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The purpose of these notes is to showcase various methods which have been developed
over the last 30 years to study mixing times of Markov chains and in particular the cutoff
phenomenon. This refers to the surprising behaviour that many natural Markov chains reach
their equilibrium distributions in a very concentrated window of time.

The emphasis of these notes is on techniques explained through examples, and I did not try
to make the results as general as possible. Instead, the ideas are exposed in the simplest form
that I know of, and a couple of examples are selected to illustrate the idea concretely. The
book by Levin, Peres and Wilmer [17] is a key reference that contains many more examples
and more precise results; we refer to it often and follow its exposition in a number of cases.
However we depart from it in the organisation of the material and several proofs; some
topics which are not covered in that book but are included here include the connection to
representation theory and the Diaconis–Shahshahani upper bound lemma, as well as analytic
methods based on functional inequalities such as Nash and Log-Sobolev inequalities. On the
other hand, I didn’t include things like the path coupling method, electrical network theory,
and important examples such as lamplighters and spin systems such as Glauber dynamics for
Ising model and q-colourings.

The notes evolved from a graduate course I taught at Cambridge on a number of occasions,
first as a graduate reading course in 2008. The notes were extensively revised and extended
to include representation theory in 2011 when I taught part of this material again at Ecole
Polytechnique in Paris, and further after a mini-course in Edinburgh at the occasion of a
workshop on probability and representation theory. I wish to express my thanks to the
organisers for the opportunity to present this material. They were revised and considerably
extended again (and exercises were added) in 2016, as I was preparing to teach it as a Part
III course in Cambridge.

Apart from the first two chapters which are needed throughout the rest of the course, each
lecture is designed to illustrate a particular technique, and may be read independently from
the rest. I would gratefully receive feedback, comments, errors and typos. These should be
sent to the above email address.
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Introduction

Take a deck of n = 52 cards and shuffle it. It is intuitive that if you shuffle your deck
sufficiently many times, the deck will be in an approximately random order. But how many
is sufficiently many ?

In these notes we take a look at some of the mathematical aspects of card shuffling and,
more generally, of the mixing times of Markov chains. We pay particular attention to the
cutoff phenomenon, which says that convergence to the equilibrium distribution of a Markov
chain tends to occur abruptly asymptotically as some parameter n → ∞ (usually the size
of the state space of the chain, or the number of cards if talking about a card shuffling
problem). If this occurs, the time at which this convergence takes place is called the mixing
time. proving or disproving the cutoff phenomenon is a major area of modern probability,
and despite remarkable progress over the last 25 years since this phenomenon was discovered
by Diaconis and Shahshahani and by Aldous, there are still only very few examples which are
completely understood.

The techniques which have proved useful so far involve a number of traditionally disjoint
areas of mathematics: these can be probabilistic techniques such as coupling or martingales
and “evolving sets”, the study of eigenvalues and eigenfunctions, functional and geometric
inequalities (Cheeger’s inequality, Poincaré and Nash inequalities), or even representation
theory – sadly not in these notes at this point. Yet another set of connections is provided by
the fact that many of the Markov chains for which we desire to estimate the mixing time are
often of a statistical mechanics nature, such as the Glauber dynamics for the Ising model. For
these, there is a spectacular method available devised by Propp and Wilson, called “coupling
from the past”, which we will talk about at the end.
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1 The coupling method

1.1 Prerequisites on Markov chains

Let S be a finite state space. Let P be a transition matrix on S, i.e., the matrix P =
(P (x, y))x,y∈S satisfies P (x, y) ≥ 0 and

∑
y P (x, y) = 1 for every x ∈ S. The matrix P defines

a Markov chain on S: given a state x ∈ S, we consider a process X = (Xt, t = 0, 1, . . .)
such that X0 = x and for every t ≥ 0, given (X0, . . . , Xt),

P(Xt+1 = y|X0, . . . , Xt) = P (Xt, y).

More generally, we could consider the process started not from a fixed x ∈ S, but rather from
a certain starting distribution µ on S. When needed, we will usually refer to the law of this
process by Pµ.

Note that for every t ≥ 0,

P(Xt = y|X0 = x) =
∑

x1,...xt−1∈S
P(X1 = x1, . . . , Xt−1 = xt−1, Xt = y|X0 = x)

=
∑

x1,...,xt−1∈S
P (x, x1)P (x1, x2) . . . P (xt−1, y)

= P t(x, y),

where P t is the t-th power of the matrix P . In other words, the t-step transition probabilities
of the Markov chain are given by the t-th power of the transition matrix.

A transition matrix P (or a Markov chain) is called irreducible if all states can be reached
from any starting point: for every x, y ∈ S, there exists x = x0, x1, . . . , xn−1, xn = y such
that P (xi−1, xi) > 0 for 1 ≤ i ≤ n. P is called aperiodic if gcd{n ≥ 1 : Pn(x, x) > 0} = 1
for all states x, and is called periodic otherwise. An example of a periodic Markov chain is
simple random walk on the relative integers Z, defined by P (i, i ± 1) = 1/2 and P (i, j) = 0
otherwise.

Let (π(x), x ∈ S) be a collection of real numbers indexed by the states in S. We say that
π defines an invariant measure if for all y ∈ S,∑

x∈S
π(x)P (x, y) = π(y), (1)

or in matrix notations, πP = π. If the chain is irreducible then solutions to (1) are unique
up to a multiplicative constant. Furthermore, if the chain is recurrent then (1) has a solu-
tion such that π(x) ≥ 0. If the chain is positive recurrent, in particular if the state space
is finite, then π can be normalised to be a probability distribution. In that case, we call
π(x) the (unique) stationary distribution of the chain, or equivalently its equilibrium
distribution. Then(1) says that choosing X0 ∼ π, the Markov chain with starting state X0

is stationary: for every fixed n ≥ 0, Xn ∼ π.
The ergodic theorem for Markov chain states that if P is irreducible, aperiodic and

positive recurrent (in particular, if P is irreducible and aperiodic, and the state space S is
finite), then for all starting distribution µ on S, then the Markov chain X started from µ
converges to the unique stationary distribution π in the long run: that is, Xt → π as t→∞
in distribution, or equivalently, for all y ∈ S,

Pµ(Xt = y)→ π(y), t→∞. (2)
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A measure (π(x), x ∈ S) is called reversible if for all x, y ∈ S:

π(x)P (x, y) = π(y)P (y, x). (3)

It is straightforward to check that in that case, π satisfies (1) and is thus the unique invariant
measure of the chain up to a constant.

Example 1.1. Random walk on a graph.

A crucial example is that of a finite graph G = (V,E). Here the Markov chain is defined
by taking the state space to be the set of vertices, and setting P (x, y) = 1/ deg(x) if y is a
neighbour of x (where deg(x) is the degree of the vertex x, or the number of neighbours of
x), and P (x, y) = 0 otherwise. In other words, the random walk on G hops from a vertex x
to a randomly chosen neighbour y of x. Note that if µ(x) = deg(x), then

µ(x)P (x, y) = deg(x)× 1

deg(x)
= 1 = µ(y)P (y, x).

Consequently, π(x) = deg(x)/
∑

y deg(y) is the reversible stationary distribution of a random
walk on G. Note that the normalising constant C =

∑
y deg(y) can be expressed also as

C = 2|E|, since every edge is counted twice in the sum (once for each endpoint).

1.2 Total variation distance

To discuss the notion of mixing time, the first thing we need is a way to measure how far
away from stationarity we are. Given two probability measures µ, ν on a state space S (where
µ might be the distribution of the chain after a given number of steps, and ν might be the
stationary distribution of the chain), there are various notions of distance between µ and ν
one can use. The most natural and simplest notion is that of total variation distance, which
is defined as follows.

Definition 1.1. The total variation distance between µ and ν is

‖µ− ν‖tv = sup
A⊂S
|µ(A)− ν(A)| (4)

The total variation distance thus measures the maximal error made when approximating
µ by ν to predict the probability of an event. Thus µ and ν are close if they are statistically
indistinguishable.

Note that ‖µ−ν‖tv in any case. That is, the maximal value that the total variation distance
can take is 1. We record here some basic properties of total variation distance:

Lemma 1.1. We have the following identities:

‖µ− ν‖tv =
∑
s∈S

(µ(s)− ν(s))+ =
1

2

∑
s∈S
|µ(s)− ν(s)|.

Proof. Let B = {x ∈ S : µ(x) ≥ ν(x)} and let A ⊂ S be any event. Then

µ(A)− ν(A) = [µ(A ∩B)− ν(A ∩B)] + [µ(A ∩Bc)− ν(A ∩Bc)].
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The second term is negative by definition of B hence

µ(A)− ν(A) ≤ (µ− ν)(A ∩B) ≤ (µ− ν)(B)

= µ(B)− ν(B). (5)

since µ− ν is nonnegative on B. Likewise, by symmetry,

ν(A)− µ(A) ≤ ν(Bc)− µ(Bc). (6)

We claim however that the right hand sides of (5) and (6) are equal. Indeed, µ(B) +µ(Bc) =
1 = ν(B) + ν(Bc). Therefore,

|µ(A)− ν(A)| ≤ µ(B)− ν(B) = ν(Bc)− µ(Bc).

Since A was arbitrary, taking the sup gives

‖µ− ν‖tv ≤ µ(B)− ν(B) =
∑
x

(µ(x)− ν(x))+,

which is one of the desired conclusions. To get the second one, just observe that since
µ(B)− ν(B) = ν(Bc)− µ(Bc), we deduce

‖µ− ν‖tv ≤
1

2
([µ(B)− ν(B)] + [ν(Bc)− µ(Bc)]) =

1

2

∑
x

|µ(x)− ν(x)|,

as desired.

1.3 Mixing times and the cutoff phenomenon

Definition 1.2. Let P be an irreducible, aperiodic transition matrix on a finite state space S,
and let π(x) denote its stationary distribution, defined by (1). Define the distance function
for all t = 0, 1, . . . by:

d(t) = max
x∈S
‖P t(x, ·)− π(·)‖tv. (7)

We also extend the definition of d(t) to all [0,∞) by setting d(t) = d(btc).

d(t) is the total variation distance between the distribution of the Markov chain at time t
and its equilibrium, started from the worst possible starting point x, so that if d(t) is small
we know that the chain is close to equilibrium no matter what was its starting point. The
ergodic theorem (2) implies that d(t)→ 0 as t→∞. In fact, elementary linear algebra tells
us that, asymptotically as t→∞, the distance d(t) decays exponentially fast, with a rate of
decay control by the spectral gap of the chain (this will be defined and justified in the next
chapter).

Proposition 1.1. Suppose (P, π) is reversible. Let λ be the eigenvalue of P which is of
maximal modulus strictly smaller than 1. Then there exists a constant C such that

d(t) ∼ Cλt, t→∞.
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The proof is a simple consequence of theorem 2.1. A priori, Proposition 1.1 seems to tell
us everything we want about mixing times. Indeed, to make λt small it suffices to take t
larger than −1/ log λ. In most chains where the state space is large, the value of λ is close
to 1, i.e, λ = 1 − γ where γ is the (absolute) spectral gap. This tells us that we need to
take t > trel := 1/s to make d(t) small. As we will se in further details later, this is indeed
necessary in general, but far from sufficient - the reason being that C is unknown and depends
generally on n, and that this asymptotic decay says nothing about the actual behaviour of
the chain at time trel, only something about extremely large times.

The formal definition of a cutoff phenomenon is the following:

Definition 1.3. Let Xn be a family of Markov chains (i.e., for each n ≥ 1, Xn = (Xn(t), t =
0, 1, ) is a family on some state space Sn). Write dn(t) for the corresponding distance function
defined in (7). We say that there is (asymptotically) a cutoff phenomenon at tn if for every
ε > 0,

dn((1− ε)tn)→ 1

but
dn((1 + ε)tn)→ 0.

Now fix a Markov chain X on a state space S. Since d(t) converges to 0 as t → ∞, it
always makes sense to define, for 0 < ε < 1:

tmix(ε) = inf{t ≥ 0 : d(t) ≤ ε}

tmix(ε) is called the mixing time at level ε. By convention, if we don’t specify a level ε ∈ (0, 1),
the mixing time of the chain is

tmix = tmix(1/4) = inf{t ≥ 0 : d(t) ≤ 1/4},

Note that with these definitions, if Xn is a family of chains as above, and if tnmix(ε) is the
mixing time at level ε of Xn, then the cutoff phenomenon occurs if and only if

tnmix(1− ε) ∼ tnmix(ε)

for all 0 < ε < 1, where an ∼ bn means an/bn → 1 as n → ∞. In this case the cutoff
phenomenon occurs at tn = tnmix.

1.4 Coupling

The technique of coupling is one of the most powerful probabilistic tools to obtain quantitative
estimates about mixing times. The basic observation is the following. Let µ, ν be two measures
on a set S.

Definition 1.4. A coupling of µ and ν is the realisation of a pair of random variables (X,Y )
on the same probability space such that X ∼ µ and Y ∼ ν.

So to construct a coupling we seek two random variables which have the correct distributions
µ and ν respectively, but there is complete freedom over how they are correlated. Two extreme
examples are as follows:
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Example 1.2. Suppose µ = ν. Then one possible coupling is to take X a random variable
with law µ and take Y = X. Another coupling is to take Y to be an independent copy of X
(i.e., X and Y are i.i.d. with law µ).

In general, if µ and ν are distinct, we cannot necessarily find a coupling such that X = Y .
In fact, whether or not X = Y will occur, in the best case scenario, with a probability which is
high only if the total variation distance between µ and ν is small, as the following fundamental
result shows.

Theorem 1.1. For all couplings (X,Y ) of µ and ν, we have:

‖µ− ν‖tv ≤ P(X 6= Y ). (8)

Furthermore, there always is a coupling (X,Y ) which achieves equality in (8).

Proof. We start with the proof of the inequality (8), which is practice the only thing we use.
(But it is reassuring to know that this is a sharp inequality!) Let (X,Y ) denote a coupling
of µ and ν.

If A is any subset of S, then we have:

|µ(A)− ν(A)| = |P(X ∈ A)− P(Y ∈ A)|
≤|P(X ∈ A,X = Y )− P(Y ∈ A,X = Y )|+ |P(X ∈ A,X 6= Y )− P(Y ∈ A,X 6= Y )|

Note that the first term is in fact equal to zero, while the second is less or equal to P(X 6= Y ),
as desired.

We now construct a coupling which achieves equality. Let

p =
∑
x∈S

µ(x) ∧ ν(x),

and note that p ∈ [0, 1]. (Here a ∧ b means by definition min(a, b).) Then we note that

‖µ− ν‖tv =
∑
x

(µ(x)− ν(x))+ =
∑
x

µ(x)− µ(x) ∧ ν(x) = 1− p.

Define a probability distribution λ(x) = (µ(x)∧ν(x))/p. We let Z be a random variable with
distribution λ, and we let Z1, Z2 have distribution respectively (µ(x)− ν(x))+/‖µ− ν‖tv and
(µ(x)− ν(x)+/‖µ− ν‖. Then define a pair of random variables (X,Y ) as follows. First toss
a coin which comes up heads with probability p. If it comes head, take X = Y = Z. Else, if
it comes tails, take X = Z1 and Y = Z2. Then we claim that (X,Y ) defines a coupling of µ
and ν. Indeed,

P(X = x) = pλ(x) + (1− p)(µ(x)− ν(x))+

‖µ− ν‖tv
= µ(x)

so X ∼ µ as desired. Likewise, Y ∼ ν. Moreover, X = Y if and only if the coin comes up
heads. Hence

P(X 6= Y ) = 1− p = ‖µ− ν‖tv,
so this coupling achieves equality as desired.

This proof is thus simple enough but we will see how powerful it is in a moment. First, a
few consequences:
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Proposition 1.2. We have the following facts.

1. d(t) is non-increasing with time.

2. Let ρ be defined by:
ρ(t) = max

x,y∈S
‖P t(x, ·)− P t(y, ·)‖tv.

Then
d(t) ≤ ρ(t) ≤ 2d(t).

3. ρ is submultiplicative: for all s, t ≥ 0:

ρ(t+ s) ≤ ρ(t)ρ(s).

Proof. We will prove points 2. and 3. The right-hand side of point 2. is simply the triangular
inequality. For the left-hand side, observe that by stationarity, if A ⊂ S,

π(A) =
∑
y∈S

π(y)P t(y,A)

Therefore, by the triangular inequality:

‖π − P t(x, ·)‖tv = max
A⊂S

∣∣P t(x,A)− π(A)
∣∣

= max
A⊂S

∣∣∣∣∣∣
∑
y∈S

π(y)[P t(x,A)− P t(y,A)]

∣∣∣∣∣∣
≤ max

A⊂S

∑
y∈S

π(y)
∣∣P t(x,A)− P t(y,A)]

∣∣
≤ ρ(t)

∑
y∈S

π(y) = ρ(t).

For point 3, we may use our coupling argument: let (Xs, Ys) be the optimal coupling of
P s(x, ·) with P s(y, ·). Thus

‖P s(x, ·)− P s(y, ·)‖tv = P(Xs 6= Ys).

From Xs and Ys we construct Xs+t and Ys+t in such a way that they form a particular
coupling of ps+t(x, ·) with ps+t(y, ·), as follows. There are two possibilities to consider: either
Xs = Ys, or not. Conditionally on the event Az = {Xs = Ys = z} we take

Xs+t = Ys+t ∼ pt(z, ·)

while conditionally on the event Az,z′ = {Xs = z, Ys = z′}, with z 6= z′, then we choose

Xs+t ∼ ps+t(z, ·) and Ys+t ∼ ps+t(z′, ·)

with a choice of Xs+t and Ys+t such that Xs+t and Ys+t form an optimal coupling of pt(z, ·)
with pt(z′, ·). Thus

P(Xs+t = Ys+t|Az,z′) ≤ ρ(t).
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With these definitions,

ρ(s+ t) ≤ P(Xs+t 6= Ys+t)

= P(Xs 6= Ys)P(Xs+t 6= Ys+t|Xs 6= Ys)

= ρ(s)P(Xs+t 6= Ys+t|Xs 6= Ys).

Let µ(x, y) denote the law of (Xs, Ys) given Xs 6= Ys. By the Markov property at time s, we
have:

ρ(s+ t) ≤ ρ(s)
∑
z 6=z′

µ(z, z′)P(Xs+t 6= Ys+t|Az,z′)

≤ ρ(s)ρ(t)
∑
z 6=z′

µ(z, z′)

= ρ(s)ρ(t),

as desired.

