))µ(dx1) . . . µ(dxn). (87)

This property characterises the Fleming-Viot process (µt, t ≥ 0).



Coalescent theory 92

The almost sure convergence referred to in this theorem corre-
sponds to the topology on measure-valued functions defined by say-
ing µt(A) → µ(A) for all Borel sets A, uniformly on compact sets in
(0,∞).

See, for instance (1.49) in [72] for the form of the generator of the
Fleming-Viot process. (The construction which we have used here
is closer in spirit to the “almost sure construction” of the Chapter 5
in [72] and the Donnelly-Kurtz lookdown process - more about that
later, see Definition 4.4). The fact that µt consists of only finitely
many atoms for every t > 0 is in fact the same phenomenon that
Kingman’s coalescent comes down from infinity.

We note that there exists numerous versions of Fleming-Viot pro-
cesses. The version which we have considered here is the simplest
possible: for instance there are no mutations in this description. In-
corporating small mutations (with allelic type given by an element of
the integer lattice Zd) leads (in the limit of small mutation steps) to
the spatial Fleming-Viot process which is related to super Brownian
motion (more about this later, too).

The generalisation which was considered by Bertoin and Le Gall
in [30] for Λ-coalescents was the following. Let Λ be a fixed measure
on (0,1) (without any atom at zero for simplicity). Consider a popu-
lation model with infinitely many individuals 1, 2, . . . , whose initial
allelic types are, as above, i.i.d. uniform random variables U1, . . ..
Let (pi, ti) be a Poisson point process

P =
∑

i

δ(pi,ti)

with intensity p−2Λ(dp) ⊗ dt, as in the Poissonian construction of
Theorem 3.2. The model is defined by saying that at each time ti
such that (pi, ti) is a point of P, we selected a proportion pi of levels,
say I1, I2, . . . , by independent coin-toss. Then the allelic types of
individuals I1, I2, . . . , are all modified and become equal to AI1(t

−).
An example of the evolution of allelic types at one such time is given
in Figure 8.

To see that this construction is well-defined, note that (as in the
case of Λ-coalescents), the rate at which something happens in the
first n levels of the population (i.e., among the first n individuals of
this infinite population), is finite, and that the restrictions are con-
sistent. Again, we can consider the empirical distribution of allelic
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Figure 8: Example of evolution of allelic types in the Λ-Fleming-Viot
process. The red crosses indicate which levels were selected by coin
tossing.

types at time t > 0:

µN (t) =
1
n

n∑

i=1

δAi(t)

and consider limits as N →∞. For a fixed t > 0, it is easy to see that
the sequence {Ai(t)}∞i=1 is exchangeable: this is slightly counterintu-
itive as it seems a priori that lower levels play a more important role
than upper ones, but is nevertheless true and is a consequence of the
fact that the initial type sequence is i.i.d. and therefore exchange-
able. By De Finetti’s theorem, the limit of µN (t) thus exists almost
surely, and one has the following. If x = (x1, . . . , xn) ∈ Rn, and if
I ⊂ [n] = {1, . . . , n}, let xI denote the element x′ ∈ Rn, with coor-
dinates equal to those of x, except that all the coordinates x′j , j ∈ I
have been replaced with xi and i = inf I.

Theorem 3.12. As N →∞, (µN (t), t ≥ 0) converges almost surely
towards a measure-valued strong Markov process (µt, t ≥ 0), called
the generalised Fleming-Viot or Λ-Fleming-Viot process. The gener-
ator L is defined by the following property: if F is a function of the
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form (86), then

LF (µ) =
∫

. . .

∫ ∑

I⊂[n],|I|≥2

λn,|I|(f(xI)− f(x))µ(dx1) . . . µ(dxn),

(88)
where λn,k =

∫ 1
0 xk−2(1 − x)b−kΛ(dx) is the coalescence rate of any

k-tuple of blocks among n in a Λ-coalescent. The property (88) char-
acterises the Λ-Fleming-Viot process (µt, t ≥ 0).

The form of the generator and the fact that the martingale prob-
lem is well-posed can be seen from Section 5.2 in [30], and essentially
boils down to the duality which we now discuss. It is more or less ob-
vious that there is a relation of duality with the Λ-coalescent, which
arises when time is running backwards (as usual!) The basic reason
for this is that the time-reversal of a Poisson point process with a
certain intensity dν⊗dt is also a Poisson point process with the same
intensity. Here is the corresponding statement. To state it, we start
with a number n ≥ 1 and a function f(x1, . . . , xn) on [0, 1]n. Let
π ∈ Pn be a partition of [n], and assume that π has k blocks. Then
for all x ∈ Rk, we may define xπ to be the element of x′ ∈ Rn such
that for all 1 ≤ i ≤ k, and for all j ∈ Bi (the ith block of π), x′j = xi.
In short, each of the k coordinates of x is copied along the blocks of
π to create an element of Rn. Define the functional

Φ(µ, π) =
∫

. . .

∫
µ(dx1) . . . µ(dxk)f(xπ). (89)

The duality relation states (see (18) in [30]):

Theorem 3.13. Let E→ denote the expectation for the Λ-Fleming-
Viot process (µt, t ≥ 0) and let E← denote that for the Λ-coalescent
(Πt, t ≥ 0) restricted to [n]. Then we have, for all functions Φ of the
form (89):

E→µ0
(Φ(µt, Π0)) = E←π0

(Φ(µ0, Πt)) (90)

where π0 is the trivial partition on [n] into singletons.

We have already discussed how dual processes can be so useful (for
instance, it is a crucial step in proving that the martingale problem
is well-posed for the generalised Fleming-Viot process). In our case,
we will see later that Fleming-Viot processes are an essential step to
describe the connection of Λ-coalescents to continuous-state branch-
ing processes and continuum random trees. Further, this will be
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used below to describe natural stochastic differential equations and
stochastic flows attached to Λ-coalescents.

3.3.2 A stochastic flow of bridges

We have already introduced the space of bridges B above, but the
random bridges we will discuss will have the following extra property:

Definition 3.4. A random bridge X is a random variable in B such
that the increments of X are exchangeable.

There is a natural operation on bridges, which is the composition
◦: if X and X ′ are two independent bridges, then so is X ◦X ′.

What is the connection between bridges and Λ-coalescents? This
connection is simple to explain if we think about a Cannings model
whose genealogy is approximately a Λ-coalescent. (Recall that Sag-
itov [139] showed this is always possible - see Remark 3.3). Thus,
let N ≥ 1, and let ν1, . . . , νN be the exchangeable vector giving the
respective progeny of individuals 1, . . . , N . Then

∑N
i=1 νi = N , so

what we can see is that the vector (ν1, . . . , νN ) encodes a discrete
random bridge: more precisely, define a function

∆ : {0, . . . , N} → {0, . . . , N}

such that if 0 ≤ j ≤ N :

∆(j) =
j∑

i=1

νi. (91)

Thus ∆(j)/N is the fraction of the population at the next generation
which comes from the first j individuals. (This interpretation will
be crucial for what comes after). Note that ∆ is a discrete bridge in
the sense of Definition 3.4: it goes from 0 to N between times 0 and
N , and has exchangeable increments.

Now, introduce the time-dynamics of the Cannings model: thus
we have an i.i.d. collection of exchangeable vectors

{νi(t)}N
i=1, t ∈ Z.

To this we can associate a discrete bridge ∆t for each t ∈ Z as in (91).
Note the following property: consider two times s < t ∈ Z. Then
for each 0 ≤ j ≤ N , the fraction of individuals in the population at
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time t, that comes from the first j individuals of the population at
time s, is precisely:

1
N

∆t−1 ◦ . . . ◦∆s(j) (92)

Thus let us define, for every s ≤ t in Z, the bridge BN
s,t as the linear

interpolation on [0, 1] of

BN
s,t(x) =

1
N

∆t−1 ◦ . . . ◦∆s(j) (93)

if x = j/N . Bertoin and Le Gall call the collection of random vari-
ables (BN

s,t)s≤t∈Z a discrete stochastic flow of bridges because:

1. Bs,s is the identity map.

2. Bt,u ◦Bs,t = Bs,u for all s ≤ t ≤ u ∈ Z (the cocycle property)

3. Bs,t is stationary: its law depends only on t− s.

4. Bs,t has independent increments: for every s1 < s2 . . . , sn ∈ Z,
then the bridges Bs1,s2 , . . . , Bsn−1,sn are independent.

(Note however that [30] and [31] take for their definition Bs,t what
we call here B−t,−s). When N →∞ and time is sped up by a certain
factor cN (the one which guarantees convergence of the genealogies
to a Λ-coalescent process), it is to be expected that the flow

(BN
s/cN ,t/cN

,−∞ < s ≤ t < ∞) ⇒ (Bs,t,−∞ < s ≤ t < ∞) (94)

with respect to some topology. (Bs,t,−∞ < s ≤ t < ∞) is then a
(continuous) flow of bridges because it satisfies properties 1–4 above,
and furthermore in condition 1:

B0,t → Id, t → 0

in probability, in the sense of the Skorokhod topology. This is thus a
condition of continuity. We can now state Theorem 1 in [30], which
states the correspondence between bridges and Λ-coalescents. For
a random bridge B, let s ∈ S0 be the tiling of (0,1) defined by the
ranked sequences of jumps of B (where continuous parts are asso-
ciated with the dust component s0). As usual, the correspondence
arises by fixing a time (say t = 0) and running s backwards:
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Theorem 3.14. Let (Bs,t,−∞ < s ≤ t < ∞) be the flow of bridges
defined by (94). Let S(t) be the tiling of (0,1) obtained from the
bridge B−t,0, for all t ≥ 0. Then (S(t), t ≥ 0) has the same law as
the ranked frequencies of a Λ-coalescent. Furthermore if V1, . . . are
i.i.d. uniform random variables on (0,1), we may define a partition
Πt by saying i ∼ j if and only if Vi and Vj fall into the same jump
of B−t,0. Then

(Πt, t ≥ 0) is a Λ-coalescent.

The proof outlined above was not the route used by Bertoin and
Le Gall to prove this theorem, and it might be worthwhile to turn
this outline into a more precise argument.

3.3.3 Stochastic Differential Equations

The points of view developed above (that is, the flow of bridges on
the one hand, and the Fleming-Viot process on the other hand), al-
low us to discuss analogues and generalisations of the Wright-Fisher
stochastic differential equation, which was used to describe the pro-
portion of individuals carrying a certain allele in a population whose
genealogy is approximately Kingman’s coalescent.

To explain the first result in this direction, we first introduce what
may be called microscopic bridges or infinitesimal bridges: the is
the bridge which describes the effect of one “individual” at location
x ∈ [0, 1] having a progeny of size p ∈ (0, 1). This bridge has the
form:

b(u) = bx,p(u) = u(1− p) + p1{u≥x}. (95)

Let (Bs,t)−∞<s≤t<∞ be the flow of bridges constructed in (94) and
let Ft = B0,t. Thus Ft(y) is the fraction of individuals at time t
descending from some individual in the interval [0, y] of the popula-
tion at time 0 (this is indeed the equivalent of the quantity which we
track when we study the Wright-Fisher diffusion, with initial frac-
tion of alleles a equal to y). When there is an atom (x, p) at some
time −t, then what is the change in Ft(y)? This atom means that an
individual located at x ∈ [0, 1] is producing a macroscopic offspring,
which represents a fraction p of the population right after. Thus by
the composition property, letting F = Ft−(y) and F ′ = Ft(y), we
see that F ′ = b ◦ F = F (1 − p) when F < x, in which case the
infinitesimal increment is dF = −Fp. If on the other hand, F ≥ x,
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then we have F ′ = p+F (1−p), and thus the infinitesimal increment
is dF = p(1− F ). Thus define the function

ψ(x, p, F ) =

{
−pF if F < x

p(1− F ) if F ≥ x.

If p−2Λ(dp) is a finite measure, there are only a finite rate of events
in the stochastic flow of bridges of the previous paragraph, and if we
label these events (ti, xi, pi), and let

M =
∑

i

δ(ti,xi,pi)

which is a Poisson point process with intensity dt⊗ dx⊗ p−2Λ(dp),
we get immediately that Ft = B0,t may be written as a stochastic
integral:

Ft(y) = y +
∫

[0,t]×[0,1]×[0,1]
M(ds,dx,dp)ψ(x, p, Fs−(y)). (96)

It turns out that this stochastic integral still makes sense even if we
don’t assume that x−2Λ(dx) is a finite measure. This is, as usual,
stated as a result of weak existence and uniqueness: any filtered prob-
ability space with a measure Poisson point process M with intensity
dt⊗ dx⊗ p−2Λ(dp) and cadlag process Xt = (Xt(y), y ∈ [0, 1]), such
that Xt(y) satisfies the stochastic differential equation (96) almost
surely for all y ∈ [0, 1], is called a weak solution of (96).

Proposition 3.1. (Theorem 2 in [31]) There exists a weak solution
to (96), with the additional property that a.s. for every t ≥ 0, Xt is
a nondecreasing function on [0, 1]. Furthermore, if X is any solu-
tion to (96), then (Xt(y1), . . . , Xt(yp)) has the same distribution as
the p-point motion (Ft(y1), . . . , Ft(yp)). In particular there is weak
uniqueness.

There is an associated martingale problem, which may be formu-
lated as follows: given an atom (x, p), we define an operator on C2

functions g : [0, 1]p → R by:

∆x,pg(y) = g(y + ψ(x, p, y))− g(y)−
p∑

i=1

ψ(x, p, yi)
∂g

∂yi
(y)
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Then for every y1, . . . , yp, the p-point motion Ft(y1), . . . , Ft(yp) sat-
isfies

g(Ft(y1), . . . , Ft(yp))−
∫ t

0
Lg(Fs(y1), . . . , Fs(yp))ds

is a martingale, where

Lg(y) =
∫ 1

0
dx

∫ 1

0
p−2Λ(dp)∆x,pg(y).

This is well-defined as for any g ∈ C2, by Taylor expansion one gets
∆x,pg(y) ≤ Cp2 for some C which does not depend on p (or on x).

3.3.4 Coalescing Brownian motions

We end this statement with a surprising result of Bertoin and Le
Gall, which links Kingman’s coalescent to a certain flow of coalescing
Brownian motions on the circle.

To this end, define an operator T on C2 functions defined on the
torus T = R/Z:

T g(y1, . . . , yp) =
1
2

p∑

i,j=1

b(yi, yj)
∂2g

∂y1∂yj
(y) (97)

where the covariance function b(y, y′) satisfies:

b(y, y′) =
1
12
− 1

2
d(y, y′)(1− d(y, y′)). (98)

The generator T defines a martingale problem, and we note that
if X is a solution to this martingale problem (that is, if g(Xt) −∫ t
0 T g(Xs)ds is a martingale for every g ∈ C2(T)), then each of the p

particles follows individually a Brownian motion on the torus with
diffusion coefficient

√
1/12. However, these Brownian motions are

not independent, and are correlated in a certain way. In particu-
lar, we will see that particles following this flow have the coalescing
property : if Xi

t = Xj
t for some time t > 0, this stays true ever after.

Let X be a solution to the martingale problem defined by (97) with
starting point X0 = (V1, . . . , Vp) given by p independent uniform
random points on the torus, and define a partition Πp

t on Pp by
putting i ∼ j if and only if Xi

t = Xj
t , i.e., particles i and j have

coalesced.



Coalescent theory 100

Theorem 3.15. There is existence and uniqueness in law to the
martingale problem defined by (97). For any solution X, the process
(Πt, t ≥ 0) is Kingman’s p-coalescent.

Proof. The uniqueness part of the result is a consequence of the fact
that the generator is smooth away from the diagonal (i.e., xi 6= xj for
i 6= j) and of the fact that particles which hit each other coalesce,
in the sense that they stay forever together. This can be seen as
follows: consider for examples particles 1 and 2, and let T = inf{t ≥
0 : X1

t = X2
t }. Fix also a z ∈ T, and consider the process

Yt = (z, X1
t )− (z,X2

t ) ∈ [−1, 1]

where if z, x ∈ T, then (z, x) denotes the length of the counter-
clockwise arc from z to x. This is a C2 function of the trajecto-
ries X1

t , X2
t , . . . , Xp

t so long as neither X1
t = z or X2

t = z, so if
T ′ = inf{t ≥ 0 : X1

t = z or X2
t = z}, and if g is any C2 real function,

we get a local martingale

Mt = g(Yt∧T ′)−
∫ t∧T ′

0
T g(X1

s , . . . , Xp
s )ds

= g(Yt)−
∫ t

0

1
2
|Ys|(1− |Ys|)g′′(Ys)ds

for every C2 function g and any solution to (97). Thus on [0, T ′], Yt

is the diffusion on [-1,1] with generator

1
2
|y|(1− |y|) d2

dy2

for which zero is an absorbing boundary (this is, up to the sign, the
same generator as in the Wright-Fisher diffusion, where the absorp-
tion property is easy to see). This guarantees that Yt ≡ 0 for all
t ∈ [T, T ′], and from this the coalescence property follows easily.

To get the statement in the theorem which identifies the coales-
cent process Πp

t as Kingman’s coalescent, the idea of the proof is as
follows. Consider a measure ν(dp) = p−2Λ(dp) on (0,1), and assume
that ν is finite. Consider a Poisson point process of points

M =
∑

i

δ(ti,xi,pi)
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with intensity dt⊗ λ(dx)⊗ ν(dp), where λ is the Lebesgue measure
on the torus T. We use these points to create a stochastic flow
of bridges just as above, except that now we consider functions not
from [0, 1] to [0, 1] (bridges) but functions from T to T. A coalescence
occurring at individual x ∈ T, with mass p ∈ (0, 1), corresponds to
the composition by an elementary “bridge” just as in (95), which
sends an arc of size p centered at x to x and sends the complement
of this arc onto the full torus in a linear fashion. That is,

β(y) = x if d(y, x) ≤ p/2

and, letting x̄ be the point sitting opposite of x in T

d(x̄, β(y)) =
1

1− p
d(x̄, y) otherwise.

We let βx,p = β be the above function, and we call

Φs,t = βxk,pk
◦ . . . ◦ βx1,p1

where (xi, pi) are the list of atoms of M between times s and t listed
in increasing order (which is possible since ν is assumed to be finite).
Taking V1, . . . , a collection of i.i.d. uniform variables on T, it is then
trivial (see, e.g., Theorem 3.13) to check that

(Πt, t ≥ 0) is a Λ-coalescent (99)

where Πt is defined by saying i ∼ j if Φ0,t(Vi) = Φ0,t(Vj). Specializ-
ing to the case where for ε > 0,

Λε(dx) = δε(dx)

so that Λε ⇒ δ0 and the associated coalescent Πε converges in the
Skorokhod topology towards Kingman’s coalescent, it now suffices
to study the limiting distribution as ε → 0 of the p-point motion
Φε

t (V1), . . . , Φε
t (Vp). Note for instance that in the case p = 1, Φε(t)

is a continuous-time random walk on T with mean zero and second
moment which can be computed as

ε2

∫ 1

0
(x− 1

2
)2dx =

ε2

12
.

This is enough to characterize the limiting distribution of 1-point
motions as Brownian motions with diffusion coefficients

√
1/12. The

rest of the theorem follows by a similar Taylor expansion when p ≥
2.
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4 Analysis of Λ-coalescents

In this chapter we give some general asymptotic sampling formulae
for Λ-coalescents that are the analogues of Ewens’ sampling formula
in these models. The mathematics underneath these results relies
heavily on the notion of continuous-state branching processes, which
may be thought of as the scaling limits of critical Galton-Watson
processes. After first stating these formulae, we give a basic exposi-
tion of the theory, and develop the connection to Λ-coalescents. This
connection is then used to study in details the small-time behaviour
of Λ-coalescents, i.e., close to the big-bang event of time t = 0 when
the process comes down from infinity. This raises many interesting
mathematical questions, ranging from the typical number of blocks
close to t = 0, to fractal phenomena associated with variations in
mass of these blocks. Surprisingly, while many questions concerning
the limiting almost sure behaviour of Λ-coalescents have an answer,
our understanding of limiting distributions is much more limited.
We survey some recent related results at the end of this chapter.

4.1 Sampling formulae for Λ-coalescents

We start by stating some general asymptotic sampling formulae for
Λ-coalescents, which are the analogues of the Ewens sampling for-
mula for Λ-coalescents (see Theorem 2.9). We focus in this exposi-
tory section on the case of the infinite alleles model. To refresh the
reader’s memory, the problem we are interested in is the following.
Consider a sample of n individuals, and assume that the genealogi-
cal relationships between these individuals is given by a Λ-coalescent,
where Λ is an arbitrary finite measure on (0, 1). Conditionally given
the coalescence tree, assume that mutations fall on the tree as a
Poisson process with constant intensity ρ on every branch. (In the
case of Kingman’s coalescent, it is customary to parameterize this
intensity by θ = 2ρ). Recall that in the infinite alleles model, every
mutation generates a completely new allelic type. We are interested
in describing the corresponding allelic partition of our sample, e.g.,
how many allelic types are we likely to observe in a sample of size
n, how many allelic types have a given multiplicity k ≥ 1 (i.e., are
present in exactly k individuals of this sample), etc. Recall also
that in the case of Kingman’s coalescent, a closed formula for the
probability distribution of this partition is given by Ewens’ sampling
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formula. In the general case of Λ-coalescents, the problem is notice-
ably harder, and in general no exact closed formula is known – nor
is it expected that such a formula exists. One possible approach,
investigated by Möhle [123], is to derive a recursive formula for this
distribution, which makes it possible to compute numerically some
quantities associated with it. However it is hard to extract useful
information from it. Instead, we follow here a different approach,
which is to obtain asymptotic results when the sample size n tends
to infinity.

Our first result comes from [18] and gives the asymptotic num-
ber of allelic types An for a general measure Λ, subject only to the
assumption that the coalescent comes down from infinity.

Theorem 4.1. For λ > 0, let

ψ(λ) =
∫ 1

0
(e−λx − 1 + λx)x−2Λ(dx). (100)

As n →∞, we have the following asymptotics in probability:

An ∼ ρ

∫ n

1

λ

ψ(λ)
dλ, (101)

by which we mean that the ration of the two sides converges to 1 in
probability.

As the reader might have recognized, the function ψ(λ) defined in
(100) is the Laplace exponent of a Lévy process whose Lévy measure
is x−2Λ(dx). There is in fact a connection between this Lévy process
and the Λ-coalescent, which goes through the notion of continuous-
state branching process. This probabilistic connection is interesting
in itself and is developed in the next sections. A necessary and
sufficient condition for the Λ-coalescent to come down from infinity
in terms of the function ψ is obtained later in Theorem 4.9 as a
consequence of this connection.

There are certain cases where one can obtain much more precise
information about the allelic partition, such as the entire asymptotic
allele frequency spectrum. This is the case where Λ has a property
which we call (with a slight abuse of terminology) “regular variation”
near zero:

Definition 4.1. Let Λ be a finite measure on (0, 1) and let α ∈ (1, 2).
We say that the Λ-coalescent has regular variation with index α if
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there exists a function f(x) such that Λ(dx) = f(x)dx and a number
A > 0 such that

f(x) ∼ Ax1−α (102)

as x → 0.

In that case, we obtain the following result. Let ρ > 0 and assume
that Λ satisfies (102) for some 1 < α < 2. Let Π be the random
infinite allelic partition obtained by throwing a Poisson process of
mutations on the infinite coalescent tree with constant mutation rate
ρ. For n ≥ 1 and 1 ≤ k ≤ n, let An(k) be the number of blocks of size
k of Π|[n]. Thus An(k) is the number of allelic types of multiplicity
k in the first n individuals of an infinite sample, under the infinite
alleles model. Let also An =

∑n
k=1 An(k) be the total number of

allelic types, as above. Note in particular that the random variables
(An)n≥1 (resp. (An(k))n≥1 for any k ≥ 1) are now all simultaneously
constructed on a common probability space, so that it now makes
sense to talk about almost sure convergence in (101). This coupling
is natural in that it corresponds to revealing more and more data
from a large sample, and is thus suitable for applications.

Theorem 4.2. ([20], [18]) Under assumption (102) we have, almost
surely as n →∞:

An

n2−α
−→ ρC (103)

where C = α(α − 1)/[AΓ(2 − α)Γ(α)]. Moreover, for every fixed
k ≥ 1:

An(k)
n2−α

−→ ρC(2− α)
(α− 1) . . . (α + k − 3)

k!
(104)

almost surely as n →∞. Moreover, if P1, P2, . . . denote the ordered
allele frequencies in the population, then

Pj ∼ C ′jα−2, (105)

almost surely as j →∞, and C ′ = (C/Γ(α− 1))1/(2−α).

Comments. (1) The convergence in probability was first obtained
in [20] in the case of Beta-coalescents with parameter (2−α, α), using
an exact embedding within the so-called stable Continuum Random
Tree and an analysis of the mutation process using queues. However,
these methods were limited to the case of Beta-coalescents and did
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not yield the almost sure limit. This extension was done in [17] and
[18] using a different, martingale-based approach to the problem.
The same result also holds for the frequency spectrum of the infinite
sites model.

(2) Taking k = 1, we see that the fraction of singletons in the allelic
partition is An(1)/An ∼ 2− α almost surely as n →∞. Thus α can
be measured in a straightforward fashion from a sample, because it
is approximately 2 minus the proportion of alleles with multiplicity
1. Note that in Kingman’s coalescent, this fraction is asymptotically
1/ log n, and hence tends to 0 as n → ∞. Thus if the fraction of
singletons is not negligible in a particular data set, this is a good in-
dication that Kingman’s coalescent is not suitable for this data and
that coalescent with multiple collisions are better approximations.
Various data sets from pacific oysters suggest a value for α approx-
imately around 1.4. See however the discussion in Example 4.2 of
[66] and the work of Birkner and Blath [34] for further investigation
(but in the case of the infinite sites model).

(3) In the case where the Λ-coalescent does not come down from
infinity, Möhle [124] has obtained a limiting result for the number
of allelic types if in addition one assumes that

∫ 1
0 x−1Λ(dx) < ∞,

i.e., by Theorem 3.5, if there is almost surely dust at any time in the
coalescent. In that case, he was able to show that

An

nρ
−→ A

in distribution as n → ∞, where A has a distribution which can be
described as follows: let Xt = − log St, where St is the mass of dust
at time t (and note that Xt is then a subordinator). Then A has the
same distribution as

∫∞
0 e−ρt−Xtdt. (A similar result has been shown

by Freund and Möhle [85] for coalescents with simultaneous multiple
collisions that have dust). The condition that the coalescent has dust
excludes cases such as the Bolthausen-Sznitman coalescent, but this
particular example has been analysed in detail by Basdevant and
Goldschmidt [12] and with slightly less precise results by Drmota et
al. [69].
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4.2 Continuous-state branching processes

4.2.1 Definition of CSBPs

In this section, we backtrack a little to give an introduction to
Continuous-State Branching Processes (or CSBP for short), which
we will then use to give a flavour to some of the proofs in Theorem
4.1 and Theorem 4.2.

In a nutshell, CSBPs can be seen as generalisations and/or scaling
limits of Galton-Watson processes. Our presentation departs from
the classical one, in that we have chosen not the most elegant ap-
proach but the most effective one. In particular saves us the need to
later introduce the technology of Continuous Random Trees, which
would force us to get significantly more technical tan these notes are
meant to be. However, this theory is extremely elegant and many
ideas described below are more natural when seen through this par-
ticular angle, so we have included in the appendix some notions
about these objects.

As mentioned above, a continuous-state branching process is a con-
tinuous analogue of Galton-Watson processes. That is, the popula-
tion size is now a continuous variable which takes its values in the
set R+ (as opposed to the set Z+ for Galton-Watson processes). To
define it properly, we first make the following observation in the
discrete case. Let (Zn, n ≥ 0) be a Galton-Watson process with
offspring distribution L. Then, given Zn, one may write Zn+1 as
Zn+1 =

∑Zn
i=1 Li, where Li are i.i.d. random variables distributed as

L, so

Zn+1 − Zn =
Zn∑

i=1

Xi (106)

where Xi = Li − 1. If we view Xi as the step of the random walk
Sn =

∑n
i=1 Xi, then (106) tells us that we can view Z as a time-

change of the random walk (Sn, n ≥ 0), where to obtain Zn+1 from
Zn we run the random walk S for exactly Zn steps. That is, one
may write

Zn = STn , n ≥ 0 (107)

where Tn = Z1 + Z2 + . . . + Zn−1. Similarly, if (Zt, t ≥ 0) is a
Galton-Watson process in continuous time (i.e., individuals branch
at rate a > 0 and give birth to i.i.d. offsprings with distribution L),
then one can associate a continuous time random walk which jumps
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at rate a > 0 to a position chosen according to the distribution of
X = L−1. Thus, given Zt = z, the rate at which Zt jumps to z+x is
simply z times the rate at which the random walk (St, t ≥ 0) jumps
to z + x.

It is this last representation which we want to copy in the con-
tinuous setting. The random walk (St, t ≥ 0) will be replaced by a
process with independent and stationary increments (Yt, t ≥ 0), i.e.,
a Lévy process, which will have the property that all its jumps are
nonnegative, since the jumps of the random walk are always greater
or equal to -1. This −1 will vanish in the scaling limit and so we will
only observe jumps. On the other hand, the positive jumps of Y can
be arbitrarily large. Thus let us fix (Yt, t ≥ 0) a Lévy process with
no negative jumps (one says also spectrally positive), and let ν(dx)
be the Lévy measure of Y . That is,

E(e−λ(Yt−Y0)) = exp(−tψ(λ)),

where

ψ(λ) = a
λ2

2
+ bλ +

∫ ∞

0
(e−λx − 1 + λx1{x≤1})ν(dx).

(Recall that ν is a Lévy measure means that
∫∞
0 (h2∧1)ν(dh) < ∞.)

The is the Lévy-Khintchin formula already discussed in the proof
of Theorem 3.1. To simplify our presentation, we assume in what
follows that a = b = 0. Then the corresponding Lévy process may
be characterized by its generator G (see Sato [140], pp. 205–212): if
f is rapidly decreasing function (an element of the Schwartz space,
but there is no harm in thinking of a C∞ function with compact
support, which forms a core for the generator), then

Gf(x) =
∫ ∞

0
[f(x + h)− f(x)− h1{h≤1}f ′(x)]ν(dh).

Essentially this formula means that jumps of size h occur at rate
ν(dh) (and through an ingenious system of compensation it is enough
to require that the sum of the square of those jumps smaller than 1
up to a given time has a finite expectation). We define the associated
branching process as follows:

Definition 4.2. For f ∈ C∞ with compact support, let Lf(z) =
zGf(z). We call continuous-state branching process associated with
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ψ, any process (Zt, t ≥ 0) with values in R+ such that

f(Zt)−
∫ t

0
Lf(Zs)ds

is a martingale with respect to the natural filtration of Z, for any
f ∈ C∞ with compact support. This property determines uniquely the
law of (Zt, t ≥ 0), which is called the ψ-continuous-state branching
process, or ψ-CSBP for short. The function ψ is called the branching
mechanism of Z.

It can be shown that Z is a Markov process. This definition means
that the transitions of a ψ-CSBP are the same as those of a Lévy pro-
cess with Lévy exponent ψ(λ), but they occur z times as fast, where
z is the current size of the process. Note that CSBPs get absorbed
at Zt = 0, because then the rate of jumps is 0. The following result,
which goes back to Lamperti, explains this further, by establishing
the analogue to (107) in continuous space.

Theorem 4.3. Let Z be a ψ-continuous-state branching process,
and let (Yt, t ≥ 0) be the associated Lévy process. Then if U(t) =∫ t∧T
0 Y −1

s ds, where T is the hitting time of 0 by Y , and if U−1(t) is
the cadlag inverse of U , i.e.,

U−1(t) = inf{s ≥ 0 : U(s) > t}.
then

(Zt)t≥0
d= (YU−1(t))t≥0. (108)

It is easy to check this result: indeed, everything is made so that
the process defined by the right-hand side runs the clock at speed z
when Zt = z, and has apart from this time-change the same transi-
tions as the Lévy process (Yt, t ≥ 0). If we want to emphasize the
starting point of the CSBP, we write Zt(x) to mean that the process
was initially started at Z0 = x > 0. As a simple consequence of this
definition, we get the following property:

Theorem 4.4. Let (Zt(x), t ≥ 0) be a ψ-CSBP. Then Z enjoys
the branching property: that is, if x, y > 0, and if Z ′(y) denotes
an independent ψ-continuous-state branching process started from y
independent of Z, then we have the representation:

Z(x + y) d= Z(x) + Z ′(y), (109)

where the equality is an identity in distribution for the processes.
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Proof. It is obvious that the right-hand side is also a Markov process
with the correct transition rates, so the right-hand side is indeed a
ψ-CSBP, and its starting point is obviously x + y. Thus the law of
the right-hand side is indeed identical to the law of Z(x + y).

The meaning of the branching property (109), is as follows: if the
initial population is x+ y, we can think of these two subpopulations
evolving independently of one another, and their sum gives us the
total population Z(x + y). This is why it is often convenient to
record the initial population x as Z(x). Theorem 4.4 is traditionally
used as the definition of CSBPs: this is indeed the definition used
by Jǐrina in 1958 [101], where these processes were first discussed:
a continuous-state branching process is any Markov process on R+

which enjoys the branching property. That the two definitions are
equivalent is a sequence of theorems due to Lamperti [110, 111]. We
have preferred to use Definition 4.2 because the role of the measure ν
is more immediately transparent, and the properties of CSBPs can
be established much more directly, as we will see in what follows.
When using Theorem 4.4 as a definition, Lamperti’s transformation
theorem (Theorem 4.3) is far from obvious, and in fact the proof in
[111] misses a few cases. A recent paper by Caballero, Lambert and
Uribe Bravo [49] contains several proofs and a thorough discussion.

Theorem 4.5. (Lamperti [110]) Any continuous-state branching
process (Zt, t ≥ 0) is the scaling limit of Galton-Watson processes.
That is, there exists a sequence of offspring distributions L(N) (N ≥
1), and a sequence of numbers cN , such that, if Z(N) denotes the
Galton-Watson process with offspring distribution L(N) started from
N individuals, then

(
1
N

Z
(N)
t/cN

, t ≥ 0
)
−→

N→∞
(Zt(1), t ≥ 0)

weakly in the Skorokhod topology.

Proof. (sketch). This is a rather simple consequence of the classi-
cal fact that any Lévy process can be approximated by a suitable
random walk: that is, there exists a sequence of step distribution
X(N) and constants cN such that ( 1

N S
(N)
t/cN

, t ≥ 0) converges weakly
in the Skorokhod topology towards the Lévy process (Yt, t ≥ 0),
where (S(N)

t , t ≥ 0) is the random walk with step distribution X(N).



Coalescent theory 110

Furthermore, X(N) can be chosen to be integer-valued and “skip-
free” in the sense that X(N) ≥ −1 almost surely. Then the offspring
distribution L(N) is simply constructed as L(N) = X(N) + 1. The
representation (107) then tells us that the relation (108) must hold
in the limit, and hence the result follows.

An important example of continuous-state branching process is
given by the class of α-stable processes:

Definition 4.3. The stable CSBP with index α ∈ (1, 2) is the continuous-
state branching process associated with the stable Lévy measure

ν(dx) =
α

Γ(1− α)
x−α−1dx. (110)

In this case, the branching mechanism is ψ(u) = Cuα for some C >
0.

In fact, if ψ(u) = u2 (quadratic branching) it is still possible to
define a corresponding CSBP. Naturally, in that case the process
is related to Brownian motion and is nothing else but the Feller
diffusion: see Theorem A.6 in the appendix. In this case we still
speak of the 2-stable branching process.

We now come to an interesting property, which shows a relation
between branching processes and a certain differential equation. It
turns out that this differential equation lies at the heart of the anal-
ysis of Λ-coalescents.

Theorem 4.6. Let Z be a ψ-continuous-state branching process.
Then for all λ ≥ 0,

E(exp(−λZt(x))) = exp(−xut(λ)), (111)

where the function t 7→ ut(λ) is the solution of the differential equa-
tion 




dut(λ)
dt

= −ψ(ut(λ))

u0(λ) = λ.
(112)

Remark. This connection is the prototype of some deeper links
which arise when the branching process is endowed with some ad-
ditional geometric structure, in which case the differential equation
becomes a partial differential equation: see, e.g., Le Gall [112].
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Proof. Define F (t, x, λ) by saying Ex(e−λZt) = exp(−F (t, x, λ)). By
the branching property, it is easy to see that F (t, x, λ) must be multi-
plicative in x: that is, there exists ft(λ) such that F (t, x, λ) = xft(λ).
Then the Markov property shows that ft(fs(λ)) = ft+s(λ). So The-
orem 4.6 can be rephrased as saying that any solution to this func-
tional equation must in fact satisfy (112) for some Laplace exponent
ψ(λ) of some spectrally positive Lévy process (Yt, t ≥ 0).

To see why this is true, we go back to the discrete case, where the
argument is somewhat more transparent. Thus consider a Galton-
Watson process (Zt, t ≥ 0) in continuous time: each individual
branches at rate a > 0 and leaves i.i.d. offsprings distributed ac-
cording to (pk)k≥0. Let Q be the generator of the process: thus
Q = (qij)i,j≥0 where qii = −a + ap1 (since nothing happens when
an individual branches and leaves 1 offspring), and qij = apj−i+1 if
j ≥ i− 1. The Kolmogorov backward equation P ′(t) = QP (t) shows
that

P ′
1j(t) =

∑

k≥0

Q1kPkj(t) = −aP1j(t) +
∑

k≥0

apkPkj(t).

Therefore, if we look at the moment generating function of Zt, i.e.,
F (s, t) = E(sZt |Z0 = 1) = E1(sZt), we observe that

∂F

∂t
=

∑

j≥0

sjP ′
1j(t) = −aF (s, t) +

∑

j≥0

sj
∑

k≥0

apkPkj(t)

= −aF (s, t) + a
∑

k≥0

pkEk(sZt) by Fubini’s theorem

= −aF (s, t) + a
∑

k≥0

pkF (s, t)k by the branching property.

Thus if φ(λ) = au − g(u), where g(u) is the moment generating
function of (pk), we have

∂F

∂t
= −φ(F (s, t)) (113)

which is the precursor of (112). Using the discrete approximation of
Theorem 4.5 and taking the limit in (113), we obtain (112).

This explains further the role of the branching mechanism ψ: it
may be interpreted as the Laplace exponent for the infinitesimal
offspring distribution.
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When Z is the α-stable CSBP and α = 2 (quadratic branching),
the differential equation (112) is ·u = −cu2, which should look fa-
miliar to you: it is precisely the same differential equation that was
obtained for the heuristic analysis of Kingman’s coalescent in (23).
This is naturally not a coincidence: in fact, we will develop in next
chapter a connection between Λ-coalescents and ψ-CSBP (for a cer-
tain branching function ψ to be determined) which will finally make
this connection rigorous, and from which many other properties will
follow.

We end this section on the basic properties of branching processes
with a statement about a necessary and sufficient condition for the
process to become extinct, and, when the process does become ex-
tinct, what is the chance it has already gotten extinct by some time
t. Here, becoming extinct means that there is a finite T > 0 such
that ZT = 0 (since 0 is absorbing, then Zt = 0 for all t ≥ T auto-
matically).

Theorem 4.7. (Grey’s criterion [94]) Let Z be a ψ-CSBP. Then Z
becomes extinct in finite time almost surely if and only if

∫ ∞

1

dq

ψ(q)
< ∞. (114)

Let pz(t) denote the probability that Zt > 0, given Z0 = z. Then
pz(t) = 1− exp(−zv(t)), where v(t) is defined by

∫ ∞

v(t)

dq

ψ(q)
= t. (115)

Proof. (sketch) Note that

P(Zt = 0) = lim
λ→∞

E(e−λZt) = lim
λ→∞

e−zut(λ),

where ut(λ) is the solution to the differential equation (112). Observe
that this differential equation can be solved explicitly:

u̇s

ψ(us)
= −1

so integrating between times 0 and s, and making the change of
variables x = ut we find (since u0(λ) = λ):

∫ λ

ut(λ)

dq

ψ(q)
= t. (116)
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Thus if (114) does not hold, it must be that limλ→∞ ut(λ) = ∞,
since the right-hand side of (116) does not depend on λ. Hence
P(Zt = 0) = 0, for all t ≥ 0. On the other hand, if (114) holds,
then limλ→∞ ut(λ) = v(t) as defined by (115). Thus there is positive
probability of extinction by time t > 0, which is equal to exp(−zv(t)).
One must work slightly harder to show that eventual extinction has
probability 1.

Note that the situation is slightly more complicated in the con-
tinuous world than in the discrete. For instance, (114) may fail but
the process still has Zt → 0 as t →∞ (for instance, Zt(x) = xe−t is
such a CSBP!) On the other side, there can also be explosions: this
is investigated by Sliverstein [146].

4.2.2 The Donnelly-Kurtz lookdown process

Let (Zt, t ≥ 0) be a ψ-continuous-state branching process. We would
like to have a notion of genealogy for Z, i.e., a way of making sense
of the intuitive idea that in this evolving population, some individu-
als descend from a certain group of individuals at some earlier time.
This turns out to be rather delicate in this continuous setting, and
requires some additional technology. There are essentially two ways
to proceed: one is to introduce continuum random trees, i.e., trees
with the property that they branch continuously in time, such that
the total population process has the law of (Zt, t ≥ 0). A brief
overview of this approach is presented in the appendix. The other
possibility, which we have chosen to discuss here, is Donnelly and
Kurtz’s so-called (generalised) lookdown process. That these two
notions of genealogy coincide is a theorem proved in [19] (see The-
orem 12 in that paper). However, for the developments we have in
mind (i.e., the analysis of Λ-coalescents through a connection with
CSBPs), the approach which we propose here does not rely anymore
on Continuum Random Trees, and so this aspect of things may be
ignored by the reader. We stress however that initially (in [19, 20],
the connection relied on the continuous random tree approach rather
than the Donnelly-Kurtz lookdown approach developed here, which
owes much to the work of [18]. Hopefully the latter approach makes
these ideas more transparent.

We now describe the lookdown process. This was originally in-
troduced in [63], in order to provide a system of countable particles
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whose empirical measure would be a version of some predetermined
measure-valued process (and CSBPs can precisely be viewed as one
such example). This representation is very much in the spirit of
the classical Fleming-Viot representation of Theorems 3.11 and 3.12.
One way this process could be described would be to ask the follow-
ing question: suppose a continuous population evolves according to
the dynamics of a CSBP. Then we ask: what would samples from
that population look like as time evolves?

To ask the question in a more specific way, we may as usual endow
each individual initially present with a unique allelic type (which, for
us, will be just a uniform random variable on (0,1)). We sample from
the population at time 0 and run the population dynamics for some
time. How has that sample evolved? Our only requirement is that
each allele at time t > 0 is represented with the correct frequency
in our sample, but otherwise we may proceed as we wish to run the
dynamics. The answer is as follows: assume for simplification that Z
has only jumps and no Brownian component. Suppose that at some
time t > 0, the population Z has a jump of size ∆Zt > 0. This jump
is produced by “one individual” who has a macroscopic offspring of
size ∆Zt. In the population right after the jump, a fraction

p =
∆Zt

Zt

has just descended from that individual and thus carries the type
of this individual. The other individuals in the population haven’t
died but their relative frequency is now only (1−p): thus if an allele
occupied a fraction a of the population, it now occupies a fraction
a(1 − p). One can check that the following procedure produces ex-
actly the desired change:

1. A proportion p of individuals is selected by independent coin-
toss. (They are said to participate in the birth event). The
type of those individuals is changed (if needs be) to the type
of the lowest individual participating in the birth event.

2. The other types are shifted upwards to the first possible non-
participating individual. (See figure 9)

This procedure described what happens at any single jump time
of the population Z. If this procedure is applied successively at all
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Figure 9: Representation of the lookdown process. Levels 2,4 and 5
participate in a birth event. Other types get shifted upwards. The
numbers on the left and on the right indicate the types before and
after the birth event.

jump times of the population, then we obtain a countable system
(ξi(t), t ≥ 0) which indicates the type of the individual at level i.
Naturally, at any time t ≥ 0, {ξi} forms a subcollection of the initial
types {Ui}. While it seems a priori that no type can ever be lost
in this construction (things just get shifted upwards, and never die),
this is not accurate: in fact, jumps may accumulate and push a
given type “to infinity”, at which point it has disappeared from the
population and does not exist anymore. In fact, we will see that
under Grey’s condition (114), the number of types that survive up
to any time t > 0 is only finite almost surely. Since the initial
collection of types is initially exchangeable and that the rest of the
evolution is determined by i.i.d. coin-tosses, we immediately get that
(ξi(t))∞i=1 is an infinite exchangeable sequence for each t ≥ 0.

Definition 4.4. The almost sure limit

Ξt := lim
N→∞

1
N

N∑

i=1

δξi(t)

is called the Donnelly-Kurtz (generalised) lookdown process.

We have done everything so that Ξt would accurately represent the
composition of types in the population Z, so it remains to now state
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the theorem. First, we associate to the continuous-state branching
process (Zt, t ≥ 0) a measure-valued process (Mt, t ≥ 0) which is a
measure on (0,∞). Informally speaking, for r ∈ [0, 1], Mt([0, r]) is
the size of the population descended from the first r individuals of
the population, i.e., from individuals initially located in the interval
[0, r]. One way to define it is to define a process {Zt(x)}t≥0,x≥0

simultaneously for all t and for all x ≥ 0. The way to do so is to use
the branching property: for instance, to construct simultaneously
Zt(x) and Zt(x + y), we start with a version of Z(x) and add an
independent version of Z(y). The sum of these two processes is used
to construct Z(x+ y). This construction defines uniquely a measure
Mt on R+ such that

Mt([x, y]) = Zt(y)− Zt(x), 0 ≤ x ≤ y ≤ 1.

From this measure Mt, there is another way to represent the com-
position of the population given this process Mt, which is simply to
look at the ratio process:

Rt[0, r] =
Mt[0, r]

Zt
, r ≤ 1,

where Zt = Mt[0, 1] is the total mass. Thus Rt is a measure with
total mass equal to 1.

Theorem 4.8. The ratio process (Rt, t ≥ 0) and the lookdown pro-
cess (Ξt, t ≥ 0), have the same distribution.

A consequence of this representation is the following result about
the Donnelly-Kurtz lookdown process, which tells us that the number
of types which survive to time t > 0 is finite if and only if the
associated branching process (Zt, t ≥ 0) dies out almost surely.

Corollary 4.1. The number of types surviving at time t > 0 in
the Donnelly-Kurtz lookdown process (Ξt, t ≥ 0) (i.e., the number
of atoms of Ξt), is finite for all t > 0 almost surely, if and only if
Grey’s condition (see Theorem 4.7) is fulfilled. Moreover, if Grey’s
condition holds, then the number of types which survive at time t
is Poisson with mean v(t) < ∞, where v is the function defined in
(115).

Proof. Fix some n ≥ 1, and separate the interval [0, 1] into n subin-
tervals [i/n, (i + 1)/n]. In the Donnelly-Kurtz lookdown process, we
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identify all individuals whose types fall into the same subinterval.
Thus by the branching property, we have n copies of a ψ-CSBP, all
started with mass 1/n, which we view as n different families. How
many of those families have survived by time t? By Theorem 4.7, this
is a Binomial random variable with parameters n and pz(t) where
z = 1/n. Recall that pz(t) = 1 − exp(−zv(t)) ∼ v(t)/n as n → ∞.
Thus by the Poisson approximation to binomial random variables,
we find that as n →∞, if Kn(t) is the number of families surviving
by time t,

Kn(t) d−→ Poisson(v(t))

as n → ∞. On the other hand, limn→∞Kn(t) exists almost surely
and is equal to the number of types in the Donnelly-Kurtz lookdown
process. Thus this has the distribution of the random variable in the
right-hand side of the above equation, and proves the corollary.

Corollary 4.1 will be a crucial step towards proving fine results
on Λ-coalescents in next section. The Poisson distribution for the
number of types is perhaps easier to understand in terms of contin-
uous random trees, and should be compared with Theorem A.10 .
For instance, this is the same reason why the number of excursion of
Brownian motion up to time τ1 (the inverse local time) is a Poisson
random variable.