1.5 Example: Random to top shuffling.

To illustrate the power of the method of coupling, nothing better than to view it on action
on the following simple method of shuffling card: at each step, take a randomly chosen card
in the deck and insert it at the top of the deck. Mathematically, the state space is Sn, the
permutation group on {1, . . . , n} (with n = 52 for a real deck of cards). Our convention is
that cards are labelled 1, . . . , n and that σ(i) gives the value of the card in position i of the
deck. Equivalently, σ−1(i) gives the position of card number i.

The operation of taking the card in position i of the deck and moving it to the top the deck
can be described mathematically as multiplying on the right the current permutation σ by
the cycle (1 2 . . . i), that is, the permutation which maps 1→ 2, 2→ 3, . . . , i→ 1. That is,

σ′ = σ · (i i− 1 . . . 2 1)

where · is the composition of permutations, σ′ denotes the new deck of card and σ the old
one. [As a check, we note that the card now on top is σ′(1) = σ(i), was in position i before
the shuffle. Taking the alternative convention that σ(i) denotes the position of card number
i, we are of course led to σ′ = (1 2 . . . i)σ.]

It is easy to check that the uniform distribution is invariant for this shuffling method and
that the chain is aperiodic. The result concerning the mixing time of this chain is as follows:

Theorem 1.2. The random-to-top chain exhibits cutoff at time tmix = n log n.

Proof. The proof has two parts: an upper bound (showing that d((1 + ε)n log n) → 0, and
hence tmix ≤ (1 + ε)n log n) and a lower bound (showing that d((1− ε)n log n)→ 1 and hence
tmix(1− ε)n log n).

Step 1. Upper bound. We will use a coupling argument, showing that if Xt denotes the
state of the deck after t moves, then Xt can be successfully coupled with a uniform deck with
high probability (i.e., with probability tending to 1 as n→∞.)

Consider two decks Xt and Yt such that X0 is initially in an arbitrary order (say the identity
Id: by symmetry it does not matter), and Y0 is a permutation which is chosen according to
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the stationary measure π. We construct a coupling of Xt and Yt as follows: at each step, we
draw 1 ≤ i ≤ n uniformly at random. In both decks, we take card number i and put it at
the top. Note that both decks are evolving according to the transition probabilities of the
random-to-top chain (so this is a valid coupling). Note in particular that the right-hand deck
Yt always has the uniform distribution for every fixed t ≥ 0.

A further property of that coupling is that once a card i has been selected, its position in
both decks will be identical for all subsequent times, as it will first be on top of the deck and
then will move down by one unit each time another card is selected. If it is selected again,
it will move to the top of the deck again in both decks and this keeps on going forever. In
particular, if

τn = inf{t ≥ 0 : all cards have been selected at least once}

then Xt = Yt for all t ≥ τn. Hence for all t ≥ 0:

d(t) ≤ P(Xt 6= Yt) ≤ P(τn > t). (9)

Now, τn can be estimated through the coupon-collector problem.

Lemma 1.2 (Coupon-collector problem). We have that τn/n log n → 1 in probability. That
is,

P((1− ε)n log n ≤ τn ≤ (1 + ε)n log n)→ 1

as n→∞, for all ε > 0.

Proof. Let Zi denote the time to collect an ith new card after i−1 distinct cards have already
been collected, 1 ≤ i ≤ n. Then

τ = Z1 + . . .+ Zn

where the Zj are independent Geometric random variables, with success probability pj =
(n− j + 1)/n.

E(τn) =
n∑
j=1

1

pj
=
n

n
+ . . .+

n

1
= n

n∑
j=1

1

j
∼ n log n,

as n → ∞. (Here and in the rest of the text, an ∼ bn means that an/bn → 1.) Moreover,
note that var(Zj) = (1− pj)/p2

j ≤ 1/p2
j . Therefore,

var(τn) = var(Z1) + . . .+ var(Zn) ≤
n∑
i=1

(n
i

)2

and thus
var(τn) ≤ Cn2,

where C = π2/6. Hence, since var(τn) = o(E(τn)2), by Chebyshev’s inequality τn is concen-
trated near its expectation:

P(τn > (1 + ε)E(τn)) ≤ var(τn)

ε2E(τn)2
→ 0

and similarly for the lower bound. Hence the lemma is proved.
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Recalling (9) we conclude that for t = (1 + ε)n log n,

d(t) ≤ P(τn > t)→ 0,

which proves the upper-bound on the mixing time.

Step 2: lower bound. For the lower-bound, we note the following: let Aj be the event that
the j bottom cards of the deck are in their original relative order (that is, if these cards are
in order from the bottom i1, . . . , ij then we have i1 > i2 > . . . > ij . Naturally, for a uniform
permutation,

π(Aj) =
1

j!

as any arrangement of the j bottom cards is equally likely. Thus if j is reasonably large, this
has very small probability for a uniform permutation. However, if we are significantly before
τ then the event Aj has a pretty large chance to hold for some high value of j. Indeed, if
t ≤ (1− ε)τ , then many cards have not been touched. All these cards must be at the bottom
of the deck and conserve their initial order.

Thus fix j arbitrarily large. The probability that Aj holds for Xt at time t = (1− ε)n log n
is at least the probability that j cards have not been touched. The following lemma will give
us the estimate we are looking for:

Lemma 1.3. Let b < 1. For any b < b′ < 1, if t = bn log n, at least n1−b′ cards have not been
touched by time t, with probability tending to 1 as n→∞.

The proof of this lemma is exactly the same as before. To conclude the proof of the theorem,
fix ε > 0 and let t = (1− 2ε)n log n. Let A be the event that nε cards have not been touched.
Then, by the above lemma, P (Xt ∈ A) = 1− o(1). On the other hand for a uniform random
permutation, π(A) = 1/(nε!) since the order of the nε cards at the bottom of the deck is itself
uniform random.

d(t) ≥ ‖P (Xt ∈ A)− π(A)‖

≥
∣∣∣∣1− o(1)− 1

nε!

∣∣∣∣→ 1

Therefore,
lim
n→∞

d(t) ≥ 1.

This proves the lower-bound of the cutoff phenomenon.

1.6 Example: random walk on a hypercube.

Let Hn = {0, 1}n be the n-dimensional hypercube. A random walk (Xt, t = 0, 1, . . .) on
the hypercube is the following process: at each step, choose 1 ≤ i ≤ n. Then Xt+1 is
obtained from Xt by flipping the coordinate Xi

t . That is, if Xi
t = 0 we put Xi

t+1 = 1, and
vice-versa. This defines a Markov chain which is irreducible but not aperiodic (e.g., starting
from the origin, we can only return to it at even times). To discuss the mixing behaviour
of the chain, we have two options. Option 1 is to consider the lazy chain: at each step
we flip a fair coin, and only perform the above if the coin is heads. Option 2 is to consider
the continuous time chain: instead of doing such a move at each time step, we wait an
exponential random variable with mean 1 to perform it. In other words, we perform a move

13



at rate 1 in continuous time. Both options get around the periodicity issue and hence both
chain converge to an equilibrium measure π which it is easy to check is simply the uniform
distribution on Hn. Note however that essentially the lazy chain moves half as fast as the
continuous one, and thus will basically take twice as long to mix.

Theorem 1.3. Let dL(t) denote the distance to stationarity (in total variation) of the lazy
chain, and let dC(t) denote the same for the continuous time chain. Then for any ε > 0,
dL((1 + ε)n log n)→ 0, while dC((1/2)(1 + ε)n log n)→ 0, as n→∞.

Proof. We explain the idea for the lazy chain. Again, we use a coupling argument. Essentially
the idea is the following. At every step, we choose a coordinate and flip it with probability
1/2. It is easy to see that the effect on that coordinate is to randomise it. The bound in the
theorem is therefore just the coupon collector bound.

Formally, we let Y0 have the uniform distribution on Hn. We couple Xt and Yt as follows.
At each time step, pick 1 ≤ i ≤ n at random and flip a coin. Case 1. Suppose first Xi

t = Y i
t .

In that case, we flip Xi
t and Y i

t simultaneously, if the coin comes up heads. Case 2. Now
suppose that Xi

t 6= Y i
t . Then flip Xi

t but not Y i
t if the coin comes up heads, and the other way

around if the coin comes up tails. Note that once a coordinate i has been selected, we have
Xi
t = Y i

t forever after. Hence if τn is the first time all coordinates have been chosen, we have
Xt = Yt for all t ≥ τn. The theorem in the lazy case hence follows from the coupon-collector
bound, lemma 1.2.

We also sketch the proof of the continuous time case, where we also do a coupling as
follows. Let Y0 have the uniform distribution on Hn. We can assume that X0 and Y0 differ
at an even number of coordinates. (If not, let X evolve for one step and do nothing to Y
first: this problem is then resolved). At each step we pick a i at random in {1, . . . , n}. If
Xi(t) = Yi(t) then we flip both coordinates Xi and Yi. If Xi 6= Yi, we find j such that
Xj 6= Yj . (For instance, we take the smallest j > i which satisfies this property, where
smallest is interpreted cyclically mod n). We then flip bit i for Xt and bit j for Yt. This has
the effect of making two new coordinates agree for X and Y . Naturally, once all coordinates
have been touched they stay the same forever after, and thus the mixing time is bounded by
the stopping time τn such that all coordinates have been touched. At every step we touch
two different coordinates so playing with the coupon collector problem gives us

P(τn > (1/2 + ε)n log n)→ 0.

This proves the result.

Remark 1.1. This coupling is not sharp. It is easy to get an exact formula for the distribution
of X in the continuous time case: indeed, each coordinate evolves as an independent bit-
flipping Markov chain, changing at rate 1/n. For this, the probability to be at 0 is

P(Nt/n = 1 mod 2) =
1

2
(1− e−2t/n).

where Nt is a Poisson process with rate 1. From this exact expression one obtains:

d(t) = 2−n−1
n∑
k=0

(
n

k

) ∣∣∣(1 + e−2t/n)n−k(1− e−2t/n)k − 1
∣∣∣ .

From this formula it is not hard to see that cutoff occurs precisely at time tmix = (1/4)n log n
in continuous time.
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Intuitively, this is because it it is not necessary to randomise every coordinate: in fact,
randomising all but

√
n gives a sample which is very close to the stationary distribution.

(Essentially, by the CLT, if one takes a set of n i.i.d. Bernoulli random variables, and set
to zero a random sample of size m = o(

√
n) coordinates, then the resulting sequence would be

statistically indistinguishable from the original one). This idea is explored in detail in one of
the exercises to show an alternative proof of cutoff.

1.7 Example: couplings for random transpositions∗

Random transpositions is the Markov chains on the symmetric group Sn where at each step,
two cards are selected by the left and right hand respectively, independently and uniformly
at random, and the two cards are swapped (in particular, the two cards can be the same, in
which case nothing happens). Mathematically, we view the deck of cards as a permutation
σ ∈ Sn where σ(i) indicates the position of card with label i.

Then the process above can be written as the Markov chain where the transition probability
satisfies

P (σ, σ′) =


1/n if σ = σ′

2/n2 if σ′ = σ · (i, j) for some 1 ≤ i 6= j ≤ n
0 else

(10)

This is perhaps the simplest shuffle one can think about (from a mathematical point of
view, not from a practical one!) Historically this was the first to be analysed. in the landmark
paper by Diaconis and Shahshahani [10]. Diaconis recounts that this started with a zealous
engineer at Bell Labs who proposed generating permutations by composing n − 1 random
uniform transpositions (since after all, by a result of Cayley, any permutation can be written
as a product of n−1 transpositions). This prompted Diaconis and Shahshahani to investigate
how many transpositions were required.

Note that when a card is touched (either with the left or the right hand) then it is moved
to a location selected by the other hand, which is independent and uniform. It is therefore
natural to believe that when all cards have been touched at least once, then the resulting
permutation is random. Since essentially two cards are touched at every step (except for the
relatively rare case when the two hands chose the same card) by the coupon collector problem,
one expects that

tmix = (1 + o(1))
1

2
n log n.

Note in particular that any card that had never been touched remains in its initial position
and so (if the chain was started from the identity, which we can assume without loss of
generality) must be a fixed point of the permutation. Using this observation it is easy to see
that

tmix ≥ (1 + o(1))
1

2
n log n. (11)

To obtain upper bounds on tmix, we will make use of some marking schemes (i.e., we will
mark certain cards as time goes on) which will have the property that conditionally on the set
of marked cards, their relative ordering in the deck is uniform at any given time. We will call
such a marking scheme admissible. Here our presentation is similar to Diaconis [9, Chapter
4B].
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Näıve marking scheme. Let Lt and Rt be the label of the cards selected by the left and
right hands. Then mark Rt if both Lt and Rt are unmarked.

Proposition 1.3. The näıve marking scheme is admissible. Furthermore, if τ is the first
time only one card remains unmarked, then τ ≤ (π2/6)n2 with probability tending to 1.
Hence tmix ≤ (2π2/3)n2.

Proof. We start with the proof that the scheme is admissible. Informally, one way to build
a uniform deck of cards is to add cards one at a time, each time inserting a new card at
a uniformly chosen slot. We will see that the marked cards are exactly performing this
construction.

To be precise, let Kt = k denote the number of marked cards. Let Mt = {M1, . . . ,Mk}
denote the labels of the marked cards, and let Pt = {P1, . . . , Pk} denote the set of positions
in the deck where there is a marked card. Let Πt : {M1, . . . ,Mk} → {P1, . . . Pk} describe how
these cards are arranged within the deck. We will check by induction on t that

(a) Given K = k: Mt,Pt are independent uniform subsets of size k,

(b) Given K = k, Mt, and Pt; the bijection Πt :Mt → Pt is uniform.

The fact that (a) holds comes from the fact that when a new card Rt+1 is marked, it is put
in a new position (defined by Lt+1) which is independent from the label, and uniform. Hence
Mt+1 = Mt ∪ {Rt+1}, while Pt+1 = Pt ∪ {σt(Lt+1)} (recall that σt(i) gives the position at
time t of the card with label i). The condition that both cards Lt+1, Rt+1 are unmarked at
time t is the condition that Rt+1 /∈ Mt and that σt(Lt+1) /∈ Pt. This proves that (a) holds
when a new card is marked, and it is trivial to check it also when no new card is marked at
t+ 1.

To check (b), we proceed a bit more carefully, and consider separately the two cases where
a new card is marked at time t+ 1 and no new card is marked at that time.

• Suppose we are marking a new card at time t+ 1. By (a), we see that given Mt+1 and
Pt+1, the label m and position p of the newly marked card are uniformly distributed
among these two subsets and are independent of each other. Moreover, conditionally
onMt+1 and Pt+1, and conditionally on Rt+1 = m ∈Mt+1 being marked at time t+1,
and the new position p ∈ Pt+1, being added, we determine uniquely Πt+1 by specifying
Πt : Mt → Pt and the card Lt for which (under these restrictions) there are exactly
k + 1 choices. Hence all choices for Πt+1 are equally likely.

• Suppose no new card is being added at time t+ 1. This can happen for two reasons:

– both cards were already marked. In this case we are applying to Πt a uniformly chosen
transposition, which does not change uniformity.

– one of the two cards (say Lt) was marked, but not the other. Then the bijection Πt+1

is not affected, except for the obvious relabelling of the element of Pt corresponding to
the marked card Lt at time t, whose position is changed from σt(Lt) to σt+1(Lt). Once
again this does not affect uniformity of Πt+1.

Either way, both (a) and (b) hold, so the scheme is admissible.

We now estimate τ , and note that when there are i marked cards, the probability to mark a
new one is ((n− i)/n)2 at each step. Hence τ =

∑n−2
i=0 Ni, where Ni is geometric with success

probability ((n − i)/n)2. It is easy to deduce that E(τ) ≤ (π2/6)n2 and hence by Markov’s
inequaility, tmix = tmix(1/4) ≤ (2π2/3)n2.
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Broder’s marking scheme. We now describe a better marking scheme, which is better
in the sense that it achieves the right order of magnitude O(n log n) (but not with the right
constant (1/2) in front, so that this is still not sufficient to prove cutoff). This scheme is due
to Andre Broder, and goes as follows. At time t, mark Rt if Rt is unmarked and:

• Either Lt marked,

• Or Lt = Rt.

Proposition 1.4. The Broder scheme is admissible. Moreover, if τ is the time at which all
cards are marked, then τ ≤ 2(1 + o(1))n log n with high probability, hence tmix ≤ 2n log n.

Proof. The proof for this is very similar to the näıve scheme, and we keep the same notations.
More generally, by induction on t it is easy to check that, given Kt = k (the number of marked
cards), given Mt (the labels of the marked cards) and given Pt (the positions of the marked
cards), we have Πt uniform among the bijections Mt → Pt.We have two cases to consider.
Either a new card is marked, or not.

• Suppose a new card is marked at time t+1. Then, conditionally onKt+1 = k,Mt+1,Pt+1,
then Lt+1 is equally likely to be any card of Mt+1 =Mt ∪ {Rt}, and Pt+1 = Pt ∪ {p}
where p = σt(Rt+1) is the position at time t of the newly marked card. Then con-
ditionally on Mt+1,Pt+1, Rt+1, we determine uniquely Πt+1 by specifying Πt and the
card Lt+1 (which is equally likely to be in any of the k + 1 possibilities allowed by
these restrictions). Hence every bijection Πt+1 :Mt+1 → Pt+1 is, conditionally on this
information, equally likely. Hence this remains true after we remove the conditioning
on Rt+1 and the new position p.

• Suppose no new card is marked at time t + 1. There are three ways in which no new
cards are marked:

– Lt+1 and Rt+1 are different and both unmarked: nothing happens to Πt.

– Both Lt+1 and Rt+1 were marked at or before time t. In this case we are perform
a uniform transposition within the set of marked cards and this does not change the
uniformity of Πt+1.

– Otherwise, Lt+1 was unmarked and Rt 6= Lt was marked at or before time t. Then
the map Πt+1 is unchanged, except for updating the position of the marked card Rt+1

from its old position at time t to its new position, corresponding to σt(Lt+1).

Either way, we have proved that the scheme is admissible.
To finish the proposition, we simply estimate τ . Let τk be the time for the kth new card

to be marked. Then τk are independent geometric random variables, with success probability
pk = (k + 1)(n− k)/n2. Hence

E(τ) =
n−1∑
k=0

n2

(k + 1)(n− k)
=

n2

n+ 1

n−1∑
k=0

(
1

k + 1
+

1

n− k ) ∼ 2n log n. (12)

Moreover, var(τk) = (1− pk)/p2
k ≤ 1/p2

k. Hence, using the fact that (a+ b)2 ≤ 2(a2 + b2),

var(τ) ≤
n−1∑
k=0

n4

(k + 1)2(n− k)2
≤ n2 × 4

n−1∑
k=0

1

k2
= O(n2).

Hence the result follows from Chebyshev’s inequality.
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Matthews’ marking scheme. The marking scheme devised by Matthews is an improve-
ment on the Broder scheme, but also incorporates feature of the näıve marking scheme.
Essentially, the idea is that the Broder scheme is too slow because we only mark cards with
our right hand, and not with our left hand. If we were able to mark with both hands we
might hope for a speed up by a factor of two. (As we will see, it is not completely trivial to
devise a marking scheme where cards are marked with either hand). That would bring the
bound on tmix to (1 + o(1))n log n. Even this is not enough to prove cutoff, which we expect
to be at (1/2)n log n (recall our lower bound (11)).

Here the observation is that Broder’s scheme is also quite slow at the beginning: for instance
in (12), there is an n log n term which comes from marking the first k cards with k = bn/2c.
Hence Matthew’s idea is to combine the above modification of Broder’s scheme with the näıve
marking scheme for the first bn/2c cards. This leads to the following scheme: let Lt, Rt be
the cards picked by the left and right hand respectively, and let Kt = k be the number of
marked cards. Then:

• if k ≤ bn/2c, mark Rt if both Lt, Rt are unmarked.

• if k > bn/2c, we mark as follows.

(a) if one of the two cards is unmarked and not the other, mark the unmarked one.

(b) Also mark an unmarked card i if Lt = Rt = i.

(c) Also mark an unmarked card i if (Lt, Rt) = φ(i), where φ is an injection from the
unmarked cards [n] \Mt−1 into the pairs of marked cards M2

t−1.

Theorem 1.4. Matthews’ marking scheme above is admissible. Furthermore, if τ is the first
time all cards have been marked, then

τ ≤ (1 + o(1))(1/2)n log n

with probability tending to 1 as n→∞. In particular,

tmix ≤ (1/2)n log n

and the cutoff phenomenon takes place for random transpositions.

Proof. Given the work we have already done in Propositions 1.3 and 1.4 (whose notations we
will keep using for simplicity), the proof will be relatively simple. We prove by induction on t
that given Mt,Pt, the map Πt :Mt → Pt describing the arrangements of marked cards into
positions is uniform. Of course when Kt = k ≤ bn/2c this is already known by Proposition
1.3.

So consider the case Kt = k > bn/2c. The point is that case (c) has been added so that
conditionally on marking a new card (say i) at time t+ 1, then i has the correct probability
of not changing position at the time of being marked, so that altogether its position within
Pt+1. To see that this is the case, note that the probability to add the card i to Mt at time
t+ 1 is precisely

P(Mt+1 =Mt ∪ {i}) = P(Lt+1 = i, Rt+1 ∈Mt) + P(Rt+1 = i, Lt+1 ∈Mt)

+ P(Lt+1 = Rt+1 = i) + P((Lt+1, Rt+1) = φ(i))

= (1/n)(k/n) + (1/n)(k/n) + 1/n2 + 1/n2

= 2(k + 1)/n2. (13)
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and the probability of i being a fixed point (i.e., to not move position) is precisely coming from
the last two events, which contribute 2/n2. Hence the conditional probability is 1/(k + 1),
as desired. It is easy to deduce that the position of the newly marked card within Pt+1 is
therefore uniform. From this the same arguments as in Proposition 1.4 finish the proof of the
admissibility of Matthews’ marking scheme.

To finish the proof, note that the time N to conclude the first (näıve) phase has expectation

E(N) =

n/2∑
i=1

n2

(n− i)2
≤ 2n

, hence N ≤ n log log n with high probability by Markov’s inequality.
Also, the time M to conclude the second phase (once the first phase has ended), can be

written as

M =
n−1∑

k=bn/2c

τk

where τk is Geometric with success probability pk = 2(k + 1)(n− k)/n2, from (13). Hence

E(M) ≤
n∑

k=n/2

1/pk ≤
n∑

k=n/2

n2

2(k + 1)(n− k)
.

The same proof as in Proposition 1.4 then shows that M ≤ (1 + o(1))(1/2)n log n with high
probability as n→∞. Since τ = N +M the result is proved.
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2 Spectral methods and relaxation time

2.1 Eigenvalue decomposition

Our presentation here follows quite closely Chapter 12 of [17].

Proposition 2.1. Let P be a transition matrix.

1. If λ is a (possibly complex) eigenvalue, then |λ| ≤ 1

2. if P is irreducible then eigenspace associated with λ = 1 is one-dimensional and is
generated by the column vector (1, 1, . . . , 1)T .

3. If P is irreducible and aperiodic then −1 is not an eigenvalue.

Suppose P is irreducible and aperiodic. Rather than viewing P as a matrix (i.e., a linear
operator on vectors), it will be more useful to view P as an operator on functions f : S → R
by setting:

(Pf)(x) =
∑
y

P (x, y)f(y).

This is nothing but the standard action on column vectors. Likewise, the matrix P t can be
interpreted as an operator on functions in the same way, and recall also that by the Chapman–
Kolmogorov equation, P t(x, y) is nothing but the transition probability of the chain from x
to y in t steps: thus P t(x, y) = P(Xt = y|X0 = x).

Let π be the stationary measure of the chain associated with P , and define an inner product
on real-valued functions on S, 〈·, ·〉π by:

〈f, g〉π =
∑
x∈S

f(x)g(x)π(x).

Equipped with this scalar product the space of real valued functions may be viewed as `2(π).
We will write the corresponding norm by ‖f‖22 = 〈f, f〉π. More generally, we can define

‖f‖p =

(∑
x

|f(x)|pπ(x)

)1/p

.

One of the traditional techniques for studying Markov chains is to diagonalise them. It is
then particularly useful to take a set of eigenfunctions orthonormal with respect to 〈·, ·〉π.

Let |S| = n, and assume that that π is reversible with respect to P : that is,

π(x)P (x, y) = π(y)P (y, x)∀x, y ∈ S.

Then all eigenvalues are real and we can order them in decreasing order from 1 to −1:

λ1 = 1 > λ2 ≥ . . . ≥ λn ≥ −1.

Theorem 2.1. Assume that π is reversible with respect to P . Then:

1. There exists a set of eigenfunctions f1, . . . , fn which are orthonormal for 〈·, ·〉π and f1

is the constant vector (1, . . . , 1)T .
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2. P t can be decomposed as:

P t(x, y)

π(y)
=

n∑
j=1

fj(x)fj(y)λtj .

Proof. This is essentially the classical spectral theorem. if

A(x, y) =

√
π(x)

π(y)
P (x, y)

then reversibility of P implies that A is symmetric. Hence by the spectral theorem there
exists a set of eigenfunction φj which diagonalize A and are orthonormal with respect to the
Euclidean product 〈·, ·〉. If Dπ is the diagonal matrix with entries π(x), x ∈ S, then

fj = D−1/2
π φj

defines the desired eigenfunctions of P as can be readily checked.
For the decomposition in the theorem note that if s ∈ S 7→ δy(s) is the function equal to 1

if s = y and 0 otherwise, we can expand this function on the orthonormal basis:

δy =
n∑
j=1

〈δy, fj〉πfj

=
n∑
j=1

fj(y)π(y)fj .

Hence, since P t(x, y) is nothing else but (P tδy)(x) and λtj is an eignevalue of P t we get:

P t(x, y) =

n∑
j=1

fj(y)π(y)λtjfj(x)

as required.

2.2 The spectral gap and the relaxation time

Definition 2.1. Supose P irreducible and aperiodic. Let λ∗ = max{|λ| : λ eigenvalue 6= 1}.
γ∗ = 1− λ∗ is called the absolute spectral gap, and γ = 1− λ2 is called the spectral gap of P .
The relaxation time trel is defined by

trel =
1

γ∗
.

Now suppose that P is also reversible. Note that the negative eigenvalues are in general
not so relevant. One way to see this is to consider the lazy chain which, we recall, is defined
by saying that with probability 1/2, the lazy chain does nothing, and with probability 1/2,
it takes a step according to P . In particular, its transition matrix P̃ satisfies

P̃ =
1

2
(I + P )
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where I is the |S|-dimensional identity matrix. Then by point (i) in Proposition 2.1, we see
that all eigenvalues are nonnegative, and hence γ∗ = γ. On the other hand, the mixing time
of P̃ is essentially twice that of P .

Here is how we can say something about the mixing times using the spectral gap. In
practice this is often one of the first things to look at. Let πmin := minx∈S π(x) (note that if
P is a random walk on a d-regular graph, then π(x) ≡ 1/|S| so πmin = 1/|S|).
Theorem 2.2. Fix 0 < ε < 1 arbitrary. Assume that P is aperiodic, irreducible and reversible
with respect to π. Then

(trel−1) log

(
1

2ε

)
≤ tmix(ε) ≤ log

(
1

2ε
√
πmin

)
trel

The basic idea for the proof of this theorem is that the total variation distance is an `1

distance which can be dominated by an `2 distance thanks to Cauchy–Schwarz. We then
observe that the eigenvalues essentially measure convergence in `2. We start with by giving
the definition of the `2 distance.

Definition 2.2. Let d2(t) = supx∈S

∥∥∥P t(x,·)π(·) − 1
∥∥∥

2
. We call d2(t), the `2 distance to station-

arity.

Lemma 2.1. Assume that P is irreducible, aperiodic (but not necessarily reversible). Then
we have d(t) ≤ (1/2)d2(t).

Proof. Recall that one of the basic identities for the definition of the total variation distance
is

‖P t(x, ·)− π‖ =
1

2

∑
y

|P t(x, y)− π(y)|

=
∑
y

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣
=

∥∥∥∥P t(x, ·)π(·) − 1

∥∥∥∥
1

where ‖ · ‖1 refers to the `1(π) norm. Taking the square and using Jensen’s inequality, we get

4‖P t(x, ·)− π‖2 ≤
∥∥∥∥P t(x, ·)π(·) − 1

∥∥∥∥2

2

≤ d2(t)2.

Taking the maximum over x gives the result.

We are now ready to prove the theorem.

Proof. Expanding the function on the eigenfunction basis fj using Theorem 2.1, we get

∥∥∥∥P t(x, ·)π(·) − 1

∥∥∥∥2

2

=

∥∥∥∥∥∥
n∑
j=2

fj(x)fj(·)λtj

∥∥∥∥∥∥
2

2

=

n∑
j=2

λ2t
j fj(x)2 ≤ λ2t

∗
∑
j≥2

fj(x)2. (14)
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Now, we claim that
∑n

j=1 fj(x)2 = π(x)−1. Indeed, by decomposition:

π(x) = 〈δx, δx〉π =

n∑
j=1

fj(x)2π(x)2.

Hence

4‖P t(x, ·)− π‖2 ≤ λ2t
∗ π(x)−1 ≤ λ2t

∗ π
−1
min

≤ (1− γ∗)2tπmin ≤ e−2γ∗tπ−1
min.

Maximising over x and taking the square root, we get

d(t) ≤ 1

2
e−γ∗t

√
π−1

min. (15)

Solving for the right-hand side equal to ε gives us d(t) ≤ ε as soon as t ≥ 1
γ∗

log( 1
2ε
√
πmin

).

For the lower-bound, let f = fj for some j ≥ 2, and let λ 6= 1 be the eigenvalue. Since the
eigenfunctions are orthonormal, we get 〈f, f1〉π = 0 = Eπ(f), and hence:

|λtf(x)| = |P tf(x)| =

∣∣∣∣∣∣
∑
y∈S

[P t(x, y)f(y)− π(y)f(y)]

∣∣∣∣∣∣
≤ 2‖f‖∞d(t)

Taking x to be the point such that f(x) = ‖f‖∞, we obtain

|λ|t ≤ 2d(t) (16)

Taking |λ| = λ∗ gives the lower-bound: indeed, evaluating at t = tmix(ε) gives us

λt∗ ≤ 2ε

and hence
1

2ε
≤ 1

λt∗
.

Taking the logarithm. we get

log

(
1

2ε

)
≤ tmix(ε) log(1− γ∗).

Using x ≥ (1− x) log(1− x) for all x ∈ [0, 1], applied to x = γ∗, we deduce

tmix(ε) ≥ log(
1

2ε
)(trel−1)

as desired.

Remark 2.1. When the chain is transitive, one can obtain a slightly different estimate which
is a bit better in some examples: Recall that we have

4‖Pt(x, ·)− π(·)‖2 ≤
n∑
j=2

λ2t
j fj(x)2.
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The left hand side does not depend on x by transitivity, and is thus equal to 4d(t)2 for each
x ∈ S. We are thus allowed to sum this inequality over x ∈ S and divide n = |S|. We obtain:

4d(t)2 ≤
n∑
j=2

λ2t
j

∑
x∈S

1

n
fj(x)2.

Since π(x) = 1/n, we recognize
∑

x∈S
1
nfj(x)2 = ‖fj‖2π = 1. Thus

4d(t)2 ≤
n∑
j=2

λ2t
j . (17)

2.3 Example: Random walk on the circle.

We will see what we can get from Theorem 2.2 on a concrete example of a simple ran-
dom walk on a large cycle Z/nZ. We view this as a subset of the complex plane Wn =
{1, ω, ω2, . . . , ωn−1} with ω = e2iπ/n.

Let P be the matrix of this walk. To be an eigenfunction f with eigenvalue λ for P means
that

λf(ωk) = Pf(ωk) =
1

2
(f(ωk+1) + f(ωk−1))

for all 1 ≤ k ≤ n. We claim that the functions φj(z) = zj , 1 ≤ j ≤ n, give us n eigenvalues.
This can be seen geometrically: see Figure 12.1 in [17]. More formally, note that

φj(ω
k+1) + φj(ω

k−1)

2
= ωjk

ωj + ω−j

2

= φj(ω
k)Re(ωj)

= φj(ω
k) cos

(
2πj

n

)
.

Thus φj is an eigenfunction with eigenvalue cos(2πj/n).
If n is even, the chain is periodic and the absolute spectral gap is 0. If n is odd, the chain

is aperiodic and both the spectral gap and the absolute spectral gap are equal to

1− cos

(
2π

n

)
∼ 2π2

n2

as n→∞. Thus

trel ∼
n2

2π2
.

It makes a lot of intuitive sense that n2 is the correct order of magnitude. However, since
|S| = n, the lower and upper bound in Theorem 2.2 don’t match. We can get around this
fact using detailed knowledge of all the eigenvalues. (However, we already note that another
method will be provided with Nash inequalities. Finally, we note that we will get an order of
magnitude on the spectral gap in the next lectures using Poincaré inequalities and the path
method for Dirichlet energies.)
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Theorem 2.3. Assume that n ≥ 7 is odd. If t ≥ n2,

d(t) ≤ exp

(
−α t

n2

)
where α = π2/2. Conversely, for any t ≥ 0,

d(t) ≥ 1

2
exp

(
−α t

n2
− β t

n4

)
where β = π4/11.

Proof. We use the sharpened version of Theorem 2.2 (i.e., (17)) to prove this result. We have:

d(t)2 ≤ 1

4

n−1∑
j=1

cos

(
2πj

n

)2t

=
1

2

(n−1)/2∑
j=1

cos

(
πj

n

)2t

.

Since cos(x) ≤ e−x2/2 on [0, π/2] (a consequence of concavity of the cosine function over that
interval) we see that

d(t)2 ≤ 1

2

(n−1)/2∑
j=1

exp

(
−π

2j2t

n2

)

≤ 1

2
exp

(
−π

2t

n2

) ∞∑
j=1

exp

(
−π

2(j2 − 1)t

n2

)

≤ 1

2
exp

(
−π

2t

n2

) ∞∑
j=1

exp

(
−3π2t

n2

)

=
1

2

exp
(
−π2t

n2

)
1− exp

(
−3π2t

n2

)
from which the upper-bound follows. For the lower-bound, note that we have a general lower
bound using the second eigenvalue: by (16), we have

λt2 ≤ 2d(t)

and thus here

d(t) ≥ 1

2
cos

(
πj

n

)t
Since cosx ≥ exp

(
−x2

2 − x4

11

)
for all 0 ≤ x ≤ 1/2, we get the desired lower-bound.
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2.4 Example: random walk on the hypercube

Consider the lazy random walk on the hypercube of section 1.6. The hypercube can be
thought of as the group (Z/2Z)n and it is therefore not surprising that the diagonalisation
can be done explicitly. Set Hn = {−1, 1}n and for J ⊂ {1, . . . , n} let

fJ(x) =
∏
i∈J

xi; x ∈ Hn.

It is straightforward to check that fI are orthonormal with respect to `2(π) and hence (since
there are 2n such functions) form an orthonormal basis of `2(π). Furthermore, if P is the
transition matrix of the lazy random walk on Hn, then

PfJ(x) = (1− |J |/n)fJ(x)

since with probability 1 − |J |/n, none of the coordinates in J are changed (in which case
fJ remains unchanged) and otherwise one of the coordinates in J is randomised, making fJ
equal to zero on average.

Hence each fJ , J ⊂ {1, . . . , n} is an eigenfunction and because |Hn| = 2n we have found
them all. In particular, the spectral gap is

γ = 1/n. (18)

Note that the relation between spectral gap and mixing only implies tmix ≤ Cn2, whereas in
reality tmix = (1/2 + o(1))n log n (for the lazy walk).
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3 Geometric methods

The previous chapter related mixing to spectral notions such as the spectral gap. In many
cases, it is difficult to compute the spectral gap explicitly, and instead this has to be estimated.
In this chapter we gather several geometric methods for estimating the spectral gap: the first is
the method of canonical paths of Diaconis and Saloff-Coste, which gives a Poincaré inequality
(and thus, as we will see below, an estimate of the spectral gap) by a path counting argument.
The second is Cheeger’s inequality, which relates the spectral gap to bottleneck ratios.

We start with Dirichlet forms, which are energy functionals associated with a Markov chain,
and the variational characterisation of the spectral gap. These naturally lead to Poincaré
inequalities, which are the basis of both methods.

3.1 Dirichlet forms and variational characterisation of spectral gap

We start with the following basic facts. Let S be a finite state space with |S| = n. Let P be
a transition matrix on S. Suppose P has an invariant distribution π, and recall our notation
〈f, g〉π =

∑
x f(x)g(x)π(x). The following is an important notion in the theory of Markov

chains.

Definition 3.1. Let f, g : S → R. The Dirichlet form associated with P is defined by

E(f, g) = 〈(I − P )f, g〉π.

Hence

E(f, g) =
∑
x

π(x)[f(x)− (Pf)(x)]g(x)

=
∑
x

π(x)

[∑
y

P (x, y)(f(x)− f(y))

]
g(x)

=
∑
x,y

π(x)P (x, y)g(x)(f(x)− f(y)).

When P is reversible with respect to π, another expression for the right hand side is∑
x,y

π(y)P (y, x)g(x)(f(x)− f(y)).