4.3 Coalescents and branching processes

Having given a brief overview of continuous-state branching pro-
cesses and the lookdown process, we are now ready to describe the
connection which relates Λ-coalescents to certain CSBPs. Intuitively,
this connection states that, at small times, the genealogy of any ψ-
CSBP is given by a certain Λ-coalescent. It is essential to note that
this description is valid only asymptotically as t → 0 (however, an
exact embedding exists for the α-stable case, as will be discussed
below). This connection allows us to state a general result about Λ-
coalescents, which gives a second necessary and sufficient condition
for coming down from infinity, and if they do, tells us the speed at
which they come down from infinity. That is, we find a deterministic
function v(t) such that Nt/v(t) → 1 almost surely as t → 0, where
Nt is the number of blocks at time t.
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4.3.1 Small-time behaviour

We point out that, if Λ does not satisfy Definition 4.1, some con-
siderable difficulties arise, and will generally lead to Nt oscillating
between different powers of t as t → 0. (An instructive example of
such a measure is analysed in a fair amount of details in [18]). The
general solution that we now present is due to [17, 18].

Let Λ be any finite measure on [0, 1). Then define

ψ(q) =
∫ 1

0
(e−qx − 1 + qx)x−2Λ(dx). (117)

Let (Zt, t ≥ 0) be the CSBP with branching mechanism ψ.

Theorem 4.9. The Λ-coalescent comes down from infinity if and
only if Z becomes extinct in finite time, i.e.,

∫ ∞

1

dq

ψ(q)
< ∞ (118)

If it does, then define v(t) by:
∫∞
v(t)

dq
ψ(q) = t. Then as t → 0,

Nt

v(t)
−→ 1, (119)

almost surely and in Lp for every p ≥ 1.

Proof. It is easy to understand that coming down from infinity might
be related to the extinction in finite time of the CSBP. Indeed, by
Theorem 4.7, extinction of a CSBP is equivalent to the fact that only
finitely many individuals at time 0 have descendants alive at time
t > 0, for any t > 0. When this occurs, the entire population at time
t > 0 comes from a finite number of ancestors and thus, running time
backwards (assuming that the genealogy is approximately described
by a Λ-coalescent), the coalescent has come down from infinity. The
convergence (119) also follows intuitively from a similar argument
and Corollary 4.1 once this connection is accepted.

We now explain why the genealogy of (Zt, t ≥ 0) should be given
by a Λ-coalescent asymptotically as t → 0. Consider the CSBP
(Zt, t ≥ 0) defined by (117) and its genealogy defined in terms of the
lookdown process. Then we know that at a time t > 0 such that
∆Zt > 0, a proportion p = ∆Z/Z of lineages is coalescing. Assume
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to simplify that Z0 = 1 (this is of course unimportant). Recall
that, by Lamperti’s transform, Z is a time-change of a Lévy process
(Yt, t ≥ 0) with Laplace exponent ψ(q). Now, both the time-change
functional

U−1
t = inf

{
s > 0 :

∫ s

0

ds

Ys
> t

}

and Y are almost surely continuous at t = 0. Therefore Z is also
continuous with probability 1 near t = 0, and it follows that if t is
small, the proportion of lineages that coalesces at time t is

p =
∆Zt

Zt
≈ ∆Zt. (120)

But using Lamperti’s transform one more time, we see that ∆Zt =
∆YU−1

t
. Thus, we conclude that at time Ut, a fraction approximately

∆Yt of lineages coalesces. Remembering that Ut =
∫ t
0 (1/Ys)ds, we

see that for t small, Ut ≈ t as well.
To summarize, we have seen that with a negligible time-change

the fraction of lineages that coalesces is equal to the jumps of the
spectrally positive Lévy process (Yt, t ≥ 0). But by the Lévy-Itô de-
composition, these jumps occur precisely as a Poisson point process
with intensity

dt⊗ x−2Λ(dx)

since, from (117), we see that the Lévy measure of Y is x−2Λ(dx).
By the Poisson construction of Λ-coalescent (Theorem 3.2), this gives
precisely a Λ-coalescent.

While this is a convincing argument for why the genealogy of Z
close to t = 0 should be given by a Λ-coalescent approximately, it is
much harder to turn it into a rigorous proof. The difficulty, of course,
lies in the error made by the approximations. The main source of
errors is due to the potentially wild fluctuations of the Lévy process
Y around its starting point. These fluctuations are understood with
a fair amount of details (see, e.g., [135]). It is for instance known that
the increments Yt−Y0 may oscillate between two different powers of t
which are known as the inverse lower- and upper-index respectively.
This helps controlling the error but ultimately this approach needs
some assumptions on the regularity of the Lévy process: namely, that
the lower-index β should be strictly greater than 1. The approach
which we describe below bypasses these difficulties by giving a direct
proof of Theorem 4.9.
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4.3.2 The martingale approach

We introduce now a martingale discovered in [17] which is a crucial
step for the proof of Theorem 4.9. Observe that the function v(t) is
the unique solution to the equation

log v(t)− log v(z) +
∫ t

z

ψ(v(r))
v(r)

dr = 0, ∀0 < z < t. (121)

Since we wish to prove that Nt is approximately equal to v(t), it
makes sense to study the quantity:

Xt
z := log Nt − log Nz +

∫ t

z

ψ(Nr)
Nr

dr, ∀0 < z < t. (122)

Lemma 4.1. There exists a bounded process (Ht, t ≥ 0) such that

M t
z := Xt

z +
∫ t

z
Hrdr

is a martingale. Moreover, there exists C > 0 such that the second
moment process of Mz satisfies E((M t

z)
2) ≤ C(t−z) for all 0 < z < t.

Since the second moment process of Mz is small, this implies by
Doob’s inequality that Mz must be small, and hence (since the in-
finitesimal error H is negligible) that Xt

z itself is small. Since v is
the unique solution to (121), this and some further analysis yields
Theorem 4.9.

Why is this a martingale? Let 0 < p < 1 and assume the
number of blocks is currently n. Let Yn,p be a Binomial(n, p) random
variable. We may think of Y as the number of blocks that participate
in a p-merger. If Y > 0, then the number of blocks after the p-merger
is n−Yn,p +1. Thus we see that, since Y is typically small compared
to n, and using the approximation log(1− x) ≈ −x,

E(d log Ns|Fs) =
∫ 1

0
E

[
log

n− Yn,p + 1{Yn,p>0}
n

]
p−2Λ(dp)

≈
∫ 1

0

[−E(Yn,p) + P(Yn,p > 0)
n

]
p−2Λ(dp)

=
∫ 1

0

−np + 1− (1− p)n

n
p−2Λ(dp)
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Recalling that n = Nt and noting that (1−p)n ≈ e−np in the integral
above, we recognize in this integral the right-hand side of the equality
which defines the function ψ in (117). Hence we conclude that, up
to some small errors,

E(d log Ns|Fs) ≈ −ψ(Ns)
Ns

(123)

which is coherent with Lemma 4.1.

Interpretation. With hindsight, the martingale M t
z has a simple

interpretation. Recall that if Nt is the number of blocks of a Λ-
coalescent, then we always get a martingale (Mz

t , t ≥ z) for all z > 0
by defining

Mz
t = Nt +

∫ t

z
γ(Ns)ds, t ≥ z

where γ(n) = γn =
∑n

k=2(k − 1)
(
n
k

)
λn,k. It is not hard to see ana-

lytically that ψ(λ) ∼ γ(λ) as λ → ∞. Thus the martingale M z
t of

Lemma 4.1 can be viewed as the martingale that one obtains from
applying Itô’s formula for discontinuous processes to log(Nt). From
this point of view it is rather surprising that the method of [17] is
conclusive: indeed, the logarithm function of t is typically insensitive
to small fluctuations and only picks up variations in the “power” of
t. However this turns out to be a strength as well, since the great-
est challenge in this problem is to control wild fluctuations of the
function ψ(λ), which may oscillate between two different powers of
λ.

4.4 Applications: sampling formulae

We now briefly explain how to obtain Theorem 4.1 and Theorem 4.2
from the small-time behaviour of the number of blocks, i.e., Theorem
4.9.

Sketch of proof of Theorem 4.1. Consider the infinite alleles model,
and make the following observation. Every mutation that appears
on the tree is quite likely to have a corresponding representative in
the allelic partition. Indeed, once a mutation arrives on the tree, it
becomes quite difficult to fully disconnect it from the leaves: this is
because a randomly chosen mutation is quite likely to be at the top
of the tree. By analysing this process more carefully, a result of [18]
shows:
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Lemma 4.2. Assume that the Λ-coalescent comes down from infin-
ity. Let Mn be the total number of mutations on the coalescence tree
restricted to [n], and let An denote the total number of families in the
allelic partition restricted to [n]. Then An/Mn → 1, in probability.

Given this lemma, our first task is thus to estimate the total num-
ber of mutations on the tree. (Note that this is identical to the total
number of allelic types in the infinite sites model). Since mutations
fall as a Poisson process with intensity ρ, we have that given the
coalescence tree,

Sn = Poisson(ρLn), (124)

where Ln is the total length of the tree, i.e., the sum of all the edge
lengths in the coalescence tree of the first n individuals in the sample.
Thus the problem becomes that of finding asymptotics of Ln. But
note that if initially the number of blocks is N0 = n, then the total
length of the tree may be written as

Ln =
∫ ζ

0
Ntdt (125)

where ζ is the coalescence time of all n individuals. Indeed the
contribution to Ln of the time interval (t, t + dt) of all branches
in the tree is Ntdt, so integrating gives us the result (125). Using
consistency of the Λ-coalescent, we can rewrite (125) in terms of a
Λ-coalescent process started with infinitely many particles as Ln =∫ ζ
ε Ntdt, where ε is chosen such that Nε ≈ n. (It is not obvious at all

that such a choice of ε is possible with positive probability, but it can
be proved that this indeed the case at least in the regular-variation
case, as we will discuss later. Other tricks need to be used in the
general case, which we do not discuss here). Since Nt ∼ v(t), this
means ε ∼ u(n) where u(λ) =

∫∞
λ

dq
ψ(q) . Plugging into the formula

Ln =
∫ ζ
ε Ntdt, and making the change of variable λ = v(t), or t =

u(λ) and dt = 1
ψ(λ) , we find:

Ln ≈
∫ n

v(ζ)

λ

ψ(λ)
dλ. (126)

The lower-bound of integration makes no difference and we may
replace it by 1 if we wish. Recalling (124), we now obtain directly
the result of Theorem 4.1.
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Sketch of proof of Theorem 4.2. A moment of thought and recalling
(110), we find that if Λ(dx) satisfies the regular variation property of
(102), then ψ(λ) ∼ Cλα as λ →∞, for some constant C > 0 whose
value below may change from line to line. From this it follows by
Theorem 4.1 that, in probability:

An ∼ ρ

∫ n

1
Cλ1−αdλ ∼ ρCn2−α (127)

It turns out that the estimates in [17] and [18] are tight enough that
this convergence holds almost surely. Since the allelic partition is
obviously exchangeable, we may now apply results about the Taube-
rian theory (Theorem 1.11). Theorem 4.2 follows immediately.

4.5 A paradox.

The following consequence of Theorem 4.9 says that, among all the
Λ-coalescents such that Λ[0, 1] = 1, Kingman’s coalescent is extremal
for the speed of coming down from infinity. This is a priori surprising
as in Kingman’s coalescent only two blocks ever coalesce at a time,
whereas in a coalescent with multiple mergers it is always a positive
fraction of blocks that are merging. The assumption

Λ[0, 1] = 1 (128)

is a scale assumption, as multiplying Λ by any number is equivalent
to speeding up time by this factor.

Corollary 4.2. Assume (128). Then with probability 1, for any
ε > 0, and for all t sufficiently small,

Nt ≥ 2
t
(1− ε).

Proof. Without loss of generality assume that the Λ-coalescent comes
down from infinity. To see how the corollary follows from Theorem
4.9, observe that since e−qx ≤ 1− qx + q2x2/2 for x > 0,

ψ(q) ≤ q2

2

∫

[0,1]
x2ν(dx) ≤ q2

2
(due to (128)). (129)

Hence if u(s) =
∫∞
s

dq
ψ(q) (so that v is the inverse of u):

u(s) ≥
∫ ∞

s

2
q2

dq =
2
s

and v(t) ≥ 2
t
. (130)
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Due to Theorem 4.9, Nt ∼ v(t) as t → 0, implying that Nt ≥
2(1− ε)/t with probability 1 for all t small.

4.6 Further study of coalescents with regular variation

The next section is devoted to a finer study of the case where the
measure Λ is the Beta(2 − α, α) distribution, with 1 < α < 2. In
that case, an exact embedding of the coalescent in the corresponding
continuous-state branching process (or the CRT) exists, and the spe-
cial properties of this process (in particular, self-similarity) allows
us to deduce several nontrivial properties of the Beta-coalescents.
Some of these properties can be transferred by universality to the
more general coalescents with regular variation.

4.6.1 Beta-coalescents and stable CRT

Let (Zt, t ≥ 0) be an α-stable CSBP, (i.e., with ψ(λ) = λα: see (110).
Assume to simplify that Z0 = 1. If we use the same reasoning as
in the sketch of the proof of Theorem 4.1, we may ask: what is the
rate at which we will observe a p-merger of the ancestral lineages,
for any 0 < p < 1? Let

g(x) =
α(α− 1)
Γ(2− α)

x−1−α

be the density of the Lévy measure of the stable subordinator with
index α. Thus, if the current population size is A, the rate at which
there is a jump of size x in the population is Ag(x)dx. Reversing the
direction of time, this means that a fraction p of lineages coalesces,
where

p =
x

A + x
or x =

Ap

1− p

since the new population size after birth is A + x. Thus:

rate of p-merger = Ag(x)
dx

dp
dp

= A
α(α− 1)
Γ(2− α)

(
Ap

1− p

)−1−α A

(1− p)2
dp

= cA1−αp−2Λ(dp)

where Λ is the Beta distribution with parameters 2 − α and α and
c = α(α − 1)Γ(α). Thus if time is sped up by a factor Z1−α

t /c, the
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rate is exactly the rate of p-mergers in a Beta-coalescents. We have
thus proved the following result.

Theorem 4.10. Let 1 < α < 2 and let 0 ≤ s < t. Define a random
partition πt

s by saying i ∼ j if and only if individuals i and j have
the same ancestor in the Donnelly-Kurtz lookdown process of the α-
stable branching process. Let Rt = c

∫ t
0 Z1−α

s ds and let R−1
t be the

cadlag inverse of R. Then for all 0 ≤ s ≤ t, if Πs = π
R−1(t)
R−1(t−s)

,

(Πs, 0 ≤ s ≤ t)

is a Beta-coalescent run for time t.

The version of this result quoted in the theorem was first proved
by Birkner et al. in [36]. There is an equivalent version on Con-
tinuum Random Trees, which was subsequently proved in [20] by
showing that the two notions of genealogies defined by the lookdown
process and by the continuum random tree must coincide. (It is the
version on CRTs which is the most useful for capturing fine aspects
of the small-time behaviour – although see [19] for what you can
do with just the lookdown process). However, the elementary ap-
proach which we give here, is based on yet unpublished work with J.
Berestycki and V. Limic [18], and this bypasses the rather complex
calculations of [36]. This result may be seen as a generalization to
the stable case of an important result due to Perkins [129] in the
Brownian case: see also [16] for related results in this case.

Note that this result gives us a better understanding of Theorem
3.8, where genealogies of population with offspring distribution in
the domain of attraction of a stable random variable converge to a
Beta-coalescent.

4.6.2 Backward path to infinity

It is also possible to get some information about the time-reversal
of the process, a bit like in Aldous’ construction and Corollary 2.1.
However this is much more complicated in the case of Beta-coalescents:
the first difficulty is that one doesn’t know how many blocks were lost
in the previous coalescence (unlike in Kingman’s coalescent, where
we know we have to make exactly one fragmentation).

A first result in this direction says that roughly speaking, if Nt = n
and Sn

1 , Sn
2 , . . . denote the previous number of blocks at times before
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t, then a result of [19] states that, after shifting everything by n,
(Sn

1 −n, Sn
2 −n, . . .) converges in distribution towards a random walk

with a nondegenerate step distribution (S1, S2, . . .). The limiting
step distribution Si+1 − Si turns out to have an expected value of
1/(α− 1). This result, combined with a renewal argument, shows:

Theorem 4.11. ([19]) Let Vn be the event that Nt = n for some t.
Then

lim
n→∞P(Vn) = α− 1. (131)

We also note that there exists a formula for the one-dimensional
distributions of the Beta-coalescent, which can be found in Theorem
1.2 of [19].

4.6.3 Fractal aspects

Changing the topic, recall that for random exchangeable partitions,
we know that the number of blocks is inversely related to the typical
block size (see Theorem 1.4). Here, at least informally, since the
number of blocks at small time is of order t−1/(α−1), we see that
the frequency of the block which contains 1 at time t should be of
the order of t1/(α−1) (this result was proved rigorously in [19]). Put
another way, this says that almost all the fragments emerge from the
original dust by growing like t1/(α−1). We say that 1/(α − 1) is the
typical speed of emergence.

However, some blocks clearly have a different behavior. Consider
for instance the largest block and denote by W (t) its frequency at
time t.

Theorem 4.12. ([19])

(αΓ(α)Γ(2− α))1/αt−1/αW (t) →d X as t ↓ 0

where X has the Fréchet distribution of index α.

Hence the size of the largest fragment is of the order of t1/α, which
is much bigger than the typical block size. Note that the random-
ness of the limiting variable X captures the intuitive idea of a rein-
forcement phenomenon going on: the bigger a block is, the higher
its chance of coalescing later on. Random limits in laws of large
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numbers are indeed typical of processes with reinforcement such as
Pólya’s urn.

This suggests to study the existence of fragments that emerge with
an atypical rate γ 6= 1/(α−1). To do so, it is convenient to consider a
random metric space (S, d) which encodes completely the coalescent
Π (this space was introduced by Evans [77] in the case of Kingman’s
coalescent). The space (S, d) is the completion of the space (N, d),
where d(i, j) is the time at which the integers i and j coalesce. In-
formally speaking, completing the space {1, 2, . . .} with respect to
this distance in particular adds points that belong to blocks behav-
ing atypically. In this framework we are able to associate with each
point x ∈ S and each t > 0 a positive number η(x, t) which is equal
to the frequency of the block at time t corresponding to x. (This is
formally achieved by endowing S with a mass measure η). In this
setting, we can reformulate the problem as follows: are there points
x ∈ S such that the mass of the block Bx(t) that contains x at time
t behaves as tγ when t → 0, or more formally such that η(x, t) ³ tγ?
(Here f(t) ³ g(t) means that log f(t)/ log g(t) → 1). Also, how
many such points typically exist?

We define for γ ≤ 1/(α− 1)

Sthick(γ) = {x ∈ S : lim inf
t→0

log(η(x, t))
log t

≤ γ}

and similarly when γ > 1/(α− 1)

Sthin(γ) = {x ∈ S : lim sup
t→0

log(η(x, t))
log t

≥ γ}.

When γ ≤ 1/(α− 1), Sthick(γ) is the set of points which correspond
to large fragments. On the other hand when γ ≥ 1/(α− 1), Sthin(γ)
is the set of points which correspond to small fragments. In the
next result we answer the question raised above by computing the
Hausdorff dimension (with respect to the metric of S) of the set
Sthick(γ) or Sthin(γ):

Theorem 4.13. ([20])

1. If 1
α ≤ γ < 1

α−1 then

dimH Sthick(γ) = γα− 1.

If γ < 1/α then Sthick(γ) = ∅ a.s. but S(1/α) 6= ∅ almost
surely.
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2. If 1
α−1 < γ ≤ α

(α−1)2
then

dimH Sthin(γ) =
α

γ(α− 1)2
− 1.

If γ > α
(α−1)2

then Sthin(γ) = ∅ a.s. but S( α
(α−1)2

) 6= ∅ almost
surely.

Comment. The maximal value of dimH S(γ) is obtained when γ =
1/(α−1) in which case the dimension of S(γ) is also equal to 1/(α−
1). This was to be expected since this is the typical exponent for the
size of a block. The value of the dimension then corresponds to the
full dimension of the space S, as was proved in [19, Theorem 1.7].

1/(α−1)

1/(α−1)

1/α α/(α−1) 2

Figure 10: Multifractal spectrum map γ 7→ dimH S(γ). The left-
derivative at the critical point is α while the right-derivative is −α.

4.6.4 Fluctuation theory

The analysis of fluctuations, even for Beta-coalescents, seems consid-
erably more complicated than any of the law-of-large number type
of result described above. Only very partial results exist to this
date. For instance, there isn’t any result available concerning the
fluctuations of the number of blocks at small time, or the biologi-
cally relevant total length of the tree. However for this last case,
there is a partial result which is due to Delmas, Dhersein and Siri-
Jegousse [59], which we describe below. We first need a result on
the total number of collisions which was proved simultaneously and
independently by Gnedin and Yakubovich [92] on the one hand, and
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by Delmas, Dhersein and Siri-Jegousse [59] on the other hand. Let
n ≥ 1, and let τn denote the total number of coalescence events of a
Beta-coalescent started from n blocks, before there is only one block
left. That is, τn is the total number of jumps of the chain which
counts the number of blocks (and decreases from n to 1).

Theorem 4.14. As n →∞,

n−1/α

(
n− τn

α− 1

)
d→ Yα−1

where (Ys, s ≥ 0) is a stable subordinator with index α started from
0.

This result also holds under a slightly more general form of regular
variation than (102), and the exact assumptions needed in [92] and
in [59] are slightly different (note that the α of [92] is what we here
call 2 − α). Note in particular that the order of magnitude of τn is
(α− 1)n, to the first order.

Delmas, Dhersin and Siri-Jegousse then consider the length of a
partial tree of coalescence, i.e., the sum of the length of the branches
from time 0 until a given number k of coalescence events. In view of
the above discussion, it is sensible to choose k = bntc with t < α−1.
Let Ln(t) denote the corresponding length. The main result of [59]
(Theorem 6.1) is as follows, and shows a surprising phase transition
at α = (1 +

√
5)/2, the golden ratio. Let

`(t) =
y(t)

Γ(α)Γ(2− α)
, where y(t) =

∫ t

0

(
1− r

α− 1

)α−1

dr.

Theorem 4.15. Let α0 = (1 +
√

5)/2. Let (Ys, s ≥ 0) be a stable
subordinator with index α started from 0, and let β = −1−(1/α)+α.

(1) Let α ∈ (1, α0). For all t < α− 1, we have the convergence in
distribution:

nβ
(
Ln(t)− n2−α`(t)

) d→
∫ t

0

(
1− r

α− 1

)α−1

Yrdr. (132)

(2) Let α ∈ [α0, 2). Then for any ε > 0,

n−ε
(
Ln(t)− n2−α`(t)

) d→ 0

in probability.
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Intuitively, when we plug in t = α− 1 in the left-hand side, Ln(t)
is then almost the same thing as Ln since there are approximately
no more than (α − 1)n coalescence events by Theorem 4.14. Note
that by doing so, we recover the correct first order approximation
of Theorem 4.2. This strongly suggests that the result is true also
for Ln instead of Ln(t) in the left-hand side and t = α − 1 in the
right-hand side, but this has not been proved at the moment.

Theorem 4.15 allows the authors of [59] to deduce a corollary about
the fluctuations of the number of mutations that fall on the partial
tree. For α sufficiently small, the fluctuations of the length of the
tree dominate the Gaussian fluctuations induced by the Poissoniza-
tion, hence obtaining the random variable on the right-hand side of
(132), while for larger α it is the opposite, and the limit is Gaussian.
Surprisingly, the phase transition here occurs at α =

√
2, rather than

the golden ratio. See Corollary 6.2 in [59] for further details.
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5 Spatial interactions

We now approach an area which seems to be expanding at a rapid
pace, which consists in studying coalescing processes of particles with
spatial interactions. The prototype of such a process is the model
of (instantaneously) coalescing random walks, so we first describe
a bit of classical work on this, such as the duality with the voter
model, the result of Bramson and Griffeath [42] on the long term
density of the system as well as Arratia’s Poisson point process limit
[8]. (This is done by appealing to the intuitive approach recently
developed by van den Berg and Kesten [25], which we describe). We
then move off to the stepping stone model, which are spatial versions
of the Moran model, and describe some results of Cox and Durrett
[53] and of Zähle, Cox and Durrett [152]. Reversing the direction
of time leads us naturally to the spatial Λ-coalescents, introduced
by Limic and Sturm in [116]. We describe their result about the
long-term behaviour of spatial coalescents on a torus. We then push
the description of spatial coalescents further by briefly describing the
result of [6] on the global divergence of these processes. Finally we
draw a parallel with the work of Hammond and Rezkhanlou [96],
which leads us to a general discussion on coalescent processes in
continuous space.