Interverting the role of x and y, and summing these two expressions, we get

E(f, g) =
1

2

∑
x,y

π(x)P (x, y)[f(y)− f(x)][g(y)− g(x)], (19)

a much more useful expression.
Now, it is natural to define, for the edge e = (x, y).

Q(e) = π(x)P (x, y)

which is (up to the factor 1/2) the flow through the edge e at equilibrium. We also call
∇f(e) = f(y)− f(x) the discrete derivative. Then with these notations, (19) becomes

E(f, g) =
1

2

∑
e

Q(e)∇f(e)∇g(e).
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Hence the Dirichlet energy we have just defined is the analogue of the classical Dirichlet
energy from mechanics on a domain D ⊂ Rd for f, g smooth real functions on D, their energy
is defined to be:

E(f, g) =

∫
D
∇f · ∇g.

Thus when f = g, E(f, f) measures how rough or how smooth the function f is.

The following “variational characterisation” (or minimax characterization) of the spectral
gap in terms of the Dirichlet form is very useful in practice:

Theorem 3.1. Assume (P, π) is reversible, let γ be the spectral gap. Then

γ = min
f :S→R

Eπ(f)=0,‖f‖2=1

E(f, f) = min
f :S→R

Eπ(f)=0

E(f, f)

‖f‖22
.

Equality is attained for f = f2.

Remark 3.1. The variational problem in the above theorem is standard in mathematical
physics. It has a nice geometric interpretation: the aim is to find the smoothest function on
S with zero mean and L2 norm equal to one. It is instructive to think about what this optimal
function would look like in the case of a domain D ⊂ Rd.

Proof. By scaling it suffices to prove the first equality. Now note that Eπ(f) = 0 = 〈f, 1〉π so
the condition Eπ(f) = 0 means that f ⊥ 1 ≡ f1. Thus consider any function f with ‖f‖ = 1
with f ⊥ 1, we have

f =
n∑
j=1

〈f, fj〉πfj =
n∑
j=2

〈f, fj〉πfj

since 〈f, f1〉π = 0 by assumption. Using orthonormality of the eigenfunctions, and the fact
that ‖f‖2 = 1:

E(f, f) = 〈(I − P )f, f〉π

=

n∑
j=1

|〈f, fj〉π|2(1− λj)

≥ (1− λ2)

n∑
j=2

〈f, fj〉2 = (1− λ2)‖f‖22 = γ.

On the other hand there is clearly equality for f = f2. Note that the calculation holds even
if P is not assumed aperiodic.

3.2 Poincaré inequalities and the canonical paths method

Note that if f : S → R and f ⊥ 1, then this means Eπ(f) = 0. Thus the inequality above
says that

γ‖f‖2 ≤ E(f, f)

and hence, in probabilistic terms,

varπ(f) ≤ 1

γ
E(f, f).
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Note that in this form, this inequality is true for all functions f : S → R, not just those with
mean zero. This motivates the following definition:

Definition 3.2. We say that P satisfies a Poincaré inequality with constant C if, for all
functions f : S → R,

varπ(f) ≤ CE(f, f). (20)

As just discussed, a Poincaré inequality always holds with C = 1/γ. Conversely, if a
Poincaré inequality holds with constant C, then γ ≥ 1/C. Hence if one establishes the
inequality (20) for some constant C this shows trel ≤ C at least if the chain is lazy.

We will now see a general and very useful method, called the canonical paths method
of Diaconis and Saloff-Coste, which shows how Poincaré inequalities can be established from
geometric consideration. In turn, this provides estimates on the spectral gap by theorem 3.1
and hence also on the mixing time by theorem 2.2. (While in this form the result was stated
by Diaconis and Saloff–Coste [11], various precursor results were proved earlier, notably by
Jerrum and Sinclair [15].) For any x, y ∈ S, suppose that we fix, once and for all, a certain path
γx,y, i.e., a collection of states x0, . . . , xk such that x0 = x and xk = y, and P (xi, xi+1) > 0 for
all 1 ≤ i ≤ k − 1. Let |γx,y| = k denote the length of this path. Then we have the following
result:

Theorem 3.2. The Poincaré inequality (20) holds with

C = max
e

 2

Q(e)

∑
x,y:e∈γx,y

|γxy|π(x)π(y)

 ,

where the maximum is over all e = (u, v) ∈ S × S such that P (u, v) > 0. In particular,
γ ≥ 1/C.

The number C may be thought of as a congestion ratio: it is large if there is an edge e such
that e is on γxy for “many” choices of x and y.

Proof. The proof is a straightforward application of Cauchy–Schwarz: if f is a function on
the state space,

varπ(f) =
∑
x

∣∣f(x)−
∑
y

π(y)f(y)
∣∣2π(x)

≤
∑
x,y

|f(x)− f(y)|2π(x)π(y) (by Cauchy-Schwarz)

≤
∑
x,y

|γxy|
∑
e∈γxy

|∇f(e)|2π(x)π(y) (by Cauchy-Schwarz again)

≤
∑
e

( 2

Q(e)

∑
x,y:e∈γx,y

|γx,y|π(x)π(y)
)1

2
∇f(e)2Q(e)

≤ CE(f, f).

This finishes the proof.
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3.3 Some simple examples

As a direct application of the path method, we show how to get bounds on the spectral
gap of random walk on some natural examples of graphs, without explicitly computing the
eigenvalues.

3.3.1 Example: random walk on a box.

Consider the box [n]d = {1, . . . , n}d with the restriction of the edges of Zd to these vertices.
Then there exists C which depends on d but not on n such that γ ≥ C/n2.

Proof. We apply the path method: for x, y ∈ V , we choose the path γx,y defined as follows.
We first try to match the first coordinate of x and y, then the second coordinate, and so on
until the last coordinate. Each time, the changes in coordinate is monotone. As an example
if d = 2 and x = (x1, x2) and y = (y1, y2), then define z = (y1, x2). Then γxy is the reunion
of two paths, γ1 and γ2, such that γ1 goes in horizontal line from x to z and γ2 in vertical
line from z to y.

Then it is straightforward that π(x) ≤ C/nd for all x ∈ V , while Q(e) ≥ c/nd. Also, the
maximal length of a path γx,y is clearly no more than Cn for some C > 0. Hence

C = max
e

 2

Q(e)

∑
x,y:e∈γx,y

|γxy|π(x)π(y)


≤ max

e

{
O(1)

nd−1
#{x, y : e ∈ γx,y}

}
.

Now we claim that the number above is at most nd+1. This is obtained when e is roughly at
the center of the box. In this case it is easy to see that for each choice of y in the right-half
of the box there are approximately n choices of x for which the path γxy uses he edge e.

3.3.2 Example: random walk on a tree.

Consider a finite tree T , with n vertices and maximal degree d, and maximal height H. Then
for some absolute constant c,

γ ≥ c

d2nH
.

Hence in particular, if T is a uniform random tree with n vertices,

γ ≥ c(log n)−2−εn−3/2,

with high probability as n → ∞ for any ε > 0. This is known to be optimal except for the
log prefactors. (However, on the regular binary tree this bound is far from optimal, as the
spectral gap is known to be a constant).

For a uniform random tree, it is known that H ≤ √n(log n)ε with high probability for any
ε > 0, from which the claim follows.
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e

x

C

y

i

O(n/i)

Figure 1: Canonical paths method for random walk on a convex set. For a given edge e and a
starting point x at distance i from e, the edge e will be in γxy if y is in the shaded area, which
forms a cone. A slice of that cone will have diameter O(n/i) and hence size O((n/i)d−1).
Summing over all such slices, we get that the size of the shaded area is O(nd/id−1).

3.3.3 Example: random walk on a convex set.

Let C be a bounded convex set in Rd. Consider lazy simple random walk on Gn = (1/n)Zd∩C.
Then we claim that

trel ≤ O(n2) (21)

Hence tmix = O(n2 log n). Again, this is sharp except for the logarithmic factor. (More
delicate arguments based on Nash inequalities are required to get the sharp bound tmix =
O(n2).)

Proof. We apply the method of canonical paths, choosing for γxy a lattice path staying as
close as possible from the straight Euclidean segment [x, y]. (Note that since C is assumed
to be convex, this stays entirely within C). Again, we find by Theorem 3.2, that a Poincaré
inequality holds with constant

C = O(1)
1

nd−1
max
e

#{x, y : e ∈ γxy}.

We need to estimate #{x, y : e ∈ γxy} for a given edge e. Hence fix an edge e and a point x
at (lattice) distance i from e, where 1 ≤ i ≤ O(n) (we write dist for the lattice distance, so
dist(e, x) = i. Then the numbers of y such that e ∈ γx,y is at most O(nd/id−1) (see figure:
this is the size of the grey area). Consequently,

#{x, y : e ∈ γxy; dist(x, e) = i} ≤ O(id−1)O(
nd

id−1
) = O(nd).

Summing over 1 ≤ i ≤ O(n) gives us,

#{x, y : e ∈ γxy} ≤ O(nd+1).

Hence a Poincaré inequality holds with

C ≤ O(n2),

giving trel = O(n2) as desired for the lazy random walk.
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Figure 2: The n-dog graph Dn.

3.3.4 An example with a bottleneck: random walk on the n-dog∗

Sometimes, to take more into account the specific geometry of a graph it will be useful to
weigh differently certain edges. Thus we introduce a weight function w : E → R>0 on the
edges. We then define the weight of a path γ = γxy to be:

|γ|w =
∑
e∈γ

w(e).

Proposition 3.1. A Poincaré inequality holds with

C = max
e∈A

 2

w(e)Q(e)

∑
x,y:e∈γxy)

|γxy|wπ(x)π(y)

 .

In particular, trel ≤ C for the corresponding lazy random walk.

The proof is a simple adaptation of Theorem 3.2. We call this the weighted path method.
In applications we will give a heavy weight to congested edges and less important weight to
edges that are relatively free.

As an example of application of this technique, we study the random walk on the so-called
n-dog Dn. This is the subgraph of Z2 which consists of joining two copies of the square of
size n by a corner, say the North-East corner of the first square with the South-West corner
of the second one. See Figure 3.3.4 for a picture.

Heuristics. It takes approximately n2 units of time for a random walk to mix on a single
square. However, the presence of the small bottleneck significantly slows down mixing. In-
deed, if the walk starts from the centre of one of the two squares say, then mixing can’t occur
if the bottleneck site hasn’t been visited with high probability. The time needed to visit this
site is comparable to the cover time of the square, i.e., the time needed to visit every vertex
at least once. It is not hard to convince yourself that the cover time is approximately n2 log n
in two dimension, and hence mixing should take approximately n2 log n units of time as well.
(Once the bottleneck has been visited, it takes another n2 units of time to mix in the other
square, which is negligible compared to n2 log n). To see that the cover time n2 log n, note

32



that in two dimensions the range Rt of the walk at time t is approximately t/ log t. Indeed,
E(Rt) =

∑t
i=1 P(Ei) where Ei is the event that the walk visits a new site at time i. By

reversibility of the simple random walk, this is the same as the event that a random walk run
for time i does not come back to the origin. This has probability 1/ log i approximately, so

E(Rt) =

t∑
i=1

P(Ei) ≈
t∑
i=1

1

log i
≈ t

log t
.

Thus while t � n2 log n, then Rt is much smaller than n2 and so the cover time much
be greater. This explains why the cover time is of order n2 log n, and hence explains the
heuristics.

What we see next is a way of making this heuristics precise. To ease computations, assume
that each vertex on the border of the square is equipped with a self-loop, and a vertex at a
corner is equipped with two self-loops. Thus every vertex in Dn has degree 4 exactly, and
hence the stationary distribution is the uniform measure on Dn.

Theorem 3.3. Let γ be the spectral gap of the random walk on Dn and let trel = γ−1 be the
relaxation time. Then for all n ≥ 1,

trel ≤ 64(n+ 1)2 log(2n+ 1),

while for n large enough:
trel ≥ 2n2 log n.

Proof. We prove the upper-bound. Note that |S| = 2(n + 1)2 − 1 since each square has
(n + 1)2 vertices (but the centre shouldn’t be counted twice). π is the uniform measure, so
π ≡ 1/|S|. The equilibrium flow Q(e) satisfies Q(e) = (4|S|)−1 for all edges e. We wish to
apply Corollary 3.1, and for this we need to choose two things. The first one is the set of paths
γ(x, y) for x, y ∈ Dn, and the second is the weight function w : E → R. For the special paths
γ(x, y) we only define γ(x, 0) (where 0 is the junction between the two squares) and we define
γ(x, y) to be the concatenation of the two paths γx,0 with γ0,y: that is, γx,y = γx,0 ∪ γ0,y. If
x ∈ Dn, we define γx,0 to be the lattice path which stays closest to the Euclidean segment
[x, 0] between x and 0. This is the path that stays at distance ≤

√
2 from [x, 0].

Before choosing the weights, a word of motivation. If e = (u, v) is an edge with d(u, 0) = i+1
and d(v, 0) = i (here d is the graph distance, so this simply means v is closest to 0), then:

#{x ∈ S : e ∈ γx,0} ≤
4(n+ 1)2

i+ 1
.

(This is the cardinality of the shaded region in figure 3.3.4.) Thus

#{(x, y) ∈ S2 : e ∈ γx,y} ≤
4(n+ 1)2

i+ 1
≤ 8(n+ 1)2|S|

i+ 1
.

This is because for e to be on γ(x, y), e has to be on γ(x, 0) and y could be anywhere in S,
or conversely.

This motivates the following choice: if d(0, e) = i then take w(e) = 1/(i + 1). Thus for
x, y ∈ S,

|γx,y|w ≤ 2
2n−1∑
i=0

1

i+ 1
≤ 2 log(2n+ 1).
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Figure 3: The shaded region corresponds to all the points x, y such that e = (u, v) ∈ γx,y.

Thus by Corollary 3.1, there is a Poincaré inequality with

C = max
e∈A

 2

w(e)Q(e)

∑
x,y:e∈γx,y

|γx,y|wπ(x)π(y)


≤ max

0≤i≤n

{
(i+ 1)4|S|2 log(2n+ 1)

#{x, y ∈ S : e ∈ γ(x, y)}
|S|2

}
≤ 64 log(2n+ 1)n2.

This gives the upper-bound. For the other direction, take f(x) = sgn(x) log(1 + d(0, x)),
where the function sgn(x) is −1, 0, or 1 depending on whether x is in the left square, the right
square or the centre. Then Eπ(f) = 0 by symmetry.

Moreover, since there are i+ 2 points at distance i from 0 in one square for i ≤ n,

varπ f = Eπ(f2) ≥ 1

|S|
n∑
i=0

(i+ 2) log(i+ 1)2

≥ n2(log n)2

2|S| = (log n)24n2

for n large enough. On the other hand, it is not hard to see that

E(f, f) =
1

4|S|
2n−1∑
i=0

[(i+ 1) ∧ (2n− i+ 1)](log(i+ 2)− log(i+ 1))2

≤ 1

4|S|
2n−1∑
i=1

1

i+ 1

≤ log(2n+ 1)

4|S| .
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Thus

γ ≤ E(f, f)

varπ(f)
≤ 1

2n2 log n

for n large enough.

3.4 Cheeger’s inequality

The method of canonical paths already introduces the idea that if many paths between pairs
of vertices go through the same edge, then this slows down the mixing. This idea is taken more
systematically with Cheeger’s inequality, which relates the bottleneck ratio or isoperimetric
number of a graph to its spectral gap.

Recall our notation Q(e) = π(x)P (x, y) for the equilibrium flow through the edge e = (x, y).
Let Q(A,B) =

∑
x∈A,y∈B Q(x, y) and define the bottleneck ratio of a set A to be

Φ(A) =
Q(A,Ac)

π(A)

Essentially this is a measure of the size of the boundary relative to the total size of the set A.

Definition 3.3. The bottleneck ratio of the Markov chain is defined by

Φ∗ = min
A:π(A)≤1/2

Φ(A).

We now state Cheeger’s inequality:

Theorem 3.4. Suppose P is reversible and let γ = 1− λ2 be the spectral gap. Then

Φ2
∗

2
≤ γ ≤ 2Φ∗.

This was originally proved in the context of Markov chains by Jerrum and Sinclair [15],
and is the direct analogue of the inequality proved by Cheeger for Riemannian manifolds
(hence the name Cheeger inequality). While the left and right hand side are in general quite
different from one another, either bound can be sharp in some examples (see e.g. examples 3.1
and 3.2), so it is remarkable that such an inequality holds in this degree of generality.

A slightly more precise (but equally general) result will be proved later on in Theorem 9.2,
which takes into account the whole isoperimetric profile, i.e. the function of r ≤ 1/2 obtained
by minimising the bottleneck ratio over sets of mass less than r.

Proof of upper bound of Theorem 3.4. We start with the proof that γ ≤ 2Φ∗ which is easier.
By the variational characterisation of the spectral gap,

γ = min
f 6=0;Eπ(f)=0

E(f, f)

varπ(f)

Define f to be the function which is constant on A and Ac by f(x) = −π(Ac) if x ∈ A,
f(x) = π(A) if x ∈ Ac. Then note that Eπ(f) = 0. Moreover,

E(f, f) =
1

2

∑
x,y

π(x)P (x, y)(f(x)− f(y))2 =
1

2
[Q(A,Ac) +Q(Ac, A)] = Q(A,Ac).
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On the other hand,

varπ(f) = Eπ(f2) =
∑
x∈A

π(x)π(Ac)2 +
∑
x∈Ac

π(x)π(A2)

= π(A)π(Ac)2 + π(Ac)π(A)2

= π(A)π(Ac) ≥ π(A)/2.

Consequently,

γ ≤ Q(A,Ac)

π(A)/2
.

Taking the minimum over all sets A such that π(A) ≤ 1/2 gives γ ≤ 2Φ∗, as desired.

Before the proof of the lower bound (which is harder) we state and prove the following
lemma.

Lemma 3.1. Let f : S → [0,∞) be a nonnegative function such that π(f > 0) ≤ 1/2. Order
S so that f is non-increasing.

Eπ(f) ≤ Φ−1
∗
∑
x<y

Q(x, y)(f(x)− f(y)).

Proof. Fix t > 0 and let A = {x : f(x) > t}. Since Φ∗ minimises the bottleneck ratio,

Φ∗ ≤
Q(A;Ac)

π(A)
=

∑
x,y:f(x)>t≥f(y)Q(x, y)

π(f > t)

Hence (since we can restrict over x, y such that x < y without loss of generality),

π(f > t) ≤ 1

Φ∗

∑
x<y

Q(x, y)1{f(x)>t≥f(y)}.

Integrating over t, the left hand side is Eπ(f) by Fubini’s theorem, so we find

Eπ(f) ≤ Φ−1
∗
∑
x<y

Q(x, y)(f(x)− f(y))

as desired.

Proof of lower bound of Theorem 3.4. Let f2 be an eigenfunction of P with eigenvalue λ2 =
1−γ. On a graph where there is a bottleneck, we can expect the function f2 to be positive on
one side of the bottleneck and negative on the other, since f2 minimises the Dirichlet energy.

It is therefore natural to assume that π(f2 > 0) ≤ 1/2 (if not one can use −f2) and let
f = max(0, f2). It is clear that this reduces the Dirichlet energy, and a moment of thought
shows that intuitively, this even reduces the ratio E(f, f)/Eπ(f2) (note that γ minimises this
ratio but only over functions over zero mean, so there is no contradiction).

Lemma 3.2. We have E(f, f) ≤ γEπ(f2).
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Proof. Note that f ≥ f2 and thus Pf ≥ Pf2 = λf2. Suppose first that f(x) > 0, so
f(x) = f2(x). In this case, (I − P )f(x) = f2(x) − Pf(x) ≤ (1 − λ2)f2(x) = γf(x). Now
suppose that f(x) = 0. Then (I − P )f(x) ≤ 0 = γf(x). Either way,

(I − P )f(x) ≤ γf(x).

Hence taking the inner product with f ,

〈(I − P )f, f〉π ≤ γ〈f, f〉π

as desired.

Now, Eπ(f2) can be upper-bounded by Lemma 3.1. We get:

Eπ(f2) ≤ Φ−1
∗
∑
x<y

Q(x, y)(f2(x)− f2(y)).

We do the factorisation (f2(x)− f2(y)) = (f(x)− f(y))(f(x) + f(y)) and wish to apply the
Cauchy–Schwarz inequality with respect to the measure 1{x<y}Q(x, y). Note that this doesn’t
have total mass equal to 1, but the inequality can still be applied. Hence we get:

Eπ(f2) ≤ Φ−1
∗
(∑
x<y

Q(x, y)(f(x)− f(y))2
)1/2(∑

x<y

Q(x, y)(f(x) + f(y))2
)1/2

.

Using (a+ b)2 ≤ 2(a2 + b2),

Eπ(f2) ≤ Φ−1
∗
(∑
x<y

Q(x, y)(f(x)− f(y))2
)1/2(∑

x<y

Q(x, y)(f(x) + f(y))2
)1/2

≤ Φ−1
∗ E(f, f)1/2

(
2
∑
x<y

Q(x, y)(f(x)2 + f(y)2)
)1/2

≤ Φ−1
∗ E(f, f)1/2

(
2Eπ(f2)

)1/2
,

where we have used the fact that
∑

x<y Q(x, y)f(x)2 =
∑

x<y Q(x, y)f(y)2 ≤ (1/2)Eπ(f2).
Squaring and making the cancellation,

Eπ(f2) ≤ 2E(f, f)Φ−2
∗ .

Plugging into Lemma 3.2, we get Φ2
∗ ≤ 2E(f, f)/Eπ(f2) ≤ 2γ by Lemma 3.2. This concludes

the proof.

Example 3.1. Consider random walk on the n-cycle.

In that case it is not hard to see that Φ∗ � 1/n, while the spectral gap is by our previous
analysis γ � 1/n2. Hence in this case γ � Φ2

∗.
On the other hand, here is an example where the other side of Cheeger’s inequality is sharp.

Example 3.2. Consider the lazy random walk on the hypercube Hn = {0, 1}n.
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We estimate the bottleneck ratio as follows. Set A to be the set

A = {x ∈ Hn : x1 = 0}.

Note that π(A) = 1/2. On the other hand,

Q(A,Ac) =
∑

x∈A,y∈Ac
π(x)P (x, y)

=
∑
x∈A

1

2n
× 1

2n

since from a given x ∈ A there is only one vertex y such that P (x, y) > 0 (obtained by flipping
the first coordinate of x), and in that case P (x, y) = 1/(2n). Consequently,

Φ∗ ≤
Q(A,Ac)

π(A)
≤ 1

2n
.

But we know by Cheeger’s inequality that Φ∗ ≥ (γ/2) and we already computed γ in this
case in (18), where we found γ = 1/n. Thus

Φ∗ = (γ/2) = 1/(2n).

In particular in this example, the other side of Cheeger’s inequality is sharp.

Remark 3.2. As mentioned earlier, Cheeger’s inequality says in particular that if there is a
bottleneck in the graph (namely, if Φ∗ is small) then γ is small and hence mixing takes long.
In fact, we remark that this remains true even if the chain is not reversible: Theorem 7.3 in
[17] states that tmix ≥ 1/(4Φ∗) even if the chain is nonreversible.

3.5 Expander graphs∗

Cheeger’s inequality tells us that when a graph has no bottleneck then the walk must mix
fast, which is intuitive. The “best” graphs from that point of view are those for which the
Cheeger constant is bounded below.

Definition 3.4. A family of graphs {Gn} is called an expander family if the Cheeger
constant satisfies Φ∗ ≥ α for some α > 0 and for all n ≥ 1.

Sometimes Gn is also required to be d-regular, meaning that all vertices are of degree d.
With this extra requirement, it is not a priori clear whether such graphs exist. However, it
turns out that most d-regular graphs are actually expanders, as shown by the usual proposi-
tion.

Theorem 3.5. Let Gn be a graph uniformly chosen among all d-regular graphs on n vertices.
Then there exists α > 0 sufficiently small that with probability tending to 1 as n→∞, Gn is
an α-expander.

Proof. Though the proof falls somewhat outside the scope of these notes, we will include a
sketch of proof here (and it is clear that the same proof for random graphs models with given
degree distribution, provided that the minimal degree is 3). Essentially the method is to use
the construction of a random regular graph from the configuration model due to Bollobàs and
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de la Vega [8]. This gives an explicit way of checking the neighbourhood structure of a given
subset of vertices and in particular of estimating the probability that the boundary is small.
Summing over all subsets and using Stirling’s formula essentially concludes the proof. The
proof which follows is adapted from Lemma 3.5 in [12].

The configuration model for a random d-regular graph (d ≥ 3) is as follows: each of the
n vertices is given d stubs or half-edges. Then these dn half edges are paired uniformly at
random, giving rise to a graph which may or may not contain loops and multi-edges.

Lemma 3.3. Let E be the event that the graph G generated by the configuration model
contains no self-loops or multi-edges. Then P(E) is bounded away from zero. Moreover,
conditionally on E, G is a uniformly chosen random d-regular graph.

See [8] for a proof. Hence it suffices to prove the theorem for the configuration model G.
Let D = dn be the total degree and let |E| = D/2 be the totall number of edges. Let S

be a subset of vertices with total degree d(S) = s and suppose that s ≤ (1/2)|E| = D/4.
Consider the event that |E(S, Sc)| ≤ αs. Then there must be k ≤ s points outside of S
which are matched to points in S, and s − k points of S which are matched to each other.
Note that if we have a set of size m even, then the number of perfect matchings of this set is
(m− 1)!! = (m− 1)(m− 3) . . . 1. Hence

P(|E(S, Sc)| ≤ αs) ≤
αs∑
k=0

P(E(S, Sc) = k)1{s≡k mod 2}

≤ 1

(D − 1)!!

αs∑
k=0

(
s

k

)
(s− k − 1)!!

(
D − s
k

)
k!(D − s− k − 1)!!

.
1

D!!

αs∑
k=0

(
s

k

)
(s− k)!!

(
D − s
k

)
k!(D − k − s)!!

In the last inequality we have used the fact that by Stirling’s formula, m!! � (
√
m!)m1/4,

hence m!! � m1/2(m − 1)!!, as well as the fact that
√
D .

√
s− k

√
D − s− k (because

k ≤ αs ≤ D/4). Hence

P(|E(S, Sc)| ≤ αs) .
αs∑
k=0

(D − s− k)1/4(s− k)1/4

D1/4

√
(s− k)!(D − s− k)!

D!

(
s

k

)(
D − s
k

)

≤
αs∑
k=0

s1/4

((
s
k

)(
D−s
k

)(
D
s

) )1/2

after making cancellations. Now, by Stirling’s formula,(
n

k

)
�
√

n

k(n− k)
exp(nH(k/n)); where H(x) = −x log x− (1− x) log(1− x).

Hence

P(|E(S, Sc)| ≤ αs) .
αs∑
k=0

s1/2 exp(
1

2
[H(

k

s
)s+H(

k

D − s)−H(
s

D
)D])

≤ s3/2 exp(
1

2
[H(α)s+H(

2αs

D
)−H(

s

D
)D])
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where we have used the fact that H(x) is monotone increasing over x ∈ [0, 1/2] and k/s ≤
α ≤ 1/4, as well as k/(D − s) ≤ αs/(D/2).

We now sum over all possible sets S such that d(S) = s, where s ≤ D/4. The number of
such subsets is of course

(
n
s/d

)
. (1/

√
s) exp(H(s/D)D/d). Hence summing over all s ≤ D/4,

we get

P(∃S ⊂ [n], d(S) = s, |E(S;Sc)| ≤ αs) . s2 exp(D[
1

d
H(

s

D
) +

1

2
H(α)

s

D
+

1

2
H(

2αs

D
)− 1

2
H(

s

D
)])

≤ s2 exp(D[−1

6
H(

s

D
) +

s

2D
H(α) +

1

2
H(

2αs

D
)]),

where we have used d ≥ 3. Notice that as x → 0, H(αx)/H(x) → α. Hence we can choose
α > 0 sufficiently small that H(2αx) ≤ (1/100)H(x) for all x ≤ [0, 1/4].

Hence the right hand side less than

. s2 exp(−D
12
H(

s

D
)) . s2 exp(−s log(D/s)).

Summing over all s ≤ D/4, we see that

P(∃S ⊂ [n], d(S) ≤ D/4, |E(S;Sc)| ≤ αd(S))→ 0

for this value of α. This concludes the proof.

Note that in particular, tmix ≤ C log n. It is natural to ask whether cutoff occurs for a
given family of expanders. Proving a conjecture of Durrett [14] (which was implicit already
in Berestycki and Durrett [6]), Lubetzky and Sly [19] showed:

Theorem 3.6. Cutoff occurs on a random d-regular graph at time tmix = (d/(d−2)) logd−1 n,
with high probability.

This was later extended by Berestycki, Lubetzky, Peres and Sly [7] to more general random
graphs models, including in particular the case of the giant component of an Erdős–Renyi
random graph.

Peres conjectured in 2004 that cutoff occurs on every expander which is vertex-transitive
(i.e., the graph looks the same from every vertex – more formally for every x, y ∈ V there is
a graph isomorphism taking x to y.) For many years there was not a single example where
this was known to be true (and naturally no counterexample either). Recently, Lubetzky
and Peres [18] have shown that cutoff takes place on every Ramanujan graph, which are
expander graphs where the spectral gap is as big as it can possibly be (i.e., the best possible
expanders). Since Ramaujan graphs are expanders, this provided the first example where this
conjecture was verified. Still, the general problem remains, even on any fixed deterministic
vertex-transitive expander graph which is not Ramanujan.

xxxx Write about Kesten’s theorem.

40



4 Comparison methods

We describe here a wonderful set of tools, due to Diaconis and Saloff-Coste in a series of papers
dating from around 1993, which show to get estimates on mixing times (specifically, spectral
gaps) for Markov chains which may be compared to other Markov chains where answers are
known. In fact, the two Markov chains can be quite different, which yields some spectacular
applications and examples.

zzzzz Discussion about how comparison in TV seems very difficult in general.

4.1 Random walks on groups

Let G be a group of cardinality n = |G|, and let S be a generating set of G such that S−1 = S.
Let p(·) be a probability measure on S such that p(x) > 0 for all x ∈ S. (We call p the kernel
of the random walk.) The (right) random walk on G based on p is the Markov chain
whose transition probabilities are given by the following:

P (x, y) = p(x−1y).

In other words, at each step if the walk is at x ∈ G, we choose s ∈ S with probability p(s),
and jump from x to xs. (The corresponding left random walk would jump from x to sx,
and note that when p is symmetric, the left and right random walks have exactly the same
distribution).

Random walks on groups have symmetries that make it possible to use varied techniques.
If p is a symmetric kernel (p(x) = p(x−1) for all x ∈ S), and thus in particular if p is the
uniform distribution on S, then the uniform measure π on G is clearly reversible for the chain.
We will then call Pn(x) = Pn(o, x) where o is the identity element of G. If p is uniform on S
then the Markov chain X can be identified with a random walk on the Cayley graph of G
induced by S: this is the graph where the vertices are the elements of the group, and there is
an edge between x and xy if y = xs for some s ∈ S.

Note that, by symmetry, ‖pn(x, ·) − u‖TV does not depend on the starting point x ∈ G;
more generally a random walk on a group is an example of a transitive Markov chain
(and the associated Cayley graph is a transitive graph). In particular, for a random walk on
a group we have (see remark 2.1)

d2(t)2 =
n∑
j=1

λ2t
j (22)

where (λj) are the eigenvalues of the chain.

4.2 Heat kernel, `2 distance and eigenvalues

Let G be a finite state space and P the transition matrix of a symmetric random walk on G.
For what follows it will be convenient to work in continuous time and hence we define the
heat kernel, which is the continuous-time version of the transition probabilities.

Let (Xt, t ≥ 0) the continuous-time version of the chain P , i.e., the random process which
waits an exponential mount of time with parameter 1 and jumps to a location chosen according
to P (x, ·). By definition, The heat kernel Ht denotes the law of the process at time t started
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from x. That is,

Ht(x, y) = Px(Xt = y)

=

∞∑
k=0

e−t
tk

k!
P k(x, y)

= exp{−t(I − P )}(x, y).

where the exponential of a matrix is defined by the usual expansion expM =
∑∞

k=0M
k/k!.

Recall that if P is irreducible, then (since S is also finite) there exists a unique π such that
πHt = π, and moreover maxx ‖Hx

t − π‖TV → 0 as t → ∞. In fact π is also the stationary
distribution of the discrete time chain associated with P .

We write down the analogue of (22) for the chain in continuous time:

Pk(x, ·)
π(·) − 1 =

n∑
j=2

cjλ
k
j fj

with cj = fj(x). Thus by conditioning on the number of jumps of the random walk up to
time t, we deduce a similar formula for Ht(x, y):

Ht(x, ·)
π(·) − 1 =

∞∑
k=0

e−t
tk

k!

(
Pk(x, y)

π(y)
− 1

)

=

n∑
j=2

cjfj

∞∑
k=0

e−t
tkλkj
k!

=
n∑
j=2

cjfje
−tµj

with µj = 1− λj .
Hence, for all x ∈ G, by orthonormality of the fj ,

d2(t)2 =

∥∥∥∥Ht(x, ·)
π(·) − 1

∥∥∥∥2

2

=
n∑
j=2

e−2tµjfj(x)2.

Since the left hand side does not depend on x by symmetry, we can average over x ∈ G and
get the following identity for d2(t):

d2(t)2 =
n∑
j=2

e−2tµj
1

n

∑
x∈G

fj(x)2 =

n∑
j=2

e−2tµj ,

since for all 1 ≤ j ≤ n, 1
n

∑
x∈G fj(x)2 = ‖fj‖22 = 1.

We deduce

4d(t)2 ≤ d2(t)2 =
n∑
j=2

e−2tµj . (23)

Example. Random transpositions: let G = Sn be the symmetric group with n elements.
Consider the generating set S to be the set of transpositions τ = (i, j) for some i 6= j and the
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identity, and define the kernel p on S as follows:

p(s) =

{
1/n2 if s = (i, j) and i < j

1/n if s = id is the identity element.
(24)

This definition avoids periodicity issues (though in continuous time this isn’t relevant); and
note that

∑
s∈S p(s) = 1.

Let (Xt, t ≥ 0) be the continuous-time version of this chain. Using techniques from repre-
sentation theory, Diaconis and Shahshahani (1981) were able to completely analyse this chain
and establish the cutoff phenomenon for d2(t) at time

tmix =
1

2
n log n.

It is easy to show the lower bound for tmix (before (1/2)n log n there are too many fixed
points.) The difficiult part is the upper bound, and it turns out that after (1/2)n log n even
the `2 distance is small. More precisely, they showed:

Theorem 4.1 (Diaconis–Shahshahani 1981 [10]). Let c > 0. Then there exists a universal
α > 0 such that d2(t) ≤ αe−c whenever t ≥ (1/2)n(log n+ c).

We will discuss a proof of this result in Section 6.6.

4.3 Comparison techniques

Consider two random walks P, P̃ on a group G. Note that since the chains are translation
invariant, both have the uniform distribution π as their invariant measure. We will have in
mind a situation where the mixing behaviour of the random walk P̃ is completely understood.
It will be important here that this understanding extends to d2(t) distance, and we wish to
deduce an understanding of the mixing behaviour of P .

As it turns out, the correct way to compare two Markov chains is to compare their Dirichlet
energy. We first need the following minimiax characterisation of eigenvalues.

Theorem 4.2. Suppose P is irreducible, aperiodic, and reversible, let λj be the eigenvalues
ordered in nonincreasing order, so 1 = λ1 ≥ λ2 ≥ . . . ≥ λn. Then for 1 ≤ j ≤ n

1− λj = max
φ1,...,φj−1

min{E(f, f) : ‖f‖2 = 1, f ⊥ φ1, . . . , φj−1}.

Proof. Fix some arbitrary functions φ1, . . . , φj−1, and let W = Span(φ1, . . . , φj−1)⊥. Note

that dim(W ) ≥ n − j + 1. Hence W ∩ Span(f1, . . . , fj) 6= ∅. Let g =
∑j

i=1 αifi be in this

intersection, and assume without loss of generality that ‖g‖2 =
∑j

i=1 α
2
i = 1. Then

E(g, g) = 〈(I − P )g, g〉π

= 〈
j∑
i=1

αi(1− λi)fi,
j∑
i=1

αifi〉π

=

j∑
i=1

α2
i (1− λi) ≤ 1− λj .
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Therefore, the minimum over all functions f in W of the Dirichlet energy must be even
smaller:

min{E(f, f) : f ∈W, ‖f‖2 = 1} ≤ E(g, g) ≤ 1− λj .
Now taking the maximum over φ1, . . . , φj−1, we deduce that

max
φ1,...,φj−1

min{E(f, f) : ‖f‖2 = 1, f ⊥ φ1, . . . , φj−1} ≤ 1− λj .

We get equality by setting φi = fi for 1 ≤ i ≤ j − 1.