5.1 Coalescing random walks

The model of coalescing random walks is awfully simple to describe:
let d ≥ 1 and imagine that, initially, every site of Zd is occupied by a
single particle. As time evolves, particles perform independent sim-
ple random walks in continuous time with identical rates of jump (say
1). The interaction arises when a particle jumps onto a site which
is already occupied: in that case, the two coalesce instantly. That
is, their trajectories are identical after that time. (One must first
ensure that the model is well-defined but that is not a big problem:
see, e.g., Liggett [115]). Obvious questions pertain to the density of
this system and to the location of particles after rescaling so that the
density is of order 1. Some more subtle ones ask what is the location
of the set of ancestors of a given particle. This system may be easy
to define but its analysis is far from simple, and has given birth to a
rich theory.



Coalescent theory 132

5.1.1 The asymptotic density

Let pt be the probability that there is a particle at the origin at time
t. Of course, the system is translation-invariant so this is also the
probability that there is a particle at any given site. Hence pt should
be regarded as the density of the system at time t. Bramson an
Griffeath showed the following remarkable result on the asymptotic
behaviour of pt:

Theorem 5.1. As t →∞,

pt ∼ gd(t) :=





(πt)−1/2 if d = 1
log t/(πt) if d = 2
1/(γdt) if d ≥ 3

(133)

Here γd is the probability that simple random walk on Zd never re-
turns to its starting point.

Bramson and Griffeath’s original proof was rather complicated
and based on a moment calculation of Sawyer [141], which, being
essentially a big computation, did not shed much light on the subject.
Later, a simpler and more probabilistic proof was discovered by Cox
and Perkins [56] using the super-Brownian invariance principle for
the voter model of Cox, Durrett and Perkins [54]. As we will see,
the voter model is indeed dual to coalescing random walks and hence
it is not a surprise that this invariance principle would be of great
help.

However, a completely elementary approach has been recently de-
veloped by van den Berg and Kesten [25], and this approach has
the merit of being extremely robust to changes in the details of the
model. The drawback is that one often has to work in higher di-
mensions, i.e., above d = 3. However, since this approach is both
elementary and elegant, we propose a brief exposition of the main
idea.

Proof. (sketch)
The idea is to try to compute the derivative of pt. On first order

approximation,
d

dt
pt ≈ −p2

t (134)

since the density decays when two particles meet, which happens at
rate roughly p2

t if the location of the particles were independent. If
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(134) was an equality, we could solve this differential equation and
get that, as t → ∞, pt ≈ 1/t. This gives us the right order of
magnitude when d ≥ 3, but even then note that the constant is off:
we are missing a factor γd.

A more precise version of (134) is the following. Assume that
d ≥ 3. Note that, to compute the derivative of pt there is an exact
expression based on the generator of the system. If η ∈ {0, 1}Zd

denotes the configuration of the system (where we identify η with
the set of occupied particles), and if ηx→y denotes the configuration
where a particle at x has been moved to y, and ηx→∅ the configura-
tion where a particle at x has been killed, then the generator G of
the system of particles is

Gf(η) =
∑
x∈η

∑

y∼x;y/∈η

[f(ηx→y)− f(η)]
1
2d

+
∑
x∈η

∑
y∼x,y∈η

[f(ηx→∅)− f(η)]
1
2d

(where y ∼ x means that y and x are neighbours). Specializing to
the function f(η) = 1{0∈η}, and denoting I = #{y ∼ 0 : y ∈ η} this
implies

Gf(η) = 1{0/∈η}
I

2d
− 1{0∈η}

=
I

2d
(1− 1{0∈η})− 1{0∈η}

Therefore, by translation invariance, since E(I) = 2dP(0 ∈ η), we
get:

d

dt
pt = E[Gf(ηt)]

= −P(both 0 and e1 are occupied) (135)

where e1 is any of the origin’s 2d neighbours. If the occupation
of both 0 and e1 at time t were independent events, we would thus
immediately obtain equality in (134). However, this is far from being
the case: indeed, if there is a particle at the origin, chances are that
it killed (coalesced with) any particle around it! There is thus an
effect of negative correlation here. Remarkably enough, it turns out
that this effect can be evaluated.
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Indeed, what is the chance that both 0 and e1 are occupied? Let
E be this event, and fix some number ∆t > 0 such that ∆t → ∞
but ∆t = o(t) (think, for now, of ∆t =

√
t). For the event E to

occur, there must be two ancestor particles at time t −∆t, located
at some positions x and y ∈ Zd, and the trajectories of two indepen-
dent simple random walks started from x and y must find their way
during time ∆t to 0 and e1 without ever intersecting. If ∆t is large
enough, then chances are that x and y must be far apart, in which
case the events that x and y are occupied are indeed approximately
independent. Hence the probability that x and y are both occupied
is about p2

t−∆t. However, since ∆t = o(t), pt−∆t ≈ pt and thus this
probability is approximately p2

t . Now, to compute the probability
that the two random walks end up at 0 and e1 respectively without
intersecting, we use a time-reversal argument: it is the same as the
probability that two random walks started at 0 and e1 never inter-
sect during [0,∆t] and end up at x and y. That is, letting S and S′

be these walks:

P(E) ≈
∑

x,y∈Zd

P(S∆t = x, S′∆t = y, S[0,∆t] ∩ S′[0, ∆t] = ∅)p2
t

= p2
t P (S[0, ∆t] ∩ S′[0, ∆t] = ∅)

But since the difference of two independent rate 1 simple random
walks is rate 2 simple random walk started from e1, we see that the
probability of the event in the right-hand side is the same as the
probability that a random walk started from e1 never returned to
the origin up to time ∆t. Since d ≥ 3 and ∆t is large, it follows
that simple random walk is transient and thus this probability is
approximately γd. We conclude:

d

dt
pt ∼ −γdp

2
t . (136)

Integrating this result gives Theorem 5.1.
Naturally, there are various sources of error in this approximation,

all of which must be controlled. For instance, one error made in this
calculation is that the ancestors x and y are not necessarily unique.
They are however likely to be unique if ∆t is not too big. van den
Berg and Kesten [25] have used this approach to obtain a density
result for a modified model of coalescing random walks, where the
method of Bramson and Griffeath, relying on the duality with the
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voter model and the exact computation of Sawyer, completely col-
lapses. However, they were able to obtain an asymptotic density
result based on this heuristic (first in large enough dimension [25],
and then for all d ≥ 3 [26]).

5.1.2 Arratia’s rescaling

Soon after Bramson and Griffeath proved Theorem 5.1, Arratia con-
sidered the more precise question of what can be said about the
location of the particles that have survived up to time t. In order to
be able to see a limiting point process, one has to rescale space so
that the average number of particles in a cube of volume 1 is one,
say. That is, we shrink each edge to a length of

ε := gd(t)1/d (137)

and let
Pt(dx) =

∑

x∈εZd

δ(dx)1{x
ε
∈ηt}.

Arratia’s remarkable result [8] is as follows:

Theorem 5.2. Assume that d ≥ 2. Then Pt converges weakly to
a Poisson point process with intensity dx, the Lebesgue measure on
Rd, as t →∞. If d = 1 then there exists a nondegenerate limit which
is non-Poissonian.

Proof. (sketch) Arratia’s proof is deceptively short, and we only
sketch the idea of why this works: the reader is invited to consult
[8] for the real details of the proof. The reason we get a Poissonian
limit only in dimension 2 and higher is because it is possible to find
a ∆t such that ∆t = o(t) but ∆t is large enough that

√
∆t À 1/ε.

Since ε = gd(t)1/d ∼ 1/(
√

πt) in dimension d = 1, it is not possible
to find such a ∆t in dimension 1. However, taking for instance
∆t = t1/2+1/d in dimension d ≥ 3 and ∆t = t/

√
log t for d = 2 works.

Once this is the case, the idea is to say that if B is a fixed compact
convex set of Rd, with high probability there are no coalescences
between times t−∆t and t within B. More precisely, if P̄t denotes
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the same Point process as P except that the coalescences are not
allowed during this time interval, then

P(Pt|B 6= P̄t|B) → 0, as t →∞. (138)

Indeed, note that, on the one hand, η̄ always has more particles than
η, and on the other hand, by applying the Markov property at time
s = t−∆t, so that if pt(x, y) denotes the transition probabilities of
continuous time simple random walk on Zd, and if we let ηt(x) =
1{x∈ηt},

E(η̄t(x)) =
∑

y∈Zd

E(ηs(y))p∆t(y, x)

= ps

∑

y∈Zd

p∆t(x, y)

= ps.

Therefore, putting these two things together, we find, for x ∈ Zd:

P(ηt(x) 6= η̄t(x)) ≤ E(η̄t(x)− ηt(x))
≤ ps − pt,

and it follows that

P(Pt|B 6= P̄t|B) ≤
∑

x∈Zd∩( 1
ε
)B

P(ηt(x) 6= η̄t(x))

≤ 1
εd

λ(B)(ps − pt)

≤ 2λ(B)
ps − pt

pt
→ 0.

It follows from this that we can pretend (with high probability) that
no coalescence occurred, in which case particles behave as if they
were independent simple random walks. However, since

√
∆t À

(1/ε) (which is the typical size in the original lattice of the set B),
it means that “particles have enough time to mix” and thus their
locations are i.i.d. uniform in B. Since the mean number of particles
in B is 1, this can only mean that particles are distributed as a
Poisson point process with unit intensity.

This argument shows why the limit cannot be Poissonian in d = 1:
particles meet and coalesce too often for them to have the time to
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get back to some sort of equilibrium density. Indeed, in dimension
d = 1, the effect of negative correlations is so strong that it does
not disappear even at large scales of space. The limiting object is a
process known as Arratia’s coalescing flow which shares similar prop-
erties of the coalescing flow analysed in Theorem 3.15 for Kingman’s
coalescent. This is also intimately connected to an object called
the Brownian web, which has been the subject of intense research
recently.

5.1.3 Voter model and super-Brownian limit

To describe more precise questions connected with the geometry of
the set of individuals that have coalesced by some time, it is useful to
introduce a system of particles called the (multitype) Voter model .
It turns out that this model is in duality with coalescing random
walks on the one hand, and on the other hand, that there exists an
invariance principle for this model (due to Cox, Durrett and Perkins
[54]). That is, this model is known to have super-Brownian motion as
its scaling limit. This invariance principle has been further sharpened
by Bramson, Cox and Le Gall [41] who showed that the geometry
of a single “patch” (i.e., the set of individuals that coalesced to a
single particle currently located at the origin, provided that there is
such a particle), has the geometry of the Super-Brownian excursion
measure.

We first explain the notion of duality with the voter model. The
(multitype) voter model is a system of particle on Zd where each
vertex is occupied by a certain opinion. This opinion may take two
values (0 or 1) in the two-type case, but in the multitype case every
individual initially has their own opinion. As time evolves, at rate
1, any site x may infect a randomly chosen neighbour, say y: then
y adopts the opinion that x currently holds. Thus it is convenient
to label opinions by the vertices of Zd. To say that vertex x at time
t has the opinion y ∈ Zd means that there was a chain of infections
from y to x in time t. (Thus x carries the opinion that individual
y was carrying at time 0.) The duality between the two-type voter
model and coalescing random walks η states the following. Let E↓
denote the expectation for coalescing random walks ηt started from
a set B ⊂ Zd; and let E↑ denote the expectation for the two-type
voter model started from a set A. (That is, initially x ∈ A carries
opinion 1, and everybody else carries opinion 0). Let ξt denote the
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set of 1 opinions at time t in this model:

Theorem 5.3. Let A,B ⊂ Zd be two subsets. Then we have the
duality relation:

P↑(ξt ⊇ B|ξ0 = A) = P↓(ηt ⊆ A|η0 = B). (139)

Proof. (sketch) The proof is most easily seen with a picture, as both
processes can be constructed using a graphical representation. For
each oriented edge e = (x, y) linking two neighbouring vertices, asso-
ciate an independent Poisson clock (N e(t), t ∈ R) with rate 1. This
clock has two interpretations, depending on whether we wish to use
it to construct coalescing random walks or the voter model. For the
former, a ring of the clock N e signifies that x infects y, i.e., y adopts
the opinion of x. For coalescing random walks, a ring of the edge
means that a particle which was at x moves at y. This is shown in
Figure 11. Fix 0 < t. For s < t and two vertices x, y we say there is
a path down from (t, y) to (s, x) if following the arrows emanating
from y at time t leads to x at time s. Define a process (W t,y

s )0≤s≤t

by putting W t,y
s = x if and only if there is a path down from (t, y) to

(t− s, x). Then it is easy to see that {(W t,y
s )0≤s≤t}y∈Zd is a system

of coalescing random walks run for time t. On the other hand, if
A ⊂ Zd we may define for all t ≥ 0, ξt = {y ∈ Zd : W t,y

t ∈ A}. Then
(ξt)t≥0 has the law of the two-type voter model started from ξ0 = A.
Now note that, with this construction

{ξt ⊇ B} = {W t,y
t ∈ A for all y ∈ B} = {ηt ⊆ A}

where ηt is the system of coalescing random walks defined by the
processes {(W t,y

s )0≤s≤t}y∈B. This completes the proof.

Observe that, with the voter model, we have a nice dynamics
forward in time with a clear branching structure. The fact that
the density of coalescing random walks is asymptotic to 1/(γdt) in
dimension d ≥ 3 implies that the a given opinion at time 0 in the
multitype voter process has a probability about 1/(γdt) to survive
up to time t. It is well-known that there is a similar behaviour
for critical Galton-Watson branching processes with finite variance
([108], [102]): P(Zt > 0) ∼ K/t, where K = 2/σ2.

This suggests that, in dimensions d ≥ 3, the branching structure
of the voter model is well-approximated by a critical Galton-Watson
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Voter model

Coalescing random walks

Figure 11: The duality between coalescing random walks and the
voter model. A dot indicates an edge which rings. Only the rings
which affect the particles have been represented.
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process. On top of this branching structure, particles are moving
according to simple random walk: therefore, we do expect in the limit
as t → ∞ that this system can be rescaled to the super Brownian
motion, as this is precisely defined as the scaling limit of critical
branching Galton-Watson process with Brownian displacements (see
Etheridge [72] for a wonderful introduction to the subject). The
invariance principle of Cox, Durrett and Perkins states this result
formally:

Theorem 5.4. Let ξN
t denote a voter model started from a certain

initial condition ξN
0 . Let d ≥ 2, and let mN = N if d ≥ 3 or N/ log N

if d = 2. If XN
t (dx) = 1

mN

∑
y∈εξN

t
δy(dx), then, provided XN

0 ⇒ X0

as N →∞, we have:

(XN
tN , t ≥ 0) −→d (Xt, t ≥ 0) (140)

the super-Brownian motion with branching rate r = 2γd and spatial
variance σ2 = 1.

We finish this discussion by stating the sharpened result of Bram-
son, Cox and Le Gall [41], which describes the geometry of the patch
It of the origin, conditionally on the event that there is a particle at
the origin.

Theorem 5.5. There is the following convergence in distribution as
t →∞: It√

t
−→ Supp(X)

where X has the distribution of a super-Brownian excursion condi-
tioned to reach level 1.

(This convergence holds with respect to the Hausdorff metric on
compact sets.) We haven’t defined the super-Brownian excursion
properly, nor super Brownian motion in fact. This is simply the
rescaled limit of a single critical Galton-Watson tree with finite vari-
ance, conditioned to reach a high level n, and with independent
Brownian displacements along the tree. See [41] for details.

5.1.4 Stepping stone and interacting diffusions

We now provide a very short and partial presentation of the stepping
stone model of population genetics. Essentially, this is a spatial
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version of the Moran model studied in Theorem 2.3, and it may
also be viewed as a generalization of the voter model of the previous
section. The model is as follows. Fix a graph G which for us will be
always the d-dimensional Euclidean lattice or a large d-dimensional
torus (Z/L)d, and let N ≥ 1. We view each site as a colony or deme,
and N is the total number of individuals of a given population at
each colony. Here we only define the model without mutations, but
it is easy to add mutations if desired. The stepping stone model
tracks the evolution of various allelic types at each site x ∈ Zd, as
they are passed along to descendants. Since this is a spatial version
of the Moran model, individuals reproduce in continuous time at
constant rate equal to 1, and when individual i reproduces, some
other individual j adopts the type of individual i. We merely need to
specify how j is chosen. This is done as follows: fix 0 < ν < 1, which
we think of being a small number. With probability 1−ν, j is chosen
uniformly at random different from i but in the same colony as i,
say x ∈ Zd. Otherwise, with probability ν, j is chosen from another
colony, with colony y being selected with probability q(y, x), where
q(y, x) denotes the transition probabilities of a fixed random walk
on Zd. This choice is made so that when we follow the genealogical
lineages of this model, backward in time, we obtain a random walk in
continuous time with transition probabilities q(x, y). In what follows,
the reader may think of the case where q(x, y) is not only symmetric
in x, y ∈ (Z/L)d and a function only of y−x, but also that it has the
same symmetries as Zd. (Naturally, it is fine to think of the simple
random walk transition probabilities: q(x, y) = (1/2d)1{x∼y}, where
x ∼ y denote that x and y are neighbours in the torus (Z/L)d).

The exact quantity which we track may depend on the context: for
instance, by analogy with the Fleming-Viot model of Theorem 3.11,
it may be convenient to start the model with all individuals carrying
allelic types given by independent uniform random variables on (0,1),
and follow the process

Xt =

(
N∑

i=1

δξi(t,x)

)

x∈Zd

; t ≥ 0.

Here ξi(t, x) ∈ (0, 1) denotes the type of the ith individual at time t
in colony x. The stepping stone model has a long history, which it
would take much too long to describe here. We simply mention the
three papers which had huge impact on the subject, starting with
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the work of Kimura [103] and the subsequent analysis by Kimura
and Weiss [104] and by Weiss and Kimura [151]. Durrett [66] devotes
Chapter 5 of his book to this model. It contains a fine review of some
recent results on this model due in particular to Cox and Durrett
[53] as well as Zähle, Cox and Durrett [152]. We describe some of
the main results below. For those results, what matters is only the
time of coalescence and genealogical properties of the model (which
is why it is not too important what is the exact quantity tracked by
the stepping stone model).

To start with, we describe some results regarding the time of co-
alescence of two lineages. We take the case d = 2, which is not only
the most biologically relevant but also the most interesting mathe-
matically. The result depends rather sensitively on the relative order
of magnitude of the starting locations of these lineages, the size L of
the torus, and the size N of the population in each colony. To start
with, assume that the two lineages are chosen uniformly at random
from the torus. Let T0 be the time which the lineages need to find
themselves at the same location, and let t0 be the total time they
need to coalesce (thus t0 ≥ T0, almost surely). The following result
is due to Cox and Durrett [53].

Theorem 5.6. Let d = 2. For all t > 0, as L →∞, and ν → 0,

P
(

T0 >
L2 log L

2πσ2ν
t

)
→ e−t.

Moreover, after T0, the additional time needed to coalesce t0 − T0

satisfies:
E(t0 − T0) = NL2.

Here σ denotes the variance of q in some arbitrary coordinate
(since q has the same symmetries as Zd, it does not matter which
one).

Proof. (sketch) By considering the difference of the location of the
two lineages, the question may be reformulated as follows: start from
a location at random in the torus, and ask what is the hitting time
of zero for a rate 2ν continuous time random walk (Xt, t ≥ 0) with
kernel q. By stationarity, the expected amount of time Xt has spent
at 0 by time L2 is exactly equal to 1. On the other hand, if X0 = 0,
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the amount of time Xt = 0 in the next L2 units of time is, by the
local central limit theorem,

∫ L2

0
P0(Xt = 0)dt ∼ log(L2)

2π(2νσ2)
=

log L

2πνσ2

since P0(Xt = 0) ∼ (2πσ2(2νt))−1. Thus, on average the particle
spends one unit of time at the origin by time L, but conditionally on
hitting 0 this becomes approximately log L/(2πνσ2). It is not hard
to deduce from these two facts that

P(T0 < L2) ∼ 2πνσ2

log L
.

Using a mixing argument (after a large constant times L2, the walk
has mixed and forgotten its initial state, so there is a fresh chance to
hit o in the next period of the same length) one can deduce the first
result without too much difficulty. The second result is a much more
general property of so-called symmetric matrix migration models,
see Theorem 4.13 in [66].

There are thus two situations to consider for the asymptotics of
t0: either t0 − T0 dominates or T0 dominates. The first one happens
if

E(T0) = O(
L2 log L

ν
) ¿ E(t0 − T0) = NL2

i.e. if Nν/ log L →∞. In this case we obtain:

Corollary 5.1. Assume that Nν/ log L
d−→∞. Then as L →∞,

t0
NL2

→ E,

an exponential random variable.

The interesting case occurs of course if both contributions to t0
are of a comparable order of magnitude. Thus

2Nνπσ2

log L
→ α. (141)

Theorem 5.7. We have:

P
(

t0 > (1 + α)
L2 log L

2πσ2ν
t

)
→ e−t. (142)
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This is complemented by a result, due to [152], which says that
the genalogy of a random sample of n individuals from the torus is
approximately given by Kingman’s coalescent, after a suitable time-
change. Let hL = (1 + α)L2 log L/(2πσ2ν). The following result
(Theorem 2 in [152]), is originally formulated for the number of lin-
eages backward in time of such a sample, but can be reformulated
in terms of convergence to Kingman’s coalescent, which we do here.
Let k ≥ 1 and let (ΠL,k

t , t ≥ 0) denote the ancestral partition process
for these k individuals.

Theorem 5.8. As L,N → ∞ and ν → 0 in such a way that (141)
holds, then

(ΠL,k
hLt, t ≥ 0) d−→ (Πk

t , t ≥ 0),

Kingman’s k-coalescent.

The proof of this result follows the lines of an argument due to Cox
and Griffeath [55], who proved a similar result in the context of the
voter model, or coalescing random walks. Naturally, the idea is to
exploit the fact that particles are very well mixed on the torus by the
time they coalesce, leading to the asymptotic Markovian property of
the ancestral partition process, and to the fact that every pair of
coalescence is equally likely. (The fact that only pairwise mergers
occurs is also a consequence of the relative difficulty to coalesce in
more than 1 dimension: we rarely see three particles close enough to
coalesce instantly on the time scale that we are looking at).

A particularly interesting case of this question arises when the two
lineages are not selected just uniformly at random from the torus but
from a subdomain of the torus which is a square of sidelength Lβ with
0 ≤ β ≤ 1. This reflects the fact that, in many biological studies,
samples come from a fairly small portion of the space (see [152] or
section 5.3 of [66] for results). In that case Theorem 5.8 still holds
but the time-change is slightly more complicated (and is not just
linear, in particular). In the next section on spatial Λ-coalescents,
an even more extreme view of individuals sampled from the exact
same location is presented.

Note that mutations may be added to the stepping stone model
without difficulty (instead of adopting the type of his parent, a new-
born adopts a new and never seen before type). Also, if we imag-
ine following forward in time the evolution of the densities at var-
ious sites of a certain subpopulation (say they are of type a, and
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there are no mutations), then we can establish a relation of duality
with certain interacting Wright-Fisher diffusions. These diffusions
(px(t), t ≥ 0)x∈Zd are characterized by the infinite system of SDEs:

dpx(t) =
∑

y∈Zd

qxy(py(t)− px(t))dt +
√

px(t)(1− px(t))dWx(t) (143)

where {Wx}x∈Zd is a collection of independent Brownian motions.
This duality is exactly the spatial analogue of Theorem 2.7 between
Kingman’s coalescent and the Wright-Fisher diffusion. (Note that
existence and uniqueness of solutions to (143) is non trivial but fol-
lows from the duality method).