Corollary 4.1. Let P, P̃ be two reversible, irreducible, aperiodic Markov chains on a set S
with common invraiant distribution π. Let E and Ẽ be their respective Dirichlet forms and
denote by λ1 ≥ . . . ≥ λn and λ̃1 ≥ . . . λ̃n their respective eigenvalues. Let µj = 1 − λj
(resp. µ̃j = 1− λ̃j) be the corresponding gaps. Assume that for some constant A > 0, for all
f : G→ R,

Ẽ(f, f) ≤ AE(f, f). (25)

Then µ̃j ≤ Aµj, for all 1 ≤ j ≤ n.

Proof. This is a straightforward consequence of the minimax principle (Theorem 4.2). The
point is that the notion of orthogonality depends only on π and not on the chains themselves.
Hence for a fixed j ≥ 1, and for fixed functions φ1, . . . , φj−1, if W = Span(φ1, . . . , φj−1),

min{Ẽ(f, f) : ‖f‖2 = 1; f ∈W⊥} ≤ Amin{E(f, f) : ‖f‖2 = 1, f ∈W⊥}.

Taking the maximum over φ1, . . . , φj−1, we get

1− λj ≤ 1− λ̃j ,

as desired.

As a consequence of this lemma and (23), we obtain the trivial but crucial relation:

Theorem 4.3. Assume that P, P̃ are two transitive Markov chains on a set S, and suppose
that Ẽ(f, f) ≤ AE(f, f) for all functions f : S → R. Then if d2(t), d̃2(t) denote the respective
`2 distance to stationarity of their continuous-time versions,

d2(t) ≤ d̃2(t/A).

Hence if the `2 mixing behaviour of P̃ is understood, a comparison inequality such as (25)
gives us immediately a bound on the `2 mixing time of P (and hence a total variation bound
as well).

As it turns out, when we specialise to random walks on a group with two distinct symmetric
generating sets S and S̃ such that S = S−1 and S̃ = S̃−1, a general comparison can be set up
in a way very similar to Theorem 3.2. Fix E a generating set for G (which could in principle
be distinct from either set S but we will assume that E ⊂ S). For each y ∈ S̃, fix a path
from o to y using only edges from E, i.e. a path of the form y = z1 · . . . · zk, where zi ∈ E
and let |y| = k be the length of this path. For each generator z ∈ E, let N(z, y) denote the
number of times the edge z is used on this path.
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Theorem 4.4. Let P, P̃ be two symmetric random walks on a finite group G with respective
symmetric kernels p and p̃ on the sets S and S̃. Let E ⊂ S. Then Ẽ(f, f) ≤ AE(f, f) where

A = max
z∈E

1

p(z)

∑
y∈S̃

|y|N(z, y)p̃(y). (26)

The proof is similar to the proof of Theorem 3.2, but we include it because it can be
confusing nevertheless.

Proof. Note that the Dirichlet form can be expressed as

Ẽ(f, f) =
∑

x∈G,y∈S̃

π(x)p̃(y)(f(xy)− f(x))2.

Suppose x ∈ G, y ∈ S̃, and write y = z1 . . . zk where zi ∈ E. Then

f(xy)− f(x) =
k∑
i=1

f(xz1 . . . zi)− f(xz1 . . . zi−1)

so that by Cauchy–Schwarz,

(f(xy)− f(x))2 ≤ |y|
k∑
i=1

[f(xz1 . . . zi)− f(xz1 . . . zi−1)]2.

Summing in x ∈ G gives

∑
x∈G

[f(xy)− f(x)]2 ≤ |y|
k∑
i=1

∑
g∈G

[f(gzi)− f(g)]2 ≤ |y|
∑
z∈E

∑
g∈G

[f(gz)− f(g)]2N(z, y).

We multiply by 1/n and by p̃(y), and sum over y ∈ S̃ to find

Ẽ(f, f) ≤
∑
z∈E

∑
g∈G

1

n
[f(gz)− f(g)]2

∑
y∈S̃

|y|p̃(y)N(z, y)

≤
∑
z∈E

∑
g∈G

1

n
[f(gz)− f(g)]2p(z)

 1

p(z)

∑
y∈S̃

|y|p̃(y)N(z, y)


≤ AE(f, f)

as desired.

4.4 Example: a random walk on Sn

Consider the random walk generated by the identity, (1, 2) and the n-cycle (1, 2, . . . , n) as
well as its inverse. This is a random walk on Sn where the kernel is uniform on the above set
of four generators. Thus at each step, with probability 1/4 we:

- do nothing
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- exchange top two cards

- put the top card at bottom or the other way round.

Theorem 4.5. If t = 72n3(log n+ c), then for the continuous-time chain, d2(t) ≤ αe−c.

Proof. We use a comparison argument, taking our benchmark P̃ to be the random walk on
Sn induced by random transpositions, defined by (24). Take E = S, and let y ∈ S̃ be a fixed
transposition (say y = (i, j) with i < j). We must build y from elementary moves allowed by
S.

We first put card with label i on top of the deck by putting the top card at the bottom
repeatedly. We then reduce the gap between the cards i and j by repeatedly swapping the top
two cards and putting the top card at bottom of deck, until i and j are next to one another
(at most 3n moves so far). We then switch i and j and reverse all the previous moves, which
gets us back to the same deck as the original deck but with i and j swapped. Hence |y| ≤ 6n.
Since N(z, y) ≤ |y| clearly, we deduce using theorem 4.4 that Ẽ(f, f) ≤ AE(f, f) with

A ≤ 4
∑
y

|y|2p̃(y) ≤ 144n2.

Using the Diaconis and Shahshahani result (Theorem 6.9) together with theorem 4.3 finishes
the proof.

4.5 Example: the interchange process

Consider now a fix connected graph G = (V,E) on n vertices labelled {v1, . . . , vn}. One
can define a random walk on the permutations of V by imagining that there is a card on
each vertex of V and at each step, we exchange two neighbouring cards at random, or do
nothing with probability 1/n (where n = |V |). In other words the group is G = S(V ) ' Sn
and the set S of generators consists of the identity along with the transpositions (vi, vj) for
every pair of neighbouring vertices vi, vj . The kernel p is defined to be p(id) = 1/n, and
p((vi, vj)) = (1− 1/n)(1/|E|).

Note that this set of generators is symmetric and the kernel is symmetric. Moreover since
G is connected every transposition (v, w) can be built from neighbouring transpositions, and
hence the set S generates all of S(V ).

The case of random transpositions corresponds then corresponds to G = Kn, the complete
graph on n vertices. Interesting examples include the case of adjacent transpositions where
cards are arranged on a one-dimensional array, and the star transpositions where G is the
star. This can also be seen as the “top with random” transposition scheme.

For each vertex x, y ∈ V fix γxy a path on G from x to y, and set

∆ = max
x,y
|γxy|,

(where |γxy| is the length of the path γxy, measured in the number of edges),

K = max
e∈E
|{(x, y) ∈ V 2 : e ∈ γx,y}|.

Then we have the following theorem:
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Theorem 4.6. The comparison Ẽ ≤ AE holds with

A =
8|E|∆K
n(n− 1)

.

As a result, if t = (A/2)n(log n+ c), d2(t) ≤ αe−c for some universal constant α > 0.

Proof. We apply Theorem 4.4 again, with p̃ being the kernel of random transpositions. Here,
if e is an edge of the graph (identified with an abuse of notation with a transposition in S(V )),
then p(e) = (n−1)/(n|E|). If x, y ∈ V are arbitrary vertices (not necessarily neighbours), the
transposition τ = (x, y) can be constructed by first transposing successively all the edges in
γxy (here and below we identify an edge e = (u, v) with the transposition (u, v) ∈ S(V )) and
then reversing these transpositions except for the last one. This gives path γ̃(τ) on G = S(V )
of length |τ | = |γ̃(τ)| ≤ 2|γxy| ≤ 2∆. Moreover no transposition is used more than twice,
hence for any τ ∈ S̃, and any edge e, N(e, τ) ≤ 2 · 1{e∈γ̃(τ)}. Therefore, by Theorem 4.4, we
may take

A = max
e∈E

1

p(e)

∑
τ∈S̃

|τ |N(e, τ)p̃(τ)

≤ max
e∈E

n|E|
n− 1

∑
τ∈S̃

2∆
2

n2
N(e, τ)

≤ 8∆|E|K
n(n− 1)

as
∑

τ∈S̃ 1{e∈γ̃(τ)} ≤ K, by definition of K. Applying the result of Diaconis and Shahshahani
(Theorem 6.9) on random transpositions finishes the proof.

First application: Suppose G is a segment of length n, so that the random walk P is the
adjacent transposition process. Then G is a tree so paths γxy are forces. Clearly ∆ = n− 1,
|E| = n− 1, K ≤ 2(n/2)2. Thus Theorem 4.6 shows that if

t = 4n3(log n+ c)

then d(t) ≤ αe−c.
This example is known as the random adjacent transpositions process. It is easy to check

that n3 is necessary and guess that n3 log n is the right order of magnitude. This example
will be discussed further in the next lecture, devoted to Wilson’s algorithm, where :

• A conjecturally sharp lower bound of 1/π2n3 log n is obtained (as an illustration of
Wilson’s method)

• An upper-bound using a coupling argument is shown. The upper-bound is twice the
above, ie (2/π2)n3 log n.

Second application: Suppose G is the star graph. Then here again, G is a tree so paths
are forced. We clearly have ∆ = 2, |E| = n − 1, K = n − 1, hence A ≤ 16. Thus for
t = 8n(log n+ c), we have d(t) ≤ αe−c.
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5 Wilson’s method

5.1 Statement of the result

David Wilson devised a general method for proving lower bounds on the mixing times. As
we will see, this can provide very sharp estimates in some examples. The idea is to produce
a general function which will serve as a distinguishing statistics. The following lemma is
elementary but rather tedious. Its proof can be found in Proposition 7.7 of [17] (note the
typo in the statement, however).

Lemma 5.1. Let µ, ν be two probability measures on a finite set S. Let f be a function on
S and let r ≥ 0 be such that

|Eµ(f)− Eν(f)| ≥ rσ
where σ2 = 1

2(varµ(f) + varν(f)). Then the total variation distance between µ and ν satisfy:

‖µ− ν‖ ≥ 1− 4

4 + r2
.

This is useful when r is large, in which case it is natural to expect that the TV distance
between µ and ν is also large. We now state the result which is the basis of Wilson’s method
(see Theorem 13.5 in [17]).

Theorem 5.1. Let Xt be an irreducible aperiodic Markov chain. Let Φ be an eigenfunction
with eigenvalue 1/2 < λ < 1. Fix 0 < ε < 1 and let R > 0 satisfy:

Ex(|Φ(X1)− Φ(x)|2) ≤ R

for all x ∈ S. Then

tmix(ε) ≥ 1

2 log(1/λ)

[
log

(
(1− λ)Φ(x)2

2R

)
+ log

(
1− ε
ε

)]
.

Proof. The proof is directly taken from [17]. Since Φ is an eigenfunction of P , we immediately
get

Ex(Φ(Xt)) = λtΦ(x). (27)

Let Dt = Φ(Xt+1)− Φ(Xt) be the difference process. Then we know

Ex(Dt|Xt = z) = (λ− 1)Φ(z)

and
Ex(D2

t |Xt = z) ≤ R
Therefore,

Ex(Φ(Xt+1)2 = E((Φ(Xt) +Dt)
2)

= Φ(z)2 + 2Ex(DtΦ(z)|Xt = z) + Ex(D2
t |Xt = z)

≤ Φ(z)2(2λ− 1) +R

so that taking the expectations, we find:

Ex(Φ(Xt+1)2 ≤ (2λ− 1)Ex(Φ(Xt)
2 +R.
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This is an inequality which may apply iteratively. This leads us to summing a certain geo-
metric series. Or, more clearly (and equivalently), we may substract R/(2(1− λ)) from both
sides and get, noting Zt = Φ(Xt)

2 −R/(2(1− λ)),

Ex(Zt+1) ≤ (2λ− 1)Ex(Zt).

Hence if t ≥ 0,

Ex(Zt) ≤ (2λ− 1)t
(

Φ(x)2 − R

2(1− λ)

)
,

and thus

Ex(Φ(Xt)
2) ≤ (2λ− 1)t

(
Φ(x)2

)
+

R

2(1− λ)
.

Using (27), this gives us:

varx(Φ(Xt)
2) ≤ [(2λ− 1)t − λ2t]Φ(x)2 +

R

2(1− λ)

≤ R

2(1− λ)

since 2λ − 1 < λ. (This may look crude, but what we are loosing here is in practice very
small). Note that as t→∞, we also get that

varπ(Φ) ≤ R

2(1− λ)
.

We now wish to apply Lemma 5.1, with µ = P (x, ·) and ν = π. Note then that

Eµ(Φ) = P tΦ(x) = λtΦ(x)

and that by orthogonality of eigenfunctions

Eν(Φ) =
∑
x

π(x)Φ(x) = 0

since Φ is an eigenfunction associated with λ < 1. Thus we may write

|Eµ(Φ)− Eν(Φ)| ≥ rσ
where r2 is defined by

r2 =
|Eµ(Φ)− Eν(Φ)|2
1
2 varµ f + 1

2 varν f

≥ λ2tΦ(x)22(1− λ)

R

Thus by Lemma 5.1, we find:

‖P t(x, ·)− π‖ ≥ 1− 4

4 + r2

=
(1− λ)λ2tΦ(x)2

2R+ (1− λ)λ2tΦ(x)2
.

Thus if t ≥ 1
2 log(1/λ)

[
log
(

(1−λ)Φ(x)2

2R

)
+ log

(
1−ε
ε

)]
, then

(1− λ)λ2tΦ(x)2 ≥ ε

1− ε2R

and hence the total variation at this time must greater that ε.
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5.2 Example: Random walk on a hypercube

We have already studied a random walk on the hypercube {0, 1}n by means of coupling (and
have also computed the exact distribution of the walk at time t) but we return to it to
illustrate Wilson’s method on a first concrete example.

We already know the eigenvalues of the chain: if J is a subset of {1, . . . , n}, and we write
the hypercube Hn as Hn = {−1,+1}n, then

fJ(x) =
∏
j∈J

xj

is an eigenfunction of the lazy random walk on Hn, and the associated eigenvalue is

λJ =

∑n
j=1 1− 1{j∈J}

n
=
n− |J |
n

.

This gives us all the eigenfunctions and hence

γ =
1

n
and hence trel = n.

Now, consider Wilson’s method. We wish to take Φ an eigenfunction associated with the
second largest eigenvalue, i.e., with the eigenvalue associated with the spectral gap. The
associated eigenspace has dimension n (i.e., the number of choices of J such that |J | = n−1).
But a convenient representative is

Φ(x) = W (x)− n

2

where W (x) is the number of 1’s in the string x. (You may easily check that this is an
eigenfunction associated with λ = 1− 1/n.) Then

Ex((Φ(X1)− Φ(x))2) =
1

2

since Φ changes by exactly ±1 whenever the chain actually moves (i.e., with probability 1/2).
Hence if we take R = 1/2 and the initial state to be the all 1’s vector, then we find:

tmix(ε) ≥ 1

−2 log(1− n−1)

[
log{n−1(

n

2
)2}+ log{(1− ε)/ε}

]
=

1

2
n log n+O(n).

This is, as explained before, indeed sharp.

5.3 Example: adjacent transpositions.

Random adjacent transpositions is the random walk on Sn which results when the shuffling
method consists in selecting a position 1 ≤ i ≤ n − 1 at random and exchanging the two
neighbouring cards at position i and i + 1. (Note that this is not done cyclically). To avoid
problems we consider the lazy version of this chain as usual.

Heuristics. If you follows the trajectory of a single card, this like a delayed random walk
on the segment {1, . . . , n} with reflection at the boundaries. The card moves only with
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probability 1/(2n) if it is not at the boundary, so since it takes approximately n2 units of
time for a reflecting random walk to mix on {1, . . . , n} we can expect a single card to mix in
about O(n3). Maximizing over all n possible cards, we guess

tmix(1/e) ≈ n3 log n.

However, it seems that the cutoff phenomenon is not proved in this example. It seems that
all that is known is the following:

Theorem 5.2. Let

t = (1− ε) 1

π2
n3 log n.

Then d(t)→ 1. On the other hand, if

t ≥ (1 + ε)
2

π
n3 log n,

then d(t)→ 0.

The lower-bound is conjectured to be the correct mixing time. It is obtained through an
application of Wilson’s method which we now describe. For this we need to find a good
eigenfunction for our distinguishing statistics as well as a good initial state.

Lemma 5.2. Let φ be an eigenfunction for the “single card” chain. Fix 1 ≤ k ≤ n and let
φ̂(σ) = φ(σ(k)). Then φ̂ is an eigenfunction of the original random walk.

This is trivial to prove but tells us that we can start looking for an eigenfunction for
the single card chain (which is basically delayed reflecting random walk) and lift it to an
eigenfunction on the symmetric group.

Now, reflecting random walk on the interval is easy to analyse. Indeed its eigenfunction can
be obtained from those of the random walk on the one-dimensional torus simply by observing
that the projection of random walk on the torus onto the x-coordinate forms such a reflecting
walk. Thus, let M be the transition probability of random walk on the n-path with holding
probability 1/2 at the endpoints. Let P ′ be the transition matrix of the single card chain:
thus

P ′ =
1

n− 1
M +

n− 2

n− 1
I

Then

ϕ(k) = cos

(
(2k − 1)π

2n

)
is an eigenfunction of M and thus of P ′, with eigenvalue:

λ =
1

n− 1
cos
(π
n

)
+
n− 2

n− 1
= 1− π2

2n3
+O(n−3).

Thus σ ∈ Sn 7→ ϕ(σ(k)) is an eigenfunction of the adjacent transposition walk for all 1 ≤ k ≤
n. Since these eigenfunctions lie in the same eigenspace, we may define:

Φ(σ) =
∑

1≤k≤n
ϕ(k)ϕ(σ(k)) (28)
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which is also an eigenfunction of the chain with eigenvalue λ. When σ = id is the identity
permutation, then it can be shown that

Φ(σ) =
n∑
k=1

cos

(
(2k − 1)π

2n

)2

=
n

2

(it can be shown that functions of the form (28) are necessarily maximised at σ = id). This
is why we choose this specific Φ and this specific starting point: when Φ is small, we know
we are far away from the identity.

Now, let us see what is the value of R in Theorem 5.1. For this we need to compute the
effect of one adjacent transposition (k − 1, k) onto Φ(σ). Note that only two terms in (28)
change. Thus

|Φ(σ(k − 1, k))− Φ(σ)| =
∣∣ϕ(k)ϕ(σ(k − 1)) + ϕ(k − 1)ϕ(σ(k))

− ϕ(k)ϕ(σ(k))− ϕ(k − 1)ϕ(σ(k − 1))
∣∣

= |ϕ(k − 1)− ϕ(k)||ϕ(σ(k))− ϕ(σ(k − 1))|.

Now note that |ϕ′(x)| ≤ π/n so the first term is smaller than π/n, and that since |ϕ(x)| ≤ 1
the second term is smaller than 2. Therefore,

|Φ(σ(k − 1, k))− Φ(σ)| ≤
√
R :=

2π

n
.

To compute the lower-bound given by Theorem 5.1, note that

tmix(ε) ≥ 1

−2 log(λ)

[
log

(
(1− λ)Φ(x)2

2R

)
+ Cε

]
=
n3

π2

[
log

(
π2

2n3 (n/2)2

2(2π2/n)

)
+ Cε

]

=
n3

π2
(log n+ C ′ε)

as claimed for the lower-bound.

Upper-bound by coupling. The following coupling was introduced by Aldous, but we
follow the presentation in [17], 16.1.2. It is based on the single card chain as well. While this
is not sharp (and not the sharpest known either), it still gives the correct order of magnitude
for the mixing time. We prove that

if t = 2n3 log2 n then d(t)→ 0. (29)

Assume that we have two decks σt and σ′t (we think of left and right decks) and that a is
a fixed card 1 ≤ a ≤ n. We wish to put card a at the same position in both decks. (We will
later maximise over all possible 1 ≤ a ≤ n.) The coupling is the following. Choose a position
1 ≤ i ≤ n−1 at random in the deck: we are considering whether to perform the transposition
(i, i+ 1) on each deck. (This must be done with probability 1/2 for each deck.)

• If σt(i) = σ′t(i+ 1) or σt(i+ 1) = σ(t) then perform the opposite things on the left and
right deck: transpose on the right if the left stays still, and vice versa.
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• Otherwise, perform the same action on both decks.

Let Dt denote the distance between the positions of the cards in both decks, and observe
that once Dt = 0, then this stays true forever i.e. the cards are matched. The point is that Dt

is approximately a Markov chain, where Dt can change with probability 1/(n−1)+1/(n−1) =
2/(n−1) (the first term is the probability that the left card moves, the right is the probability
that the right card moves) if both cards are at the interior and at distance Dt > 1. When Dt

moves, it is equally likely to move up or down. However if one of the two cards is at the top
or at the bottom then the distance may not increase. Thus in general,

P(Dt = d+ 1|σt, σ′t, Dt = d) ≤M(d, d+ 1)

and
P(Dt = d− 1|σt, σ′t, Dt = d) = M(d, d− 1)

where M is the transition matrix described above. Even though Dt is not a Markov chain, it
is stochastically bounded above by the random walk Yt with transition matrix M . It is not
hard to prove that if τ is the first time that Y = 0, then we have:

Ek(τ) ≤ (n− 1)n2

2

no matter what the starting point of Y is. Thus if τa is the first time Dt = 0, we have
E(τa) ≤ (n− 1)n2/2 as well. Therefore, by Markov’s inequality:

P(τa > n3) ≤ 1

2
. (30)

Suppose we run the chain for blocks of time of duration n3 each, and we run 2 log2 n such
blocks. Since (30) is independent of the starting point, the probability that τa > 2 log2 nn

3 is
smaller than the probability that it didn’t couple in any of these runs, and hence:

P(τa > 2n3 log2 n) ≤
(

1

2

)2 log2 n

=
1

n2
.

Now, maximising over all possible choices of a,

P
(

max
1≤a≤n

τa > 2n3 log2 n

)
≤ n 1

n2
=

1

n
.

But note that if t ≥ max1≤a≤n τa, the decks are identical, and hence

if t = 2n3 log2 n then d(t) ≤ 1/n→ 0

as claimed.
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6 Representation theoretic methods

6.1 Basic definitions and results of representation theory

Given a somewhat complicated set S, one powerful way to understand it is to find a group G
that acts on it: i.e., find a map ρ : G→ S (we usually simply note ρ(g)(x) = g · x) such that
g · (h · x) = (gh) · x and e · x = x.

The purpose of representation theory is to describe a given group G by asking the reverse
question: what structures does G act on? This is far too complicated a question, so we restrict
ourselves by looking at (finite-dimensional, complex) linear structures, and ask moreover that
the action respects the inverse.

Definition 6.1. A group representation of G is a map ρ : G→ GL(V ), where V is a finite-
dimensional vector space on C, which respects the group structure of G. That is, for all
s, t ∈ G:

ρ(st) = ρ(s)ρ(t),

and ρ(s−1) = ρ(s)−1. In particular, ρ(e) = Id.

In short, a representation is simply an embedding of the group into some linear group
GL(V ), where the group multiplication and inverse correspond to the matrix multiplication
and inverse. The dimension of V is called dρ, the dimension of ρ.

Example 6.1. A trivial (one-dimensional) representation is one for which ρ(s)v = v for all
v ∈ V and all s ∈ G. When G = Sn is the symmetric group, another less trivial (but still
one-dimensional) representation is the sign representation: ρ(s)v = sgn(s)v.

Example 6.2. When G = Sn an interesting representation is the permutation representation.
This is a representation ρ in an vector space V of dimension n defined as follows. For s ∈ Sn,
the linear map ρ(s) is defined by setting ρ(s)(ei) = es(i), where (e1, . . . , en) is a basis of V .

If W ⊂ V is a subspace of V which is stable under G (i.e., ρ(s)W ⊂ W for all s ∈ G)
then the restriction of ρ to W gives us a subrepresentation. If no such space exists, the
representation is called irreducible.

Our first task is to show that every representation is the finite sum of irreducible repre-
sentations, where the sum σ = ρ⊕ ρ′ between two representations ρ and ρ′ is defined as one
would expect: σ(s)(v + w) = ρ(s)(v) + ρ′(s)(w) for v ∈ V,w ∈ W . This is a representation
into V ⊕W .

The basic tool for proving this result is the following:

Proposition 6.1. Let ρ : G → GL(V ) be a representation of G. Suppose W ⊂ V is stable.
Then there is a complement W ′ (i.e., a subspace such that W ∩W ′ = {0} and W +W ′ = V )
such that W ′ is also stable.

Proof. Fix (, ) any scalar product on V . Then we can define a new scalar product on V as
follows: 〈v, w〉 =

∑
s(ρ(s)v, ρ(s)w). Then 〈, 〉 is invariant in the sense that 〈ρ(s)v, ρ(s)w〉 =

〈v, w〉. Let W ′ be an orthogonal complement of W . Then W ′ is a complement of W and
moreover W ′ is stable under ρ : indeed it suffices to check that for all s ∈ G, and all w′ ∈W ′,
ρ(s)(w′) ∈ W ′. In other words we need to check that 〈ρ(s)w′, w〉 = 0 for all w ∈ W . But by
invariance, 〈ρ(s)w′, w〉 = 〈w′, ρ(s−1)w〉 = 0 since W is stable.
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By induction on the dimension, we obtain the desired result:

Theorem 6.1. Every representation ρ is the finite sum of irreducible representations.

Example 6.3. The permutations representation above is not irreducible. Indeed, observe that
the vector v = (1, . . . , 1) is invariant under ρ(s) for any s ∈ Sn. Hence if W1 = Span(v), W1

is stable. It follows that there is a complement W2 such that W2 is also invariant. This can
be described as the subspace {v ∈ V :

∑
i vi = 0}. The induced representation ρ1 is the trivial

one-dimensional representation. The induced representation ρ2 on W2 is called the (n − 1)-
dimensional representation. It will be shown in Example 6.5 that ρ2 is in fact irreducible; this
will play an important role in the theory of random transpositions.

Remark 6.1. Since the scalar product 〈, 〉 defined above is invariant under the action of ρ(s)
for any s ∈ G, we deduce that we can choose basis of V such that the matrix representation
of ρ(s) in this basis is unitary. In the following we will always make such a choice without
saying it.

6.2 Characters

Ultimately, our main goal will be to use representations of G to do some Fourier analysis.
To do this, our starting point is to find a natural collection of elementary functions (ei)i∈I
such that any function f : G→ R or f : G→ C (in fact, any function f subject to a certain
symmetry condition, see Theorem 6.7) can be represented as a linear combination

∑
i αiei,

where the coefficients αi can be computed simply. The elementary functions ei are called
characters and they are defined in terms of representations.

Definition 6.2. Let ρ be a representation of G. The character associated to ρ is the function
χρ : G→ R defined by χρ(s) = Tr(ρ(s)).

Example 6.4. In the permutation representation ρ of Example 6.3, the character χρ is the
function giving the number of fixed points of a permutation s ∈ Sn.

The following properties are trivial but worth keeping in mind:

Proposition 6.2. (i) χρ(e) = dρ, (ii) χρ(s
−1) = χρ(s), and (iii) the characters are invariant

by conjugacy: χρ(t
−1st) = χρ(s).

Proof. (i) just follows from the fact ρ(e) = Id always,
(ii) In the basis where ρ(s) is unitary, we have that ρ(s−1) = ρ(s)−1 = ρ(s)∗ thus, taking

the trace, χρ(s
−1) = χρ(s).

(iii) just comes from the fact that Tr(AB) = Tr(BA).

The decomposition of any function as a linear combination of characters will come from the
fundamental observation (below) that these form an orthonormal basis for the natural scalar
product. Recall the usual scalar product on functions from G→ C:

(f |g) =
1

|G|
∑
s∈G

f(s)ḡ(s).

Theorem 6.2. The characters are orthonormal functions with respect to (|).
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Proof. Let χ, χ′ be two characters associated with the representations ρ, ρ′. Then (χ|χ′) =
1
|G|
∑

s χ(s)χ̄′(s).
The proof below relies on a very useful albeit elementary result: Schur’s lemma. Two

representations ρ, ρ′ are called equivalent if there exists an isomorphism of vector spaces
f : V → V ′ (linear and one-to-one) such that f ◦ ρ(s) = ρ′(s) ◦ f for all s ∈ G. Such an f is
called a morphism of representations.

Lemma 6.1. Let ρ, ρ′ be two irreducible representations into V, V ′ respectively. Let f : V →
V ′ be linear such that

f ◦ ρ(s) = ρ′(s) ◦ f
for all s ∈ G. Then

(a) If ρ, ρ′ are not equivalent then f = 0.
(b) If V = V ′ and ρ = ρ′ then f = λI for some λ ∈ C.

Proof. Observe that the kernel of f is invariant under ρ. Indeed, if s ∈ G and v ∈ ker f , then
f(ρ(s)(v)) = ρ′(s)(f(v)) = ρ′(s)(0) = 0 so ρ(s) ∈ ker f as well. Likewise, the image of f ,
Imf is also invariant for ρ′. Thus (by irreducibility) both kernels and images are either the
whole spaces or trivial. Thus for (a), if f 6= 0 then ker f = {0} and Imf = V ′, so f is an
isomorphism. For (b), let λ be an eigenvalue of f . Then the map f̃ = f −λI has a nontrivial
kernel and satisfies f̃ρ = ρ′f̃ . Thus by the above f̃ = 0 i.e. f = λI.

It is the following corollary which we use here:

Corollary 6.1. Let h : V → V ′ be linear. Define

h̃ =
1

|G|
∑
s

ρ′(s−1)hρ(s) : V → V ′.

Then
(a) if ρ, ρ′ are not equivalent then h̃ = 0.
(b) If V = V ′ and ρ = ρ′ then we have h̃ = λI with λ = Tr(h)/dρ.

This follows simply from the observation that for all t ∈ G, ρ′t−1 h̃ρt =
∑

s ρ
′
(st)−1hρst = h̃,

so Schur’s lemma applies.
Returning to the proof of the theorem, fix a basis of V and a basis for V ′, and let rij(t) (resp.

r′ij(t)) denote the coordinates of the matrix ρ(t) (resp. ρ′(t)). Then to show that (χ|χ′) = 0
we must show that

∑
i,j

∑
t r̄ii(t)r

′
jj(t) = 0. Fix i, j, and let x̃ij denote the coordinates of the

linear map h̃ for some choice of h. Then

x̃ij =
1

|G|
∑
t∈G

∑
k,l

r′ik(t
−1)xklrlj(t) = 0

by the corollary. Taking xkl = 0 unless k = i, l = j where we choose xij = 1 yields x̃ij =
0 =

∑
t r
′
ii(t
−1)rjj(t). Since χ′(t−1) = χ̄′(t), the result follows. The calculations for the case

χ = χ′ are identical.

The above theorem is very powerful. Here are some illustrations. We start with the
following question: let (ρ, V ) be a (non-necessarily irreducible) representation. Let (ψ,W ) be
an irreducible one. Does W appear in the decomposition of V ? If so, how many times?
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Theorem 6.3. The number of times W arises in the decomposition of V is equal to (χρ|χψ).

Proof. Note that it is not even obvious that the right-hand side is an integer! However,
write V = W1 ⊕ . . . ⊕ Wm. Then we have χρ =

∑
i χi where χi is the character or Wi.

Hence (χρ|χψ) =
∑m

i=1(χi|χψ). But note that (χi|χψ) is, by orthonormality, equal to 1 or 0
according to whether W = Wi or not. The result follows.

Corollary 6.2. Two representations are equivalent if and only they have the same character.

Corollary 6.3. Let ρ be a representation. Then (χρ|χρ) is a positive integer, equal to 1 if
and only if ρ is irreducible.

Example 6.5. Let us check that the (n − 1) dimensional representation of Sn, introduced
in Example 6.3 is irreducible. Recall the permutation representation ρ. We have found two
induced representation ρ1 and ρ2. It therefore suffices to show that (χρ|χρ) = 2. Recall that
χρ(s) is just the number of fixed points of s ∈ Sn, hence (χρ|χρ) = E(X2), where X is the
number of fixed points of a randomly chosen permutation σ ∈ Sn. The result then follows
from the fact that

E(X2) =
n∑
i=1

P(σi = i) +
∑
i 6=j

P(σi = i;σj = j)

= n× 1

n
+ n(n− 1)× 1

n
× 1

n− 1

= 2.

Indeed σi is uniformly distributed on {1, . . . n} and given σi = i, |sigmaj is uniformly on
{1, . . . , n} \ {i}. Thus ρ contains two irreducible representations, and hence ρ1 and ρ2 are
both irreducible.

Consider now the regular representation of G: let V be the vector space of functions on G,
of dimension |G|, and let es be the basis element of that space which is the function equal to
1 at s, and 0 elsewhere. Then define

ρ(s)(et) = est.

Observe that χ(e) = |G| since χ(e) is the identity, and if s 6= e then ρ(s)(et) = est 6= et so
each diagonal coefficient of ρ is zero in this basis. Thus χ(s) = 0.

Theorem 6.4. Every irreducible representation is contained in the regular representation,
with multiplicity equal to its dimension. In particular, there are only a finite number of
irreducible representations.

Proof. Indeed, if ψ is an irreducible representation, its multiplicity in ρ is equal to (χρ|χψ) =
1
|G|
∑

s χψ(s) ¯χ(s) = χψ(e) = dψ.

Corollary 6.4. We have
∑

ρ d
2
ρ = |G|, where

∑
ρ is the sum over all irreducible representa-

tions. If s 6= e,
∑

ρ dρχρ(s) = 0.

Indeed, note that, keeping χ for the character of the regular representation, χ(s) =
∑

ρ dρχρ(s),
by the above. Taking s = e gives the first formula, and the second follows equally since then
we know χ(s) = 0.
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Remark 6.2. The identity
∑
d2
ρ = |G| suggests that in general there is a natural probability

distribution on irreducible representations of a group G, given by p(ρ) = d2
ρ/|G|. When

G = Sn, this is known as the Plancherel measure, a subject of great interest in random matrix
theory, completely integrable systems etc.

6.3 Fourier inversion

Let f : G→ C be a function. We define its Fourier transform, evaluated at a representation
ρ, to be

f̂(ρ) =
∑
s∈G

f(s)ρ(s).

Thus f̂(ρ) is a matrix (or a linear map from V to itself). To summarise, and to make
the link with classical Fourier analysis, the particular way to embed G into a linear group
GL(V ) (an irreducible representation ρ) is a “frequency”. Then given a function f on G, the
“amplitude” of that frequency f̂(ρ) is the sum (in GL(V )) of all the group elements, weighted
by the function f . (However one has to bear in mind that this “amplitude” is a matrix. In
fact it would be more appropriate to say that the amplitude is dρf̂(ρ).)

The Fourier inversion theorem says that it is possible to reconstruct entirely any function
f from its Fourier transform as follows:

Theorem 6.5. We have the following identity: for all s ∈ G,

f(s) =
1

|G|
∑
ρ

dρ Tr(ρ(s−1)f̂(ρ)).

where the sum is over all irreducible representations.

This is the analogue of the classical Fourier inversion theorem – which, in its discrete form,
is just a particular case of this result with G = Z/nZ. Indeed in this case, the representations
are all one-dimensional (as in any Abelian group) and so each representation ρj is determined
by a complex number ρj(x) for each x ∈ Z/nZ which respect the group structure of G; hence
for a given representation ρ one has ρ(x + y) = ρ(x)ρ(y). Hence ρ = ρj for some frequency
1 ≤ j ≤ n, where ρj(x) = e2iπjx/n. The Fourier transform of a function f : Z/nZ → C, is

computed as f̂(j) =
∑

x f(x)e2iπjx/n. The Fourier inversion theorem states that

f(x) =
1

n

n−1∑
j=0

f̂(j)e−2iπjx/n,

which is indeed the statement we are familiar with in classical Fourier analysis.

Proof. Since both sides are linear it suffices to prove the result for f = et. The f̂(ρ) =∑
z∈G f(z)ρ(z) = ρ(t), so the right-hand side equals (1/|G|)∑ρ dρχ(s−1t), which is nonzero

only if s = t, in which case it is equal to 1 by Corollary 6.4.

Theorem 6.6. Let f, g : G→ C be two functions. Then∑
s

f(s)g(s−1) =
1

|G|
∑
ρ

dρ Tr(f̂(ρ)ĝ(ρ)).
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Proof. Taking f = et amounts to showing g(t−1) = 1
|G|
∑

ρ dρ Tr(ρ(t)ĝ(ρ)), which is precisely
the Fourier inversion theorem.

In particular, a way to rephrase this is to say that∑
s

f(s)h(s) =
1

|G|
∑
ρ

Tr(f̂(ρ)ĝ(ρ)∗). (31)

where M∗ is the conjugate transpose of a matrix M . This follows from the fact that ρ(s) is
unitary and hence ρ(s−1) = ρ(s)−1 = ρ(s)∗ for any s ∈ G.

6.4 Class functions

We immediately use this result to show a few applications. Let s, t ∈ G. We say s and t are
conjugate if there exists g ∈ G such that gsg−1 = t. This defines an equivalence relation on
G, its equivalence classes are simply called conjugacy classes, a notion that is quite important
in group theory. A function that is constant on conjugacy classes is called a class function.