5.2 Spatial Λ-coalescents

5.2.1 Definition

When considering population models in which the geometric inter-
action of individuals is taken into account, we are led to studying
a process which was introduced by Limic and Sturm in 2006 [116],
called the spatial Λ-coalescent. Loosely speaking, these models are
obtained by considering the ancestral partition process associated
with the stepping stone model of the previous section. However,
there are two differences. On the one hand, the graph G will be the
d-dimensional lattice Zd rather than a torus, where d = 1, 2 are the
most relevant cases: for instance, one can think for d = 1 of a species
which lives on an essentially one-dimensional coastline. More impor-
tantly, there is an additional degree of generalisation compared to
the stepping stone model. Strictly speaking, if we reverse the time
in the stepping stone model (and speed up time by (N − 1)/2, as in
Theorem 2.3), the process which we will obtain is the spatial King-
man coalescent: pairs of particles coalesce at rate 1 when they are
on the same site, and otherwise perform independent random walks
in continuous time. In the spatial Λ-coalescent, the mechanism of
coalescence is such that it allows for multiple mergers at any site.
More precisely, the model is defined as follows. Given a graph G and
a set of particles:

1. Particles follow the trajectory of independent simple random
walks in continuous time on Zd, with a fixed jump rate ρ > 0.
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2. Particles that are on the same sites coalesce according to the
dynamics of a Λ-coalescent.

Definition 5.1. This model is the spatial Λ-coalescent of Limic and
Sturm [116].

We content ourselves with this informal description of the process
and refer the reader to [116] for a more rigorous one. It is non-
trivial to check that the process is well-defined on an infinite graph,
but this can be done using a graphical construction together with
the Poissonian construcion of Λ-coalescents. We do not specify in
this definition the initial configuration. In fact, it could be quite
arbitrary: in particular, it is possible to start the process with an
infinite number of particles on all sites of a given (possibly infinite)
subset. This follows from the fact that there is a natural property
of consistency which is inherited directly from the concistency of
Λ-coalescents.

A particular case of interest is, naturally, the spatial Kingman co-
alescent, where particles perform independent simple random walks
with constant jump rate ρ > 0 and each pair of particles on the
same site coalesces at rate 1. This is related to the genealogical tree
associated with the stepping stone model.

A first property of spatial Λ-coalescents is that if Λ is such that
the Λ-coalescent comes down from infinity (i.e., if Grey’s condition is
satisfied or the condition in Theorem 3.7 holds), then at every time
t > 0, there is only a finite number of particles on every site. Intu-
itively, this is because coming down from infinity is a phenomenon
that happens so close to t = 0 that particles don’t have the time to
jump before it happens. Limic and Sturm actually showed a stronger
statement than this, showing that coming down from infinity, inter-
preted in the sense of a finite number of particles per site, always
happens in a uniform way, independently of the graph structure: if
B is any finite subset of the graph, let Tk be the the first time when
the number of particles in B is no more than k per site on average
(i.e., no more than k|B| particles in B). Then the following estimate
holds:

Theorem 5.9. Assume that
∑∞

b=2 γ−1
b < ∞ so that the Λ-coalescent

comes down from infinity. Then for any graph G,

E(Tk) ≤
∞∑

b=k

1
γb

+
k

γk
< ∞.
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5.2.2 Asymptotic study on the torus

Limic and Sturm considered the situation of a spatial Λ-coalescent
on a large torus of Zd. They were able to show the following result:
if d ≥ 3, as the torus increases to Zd, the genealogy of an arbi-
trary number of samples from the torus is well-approximated by a
mean-field Kingman’s coalescent run at a certain speed. This is the
analogue of Theorem 5.8, except for the initial condition (as we now
explain).

To state this result, let G be the total expected number of visits
at the origin by a simple random walk in Zd started at the origin,
that is, G = 1/γd where γd is the probability of not returning to the
origin. Define

κ :=
2

G + 2/λ2,2
. (144)

Suppose that a fixed number of particles n is sampled from the
torus of side-length 2N +1 and that the initial location v1, . . . , vn of
these particles does not changed as N →∞ (here the torus is viewed
as a subset of Zd with periodic boundary conditions). Because simple
random walk is transient, it is possible to define unambiguously a
partition Πn which is the eventual partition formed by running the
dynamics of the spatial Λ-coalescent on Zd. Thus i ∼ j in Πn if
particles started from vi and vj did coalesce at some point. (This
partition is typically nontrivial because of transience!)

Theorem 5.10. Let ΠN,n
t denote the partition obtained from run-

ning the dynamics of the spatial Λ-coalescent on the torus of side-
length N for time t. Then if (Kt, t ≥ 0) is the (mean-field) Kingman
coalescent of chapter 2, started from the partition Πn, then we have:

(ΠN,n
(2N+1)dt

, t ≥ 0) −→ (Kκt, t ≥ 0). (145)

This convergence holds as N →∞ and in the sense of the Skorokhod
topology for Pn.

Proof. (sketch) The idea of the proof is the same as in Theorem 5.8
and in [55]. We are working in higher dimension than 2 here, but
that can only help mixing. Note that the definition of the term κ
in (144) precisely takes into account the effects of transience and
mixing on the one hand, and coalesence on the other hand. This is
why both G and λ2,2 come up in this definition. That κ depends
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only on Λ through λ2,2 = Λ([0, 1]) is to be expected, since typically
when particles meet, the density is so low that there are only two
particles at this site, and the other are far away.

We point out that a version of Theorem 5.10 was first proved by
Cox and Griffeath [55] for instantaneously coalescing random walks
and by Greven, Limic and Winter for the spatial Kingman coalescent
[93].

5.2.3 Global divergence

While Theorem 5.9 tells us that for a Λ-coalescent which comes down
from infinity, there are only a finite number of particles per site, what
it does not tell us is whether a finite number of particles are left in
total at any time t > 0. To consider an extreme case, imagine that
the initial configuration at time 0 is an infinite number of particles
on the same site but no particle anywhere else. What is the total
number of particles at time t > 0? It might happen that, even though
there are only a finite number of particles per site, sufficiently many
have escaped and they have instantly spread all over the lattice. The
answer to these questions is provided in [6], which shows that global
divergence is a universal rule, no matter what graph and underlying
measure Λ. We start with the case of Kingman’s coalescent.

Theorem 5.11. Let Nn
t be the number of particles at time t if ini-

tially there are n particles at the origin in Zd. Then there exists
c1, c2 > 0 such that with probability 1 as n →∞,

c1(log∗ n)d ≤ Nt ≤ c2(log∗ n)d. (146)

Here the function log∗ n is simply defined as the inverse log∗ n :=
inf{m ≥ 1 : Tow(m) ≥ n} of the tower function:

Tow(n) = eTow(n−1) := ee. . .
e

︸ ︷︷ ︸
n times

. (147)

In words, start with a number n, and take the logarithm of this
number iteratively until you reach a number smaller than 1. The
number of iterations is log∗ n. In particular, log∗ n has an incredibly
slow growth to infinity: for instance, if n = 1078, (the number of
particles in the universe) log∗ n = 4. Thus, whether or not you con-
sider that the spatial Kingman coalescent comes down from infinity
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or not is essentially a matter of taste! (In particular, if you are a
biologist, you might consider that log∗ n = 3 for any practical n...)

Since Kingman’s coalescent is the fastest to come down from in-
finity (Corollary 4.2) it follows that any spatial Λ-coalescent on Zd

is globally divergent. Since moreover Z is the smallest bi-infinite
graph, we get:

Theorem 5.12. Any spatial Λ-coalescent on any infinite graph is
globally divergent (i.e., does not come down from infinity).

This is in sharp contrast with the non-spatial case where coming
down from infinity depends on the measure Λ.

Proof. (of Theorem 5.11 - sketch). The basic idea is to first focus
on the vertex at the origin, and investigate how many particles ever
make it out of the origin. We may thus represent the coalescence of
particles there as a tree and we put a mark on the tree to indicate
that the corresponding particle has jumped. For the moment, ig-
nore the behaviour of particles after they have left the origin, so for
instance you may think that a particle that jumps is frozen immedi-
ately. Note that, since jumps occur at constant rate ρ, the number
of particles that ever leave the origin is exactly equal to the number
of families in the allelic partition with mutation rate ρ. In particu-
lar, this number is equal to Kn, the number of blocks in a PD(θ)
random partition restricted to [n] with θ/2 = ρ. By Theorem 2.10
(which is a simple consequence of the Chinese Restaurant Process)
this number is approximately θ log n.

Moreover, some more precise computations show that most of the
action happens in a very short span of time: roughly, the vast major-
ity of the particles who are going to leave the origin have already done
so by time 1/(log n)2. By this time, particles which have jumped
once have not had the time to jump any further or come back. Due
to the fact that there are about 2/t blocks in Kingman’s coalescent
at a small time t, there are about 2(log n)2 particles left at the ori-
gin, and about n1 = (θ/(2d)) log n particles at each neighbour (by
the law of large numbers). Starting from here, we can replicate this
argument: about θ log n1 will ever leave all sites at distance 1 from
the origin, so that in the next step, the sites at distance 2 from the
origin receive about n2 := (θ/2d) log n1 ≈ (θ/2d) log log n particles.
The argument can be iterated, and each time one wants to colonize
a new site, a log has to be taken. This may go on until we run out
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of particles, which happens after precisely log∗ n iterations. At this
point, a ball of radius log∗ n has been colonized, which corresponds
to a volume of about (log∗ n)d. On each of those sites, using the
work of Limic and Sturm for finite graphs (Theorem 5.9), at time
t > 0 there will about O(1) particles on every site. Theorem 5.11
follows after estimating the various errors made in this induction and
showing they are negligible.

Applying this reasoning to measures Λ with the “regular varia-
tion” property of Definition 4.1 (such as the Beta distribution with
parameters (2− α, α)), gives us:

Theorem 5.13. Let 1 < α < 2 and consider the spatial Λ-coalescent
with regular variation of index α. Let Nn

t be the number of particles
at time t if initially there are n particles at the origin in Zd. Then
there exists c1, c2 > 0 such that with probability 1 as n →∞,

c1 log log n ≤ Nn
t ≤ c2 log log n. (148)

5.2.4 Long-time behaviour

Consider the spatial Kingman coalescent, started from a large num-
ber of particles at the same site. The results from the previous
section tell us that the particles quickly settle to a situation where
there is a bounded number of particles per site in a rather “large”
region of space (large in quotation marks, as we have seen that after
all log∗ n shouldn’t be considered large for any practical purpose!).
After this initial phase of decay, a different kind of behaviour kicks
in, where the geometry of space plays a much more crucial role than
before. Particles start diffusing and coalescence events become much
more rare than before. The behaviour is then altogether rather sim-
ilar to the case of instantaneously coalescing random walks: indeed,
when two particles meet, they stand a decent chance of coalescing.
Thus, starting from a situation where a ball of radius m = log∗ n
has about one particle per site (or m = log log n for spatial beta-
coalescents), we can expect the density to start decaying like 1/t as
in Theorem 5.1 for a while. When particles start realising that the
initial condition wasn’t infinite (i.e., there wasn’t one particle per
site on every site of the lattice but only a finite portion of size ap-
proximately m), the density essentially stops decaying. This takes
place at a time of order m2 because of the diffusivity of particles. At
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this time, the density is about 1/m2 and particles are distributed in
a volume of about md. Thus, in dimensions d ≥ 3, we expect about
md−2 particles to survive forever. This heuristics is confirmed by the
following result:

Theorem 5.14. Let N∞ be the number of particles that survive
forever, if initially there are n particles at the origin, and let m =
log∗ n. There exist some constants c > 0 and C > 0 (depending only
on d) such that, if d ≥ 3:

P
(
cmd−2 < N∞ < Cmd−2

)
−−−→
n→∞ 1, (149)

In dimension 2, since simple random walk is almost surely recur-
rent, every pair of particle is bound to meet infinitely often and thus
to coalesce. Hence only one particle may survive forever. However,
the heuristics above can be adapted to show what is the asymptotic
rate of decay of the number of particles. As anticipated, the correct
time-scale is of order m2:

Theorem 5.15. Let d = 2 and let Nt be the number of particles
that survive up to time t > 0. If δ > 0, there exist some universal
constants c1 and c2 such that

P
(

c1

log(δ + 2)
log m < Nδm2 <

c2

log(δ + 2)
log m

)
−−−→
n→∞ 1. (150)

There are two statements hidden in (150). The first one says that
the number of particles at time δm2 is about log m. The second says
that if δ is large, then the constant term in front of log m is of the
order of 1/ log(δ).

Proof. We are not going to offer any justification of Theorem 5.14
or 5.15, but we will give a rigorous argument for a lower-bound on
the expected number of survivors. This argument has the merit of
making it clear that this is indeed the correct order of magnitude.
The idea is the following: in the ball of radius m initially, label all
particles 1, 2, . . . , Kmd for some K > 0, in some independent ran-
domized way (for instance, uniformly at random). To every particle
labelled 1 ≤ i ≤ V , with V = Kmd, associate an independent contin-
uous time simple random walk Si started at xi, the initial position
of particle i. In the event of a coalescence between particles with
labels i < j, we decree that the lower-labelled particle necessarily
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wins: after this event, both particles i and j follow the trajectory of
the walk Si.

Fix ε > 0 and let P be the population of particles with labels
1 ≤ i ≤ εm2. It suffices to show that a typical member of P stands
a nonzero (asymptotically) chance to survive forever. However, a
particle i ∈ P may only disappear if it coalesces with a particle
with a lower label than itself, and hence it can only disappear if
it coalesces with another member j from P in particular. Let us
assume for instance that this particle is sitting at the origin initially.
If j ∈ P is at position x ∈ Zd initially, the probability that Sj it ever
is going to meet Si is smaller or equal to the expected number of
visits to the origin by Sj − Si, which is equal to the Green function
G(x) of simple random walk. Now, it is standard that:

G(x) ∼ c|x|2−d (151)

Hence, the expected number of coalescences K(i) of i with other
members of P is smaller than

E(K(i)) ≤
∑

x∈Zd

P(there is a particle from P at x)

× P(the two particles coalesce)

≤ C
m∑

k=0

kd−1 εmd−2

md
k2−d

≤ Cm−2
m∑

k=0

εk

= Cε.

The probability that i disappears is smaller than the expected num-
ber of coalescences with members from P , thus the probability of
survival is greater than 1 − Cε. By making ε sufficiently small,
this is greater than 1/2, and we conclude that the expected num-
ber of particles that survive forever is thus at least greater or equal
to (1/2)#P = (ε/2)md−2. Some more precise computations on the
dependence between these events for various particles i and a mar-
tingale argument are enough to conclude for the lower-bound in The-
orem 5.14.

The upper-bound is on the other hand much more delicate, and the
argument of [6] uses a multiscale analysis to show that the density
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decays in a roughly inversely proportional way to time in d ≥ 3. The
key difficulty is to control particles that may escape to unpopulated
regions and thereby slowing coalescence. The multiscale approach
allows to bound the probability of such events at every stage.

5.3 Some continuous models

At this stage the understanding of spatial Λ-coalescents is quite
rough and it would be of considerable interest to establish more
precise results about the distribution of the location of the particles
in the manner of, say, Theorem 5.4. The first step is to identify
the effective branching rate in the time-reversed picture. There are
several possible ways to do this. One of them is to get some inspira-
tion from a remarkable study by Hammond and Rezkhanlou [96] of
a model of coalescing Brownian motions.

5.3.1 A model of coalescing Brownian motions

In this model, N particles are performing a Brownian motion in Rd

with d ≥ 3 say, although they have also studied the case d = 2
in a separate paper [97] (see also [137] for a related model where
masses may be continuous). Two particles may interact when they
find themselves at a distance of order ε of one another, where ε > 0.
One way to describe this interaction is that there is an exponential
clock with rate ε2 for every pair of particles, such that when the
total time spent by this pair at distances less than ε exceeds that
clock, then the two particles coalesce, and are replaced by a single
particle at a “nearby location” (usually somewhere on the line seg-
ment which joins the two particles for simplicity, although this isn’t
so important). In this model, the diffusivity of particles depends also
on the size of the block that it corresponds to: thus there is a func-
tion d(n) ≥ 0 which is usually non-increasing such that a particle of
mass n (i.e., made up of n particles having coalesced together) has
a diffusivity of d(n). This models the physically reasonable situa-
tion where larger particles don’t diffuse as fast as light particles. We
are also given a function α(n,m) which represents the microscopic
propensity for particles of masses n and m to coalesce, thus the rate
for the exponential clock is chosen to be ε2α(n,m).

Hammond and Rezakhanlou are able to prove in [96], subject to
certain conditions on the functions d(n), that the density of parti-
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cles rescales to an infinite hierarchy of PDEs called Smoluchowski’s
equations. The initial number of particles N is chosen so that every
particle coalesces with a bounded number of particles in a unit time-
interval. A simple calculation based on the volume of the Wiener
sausage of radius ε around the trajectory of a single Brownian mo-
tions shows that this happens if Nε2−d = Z is constant. With
these conventions, their result is as follows. Let gε

n(dx, t) denote
the rescaled empirical distribution of particles of mass n at time t
and at position x, that is, gε

n is the point measure:

gε
n(dx, t) = ε2−d

∑

i∈P(t)

δxi(dx)

where P(t) is the set of particles alive at time t and xi is the location
of particle i. Then the main result of [96] is as follows.

Theorem 5.16. For any test smooth test function J(x), and any
n ≥ 1, and for all t ≥ 0, as ε → 0:

∫

Rd

J(x)gε
n(dx, t) L1−→

∫

Rd

J(x)fn(x, t)dx

where the functions fn(x, t) satisfy:

∂fn

∂t
=

d(n)
2

∆fn(x, t) + Qn
1 (f)(x, t)−Qn

2 (f)(x, t), (152)

where Q1 and Q2 are given by

Qn
1 (f) =

n∑

k=1

β(k, n− k)fkfn−k

and

Qn
2 (f) = 2fn

n∑

k=1

β(n, k)fk.

The numbers β(n, m) are given in terms of a certain PDE which
involves α(n,m): first find the solution to

∆un,m =
α(n,m)

d(n) + d(m)
(1 + un,m), in B(0, 1)

with zero boundary condition on the unit sphere ∂B(0, 1), and then

β(n,m) =
α(n,m)

d(n) + d(m)

∫

B(0,1)
(1 + un,m). (153)
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The equation (152) has an intuitive interpretation: roughly, fn

changes because of motion (which gives the Laplacian term), or
because of coalescence of two particles of size k and n − k, where
1 ≤ k ≤ n, (giving the first term Q1) or because of coalescence of a
particle of mass n with a particle of possibly different mass k ≥ 1
(this is a loss in this case, and is responsible for the term Q2). It
should be emphasized that proving existence and uniqueness of so-
lutions to (152) can be extremely difficult, essentially due to the
fact that some nontrivial gel may form (i.e., creation of particles of
infinite mass in finite time). This is an old problem, and one that
Hammond and Rezkhanlou have also partly contributed to clarify in
subsequent papers.

One of the remarkable features of this result is that the macro-
scopic coagulation rates β(n,m) differ from the microscopic ones
α(n,m). This reflects the fact that a kind of macroscopic averaging
occurs and there is an “effective rate of coalescence”, which takes
into account how much do particles effectively see each other when
they diffuse and may coalesce with others.

The model of spatial Λ-coalescents may be viewed as a lattice
approximation of the model of Hammond and Rezakhanlou in the
particular case where the diffusivity d(n) does not depend on n.
In that case, the hierarchy of PDE’s (152) simplifies greatly and
becomes simply:

∂f

∂t
=

1
2
∆f − βf2 (154)

for some β > 0. Thus it is tempting to make the conjecture that the
equation (154) also describes the hydrodynamic limit of the density
of particles at time t and at position x in spatial Λ-coalescents. The
number β is the solution to a certain discrete difference equation
which is the discrete analogue of (153).

5.3.2 A coalescent process in continuous space

The fact that the number β in (154) does not agree with (153) is
rather disconcerting. It is an indication that, even after taking the
hydrodynamic limit, the discrete nature of the interactions and the
exact microscopic structure of the lattice on which these interactions
take place, play an essential role in the macroscopic behaviour of the
system. This makes it doubtful thats such models should be taken
too seriously for modeling real populations. Instead, it is natural to
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ask for models that are more robust or universal, just the same way as
Brownian motion is a valid approximation of many discrete systems,
irrespectively of their exact microscopic properties. Moreover, the
kind of models discussed above (spatial Λ-coalescents and the model
of coalescing Brownian motions of Hammond and Rezakhanlou) fall
roughly in the same kind of models as that of coalescing random
walks, and thus we also anticipate that the genealogical relation-
ships they describe is similar in some way to that of super-Brownian
motion. It should however be pointed out that super-Brownian mo-
tion, although a rich source of mathematical problems in their own
right, is rather inadequate as a model of populations living in a con-
tinuum. We refer the reader to the discussion in the introduction of
[22] for such reasons. The difficulty is that they predict that if not
extinct, at large times, the population will form ‘clumps’ of arbitrar-
ily large density and extent, which goes against the intuition that
some kind of equilibrium is settling in.

To circumvent this fact, Etheridge has recently introduced in [73]
a new model of coalescence in continuous space, which is based on
a Poisson point process of events in a roughly analogous fashion to
the Poissonian construction of Λ-coalescents. Suppose that we are
given a measure µ(dr, du) on R+ × (0, 1). The measure dx ⊗ µ on
Rd×R+×(0, 1) indicates the rate at which a proportion u ∈ (0, 1) of
lineages in a ball of radius r around any given point x coalesces. The
location of the newly formed particle is then chosen either uniformly
in the ball of radius r around x, or precisely at x. The analysis of
this process is only at its very initial stage at the moment. To start
with, even the existence of the model does not appear completely
trivial: one needs some conditions on µ which guarantee that not
too many events are happening in a given compact set: for instance,
the trajectory of a given particle will be a Lévy process and one set
of conditions on µ comes from there. Another set is purely anal-
ogous to the Λ-coalescent condition. Conditions for the existence
of the process and some of its properties are analysed in [10], who
rely on a modification of a result due to Evans [76]. Among other
things, they study scaling limits of this process when space is no
longer the full plane but rather a large two-dimensional torus, and
the measure µ(dr, du) may be decomposed as a sum of two measures
corresponding to “big events” which involve a large portion of the
space (such as a major ecological catastrophe) and a measure for
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small (local) events. They show that there is a large spectrum of
coalescing processes which may be obtained in the limit to describe
the genealogies of the population. This contrasts with the spatial
Λ-coalescent model of Limic and Sturm where the scaling limit is
always Kingman’s coalescent, regardless of the measure Λ (Theorem
5.10).

We note that a model of a discrete population evolving in contin-
uous space is described in the paper [22], where the main result is
that for certain parameter values the process is ergodic in any di-
mension. (As noted above, this contrasts sharply with population
models based on super-Brownian motion). It is believed that the co-
alescent process associated with this model converges in the scaling
limit to Etheridge’s process. See [73, 22, 23] for details.
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6 Spin glass models and coalescents

In this chapter we take a look at some developments which relate a
certain description of spin glass models to a coalescent process known
as the Bolthausen-Sznitman coalescent. This is the Λ-coalescent
process which arises when one takes Λ to be simply the uniform
measure on (0, 1). We first introduce a beautiful representation of
this process in terms of certain discrete random trees which was
discovered by Goldschmidt and Martin [90], and use this description
to prove some properties of this process. We then introduce the
famous Sherrington-Kirkpatrick model from spin glass theory, as well
as the simplification suggested by Derrida known as the Generalized
Random Energy Model (GREM). We describe Bovier and Kurkova’s
result [40] that the Bolthausen-Sznitman coalescent describes the
statistics of the GREM as well as Bertoin and Le Gall’s connection
[29] to Neveu’s continuous branching process. Finally, we describe
some recent outstanding conjectures by Brunet and Derrida [46, 47]
which are related to this and to several other subjects such as random
travelling waves and population models with selection, together with
ongoing work in this direction.

6.1 The Bolthausen-Sznitman coalescent

Definition 6.1. The Bolthausen-Sznitman (Πt, t ≥ 0) is the P-
valued Λ-coalescent process obtained by taking the measure Λ to be
the uniform measure Λ(dx) = dx.

Thus the transition rates of the Bolthausen-Sznitman coalescent
are computed as follows: for every 2 ≤ k ≤ b, and for every n ≥ 2, if
the restriction of Π to [n] has b blocks exactly, then any given k-tuple
of blocks coalesces with rate

λb,k =
∫ 1

0
xk−2(1− x)b−kdx =

(k − 2)!(b− k)!
(b− 1)!

=
[
(b− 1)

(
b− 2
k − 2

)]−1

. (155)

6.1.1 Random recursive trees

We follow the approach of Goldschmidt and Martin [90] which shows
a representation of the Bolthausen-Sznitman coalescent in terms of
certain random trees called recursive trees.



Coalescent theory 159

Definition 6.2. A recursive tree on [n] is a labelled tree with n
vertices such that the label of the root is 1, and the label of vertices
along any non-backtracking path starting from the root is monotone
increasing.

In other words, the label of a child is greater than the label of
the parent. There are exactly (n− 1)! recursive trees on [n]: indeed,
suppose that a tree of size 1 ≤ j ≤ n − 1 has been constructed.
Then vertex with label j + 1 can be added as the child of any of the
j vertices already present in the tree. It follows directly from this
description that a randomly chosen recursive tree (i.e., a recursive
tree chosen uniformly at random among the (n−1)! possibilities) can
be obtained by a variation of the above procedure: namely, having
chosen a randomly chosen recursive tree on [j] with 1 ≤ j ≤ n − 1,
one obtains a random recursive tree on j +1 by attaching the vertex
with label j + 1 uniformly at random at any of the j vertices of the
tree.

There is a natural operation on recursive trees which is that of
lifting an edge of the tree. This means the following: assume that the
edge e = (i1, i2) which is being lifted connects two labels i1 < i2, so
that i1 is closer to the root than i2. Let i2, i3, . . . , ij be the collection
of labels in the subtree below i1. Then this subtree is deleted and
the label of i1 becomes i1, . . . , ij . Graphically, all vertices below i1
bubble up to i1 and stay there (see Figure 12 for an example).

Goldschmidt and Martin [90] use the word cutting for the oper-
ation just described, but we prefer the word lifting as it is more
suggestive: we have in mind that the subtree below the edge is given
a lift up to that vertex.

This leads us to the slightly more general definition of recursive
tree. Let π = (B1, . . . , Bk) be a partition of [n], with the usual
convention that blocks are ordered by their least element.

Definition 6.3. A recursive tree on π is a labelled tree with k ver-
tices such that all k vertices of the tree are labelled by a block of
the partition. The label of the root is B1, and the label of vertices
along any non-backtracking path starting from the root is monotone
increasing for the block order.

Given a partition π = (B1, . . . , Bk) there are naturally exactly
(k − 1)! possible recursive trees on π, and the previous notion of
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Figure 12: Lifting of successive edges of a recursive tree on 10 ver-
tices.
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recursive trees corresponds to the case where π is the trivial partition
into singletons.

With these definitions, we are able to state the following result,
which is due to Goldschmidt and Martin [90], and which gives a strik-
ing construction of the Bolthausen-Sznitman coalescent in terms of
random recursive trees. Let n ≥ 1, and let T be a random uni-
form recursive tree on [n]. Endow each edge e of T with an inde-
pendent exponential random variable τe with mean 1, and use this
random variable τe to lift the edge e at time τe. The label set of the
trees defined by these successive liftings define a random partition
(Πn(t), t ≥ 0).

Theorem 6.1. The process (Πn(t), t ≥ 0) has the same distribution
as the restriction to [n] of the Bolthausen-Sznitman coalescent.

Proof. The proof is not very difficult. The main lemma, which in
[90] is generously attributed to Meir and Moon [119, 120], is the
following: (note that it is not literally the same as the one given in
[90], where slightly more is proved).

Lemma 6.1. Let L be a given label set with b elements, and let
T be a random recursive tree on L. Let e be an edge of T picked
uniformly at random, independently of T , and let T ′ be the recursive
tree obtained by lifting the edge e. Then, conditionally on the label
set L′ of T ′, T ′ is a uniform random recursive tree on L′.

Proof. Fix a label set L′ = `′ such that L is more refined than L′, i.e.,
L′ has been obtained from L by coalescing certain blocks, and let t′

be a given recursive tree on L′. Let us compute P(T ′ = t′; L′ = `′).
Since both L and L′ are given, we know which blocks of L exactly
must have coalesced. Let us call L = {`1, . . . , `b} the labels of T
ordered naturally, and let {`i1 , . . . , `ik} be those labels that coalesce.
Thus let M1 = {`i2 , . . . , `ik}, and let M2 = L \M1. Let us consider
the various ways in which the event {T ′ = t′} may occur. First
build a recursive tree t1 on M1 rooted at `i2 (there are (k− 2)! ways
of doing so), and consider the recursive tree t2 on M2 obtained by
changing the label {`i1 , . . . `ik} of t′ into `i1 . Link `i2 to `i1 by an
edge e. The tree T must have been the one obtained by the junction
of t1 and t2 (which has probability exactly 1/(b− 1)!), and the edge
e linking `i1 to `i2 must be lifted (which has probability 1/(b − 1)).
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Thus

P(T ′ = t′;L′ = `′) =
(k − 2)!

(b− 1)(b− 1)!
(156)

In particular, after division by P(L′ = `′), the above does not depend
on t′ and thus T ′ is a uniform random recursive tree on L′.

It is now a simple game to conclude that the process Πn(t) has
the Markov property and the transition rates of the Bolthausen-
Sznitman coalescent. Indeed, the lemma above shows that con-
ditionally on Πn(t), the tree Tn(t) is a uniform random recursive
tree labelled by Πn(t), and moreover since there are b − 1 edges in
the tree, the total rate at which a merger of k given blocks occurs
(say `i1 , . . . , `ik among the b blocks `1, . . . , `b) is exactly b− 1 times
P(L′ = `′) using the notations in the above lemma. This may be
computed directly as in the lemma, as all that is left to do is choose
one of the (b− k)! recursive trees on M2, so

P(L′ = `′) =
(k − 2)!(b− k)!
(b− 1)(b− 1)!

=
1

(b− 1)2
(k − 2)!(b− k)!

(b− 2)!

=
1

(b− 1)2

(
b− 2
k − 2

)−1

. (157)

(Another way to obtain (157) is that since T ′ is uniform conditionally
given L′, and sice we already know that there are (b− k)! recursive
trees on L′, we conclude from (156) that P(L′ = `′) is (b− k)! times
the right-hand side of (156), which is precisely (157).)

Thus multiplying (157) by (b− 1), the rate at which (`i1 , . . . , `ik)
is merging is exactly the same as λb,k for the Bolthausen-Sznitman
coalescent (155). This finishes the proof.

6.1.2 Properties

Theorem 6.1 allows us to prove very simply a number of interest-
ing properties about the Bolthausen-Sznitman coalescent, some of
which were already discovered by Pitman [131] although using more
involved arguments. We start with the following result:

Theorem 6.2. Let (Πt, t ≥ 0) be the Bolthausen-Sznitman coales-
cent. Then for every t > 0,

Πt
d= PD(e−t, 0)
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has the Poisson-Dirichlet distribution with α = e−t and θ = 0. In
particular, Π does not comes down from infinity.

Proof. The proof is simple from the construction of Theorem 6.1:
all we have to do is observe that the Chinese Restaurant Process
is embedded in the construction of random recursive trees. Indeed,
let E1, . . . , be independent exponential random variables with mean
1. Fix a time t > 0 and imagine constructing a random recursive
tree T on [n] by adding the vertices one at a time. We also put a
mark on the edge ei which links vertex i to the root if and only if
Ei < t. We interpret a mark as saying that the edge has been lifted
prior to time t, but rather than collapsing it we keep it in place
and simply keep in mind that we have to do the lifting operation
in order to obtain Πn(t). Suppose that after collapsing those edges,
we would have k blocks of respective sizes n1, . . . , nk, with smallest
elements i1, . . . , ik. When vertex n + 1 arrives, it forms a new block
if it attaches to one of i1, . . . , ik and if its edge isn’t marked, which
has probability ke−t/n. Otherwise, it becomes part of a block of size
nj if it attaches to one of the nj − 1 vertices below ij (regardless of
whether its edge has a mark) or if it is attached to ij and its edge
is marked. The probability this happens is

nj − 1 + (1− e−t)
n

=
nj − α

n

where α = e−t. Thus Πt has the Poisson-Dirichlet PD(e−t, 0) distri-
bution. One can deduce from this and Theorem 1.11 that the number
of blocks at time t in Πn(t) is approximately nα with α = e−t. Since
this tends to ∞, this proves Theorem 6.2.

Another striking application of Theorem 6.1 is the following de-
scription for the frequency of a size-biased picked block. That is,
consider F (t) the asymptotic frequency of the block containing 1 in
Πt, where (Πt, t ≥ 0) is the Bolthausen-Sznitman coalescent.

Theorem 6.3. The distribution of F (t) is the Beta(1−α, α) distri-
bution, where α = e−t. Moreover, we have the following identity in
distribution for the process (F (t), t ≥ 0):

{F (t), t ≥ 0} d=
{

γ(1− e−t)
γ(1)

, t ≥ 0
}

, (158)



Coalescent theory 164

where (γ(s), s ≥ 0) is the Gamma subordinator, i.e., the process
with independent stationary increments such that P(γ(s) ∈ dx) =
Γ(s)−1xs−1e−xdx.

Note that the right-hand side of (158) is Markovian, hence so is the
process (F (t), t ≥ 0). There is no obvious reason why this should be
the case, and in fact we do not know of any other example where this
is the case. Another consequence of this fact is that − log(1− F (t))
has independent (but not stationary) increments.

Proof. It is easier to think of a random recursive tree on the label set
{0, . . . , n} with thus n + 1 vertices. Then note that as we build the
random recursive tree on this vertices, the partition Pn of {1, . . . , n}
obtained by looking which vertices are in the same component of the
tree if we were to cut all edges connected to the root 0, is exactly a
Chinese Restaurant Process but this time with with parameters α =
0 and θ = 1. Thus it has the same distribution as the one induced by
random permutations. It follows that in the limit, these normalized
component sizes have precisely the PD(0, 1) distribution. Now, use
the construction of Theorem 6.1 on n+1 vertices with edges marked
as in the proof of Theorem 6.2, to see that the ranked jumps of F (t),
say J1 ≥ J2 ≥ . . ., are precisely given by the ranked components of
a PD(0, 1) random variable. This sequence of jumps is furthermore
independent of the corresponding jump times (T1, . . . , ), which are by
construction independent exponential random variables with mean
1. It is fairly simple to see that these three properties and the Poisson
construction of PD(0, 1) partitions (see the remark after Theorem
1.7) imply Theorem 6.3.

Analysing in greater details the probabilistic structure of random
recursive trees (which turns out to involve some intriguing number
theoretic expansions), Goldschmist and Martin are able to obtain
some refined estimates on the limiting behaviour of the Bolthausen-
Sznitman coalescent restricted to [n] and close to the final coagula-
tion time. We discuss a few of those results.

The following says that the sum of the masses Mn of the blocks
not containing 1 in the final coalescence of (Πn(t), t ≥ 0), is approx-
imately nU , where U is a uniform random variable. More precisely:



Coalescent theory 165

Theorem 6.4. Let Mn be as above and let Bn be the number of
blocks involved in the last coalescence event. Then

(
log Mn

log n
, Bn

)
d→ (U, 1 + Y (UE))

where U is a uniform random variables, (Yt, t ≥ 0) is a standard Yule
process, E is a standard exponential random variable and Y, U,E are
independent.

The Yule process is a discrete Galton-Watson process which branches
in continuous time at rate 1 and leaves exactly two offsprings. The
convergence of the second term in the left-hand side indicates that
there is a nondegenerate limit for the number of blocks in the last
coalescence event. One can similarly ask about the number of blocks
involved in the next to last coalescence, and so on. Let (Mn(1), . . . , )
be this sequence of random variables, i.e., Mn(i) is the number of
blocks involved in the ith coalescence event from the end. Gold-
schmidt and Martin [90] show that all this sequence converges for
finite-distributions towards a nondegenerate Markov chain. This
Markov chain converges to infinity almost surely. They interpret
this last result as a post-gelation phase where most of the mass has
already coagulated and the remaining small blocks are progressively
being absorbed.

Along the same lines, they obtain a result concerning the time at
which the last coalescence occurs. Naturally, this time diverges to
∞ since Π does not come down from infinity, and Goldschmidt and
Martin establish the following asymptotics:

Theorem 6.5. Let Tn be the time of the last coalescence event. Then

Tn − log log n
d→ − log E

where E is an exponential random variable with mean 1.

This means that the order of magnitude for the last coalescence
time is about log log n. This could have been anticipated from the
fact that, by Theorem 6.2 and Theorem 1.11, the number of blocks
at time t is about nα, with α = e−t. This becomes of order 1 when
t is of order log log n.

Finally, a result of Panholzer [127] (see also Theorem 2.4 in [90])
about the number of cuts needed to isolate the root in a random
recursive tree implies the following result.
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Theorem 6.6. Let τn be the total number of coalescence events of
a Bolthausen-Sznitman coalescent process started from n particles.
Then

log n

n
τn → 1 (159)

in probability, as n →∞.

6.1.3 Further properties

Many other properties of the Bolthausen-Sznitman have been stud-
ied intensively. The time reversal of the Bolthausen-Sznitman co-
alescent is studied by Basdevant [11] and is shown to be an inho-
mogeneous fragmentation process after an exponential time change.
A similar idea was already present in the seminal paper of Pitman
[131]. In fact, this process is closely related to the “Poisson cascade”
introduced even earlier by Ruelle [138], and it was Bolthausen and
Sznitman [37] who noticed that an exponential time change trans-
formed the process into a remarkable coalescent process. Pitman
later realised that this coalescent was an example of the coalescents
with multiple collisions which he was considering.

The allelic partition of the Bolthausen-Sznitman coalescent was
studied by Basdevant and Goldschmidt [12], using an elegant mar-
tingale argument which fits in the theory of fluid limits developed
by Darling and Norris [58]. They were able to show that if there is
a constant mutation rate ρ > 0, then almost all types are singletons,
meaning that they are represented in only one individual (or that
their multiplicity is 1). More precisely, they showed:

Theorem 6.7. Let Mk(n) denote the number of types with multi-
plicity k in the Bolthausen-Sznitman coalescent, and let M(n) be the
total number of types. Then as n →∞,

log n

n
M(n) → ρ

in probability, and for k ≥ 2,

(log n)2

n
Mk(n) → ρ

k(k − 1)
,

as n →∞ in probability.
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A similar result was first proved by Drmota et al. [69] for the to-
tal length of the coalescence tree, rather than the number of types.
The biological interpretation of this result is less clear, since we do
not have any evidence that this coalescent process is appropriate
for modelling the genealogies of any species. However, it is believed
that the Bolthausen-Sznitman coalescent describes a universal scal-
ing limit for certain model with high selection, as will be discussed
below.

6.2 Spin glass models

6.2.1 Derrida’s GREM

We start by a heuristic description of the model invented by Derrida
known as the GREM (for generalized random energy model). The
first version of the model was introduced in [60], and this was gen-
eralized in [61], to incorporate several energy levels. This idea was
followed up by Bovier and Kurkova in the form of the Continuous
Random Energy Model (CREM), which is the version we now dis-
cuss. We start by stating the problem and give the result of Bovier
and Kurkova [40] about this model, which is followed by a brief de-
scription of some of the ingredients in the proof. We then explain
the relation to the Sherrington-Kirkpatrick model.

The model is as follows. Let N ≥ 1 and consider the N -dimensional
hypercube SN = {−1, 1}N . An element σ ∈ SN is a spin configu-
ration, i.e., an assignment of ±1 spins to 1, . . . , N . We identify SN

with the N th level TN of the binary tree T as follows: if σ ∈ SN , then
σ may be written as a sequence of −1, +1, say σ = σ1 . . . σn, and
we interpret this sequence as describing the path from the root of
the binary tree to the vertex σ at the N th level of the tree: the first
vertex is the root, the second is the left child of the root if σ1 = −1,
and the right child of the root if σ1 = +1. The second vertex in this
path is the left child of the preceding vertex if σ2 = −1, and its right
child if σ2 = +1, and so on.

Given two spin configurations σ and τ , there is a natural distance
between them, which is the genealogical metric:

d(σ, τ) = 1− 1
N

max{1 ≤ i ≤ N : σi = τi}. (160)

Thus for 0 < ε < 1, the distance between σ and τ is less than ε if
the paths from the root to σ and τ are identical up to level (1−ε)N .
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In other words, the distance d(σ, τ) is 1 minus the normalized level
of the most recent common ancestor between σ and τ . We then
assume that we are given a function A : [0, 1] → [0, 1] which is
nondecreasing, such that A(0) = 0 and A(1) = 1. Consider now
a centered Gaussian field (Xσ, σ ∈ SN ) which is specified by the
following covariance structure:

cov(Xσ, Xτ ) = A(1− d(σ, τ)). (161)

Thus with this definition, note that spin configurations σ and τ that
are closely related genealogically are also highly correlated for the
Gaussian field X. On the other hand, for spin configurations whose
most recent common ancestor is close to the root of the tree, then the
values of the field at these two configurations are nearly independent.

In the GREM, one fixes a parameter β > 0 and consider the Gibbs
distribution with inverse temperature β defined as follows:

µβ(σ) =
1
Z

eβXσ , (162)

where Z is a normalizing (random) constant chosen so that
∑

σ µβ(σ) =
1 almost surely. Thus the Gibbs distribution favours the spin con-
figurations such that Xσ is large. Now, consider sampling k spin
configurations σ1, . . . , σk independently according to the Gibbs dis-
tribution. A natural question is to ask what is the genealogical
structure spanned by these spin configurations, i.e., what is the law
of the subtree of T obtained by joining σ1, . . . , σk to the root. The
next result, which is due to Bovier and Kurkova [40], shows that this
is, up to a time-change, asymptotically the same as the Bolthausen-
Sznitman coalescent.

More precisely, let Πk
N (t) be the partition of [k] defined by: i ∼ j

if and only d(σi, σj) ≤ t. Then we have the following result.

Theorem 6.8. Let (Θt, t ≥ 0) denote the restriction to [k] of the
Bolthausen-Sznitman coalescent. Then the process (Πk

N (t), t ≥ 0)
converges in the sense of finite-dimensional distributions as N →∞
to the process (Θ(− log f(1− t)), 0 ≤ t ≤ 1), where for 0 < x < 1,

f(x) = min
{

1
β

√
2 log 2
Â′(x)

, 1
}

and Â denotes the the least concave majorant of A, and Â′(x) indi-
cates the right-derivative of Â.
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Â is also known as the convex hull of A, since it is the function
such that the region under the graph of Â is the convex hull of the
region under the graph of A: see Figure 13. The case where A

A(x)

A(x)

Figure 13: The convex hull of the function A.

takes only finitely many values effectively corresponds to the model
discussed by Derrida (in the terminology of the spin glass literature,
this represents finitely many energy levels), while the case where
A contains a continuous part is the “Continuous Random Energy
Model” analysed by Bovier and Kurkova. In what follows we will
sketch a proof of this result in the case of a finite number of energy
levels (in fact, with only two energy levels to simplify things).

Note that in Theorem 6.8, the Bolthausen-Sznitman coalescent
arises regardless of β and A. The dependence on β and A is only
through the time change. However, there are some degenerate cases.
For example, if

β < βc :=

√
2 log 2

limx↓0 Â′(x)
,

then f(x) = 1 for all x, and the Bolthausen-Sznitman coalescent
gets evaluated at time zero, so there are no coalescence. In the
physics language, β is inverse temperature and 1/βc is the critical
temperature, above which there is no coalescence because we are not
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sampling enough from the values σ for which Xσ is large.

6.2.2 Some extreme value theory

The first ingredient is a basic result from “extreme value theory”.
To begin with the simplest case, suppose X1, X2, . . . are i.i.d. with
a standard normal distribution, and let Mn = max{X1, . . . , Xn}.
Following Exercise 2.3 in [65] or Exercise 4.2.1 in [133], choose bn so
that P(Xi > bn) = 1/n. Then bn ∼

√
2 log n and for all x ∈ R,

lim
n→∞P(bn(Mn − bn) ≤ x) = e−e−x

. (163)

This is the famous result that the distribution of the maximum of n
normally distributed random variables has asymptotically a Gumbel
(double exponential) distribution. Furthermore, because the random
variables Xi are independent, one can see from (163) that the ex-
pected number of the random variables X1, . . . , Xn that are greater
than bn + x/bn is e−x, and that the distribution of the number of
such random variables should be Poisson. More precisely, one can
view the set of Xi as a point process on the real line, and we can
obtain a nontrivial limit by setting the origin to be where we roughly
expect the maximum to be, i.e., bn. Indeed, as n →∞, we have the
convergence of point processes:

n∑

i=1

δbn(Xi−bn) →d P, (164)

where P is a Poisson process with intensity e−x. A version of this
result is stated as Theorem 9.2.3 in [39]. We call P the exponential
Poisson process. The exponential Poisson process enjoys several re-
markable and crucial properties which we now describe. Let {τk}k≥1

be the points of a uniform rate 1 Poisson process on [0,∞), and let
Ψk = log(1/τk).

1. {Ψk}k≥1 forms an exponential Poisson process on R.

2. For β > 0, and c > 0, the points {θk = ceβΨk}k≥1 form a
Poisson point process of intensity β−1c1/βx−1−1/β on [0,∞).

3. The points {Ψk + Yk}k≥1, where the Yk are i.i.d. with density
g, form a Poisson process with intensity h(x), where

h(x) =
∫ ∞

−∞
e−zg(x− z) dx =

∫ ∞

−∞
ey−x g(y) dy = e−xE[eYk ].
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Thus if V = logE[eYi ], they are a translated exponential Pois-
son process, with the new origin taken to be equal to V .

4. If we superimpose independent Poisson processes, where the
ith has intensity e−(x−xi), the resulting Poisson process has
intensity f(x), where

f(x) =
∞∑

i=1

e−(x−xi) = e−x
∞∑

i=1

exi = e−(x−W ),

where W = log(
∑∞

i=1 exi).

6.2.3 Sketch of proof

We are now ready to discuss a sketch of the proof of Theorem 6.8.
We assume that A has finitely many energy levels, i.e., A is the dis-
tribution function of a probability measure with n atoms at positions
0 < x1, . . . , < xn say, with respective masses a1, . . . , an. Thus we as-
sume that

∑
i ai = 1 and that ai ≥ 0 for all 1 ≤ i ≤ n. Without loss

of generality we may assume that xn = 1 and we let x0 = 0.
We slightly change our notations for a spin configuration σ ∈ SN :

we now write it as σ = σ1 . . . σn, where σi ∈ SN(xi−xi−1), i.e., σi

consists of N(xi−xi−1) spins. (Here we do not worry about the fact
that N(xi − xi−1) is not necessarily an integer). Then it is easy to
see that the random field Xσ on SN may be explicitly constructed
as follows: for all 1 ≤ k ≤ n, and for all σ1, . . . , σk, let Xσ1...σk

be
i.i.d. standard Gaussian random variables. Then define Xσ to be

Xσ =
√

a1Xσ1 +
√

a2Xσ1σ2 + . . . +
√

anXσ1...σn . (165)

Indeed one can check directly from the above formula that Xσ has
the correct covariance structure (and it is naturally a Gaussian field,
being a linear combinations of i.i.d. standard Gaussian random vari-
ables).

Assume to simplify that n = 2, so that 0 < x1 < x2 = 1. For
σ1 ∈ SNx1 , let ησ1 = eβ

√
Na1Xσ1 . By extreme value theory, there is a

constant bN such that the points bN (Xσ1 − bN ) converge to a Pois-
son process with intensity e−x. Also, because there are 2Nx1 of the
random variables Xσ1 , we have bN ∼

√
2 log 2Nx1 =

√
(2 log 2)Nx1.

Therefore, the points

ησ1 = eβ
√

Na1b−1
N bN (Xσ1−bN )e−bnβ

√
Na1
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form approximately a Poisson process with intensity CNx−1−1/β1 ,
where CN > 0 depends on N , a1 and x1 but not on x, and

β1 =
β
√

Na1

bn
= β

√
a1

(2 log 2)x1
. (166)

Similarly, for each fixed σ1 ∈ SNx1 and all σ2 ∈ SN(x2−x1), let ησ1σ2 =
eβ
√

Na2Xσ1σ2 . Then

ησ1ησ1σ2 = eβ
√

N(
√

a1Xσ1+
√

a2Xσ2 ) = eβ
√

NXσ .

By extreme value theory again, the points ησ1σ2 form approximately
a Poisson process with intensity C ′

Nx−1−1/β2 , where

β2 = β

√
a2

(2 log 2)(x2 − x1)
.

It follows that for each σ1, the points ησ1ησ1σ2 form a Poisson process
of intensity C ′

Nη
1/β2
σ1 x−1−1/β2 . Therefore, if we consider all points of

the form ησ1ησ1σ2 = eβ
√

NXσ , they form a Poisson process with inten-
sity Ax−1−1/β2 , where A = CNC ′

N

∑
σ1 η

1/β2

σ1 , and once we condition
on this entire Poisson process, the probability that a given point
sampled from the Gibbs distribution µβ(σ) = Z−1eβXσ belongs to
the “family” associated with a particular σ1 is proportional to η

1/β2
σ1 .

This gives us the following picture for the genealogy of the process.
First, we sample n of the values Xσ with probability proportional to
eβ
√

NXσ . We are likely to sample the same point more than once: in
fact, as discussed above, sampling according to eβ

√
NXσ is approxi-

mately the same as sampling from a Poisson point process P with
intensity Ax−1−1/β2 with weight proportional to x. If we identify the
samples which come from identical points, this gives us an exchange-
able partition Π0 where the frequency of the block corresponding to
the point x ∈ P is proportional to x. Thus the distribution of the
ranked frequencies of this exchangeable partition is given by the
ranked components of

(
xi∑

j≥1 xj
, i ≥ 1

)
(167)

and since P has intensity proportional to x−1−1/β2 , we conclude by
the Poisson construction of Poisson-Dirichlet (α, 0) partitions (The-
orem 1.7) that the vector (167) has the same distribution as the
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ranked coordinates as a Poisson-Dirichlet random variable with pa-
rameters α = 1/β2 and θ = 0. Thus Π0

d= PD(1/β2, 0), and thus
Πk

N (0) has approximately the same distribution as the restriction to
[k] of a PD(1/β2) random variable.

Going back to the previous level, note that a given sample x ∈ P
chosen with weight proportional to its value x, comes from the “fam-
ily” generated by σ1 with probability proportional to η

1/β2
σ1 , which

is a Poisson process with intensity proportional to x−1−β2/β1 . Thus
if we sample from P and identify the points that come from the
same σ1, we obtain an exchangeable partition Π1 whose ranked fre-
quencies have the same distribution as those of a Poisson-Dirichlet
random variable with parameters α = β2/β1 and θ = 0. Thus
Π1 = PD(β2/β1, 0).

Thus taking t = (x2 − x1), we obtain Πk
N (t) by taking every

block of Πk
N (0) (which is a PD(1/β2, 0) random variable restricted to

[k]), and coagulate them according to a PD(β2/β1, 0) random vari-
able. We claim that the resulting random partition is nothing but a
PD(1/β1, 0) random variable. There are many ways to see this: one
of them being precisely using the fact that the Bolthausen-Sznitman
coalescent at time t has the PD(e−t, 0) distribution (Theorem 6.2).
Indeed, by the Markov property for the Bolthausen-Sznitman coa-
lescent at time t, we see that when we coagulate a PD(e−t, 0) par-
tition with an independent PD(e−s, 0) partition, we must obtain a
PD(e−(t+s), 0) random partition.

Thus we can write for t = t2 = 0, and t = t1 = x2 − x1, Πk
N (ti) ≈

PD(1/βi) with i = 1, 2 where

1
βi

=
1
β

√
(2 log 2)(xi − xi−1)

ai

=
1
β

√
2 log 2

Â′(1− ti)

= f(1− ti) = e−(− log f(1−ti)).

Thus for i = 1, 2, we have shown that Πk
N (ti) has the same distri-

bution as Θ− log f(1−ti), as claimed in Theorem 6.8. Note that this
argument doesn’t really explain how do lineages coalescence between
the different energy levels, and this is why we only get convergence
in the sense of finite-dimensional marginals in Theorem 6.8.
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6.3 Complements

6.3.1 Neveu’s branching process

The intuitive picture presented here essentially goes back to the work
of Ruelle [138] who talks about probability cascades for the proper-
ties of the exponential Poisson process. Bolthausen and Sznitman
[37] then realised that reversing the direction of time defined the re-
markable coalescent process which now bears their names. Bertoin
and Le Gall [29], in their first joint paper on coalescence, showed that
the Bolthausen-Sznitman coalescent process was embedded in the
genealogy of a certain continuous-state branching process (CSBP),
which is the CSBP associated with the branching mechanism

ψ(u) = u log u, u ≥ 0.

This CSBP is known as Neveu’s branching process. This was the first
paper showing a relation between the genealogy of a CSBP and a
Λ-coalescent, and was a partial motivation to the papers [36, 20, 18].
However, in the case of Neveu’s branching process, the relation be-
tween the genealogy and the coalescent is trivial, in the sense that
there is no time-change. Bertoin and Le Gall’s original approach re-
lied on a precursor to their flow of bridges discussed in Theorem 3.14.
The ideas outlined in Theorem 4.9, which come from [18], provide
a direct alternative route (more precisely, the approach of Theorem
4.10 shows that the point process (t,∆Z/Z) arising from the ge-
nealogy of Neveu’s branching process and the Bolthausen-Sznitman
coalescent are identical). That Neveu’s branching process was re-
lated to Derrida’s GREM was first realized by Neveu in [126], in a
paper which is unfortunately unpublished, even though in hindsight
it inspired many subsequent developments in the field. The link with
extreme value theory is also discussed in that paper.

6.3.2 Sherrington-Kirkpatrick model

The Generalized random energy model (GREM) was proposed by
Derrida in [60] and [61] as a possible simplification of the celebrated
Sherrington-Kirkpatrick model. The Sherrington-Kirkpatrick (SK)
spin-glass model is similar to the GREM, with the difference being
that we use the Hamming distance

dN (σ, τ) = #{i : σi 6= τi},
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also known as the overlap between σ and τ , where σi and τi denote
the ith coordinates of σ and τ respectively. (Also, the SK model
typically refers to the case A(x) = x, but other covariance functions
have also been studied.) Here dN is a metric but not an ultrametric.
Because dN is not an ultrametric, it is not clear that it even makes
sense to define a coalescent process as was done for the GREM. How-
ever, it is widely conjectured that if we consider k points σ1, . . . , σk

chosen at random from SN according to the Gibbs measure, the dis-
tances between them dN (σi, σj) have the ultrametric property in the
limit as N →∞, which means that they can be viewed as points on
the boundary of a tree equipped with the genealogical metric. Ta-
lagrand devotes section 4 of [148] to “the ultrametricity conjecture”
for the Sherrington-Kirkpatrick model and refers to ultrametricity as
“one of the most famous predictions about spin glasses.” Derrida’s
insight consisted in imposing the ultrametricity directly in the model
and analyzing what comes out of it. Remarkably enough, this simple
addition makes the model much more tractable and fits the physi-
cists’ predictions about the SK model perfectly. See the monograph
by Bovier [39] for much material related to this field, and see also
the lectures by Bolthausen in [38]. The ultrametric conjecture was
first predicted by Parisi [128]. We note however that an important
prediction which follows from the ultrametric conjecture is a series
of identities which have been proved rigorously by Ghirlando and
Guerra [88] (in a slightly weaker form than predicted), known as the
Ghirlando-Guerra identities.

Much of the magic of the emergence of the Bolthausen-Sznitman
coalescent in these spin glass models boils down to the crucial stabil-
ity properties of the exponential Poisson process (by superposition,
addition of noise, etc.). It is natural to guess that this process is,
in some sense, the only point process which enjoys these properties.
While this is an attractive route to the ultrametric conjecture, we
note that this seems a very difficult problem. We refer the reader to
the recent work by Aizenmann and Arguin [1] as well as references
therein.

6.3.3 Natural selection and travelling waves

As was discussed in the proof of the Bovier-Kurkova theorem, Der-
rida’s GREM may be viewed as an assignment of Gaussian random
variables on the leaves of the binary tree of depth N with a covariance
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structure which depends on the genealogical metric between these
leaves. There is one natural model where such correlation structures
arise, which is the model of branching random walks where the step
distribution is a standard Gaussian random variable, and where at
each step, individuals branch in exactly two particles. That is, start
with one particle at time 0. At each time step, particles divide in
two and take i.i.d. jumps given by a prescribed distribution (which
here is Gaussian). Thus at time N , there are 2N particles, whose
respective positions rescaled by

√
N form a centered Gaussian field

Xσ with covariance cov(Xσ, Xτ ) given by the following formula: if
the most recent common ancestor between particle labeled σ and
particle labeled τ is at generation j, corresponding to a position Sj ,
then there exists independent Gaussian variables N and N ′ such
that Xσ = N−1/2(Sj +N ) and Xτ = N−1/2(Sj +N ′), so:

cov(Xσ, Xτ ) = E(XσXτ ) =
1
N
E[(Sj +N )(Sj +N ′)]

=
1
N
E(S2

j ) =
j

N
= 1− d(σ, τ).

In particular, we may write cov(Xσ, Xτ ) = A(1 − d(σ, τ)) with
A(x) = x. Thus Gaussian branching random walks give a natural
construction of a random energy landscape of the kind considered
in the random energy model. Unfortunately, this is a degenerate
case from the point of view of the application of Theorem 6.8, as
Â′(x) = 1 for all x ∈ [0, 1]. Nevertheless, we get out of this simple
calculation that the energy landscape defined in the GREM may be
viewed as a form of perturbation of branching random walks, with a
rather complex covariance structure. Theorem 6.8 then asks about
the genealogy of this system of particles.

Recently, Brunet, Derrida, Mueller and Munier [46, 47] have intro-
duced a particle system of this kind and made fascinating predictions
about its genealogy. Rather remarkably, this model also has an in-
terpretation in terms of a population model with selection, which we
now describe. As in the Moran model, the population size is kept
constant equal to N . An individual is represented by her fitness,
which is a real number measuring the likelihood that this individ-
ual will produce offsprings surviving in the next generation. Thus,
the population at time t may be described by a cloud of N points
X1(t), . . . , XN (t) on the real line, ordered in some arbitrary fashion,
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t+1

t+1/2

t

Figure 14: The two steps of the Brunet Derrida model with N = 4:
at time t + 1/2, state of the population after the branching step
(there are 2N individuals). At time t + 1, state of the population
after the selection step. Only the N largest particles survive.

say linearly. The model has discrete generations and is Markovian.
The evolution from one generation t to the next at time t + 1 con-
sists in two steps: branching and selection. Thus we have an inter-
mediate state, which we may call t + 1/2, where every individual
gives a number of offsprings (let us fix this number to be equal to
2 for every individual, although one may think of a random rule as
well). The position of the offsprings of individual i are denoted by
X1

i (t + 1/2), X2
i (t + 1/2) and are obtained by:

X1
i

(
t +

1
2

)
= Xi(t) +N 1,

X2
i

(
t +

1
2

)
= Xi(t) +N 2,

where N 1,N 2 are independent random variables with a fixed con-
tinuous distribution (say Gaussian). At this stage there are thus 2N
individuals, and so the next step, which is the selection step, will
reduce the population size to N by keeping the largest N particles
from the population at time t+1/2. Formally, for 1 ≤ k ≤ N we put
Xk(t + 1) = Y such that

#{i : X1
i (t + 1/2) > Y }+ #{i : X2

i (t + 1/2) > Y } = k − 1.

An illustration of the model is given in the accompanying Figure 14:
note the similarity with the Galton-Watson model of Schweinsberg
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in Theorem 3.8 (the difference being that here selection is based on
fitness, whereas there selection was made at random).

The interest of [46, 47] is in the genealogy of an arbitrarily large
but fixed sample of the population when its size N tends to infinity,
i.e., in the scaling limits of the ancestral partition process (Πk,N

t , t ≥
0) (to use the same terminology as in the first sections of these notes).
Using convincing but not fully rigorous arguments, they are able
to conjecture that the correct time scale for the ancestral partition
process is roughly (log N)3. More precisely, they conjecture:

Conjecture 6.1. The ancestral partition process, sped up by a factor
(log N)3, converges to the Bolthausen-Sznitman coalescent. That is,
for all k ≥ 1,

(Πk,N
t(log N)3

, t ≥) d→ (Πk
t , t ≥ 0)

in the sense of finite-dimensional distributions, where Πk denotes the
restriction to [k] of a Bolthausen-Sznitman coalescent.

This conjecture is accompanied with a very precise picture of what
leads to this behaviour. Essentially, the cloud of particle is thought
to travel to the right with a positive speed vN where vN → 2 as
N → ∞ (and there are some conjectures on the first and second
correction terms). The particles stay fairly compact, with a width
of no more than O(log N) at any time. Occasionally (every (log N)3

units of time), a particle travels far to the right, at distance approx-
imately 3 log log N + O(1) away from the “bulk” of the population.
A particle which does so will will stand a good chance to keep all its
offsprings in the next generation after the selection step, and so its
descendants quickly generate a large fraction of the population, say
p > 0. This leads to a p-merger in the ancestral partition process.
Thus the multiple collisions only arise when one takes the scaling
limit, speeding up time by (log N)3.

The derivation of the characteristic time scale comes from an ar-
gument of comparison with a stochastic PDE called the stochastic
Fisher-KPP equation (for Kolmogorov, Petrovsky and Piscunov),
which has the following form:

∂u

∂t
=

1
2
∆u + u(1− u) + ε

√
u(1− u)Ẇ (168)

where W is a white noise. If one removes the noise from this equa-
tion (i.e. if ε = 0), one obtains the standard Fisher-KPP equation,
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which is at the heart of the theory of reaction-diffusion partial dif-
ferential equations. This equation was first obtained independently
by Kolmogorov et al. [109] and Fisher [84], the latter to describe the
spread of an advantageous gene in a population. It is known that
this equation admits travelling wave solutions, i.e., solution of the
form u(t, x) = F (x− vt) where v > 0. For certain well-chosen initial
conditions, the speed of this wave will always be equal to v = 2.
The idea of [46] is that the distribution function for the population
at time t behaves approximately as a solution to (168) started from
the state u(0, x) = 1{x≤0}. In the presence of noise, the equation
(168) generates random travelling waves, which move to the right
with a speed vε such that vε → v = 2 as ε → 0. The asymptotic
correction vε − v was studied by Brunet and Derrida [43, 44, 45]
using non-rigorous methods. They conjectured:

vε − v ∼ − π2

4 log2 ε
(169)

and [46, 47] predicted a second term

vε − v +
π2

4 log2 ε
∼ 3 log | log ε|

4| log ε|3 (170)

Recently, Mueller, Mytnik and Quastel [125] managed to prove rig-
orously (169) and give upper and lower bounds matching (170) up
to constants. As the reader has surely guessed, it is this second
term (with cubic exponent in | log ε|) which is the most relevant for
Conjecture 6.1.

We note that Bérard [14], and Bérard and Gouéré [15], have re-
cently studied a discrete version of the Brunet and Derrida model
(with particles’ locations on Z rather than R, and selection at random
in case of a tie), and were able to show that for each N , the system
of particles travels at a well-defined speed vN . Furthermore, the sec-
ond paper [15] showed that vN − v0 ∼ −α(log N)−2 as N →∞, for
some explicit α > 0 depending solely on the step distribution. This
improved on the earlier paper [14] which showed that (log N)−2 was
the correct order of magnitude for the correction to the speed. This
result relied crucially on some recent progress by Gantert, Hu and
Shi [87] on the near-critical behaviour of branching random walks.

Simon and Derrida [147] have considered a model branching Brow-
nian motion with an absorbing wall and critical drift. They showed
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(using non-rigorous arguments) that when conditioned upon survival
for a long time, this system has a genealogy which is also governed by
the Bolthausen-Sznitman asymptotics as in Conjecture 6.1. Brunet,
Derrida and Simon [48] have also used this theory to describe certain
mean-field models of random polymers in (1+1) dimensions at zero
temperature and found a similar behaviour, thus confirming further
the universal nature of the Bolthausen-Sznitman coalescent. The
work in progress [21] partly confirms these findings for some related
models.
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A Appendix: Excursions and Random Trees

What follows is a crash course on some deep ideas due essentially to
Aldous, Le Gall and Le Jan in the 90’s which relate excursions of
random processes (above or below a fixed level) to some random trees
which enjoy certain branching properties and in which branching
occurs at a dense set of times (or levels). The archetypical example
is Aldous’ Continuum Random Tree and its relation to the Brownian
excursion and the Ray-Knight theorem on the local times of reflecting
Brownian motions. We start by recalling the fundamentals of Itô’s
excursion theory for Brownian motion as this formalism is central
to the study of continuum random trees. We then briefly explain
the relation between random trees and random paths, and finally
explain how these trees are related to the genealogy of CSBPs and
the lookdown process.

A.1 Excursion theory for Brownian motion

Let (Bt, t ≥ 0) be a one-dimensional standard Brownian motion.
The excursion theory of Brownian motion is one of the best tools
to study fine properties of B. However, the basic idea behind the
theory is extremely simple. We call an excursion e of the Brownian
motion B, a process (e(t), t ≥ 0) such that there exists L < R with

e(t) = B(L+t)∧R

and for t ∈ [L,R], Bt = 0 if and only if t = L or R. That is, e is the
piece of B between times L and R, which are two consecutive zeros
of B. The state space of excursions is Ω∗ the space of continuous
functions from R to R such that there exists ζ > 0 satisfying:

1. et = 0 if t ≥ ζ

2. For t ∈ [0, ζ], et = 0 if and only if t = 0 or ζ.

ζ is called the lifetime of the excursion or its length. The basic
idea behind the theory is that one can construct Brownian motion
by “throwing down independent excursion” and concatenating them.
The result should be, indeed, a Brownian path.

Of course, it is a little tricky to make this intuition rigorous at
first, but it turns out that we can use the language of Point process
to express this idea: we will view the collection of excursions of
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Brownian motion as a Poisson point process on the set Ω∗, and the
intensity of the process is a measure called Itô’s excursion measure.
However to say this properly, we must look at excursions in the
correct time-scale, that is, the time-scale at which we are “adding
a new excursion”. This time-scale is that of the inverse local time
process, since local time increases precisely at times when the process
hits zero, and thus begins a new excursion. We will refresh the
reader’s memory about these notions below.

A.1.1 Local times

It is well-known that Brownian motion spends an amount of time
which has zero Lebesgue measure at any given point: for instance,
if T =

∫ t
0 1{Bs=0}ds then by Fubini’s theorem

E(T ) =
∫ t

0
P(Bs = 0)ds = 0

and so T = 0 almost surely. In fact this argument obviously gener-
alizes to sets A such that A has zero Lebesgue measure: let T (A) be
the time spent by Brownian motion up to time t in any given Borel
subset of the real line, then if |A| = 0 T (A) = 0. Since T (A) is easily
seen to be a (random) measure, we get immediately, by the Radon-
Nikodym theorem, that there exists almost surely a derivative T (A)
with respect to the Lebesgue measure dx:

Definition A.1. We set

L(t, x) =
dT

dx
(171)

almost surely. L(t, x) is called the local time of B at time t and
position x (or level x).

This definition is nice because it is quite intuitive, but is not very
satisfactory because of the almost sure in this definition: this only
defines L(t, x) for fixed t almost surely and almost everywhere in x.
It turns out that

Proposition A.1. There exists almost surely a jointly continuous
process {L(t, x)}t≥0,x∈R for which (171) holds for all t simultane-
ously.
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This can be seen through Kolmogorov’s continuity criterion. Be-
cause it is the Radon-Nikodym derivative of the occupation measure
T (A), and because it is continuous in x and t, there are a couple of
properties that follow immediately. The most useful is the approxi-
mation:

Theorem A.1. For every t ≥ 0, as ε → 0, we have the following
almost sure convergence:

1
2ε

∫ t

0
1{|Xs−x|≤ε}ds −→ L(t, x). (172)

We generally focus on level x = 0, in which case we almost always
abbreviate Lt = L(t, 0). From the approximation (172), it follows
that Lt is a nondecreasing function, and may only increase at times
t such that Bt = 0. That is, let dLt be the Stieltjes measure defined
by the nondecreasing function t 7→ Lt, then

Supp(dLt) ⊂ Z (173)

where Z is the zero set of B. Both sides of (173) are closed sets, so
it is natural to conjecture that there is in fact equality. This turns
out to be true but it requires some non-trivial arguments. In fact,
the proof relies on a famous identity due to Paul Lévy, which states
the following:

Theorem A.2. For every t ≥ 0, denote by St = maxs≤t Bs, the run-
ning maximum of Brownian motion. Then (Lt, t ≥ 0) and (St, t ≥
0), have the same distribution as processes.

This identity is in fact more general than this: the identity stated
above may be viewed as an identification (the maximum of B is the
local time of a different Brownian motion B′), and in this identifi-
cation St −Bt is equal to the reflected Brownian motion |B′|. Thus
we have the bivariate identity:

{(St, St −Bt), t ≥ 0} d= {(Lt, |Bt|), t ≥ 0}. (174)

To save time, we do not give the proof of this result even though
it is in fact quite elementary. (Most proofs in textbooks such as
[136] use the so-called Skorokhod equation, but in fact, the identity
may already be seen at the discrete level of simple random walks
approximating Brownian motion).
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Armed with this result, it is easy to prove equality in (173). What
is needed is to show that almost surely, at every time t > 0 such
that Bt = 0 then Lt increases. Start with t = 0: then since L has
the same law as S, which increases almost surely right after t = 0,
then so does L, and so this property holds for t = 0. By the Markov
property, it is not too hard to see it is also true at any time t such
that t = ds for some fixed s > 0 (ds is the first zero after s, so
ds = inf Z ∩ [s,∞)). Playing around with the fact that rational
numbers are dense finishes the proof, and so we get

Supp(dLt) = Z (175)

almost surely.

Our view of local times in these notes is purely utilitarian: even
though they deserve much study in themselves, we will only stick to
what we strictly need here. For our purpose the last thing to define
is thus the inverse local time: for any ` > 0, define

τ` := inf{t > 0 : Lt > `}. (176)

τ` is thus the first time that B accumulates more than ` units of local
time at 0. Thus τ` is a stopping time, and Lévy’s identity (Theorem
A.2) tells us that

(τ`, ` ≥ 0) d= (Tx, x ≥ 0) (177)

where Tx is the hitting time of level x by B. In particular, (τ`, ` ≥ 0)
has independent and stationary increments, and is nondecreasing:
that is, (τ`, ` ≥ 0) is a subordinator. Moreover, it is not hard to see
that in fact τ is the stable subordinator with index α = 1/2 (this
follows simply from the reflection principle and the law of St). That
is, the Lévy measure of τ has density

α

|Γ(1− α)|s
−α−1. (178)

A.1.2 Excursion theory

We will now state Itô’s theorems about excursions of Brownian mo-
tion, which make rigorous the intuition explained above. First, a
remark: by (175), we see that if e is an excursion of B, correspond-
ing to the interval [L,R], then the local time of B is constant on that
interval, since by definition there are no zeros during (L,R). Thus if
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(ei)i ≥ 1 is an enumeration of the Brownian excursions (something
which it is possible to do since there are as many as jumps of a cer-
tain subordinator, and these are countable), then we call call `i the
common local time of the excursion ei, that is, the local time Lt at
any time t ∈ (Li, Ri) which is associated to ei.

Theorem A.3. There exists a σ-finite measure ν on the space of
excursions Ω∗, such that the point process:

P(dx) =
∑

i≥1

δ(`i,ei)

is a Poisson point process, with intensity d`⊗ ν(de).

Definition A.2. ν is called Itô’s excursion measure.

For instance, the number of excursions by time τ` with length
greater than some ζ0 is a Poisson random variable, with mean `ν(ζ >
ζ0). Another consequence is, for example, that the quantity of local
time accumulated by time Tx (the hitting time of x > 0) is an expo-
nential random variable, with parameter κ(x) := ν(sups≥0 es > x):
indeed, in the local time scale, the number of points that fall in
the set of excursions that hit level x, is a Poisson process with con-
stant intensity equal to κ(x). Thus the first point is exponentially
distributed with parameter κ(x) as well.

Thus, in order, to be useful, this theorem should be accompanied
with some descriptions of Itô’s excursion measure. First of all, the
Itô measure of excursion of length greater than ζ0 can be identi-
fied through (178), since the jumps of τ` are precisely the excursion
lengths. Thus from (178) we get the first description in the result
below:

Theorem A.4. We have, for every x > 0:

ν(ζ > x) =
1√
πx

. (179)

Moreover, if H = sups>0 es, then

ν(H > h) =
1
2h

. (180)
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Proof. It is easy to convince yourself that in (180), the right-hand
side should be κ/h for some κ > 0. Indeed, fix some 0 < x < h. On
the one hand, the number of excursions that reach h by time τ1 is
Poisson with mean say κ(h). On the other hand, this is a thinning of
the number of excursions that reach x, which is also Poisson but with
mean κ(x). The thinning probability is nothing but the probability
that, given that an excursion reaches level x, it will also reach level
h. However, it is plain to see that an excursion, given that it reaches
x, behaves after Tx as a Brownian motion killed at 0. Thus the
thinning probability is

p = Px(Th < T0) =
x

h
.

Hence we deduce:
κ(h) = κ(x)

x

h

for all 0 < x < h. Thus κ(x) is equal to κ/x for all x ∈ (0, h) (for
some κ > 0). Since h is arbitrary, κ(x) = κ/x for all x > 0. That
κ = 1/2 requires more work but is classical: see, e.g., (2.10) in Chap-
ter XII of [136]. Note that the answer (with the correct value of κ)
can also be guessed from a discrete argument: at each visit of 0, the
probability that the next excursion will reach Nx is (1/2)1/(Nx).
(The first 1/2 comes from asking for positive excursion, and the sec-
ond term is the familiar ruin probability estimate). At the N th visit,
the total number of excursion that reach Nx is thus approximately
a Poisson random variable with mean κ(x) = 1/(2x) as N →∞.

One thing to pay attention to in (180) is that we do not count
negative excursions in this random variable H. That is, ν(H > h)
measures only those positive excursions that reach level h. There is
an obvious symmetry property in ν, so if instead we want to ask what
is the measure of excursions that reach h or −h (which we often do
when we think about reflecting Brownian motion), then this measure
is now 1/h instead of 1/(2h).

A.2 Continuum Random Trees

After rushing through local times and excursion theory, we now pro-
pose another impressionistic rendering of the theory of Continuum
Random Trees: that is, how to construct them, and how they are
related to Brownian excursions.
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A.2.1 Galton-Watson Trees and Random Walks

The theory starts with a well-known observation that a (not neces-
sarily random) rooted labelled tree may be described by a certain
path, sometimes called the Lukasiewicz path of the tree. This path
provides us with a convenient way of proving things about trees (as
we will see that this path is a close cousin of random walk when the
underlying tree is a Galton-Watson tree) but it is also very conve-
nient from a purely practical point of view: this path is indeed a
variant of the depth-first search process which is used in any algo-
rithm dealing with trees and graphs in general.

First a few definitions: given a finite rooted labelled planar tree T ,
there is a unique way of labelling the tree in “lexicographical order”.
That is, the first vertex is the root, u0 = ∅. We then list the children
of the root, from left to right (this is why we require planarity).
These children are called u1 = 1, u2 = 2, . . . , ur = r, say. We now
go to the next generation, and attach to each vertex in the second
generation a string of two characters (numbers) which is defined as
follows: if that vertex is the rth

2 child of the rth
1 individual in the

first generation, we attach the string r1r2. More generally, to any
vertex in the nth generation, we attach of a string of n characters,
r1 . . . rn, which specify the path that leads to this vertex: hence, to
find the vertex whose label is u = r1 . . . rn, at generation 1, find
the rth

1 individual. In the next generation, find the rth
2 child of that

individual, and so on. This way of labelling all the vertices of the
tree is called the canonical labelling, of a planar labelled rooted tree.
We may moreover list these vertices in lexicographical order (i.e.,
as if placing them in a dictionary). This gives us a list of vertices
(u0, u1, . . . , up−1). Note that this list entirely specifies the tree; its
length is the total size of the tree.

There is a natural way to encode this data into a path: simply,
as you go through the list (u0, . . . , up−1) (in lexicographical order),
record the height of the vertex you’re at. The height is just the
generation or the level of the vertex: hence, a vertex in the second
generation of the tree has a height equal to 2. The root has a height
equal to 0. The height process of the tree T is the discrete function

h(n) = height of vertex un, 0 ≤ n ≤ p− 1. (181)

See Figure 15 for an illustration.
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Figure 15: A labelled planar tree and its height process.

The Lukasiewicz path of T , however, is a different process. Sup-
pose that as we move through the tree in lexicographical order, we
recordd the number of children ku of each vertex u. For 0 ≤ i ≤ p−1,
define

xi = kui − 1 (182)

Thus xi is the number of children of vertex ui, minus 1. Define, for
0 ≤ n ≤ p− 1,

s0 = 0, sn =
n−1∑

i=1

xi if 1 ≤ n ≤ p. (183)

The interpretation of this has to do with the depth-first search of the
tree. When we explore the tree, we can partition the tree into vertices
that are active, dead, and those not touched yet. Dead vertices are
those which we have already examined. Active vertices are children
of dead vertices, but we haven’t explored yet their own children.
Untouched vertices are all the rest: they are the descendants of
active vertices. Then sn gives us the number of active vertices at
stage n of the lexicographical exploration of the tree: indeed, when
we explore vertex un, there are kun new vertices to add to the list of
active vertices, but since we are examining un we need to subtract
1. The path

(s0, . . . , sp) (184)

is called the Lukasiewicz path. What is the connection between the
two processes?
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Lemma A.1. h(n) is the number of times that, prior to time n, sj

hit its infimum value between times j and n:

h(n) = Card
{

0 ≤ j ≤ n− 1 : sj = inf
j≤k≤n

sk

}
. (185)

The reason this is true is because s only decreases when we have
reached a leaf, which is also when h may decrease. Thus any point
uj such that sj is the future infimum of its path, must be an ancestor
of un. See Figure 16 for an illustration.

This a simple combinatorial lemma, but its consequences are hard
to overstate: it tells us that hn may be seen as the local time at 0 of
the process s reflected at its infimum.

Now, consider an offspring distribution µ on N, and consider the
random Galton-Watson tree T associated with the distribution µ:
that is, every individuals has an i.i.d. number of offsprings governed
by the distribution µ. We make the assumptions that

1. µ is critical: E(L) = 1, where L ∼ µ.

2. µ has finite variance: E(L2) < ∞.

Observe that the Lukasiewicz path (S0, S1, . . . , Sp) associated with
T is now a random walk on Z started at S0 = 0 and ended where it
first hits level -1:

S0 = 0, Sn =
n∑

i=1

Xi

where the Xi are i.i.d, random variables whose distribution is equal
in law to L− 1. In particular, by assumption 1 and 2 above,

E(Xi) = 0; var(Xi) < ∞.

We may consider an infinite sequence of such critical Galton-Watson
trees and concatenate their Luckasiewicz paths. Every time the path
goes below the starting level, this corresponds to exploring a new
tree. The height process representation of Lemma A.1 still holds. We
have thus encoded each tree in an infinite forest of Galton-Watson
trees by the excursions above the infimum of a certain random on Z
with mean 0, finite variance jump distribution. (See Figure 16).
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A.2.2 Convergence to reflecting Brownian motion

From the previous discussion, it is natural to consider a Brownian
scaling of the height process, which is the most intuitive way of
encoding the tree.

Theorem A.5. As n → ∞, there is the following convergence in
distribution, in the sense of the Skorokhod topology on D(R+,R):

(
1√
n

Hnt, t ≥ 0
)
−→

(
2
σ
|Bt|, t ≥ 0

)
, (186)

where σ2 = var(L) is the offspring variance.

Proof. (sketch) This theorem is not hard to understand intuitively:
indeed, the Lukasiewicz path, under this scaling, converges towards
a Brownian motion with speed σ2 (being a centered random walk
with finite variance). The main observation is then to see that

Hn ≈ 2
σ2

(Sn − In) (187)

where In = min{Si, i ≤ n} is the running minimum. Thus it is
natural to expect the convergence (186), since by the Lévy identity
(174), Bt − It is a reflected Brownian motion |βt|.

Thus it suffices to explain (187). Recall Lemma A.1; note that Hn

is the number of jumps of the red curve in Figure 16.
By reversing the direction of time, we see that Hn is also the

number of times that the reverse path, Ŝ say, reaches a new lowest
point (i.e., the number of jumps of the infimum process of the reverse
walk Ŝ). Now, each time the infimum process jumps, what is the
distribution of the overshoot Y ? Let us denote by c > 0 the mean of
this distribution. That is, on average, every time the reverse process
jumps downwards, it makes a jump of size c. It follows that, by the
law of large numbers, after Hn jumps, where Hn is large, the total
decrease in the initial position is approximately cHn. But since this
decrease in position must be equal to Sn − In, we see that

Sn − In ≈ cHn

from which we obtain Hn ≈ c−1(Sn−In) after division by c. Putting
things together we deduce that

(
1√
n

Hnt, t ≥ 0
)
−→

(σ

c
|Bt|, t ≥ 0

)
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Figure 16: Concatenation of the Lukasiewicz paths of three indepen-
dent critical Galton-Watson trees, T1, T2 and T3. Hn is equal to the
number of jumps of the red curve.

as n → ∞. It is not too difficult to compute the expectation of
the overshoot distribution and find that c = σ2/2. The result now
follows. Further details can be found in Aldous [3], but see also
Marckert and Mokkadem [117] and Le Gall and Le Jan [114].

Many corollaries follow rather easily from this asymptotic result.
As a case in point, consider the following statement: if T is a Galton
Watson conditioned to reach a large level p, say, then its height
process satisfies

(
1
p
Hp2σ2t/4, t ≥ 0

)
−→ (Et, t ≥ 0) (188)

where E is a Brownian excursion conditioned to reach level 1 (that
is, a realisation of ν(·|H > 1), where ν is Itô’s excursion measure).

A.2.3 The Continuum Random Tree

We have seen in Theorem A.5 that the height process, which encodes
the genealogy of a critical Galton-Watson trees, conditioned to ex-
ceed a large height, converges in distribution towards a Brownian
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Figure 17: A simplified representation of the Brownian Continuum
Random Tree. In reality branching occurs continuously.

excursion conditioned to reach a corresponding height. It is natural
to expect that, as a result, if we now view a finite tree T as a metric
space (as we may: we just think of each edge as a segment of length
1), then rescaling this tree suitably, the metric space T converges (in
a suitable sense) towards a limiting metric space Θ. This is indeed
the case, and the sense of this convergence is the Gromov-Hausdorff
metric. As this is pretty heavy machinery, we will not explain this
construction. Instead, we will describe the limiting object Θ (the
Continuum Random Tree of Aldous [5]), and ask the reader to trust
us that Θ is indeed the scaling limit of large critical Galton-Watson
trees. More details concerning the Gromov-Hausdorff topology and
this convergence can be found, for instance, in Evans’ Saint Flour
notes [78].
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We now explain the definition of the Continuum Random Tree.
Let f : R+ → R+ be an excursion, i.e., an element of Ω∗, and let
ζ be the lifetime of this excursion. We wish to think of f as the
height function of a certain continuous tree, and that will mean the
following: the vertices of the tree can be identified to the interval
[0, ζ] (the time at which we visit this vertex) provided that we make
the identification between two times s ≤ t such that

f(t) = f(s) = inf
u∈[s,t]

f(u). (189)

Indeed, on a discrete tree T , if s and t are two times in {0, . . . , |T |−1},
then the length of the geodesic between us and ut is easily seen to
be

h(s) + h(t)− 2 inf
u∈[s,t]

h(u) (190)

since that distance is simply the sum of two terms, which are the
numbers of generations between us and v and between ut and v
(where v is the most recent common ancestor between us and ut).
However, this most recent common ancestor is precisely at height
h(v) = infu∈[s,t] h(u)

Thus let ∼ be the equivalence relation on [0, ζ] defined by (189),
and let

θ = [0, ζ]/ ∼ (191)

be the quotient space obtained from that relation. On the quotient
space θ, we introduce the distance

d(s, t) = f(s) + f(t)− 2 inf
u∈[s,t]

f(u)

which is easily seen to be a distance on θ.

Definition A.3. The metric space (θ, d) is the continuum tree de-
rived from f . If f(t) = 2et, t ∈ [0, 1], where (et, t ≥ 0) is the Brow-
nian excursion conditioned so that ζ = 1, then the random metric
space (Θ, d) derived from f is called the (standard) Continuum Ran-
dom Tree (or CRT for short).

To help make sense of this definition, we note that if T is a discrete
tree, and if C(t) is the Contour process of T (i.e., the linear inter-
polation of the process which navigates at speed 1 along the edges,
exploring the tree in the order of depth-first search but backtracking
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rather than jumping when it has reached a leaf) then T is isometric
to the tree θ derived from C(t) in Definition A.3.

Thus we have the following:

1. Any time t such that f(t) is a local minimum is a branching
point of the tree.

2. Any time t such that f(t) is a local maximum is a leaf of the
tree (there are in fact many other leaves).

For us, any tree associated with a Brownian excursion (be it a
Brownian excursion conditioned to be of duration 1 or be it an ex-
cursion conditioned to reach above level x > 0 for some x > 0, for
instance) will be called a Brownian CRT: naturally, they are related
by a simple scaling.

A.3 Continuous-State Branching Processes

A.3.1 Feller diffusion and Ray-Knight theorem

Come back for a moment to the critical Galton-Watson model that
we have already introduced, with finite variance. Assume for in-
stance that the population at some time t > 0 is very large, say Nx
for some x > 0. Then the population size at the next generation
can be written as the sum of Nx i.i.d. random variable with mean
1 (and finite variance). Thus we have, we let Nx = Zt:

E(dZt|Ft) = 0;

and
var(dZt|Ft) = σ2Zt.

This suggests the following diffusion approximation

Theorem A.6. (Feller 1951 [81]) Assume Z0 = N . After rescaling
(speeding up time by a factor N and dividing the total population
size by N), the process ZNt/N converges in the Skorokhod topology
towards the unique in law solution of

{
dZt = σ

√
ZtdBt

Z0 = 1
(192)

The diffusion (192) with σ2 = 1 is called the Feller diffusion.
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The Feller diffusion is also sometimes known as the square Bessel
process of dimension 0. However there isn’t much intuition to gain
from that connection (it is hard to imagine what a Brownian motion
is in dimension 0). Being the scaling limit of critical Galton-Watson
processes, Z is a continuous-state branching process (CSBP), asso-
ciated with the branching mechanism ψ(u) = u2/2. Indeed, it is an
easy exercise of stochastic calculus to check directly that the Feller
diffusion enjoys the branching property:

Proposition A.2. Let Z(x) be the Feller diffusion started from Z0 =
x. Then Z has the branching property:

Z(x + y) d= Z(x) + Z(y)

where the two processes on the right-hand side are independent.

Proof. To see this, let B and B′ be two independent Brownian mo-
tion, and consider two independent Feller diffusions Z and Z ′ driven
by B and B′ respectively. Then one has to show that Z + Z ′ also
satisfies (192), as it is easy to check that uniqueness in distribution
holds. However, if Y = Z + Z ′, then note that

dYt = dZt + dZ ′t

=
√

ZtdBt +
√

Z ′tdB′
t

=
√

YtdWt

where

Wt =
∫ t

0

√
Zs√
Ys

dBs +

√
Z ′s√
Ys

dB′
s.

Thus W is a local martingale and, since B and B′ are independent,
W has a quadratic variation equal to

[W ]t =
∫ t

0

Zs

Ys
ds +

Z ′s
Ys

ds = t

and hence, by Lévy’s characterisation, W is a Brownian motion.
Thus Z has the branching property.

We now explain the connection between this diffusion and the
celebrated Ray-Knight theorem on the local times of Brownian mo-
tion. Recall the setup of Theorem A.5, where we have an infinite
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sequence of critical Galton-Watson trees, and we showed that the
concatenated height processes converge towards the reflecting Brow-
nian motion after rescaling.

Observe also that the number of visits of the height process at a
certain level is precisely the total number of vertices at this genera-
tion. Thus,

Local time of height process ↔ Population size

In particular, if we want to consider only the N first trees T1, . . . , TN ,
we simply stop the height process at the time of its N th visit to the
origin, or equivalently, when it has accumulated a local time at the
origin equal to N . The total population generated by these first N
trees in the next generation, evolves precisely like a Galton-Watson
tree started with N individuals (it doesn’t matter that these indi-
viduals weren’t connected to the same root earlier in time). Thus
the Feller diffusion approximation of Theorem A.6 holds, and given
the above principle that the population size is the same as the local
time of the height process, we obtain:

Theorem A.7. (Ray-Knight theorem for Brownian motion.) Let
(Bt, t ≥ 0) be a reflecting Brownian motion at 0, and let τ1 = inf{t ≥
0 : Lt ≥ 1} where Lt is the local time at 0 of B. If for x > 0 we
define

Zx = L(τ1, x) (193)

be the total local time that B accumulates at level x before τ1, then
(Zx, x ≥ 0) is the Feller diffusion.

The Ray-Knight theorem (discovered simultaneously and indepen-
dently by Ray and Knight) is actually more general than that, as
there exists for instance a version of this result which describes the
behaviour of L(Tx, a) as a function of a, while x > 0 is fixed. It is
one of the most useful tools for studying one-dimensional Brownian
motion, and has been for instance extensively used to describe poly-
mer models (see, e.g., [99] or [13]). Below we will see that this is
actually a much more general statement about continuum random
trees and continuous-state branching processes.

A.3.2 Height process and the CRT

We now show how the relation between the Feller diffusion (which
here is seen as an example of CSBP) and the standard continuum
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random tree may be generalised to other CSBPs. This generalisation
is along the lines of the work of Le Gall and Le Jan [114]. Essen-
tially, we only touch on the surface of some fairly deep ideas that
have been developed in the last 10 years, and about which the excel-
lent monograph by Duquesne and Le Gall [64] give a much broader
overview.

Le Gall and Le Jan [114] proposed to study the rescaling of the
height process of discrete Galton-Watson trees whose population size
process converges towards a given continuous-state branching pro-
cesses. They showed indeed the existence of a scaling limit for the
height process, which takes the following form (the one which we
quote is a variation on Theorem 2.2.1 in [64]).

Theorem A.8. Let Z be a fixed CSBP. Let L(N) be the offspring
distribution in Theorem 4.5, and let cN be the associated time-scale
which guarantees convergence of the rescaled Galton-Watson process
towards Z. Let H(N) be the height process associated with an infi-
nite sequence of i.i.d. random trees with offspring distribution L(N).
Then we also have convergence of the rescaled height process:

(cNH
(N)
Nt/cN

, t ≥ 0) → (Ht, t ≥ 0)

in the sense of finite-dimensional distribution.

See Theorem 2.3.1 in [64] for a statement concerning the stronger
convergence in the sense of the Skorokhod topology (basically, this
convergence is proved under the condition that the CSBP becomes
extinct (114) and a technical, non-important condition).

It is now a good time to recall our principle “one function, one
tree”: the limiting height process (Ht, t ≥ 0) encodes a certain Con-
tinuum Random Tree Θ, and the convergence in Theorem A.8 en-
sures that the corresponding rescaled trees, converge in distribution
(in the sense of the Gromov-Hausdorff metric) towards Θ. This is
a somewhat sloppy statement: for this to be true, we have to talk
about the Galton-Watson tree conditioned to reach a large height,
for instance, much as we did in (188). However, for this to make
sense, we need to make sure that H is almost surely continuous.
That turns out to be true if and only if the corresponding branching
process becomes extinct, i.e., if and only if Grey’s condition (114)
holds.
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Naturally, having made this definition we want to see how the
CSBP relates to the Continuum Random Tree Θ, and the answer is
again via a Ray-Knight theorem. Thus, define:

L(t, x) := lim
ε→0

1
2ε

∫ t

0
1{|Hs−x|≤ε}ds (194)

which is the amount of local time that H spends near x. One thing
to realise is that it is not obvious at all why the limit (194) exists,
as H is neither a Markov process nor a semimartingale. This limit
is in fact shown to exist in L1 (uniformly in t) by Duquesne and Le
Gall in Proposition 1.3.3 of [64]. The Ray-Knight theorem in this
setup states:

Theorem A.9. Let (Ht, t ≥ 0) be the height process of a ψ-CSBP.
Let L(t, x) be its joint local time process and let (τ`, ` ≥ 0) be the
inverse local time at x = 0. Then

(Zx = L(τz, x), x ≥ 0) (195)

is a ψ-CSBP started from Z0 = z.

The advantage of having introduced a tree to describe a CSBP is
that it makes it possible to discuss issues related to the genealogy of
this continuous-state branching process. For instance, the number
of individuals at time 0 who have descendants at time x > 0 is equal
to the number of excursions above 0 that reach x > 0 (and is thus
finite almost surely under Grey’s condition (114).

Much as in the case of the Brownian CRT, where Itô’s excursion
measures can be used to describe the statistics of “infinitesmial trees”
above a given level, there is a valid generalisation of excursion theory
to height processes. This generalisation can be stated in terms of
excursions as in Theorem A.3 or in terms of trees. We will refrain
from stating explicitly this result, except to say informally that the
collection of trees generated by the height process above a certain
level x > 0 is a Poisson point process of trees with intensity d` (the
local time scale at level x) times a certain excursion measure, ν.
For instance, given L(τ1, x) = `, the number of excursions (or trees)
that reach level x + h is Poisson with mean `ν(sups≥0 Hs > h).
Moreover this is “independent from what happened at lower levels”.
(However, unlike in the Brownian case, it makes no sense to talk
about excursions below x for which there is no excursion property).
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We finish this section with a description of the excursion measure,
which is the analogue to Theorem A.4.

Theorem A.10. Assume Grey’s condition (114).
Let v(x) = ν(sups≥0 Hs > x) be the measure of excursions that reach
above level x. Then v(x) is uniquely determined by:

∫ ∞

v(x)

dq

ψ(q)
= x.

Naturally, this result says exactly the same thing as Theorem 4.7
for the lookdown process. Indeed, this can be proved directly using
the same arguments, or can be deduced from it: it turns out that
the notions of genealogy for (Zt, t ≥ 0), as defined by the continuum
random tree and by the lookdown process, are identical. Recall that
in the world of CRT, an individual is identified with subtree below
it, i.e., with an excursion above a certain level, and u is an ancestor
of v if the excursion associated with v is a piece of the excursion
associated with u. However, in the lookdown process, individuals
are seen as levels of a countable population, and individual i at time
s is an ancestor of individual j at time t > s if ξi(s) = ξj(t), where
(ξi(t), t ≥ 0)i≥1 denotes the lookdown process.

The following result was proved in [20], and shows that the two
notions are identical, in the following sense. Let (Zt, t ≥ 0) be a
ψ-CSBP started from Z0 = r > 0 satisfying (114), and assume that
Zt is obtained as the local times of the height process (Ht, t ≤ Tr)
as in Theorem A.9. The key point is to order the excursions above
a certain level t suitably. We choose to rank them according to their
supremum. That is, we denote by ej(t) the jth highest excursion
above the level t. We draw a sequence of i.i.d. random variables
(Ui)i≥1 uniform on (0, 1). For each j ≥ 1, we associate to ej(0) the
label Uj . As t increases, a given excursion may split: we decide
that the children subexcursions each inherit the label of the parent
excursion. We define a process ξj(t), for all j ≥ 1 and all t ≥ 0 by
saying that ξj(t) the label of ej(t). Note that when an excursion
splits, a fairly complex transition may occur for (ξj(t), t ≥ 0) as the
excursions ej(t) are always ordered by their height. In fact, we have
the following result (Theorem 14 in [20]):

Theorem A.11. The process (ξj(t), t ≥ 0) is the Donnelly-Kurtz
lookdown process associated with (Zt, t ≥ 0).



Bibliography 200

References

[1] M. Aizenmann and P.L. Arguin. On the Structure of Quasi-Stationary
Competing Particle Systems, to appear in Ann. Probab., 37, 1080–
1113 (2009).

[2] D. J. Aldous. Exchangeability and related topics. In P. Hennequin,
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Birkhauser.

[113] J.-F. Le Gall. Random trees and applications. Probability Surveys, 2,
245–311 (2005).

[114] J.-F. Le Gall and Y. Le Jan. Branching processes in Lévy processes:
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polytechnique (1992).



Bibliography 209

[127] A. Panholzer. Destruction of recursive trees. In Mathematics and
Computer Science III (Vienna 2004), Trends Math., 267–280.
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