When G = Sn, there is an easy way to find out whether two permutations are conjugate: if
π is a permutation having cycle decomposition c1 . . . ·cm, and σ is a permutation, then σπσ−1

is the permutation having cycle distribution equal to σ(c1) . . . σ(cm), where if c = (x1, . . . , xk)
we denote by σ(c) the cycle (σ(x1), . . . , σ(xk)). It follows that two permutations are conjugate
if and only if they have the same cycle structure: the same number of cycles of size 1, of size
2, etc. Thus a typical class function would be f(σ) = the number of cycles of σ. However, an
even more interesting one is pn(σ) = P(Xn = σ), the n-step transition probabilities for the
random transpositions process on Sn.

Lemma 6.2. Let f be a class function on G, and let ρ be an irreducible representation. Then
there exists λ ∈ C such that f̂(ρ) = λId. Moreover,

λ =
|G|
dρ

(f |χ̄ρ).

Proof. Consider the linear application ρ(s)f̂(ρ)ρ(s)−1, for any s ∈ G. Then an expression for
it is

ρ(s)f̂(ρ)ρ(s)−1 =
∑
t∈G

f(t)ρ(s)ρ(t)ρ(s−1)

=
∑
t∈G

f(t)ρ(sts−1)

=
∑
t∈G

f(sts−1)ρ(sts−1)

= f̂(ρ)

since f is a class function. So by Schur’s lemma, f̂(ρ) = λI for some λ ∈ C. Taking the
traces, we find,

λ =
1

dρ
Tr(f̂(ρ)).

By linearity of the trace, Tr(f̂(ρ)) =
∑

s f(s) Tr(ρ(s)) =
∑

s f(s)χρ(s) = |G|(f |χ̄ρ).
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With this theorem, we immediately deduce the following result, of fundamental importance
in many studies:

Theorem 6.7. The characters form an orthonormal basis of the space of class functions.

Proof. Note that the characters are themselves class functions since Tr(AB) = Tr(BA). We
already know that they are orthonormal, so it remains to prove that they generate all class
functions. To see this it suffices to check that if f is a class function such that (f |χ̄ρ) = 0 for
all irreducible representations ρ, then f is zero. However, by the above lemma, in this case
f̂(ρ) = 0 for all irreducible representation ρ and thus by Fourier inversion f = 0.

6.5 Diaconis–Shahshahani lemma

The convolution between two functions f, g is defined as

f ? g(s) =
∑
s

f(st−1)g(t).

Then it is straightforward that

f̂ ? g = f̂ ĝ.

Thus the Fourier transform changes a convolution into a product - this will be at the basis
of our analysis of a random walk, whose n-step transition probability is precisely an n-fold
convolution of the kernel.

We come to one of the important results in the section, which shows the relationship
between mixing times and representation theory. Recall that the trivial representation is the
one-dimensional representation such that ρ(s)x = x for all x ∈ C.

Theorem 6.8. Let P be a probability distribution on G and let π be the uniform distribution.
Then

d2(P, π)2 := |G|
∑
s∈G

(P (s)− π(s))2 =
∑
∗
dρ Tr(P̂ (ρ)P̂ (ρ)).

where the sum
∑
∗ is over all nontrivial irreducible representations ρ.

Proof. Let f(s) = P (s)− π(s) and g(s) = f(s). Applying the Plancherel formula (31) to this
we get

d2(P, π)2 = |G|
∑
s∈G

f(s)2

=
∑
ρ

dρ Tr(f̂(ρ)f̂(ρ)∗).

Note that when ρ is the trivial representation, P̂ (ρ) = 1 = π̂(ρ) so f̂(ρ) = 0. When ρ is
nontrivial, we have that π̂(ρ) = 0, e.g. as a consequence of the orthogonal relations between
the characters since the function 1 is the character of the trivial representation. [change
argument]

The following corollary makes explicit what we learn for the total variation distance in the
case of a random walk on G, and is known in the literature as the Diaconis–Shahshahani
upper bound lemma.
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Corollary 6.5. Suppose that P be a random walk kernel which is a class function. Then for
all t ≥ 1, we have, if d(t) := ‖P ∗t − π‖TV , we have:

d(t)2 ≤ 1

4
d2(t)2 =

1

4

∑
∗
d2
ρ|λρ|2t

where λρ = 1
dρ

∑
s∈G P (s)χρ(s).

Proof. We use the fact that P̂ ∗t = P̂ t and that since P is a class function, P̂ = λI with an
explicit λ as in the previous lemma. So Tr(P̂ t(P̂ t)∗) = |λ|2tdρ.

Note that when P is symmetric, i.e., P (s) = P (s−1), then λρ is real, as χρ(s) = χρ(s−1).
Originally this was discovered by the authors in the context of their investigation of random

transpositions, but has since been used in a very wide variety of examples.

6.6 Example: random transpositions

We will now discuss and sketch a proof of the following fundamental theorem, due to Diaconis
and Shahshahani.

Theorem 6.9. (Diaconis-Shahshahani [10]) Let c > 0. Then there exists a universal α > 0
such that d̃2(t) ≤ αe−c whenever t ≥ (1/2)(n log +cn).

Conversely, for all ε > 0 there is a c > 0 such that d(t) ≥ 1− ε for t ≤ (1/2)(n log n− cn).

Sketch of proof. We start by the upper bound (which is harder than the lower bound).
We apply Corollary 6.5. Note that λρ = 1

n + n−1
n r(ρ), where

r(ρ) =
χρ(τ)

dρ
=
χρ(τ)

χρ(1)
.

is the co-called character ratio. Here χρ(τ) denotes the character of ρ evaluated at any
transposition (it does not matter which since characters are class functions). Hence

d(t)2 ≤ 1

4

∑
∗
d2
ρ

(
1

n
+
n− 1

n
r(ρ)

)2t

. (32)

We start by considering the (n − 1)-dimensional representation of Example 6.3. For this
we have dρ = n − 1 and it can be seen that χρ(τ) = n − 3. Indeed for the permutation
representation the character is the number of fixed points, which is n − 2. Since this is the
sum of the characters of the trivial and the (n − 1)-dimensional representation, we deduce
χρ(τ) = n − 3 as claimed. Thus r(ρ) = (n − 3)/(n − 1) and hence the contribution of this
representation to the sum in (32) is

(n− 1)2

(
n− 2

n

)2t

≤ exp(2 log n− 4t/n).

For t = (1/2)(n log n + cn) we see that this is less than e−c. The bulk of the proof of the
upper bound consists in showing that for this time t, the sum of contributions for all other
irreducible representations in (32) is negligible. The main reason why this holds is that for
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“most” representations, the character ratio r(ρ) is bounded away from 1. Suppose for instance
it was the case that r(ρ) ≤ r < 1/e. Then

∑
∗
d2
ρ

(
1

n
+
n− 1

n
r(ρ)

)2t

≤ r2t
∑
∗
d2
ρ = r2tn!

by Corollary 6.4. Now, observe that for t ≥ (1/2)n log n we have

r2tn! ≤ exp(2t log r + n log n)

≤ exp(n log n(1 + log r))→ 0.

This is a gross simplification of the argument, but helps to explain the gist. To make things
rigorous requires an exact formula for the character of a given irreducible representation ρ.
The irreducible representations ρ of Sn can be indexed by Young diagrams λ = (λ1, . . . , λk),
that is partitions of n (hence λ1 + . . . + λk = n, and we write them in decreasing order). A
formula due to Frobenius then gives, for the corresponding irreducible representation ρ,

r(ρ) =
1

n(n− 1)

∑
j

λ2
j − (2j − 1)λj . (33)

Likewise it is well known in representation theory how to compute the dimension dρ of the
associated representation. If we think of the Young diagram as a stack of boxes on top of
one another, then dρ is the number of ways to fill the boxes with labels 1, . . . , n in such a
way that the labels are always increasing from left to right and from top to bottom. Hence
dρ ≤

(
n
λ1

)
d(λ2,...,λn). The desired upper bound follows, with plenty of careful estimates. See

[10, Chapter 3D] for an eminently readable account of the proof.
Lower bound. We now check that for t ≤ (1/2)(n log n− cn), d(t) ≥ 1− ε. We are able to

find an explicit event such that P(Xt ∈ A) ≥ 1 − ε but P(σ ∈ A) ≤ ε for a uniform random
permutation σ. This event A is given by

A = {s ∈ Sn : s has more than K fixed points}

where K is arbitrarily large. Observe that if a card i has never been touched up to time t
then it is a fixed point of the permutation Xt. Since we are collecting two cards at a time, the
coupon collector problem tells us that for t = (1/2)(n log n− cn), P(A) ≥ 1− ε by choosing c
sufficiently large. But of course P(σ ∈ A) ≤ ε if K is large enough.

Intringuingly, this simple probabilistic lower bound has a representation theoretic counter-
part. Consider the character χρ of the (n− 1)-dimensional representation – which is the one
whose contribution to the sum (32) can be designed as the culprit for cutoff phenomenon.
As we have seen earlier, the character of the permutation representation counts the number
of fixed points, so χρ counts the number of fixed points minus one (indeed the permutation
representation is the direct sum of the trivial representation and the (n−1)-dimensional one).
Now, if X is uniformly distributed over Sn,

E(χρ(X)) = (χρ|1) = 0; and var(χρ(X)) = E(χ2
ρ(X)) = (χρ|χρ) = 1.

(This could also be deduced from the fact that the number of fixed points is, at least for n
large, approximately a Poisson random variable with mean 1). But under the random walk
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measure,

E(χρ(Xt)) =
∑
g

P t(g) Tr(ρ(g))

= Tr(
∑
g

P t(g)ρ(g))

= Tr(P̂ ∗t(ρ))

= Tr[(P̂ (ρ)t]

= dρλ
t
ρ

where λρ = (1/n + (n − 1)/nr(ρ)) = (n − 2)/n, as before. Again, one finds that for t ≤
(1/2)(n log n− cn),

E(χρ(Xt) ≥ K
where K can be made arbitrarily large if c is sufficiently large. This is not quite enough
to conclude that Xt looks very different from the uniform distribution (in terms of total
variation): the second moment method is needed to show that χρ(Xt) is in fact large with
high probability. This can be done by computing E(χρ(Xt)

2). To do this, we may observe
that χ2 is also a character: this is the character or the representation ρ⊗ ρ (where ⊗ denotes
the tensor product). The explicit decomposition of ρ⊗ρ in terms of irreducible representation
is not hard to find, and involves just three irreducible nontrivial representations. Computing
var(χρ(Xt)) can thus be done by following the above steps.

6.7 A conjecture on cutoff

To some extent, in “finite dimensions” we expect Markov chains typically to have scaling
limits. This implies that we should expect (in finite dimensions) that the typical situations
is one where the convergence to equilibrium happens gradually, on the time scale of its dif-
fusive scaling limit. This suggests that we should only expect a cutoff phenomenon in “high
dimensions”. I propose the following conjecture (which is possibly slightly optimistic).

Conjecture 6.1. Suppose Gn is a sequence of groups, and suppose that we consider a random
walk on the Cayley graph of Gn induced by a set of generators Cn which is invariant under
conjugacy.

Let ρn be the lowest dimensional representation of Gn which which is nontrivial, and let
dn = dim(ρn). Suppose that dn → ∞. Then the cutoff phenomenon occurs (no matter what
set of generators is chosen, so long as it is conjugacy invariant), and the cutoff time is given
by

tmix = max
ρ

log dρ
− log r(ρ)

where r(ρ) = χρ(c)/dρ is the character ratio of a representation ρ evaluated at any element
c ∈ Cn of the conjugacy class generating the random walk.

Note that typically the maximum of this ratio is attained at the lowest nontrivial represen-
tation, but this isn’t always the case [CITATION NEEDED.]
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7 Other notions of mixing

7.1 Strong stationary times and separation distance

In our first example of cutoff, (random to top) we saw an example of a coupling strategy
obtained by consider the first time τ that all cards were touched. At this stopping time, the
distribution of the deck of cards is not just approximately stationary, but exactly! Moreover
the distribution of the deck of cards is independent of the time τ . Such a time is called a
strong stationary time.

It turns out that many coupling arguments have this property, which was first investigated
in a celebrated paper of Aldous and Diaconis [3]. Just the same way as total variation
is intricately linked to the notion of coupling, it turns out that such strong stationary times
measure convergence in a stronger metric than total variation, which is the separation distance.
We start by making the following definitions.

Definition 7.1. A filtration (Fn)n≥0 is an increasing sequence of σ-algebras. A Markov
chain (Xn) is adapted to the filtration if Xn is Fn-measurable for every n ≥ 0 (i.e., all the
information about (X1, . . . , Xn) is contained in Fn. We say that (Xn, n ≥ 0) is a Markov
chain with respect to F if P(Xn+1 = y|Fn) = P (Xn, y) almost surely, where P is the
transition matrix.

A (randomised) stopping time τ for the Markov chain X is a random variable τ with
values in {0, 1, } ∪ {∞} such that for some filtration F , with respect to which X is a Markov
chain, τ is an F-stopping time: {τ ≤ n} ∈ Fn.

Adapted filtrations contain the information generated by the Markov chain, and typically
contain a bit more randomness that does not ruin the Markov property: for instance, they
might contain the information generated by the chain and some extra independent coin toss.

In other words, a stopping time for the chain X is a random time such that the event
{τ ≤ n} depends only on (X1, . . . , Xn) and possibly some independent random variable Y .
It is therefore a way to stop the chain at a time which depends on the chain and possibly on
some extra independent randomness. Sometimes people write randomised stopping times to
emphasise the fact that some extra randomness is allowed.

Definition 7.2. A strong stationary time for the chain X is a randomised stopping time such
that

Px(Xτ = y; τ = n) = π(y)P(τ = n).

for all n ≥ 0 and for all y ∈ S, where π is the invariant distribution of the chain. That is,
Xτ has the stationary distribution and is independent of τ .

Note that we could also define the notion of a strong stationary time started from x for a
fixed starting state x ∈ S, in which case the above is only required to hold for all n ≥ 0 and
for all y ∈ S. Then τ itself may depend on the starting state x.

Example 7.1. Random to top: show that the time all cards have been touched is a strong
stationary time.

Here are three examples, the proofs of which are left as exercises.

Example 7.2. Top to random: Let τ be the first time such that the card which was originally
at the bottom is at the top. Show that τ + 1 is a strong stationary time. (In fact, these two
examples are related: how?)

64



Example 7.3. On the n-cycle. The cover time (the first time that all vertices have been
visited) is a strong stationary time.

After a strong stationary time, the Markov chain retains the stationary distribution:

Lemma 7.1. If τ is a strong stationary time (starting from x ∈ S), we have

Px(Xt = y; τ ≤ t) = π(y)Px(τ ≤ t).

Proof. We can sum over all times s ≤ t and positions z of the chain at time s:

Px(Xt = y; τ ≤ t) =
t∑

s=0

∑
z∈S

Px(Xt = y,Xs = z, τ = s)

=
t∑

s=0

∑
z∈S

Ex[Px(Xt = y,Xs = z, τ = s|Fs)]

=
t∑

s=0

Px(τ = s,Xs = z)P t−s(z, y)

=
t∑

s=0

∑
z∈S

π(z)P t−s(z, y)Px(τ = s)

= π(y)Px(τ ≤ t)

as desired, where we have used the invariance of π to say that
∑

z π(z)P t−s(z, y) = π(y).

We now define the separation distance.

Definition 7.3. If µ, ν are two probability measures on S, we let

sep(µ, ν) = sup
x∈S

(1− µ(x)

ν(x)
).

Note the absence of absolute value in the definition of the separation distance, which may
be surprising at first. In particular, it is not symmetric and hence not a distance in the usual
sense of the word. Suppose ν is the uniform distribution over S (as will often be the case in
our applications). Intuitively, the separation distance is small if even the least likely x for µ
is pretty close to ν(x). More precisely, we will have sep(µ, ν) ≤ ε if µ(x) ≥ (1 − ε)ν(x) for
every x, even the least likely x.

In contrast, the total variation distance requires µ(x) and ν(x) to be close in an L1 sense.
This is clearly weaker, and we obtain the following simple but important result:

Theorem 7.1. We have ‖µ− ν‖ ≤ sep(µ, ν).

Proof. Recall that one expression for ‖µ− ν‖ is
∑

x(ν(x)− µ(x))+. Let δ = sep(µ, ν). Then
µ(x) ≥ (1− δ)ν(x), hence (ν(x)− µ(x))+ ≤ δν(x). Summing over x gives us the result.

We now address the relation between strong stationary times and separation distance.

Theorem 7.2. Let s(t) = supx sep(P t(x, ·), π(·)). If τ is any strong stationary time, then
s(t) ≤ P(τ > t). Conversely, there exists a strong stationary time τ such that s(t) = P(τ > t).
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Proof. We only prove the upper bound, which is a trivial consequence of Lemma 7.1. Indeed
let δ = P(τ > t). Then we have

Px(Xt = y) ≥ P(τ ≤ t)π(y)

so that
P t(x, y)

π(y)
≥ (1− δ)

for all x, y ∈ S, meaning that sep(P t(x, ·), π(·)) ≤ δ for all x. Hence s(t) ≤ δ as desired.

While the separation distance is stronger than total variation distance, it is not much
stronger. In fact the mixing times can differ by a factor of at most two in the reversible case,
because of the following result.

Theorem 7.3. For reversible chains we have s(2t) ≤ 1− (1− 2d(t))2.

Proof. By the Markov property and reversibility,

P 2t(x, y)

π(y)
=
∑
z

P t(x, z)P t(z, y)

π(y)

=
∑
z

P t(x, z)P t(y, z)

π(z)
=
∑
z

π(z)
P t(x, z)P t(y, z)

π(z)2

≥
(∑

z

π(z)
P t(x, z)1/2P t(y, z)1/2

π(z)

)2

by Jensen, since E(Z) ≥ E(Z1/2)2

≥
(∑

z

min(P t(x, z), P t(y, z))

)2

=
(
1− ‖P t(x, ·)− P t(y, ·)‖

)2
using the fact that min(a, b) = b− (b− a)+

≥ (1− d̄(t))2 ≤ (1− 2d(t))2.

The result follows immediately.

7.2 Example: separation cutoff on the hypercube

For lazy random walk on the hypercube Hn we already know that cutoff in the total variation
sense takes place at time tmix = (1/2)n log n. Here we show that in separation distance this
takes place at time tsep = n log n. (Note that this is indeed within a factor of 2 from tmix, as
per Theorem 7.3.

First we consider the upper bound. For this we consider the first time τ where all co-
ordinates have been touched. It is easy to check that τ is a strong stationary time. Since
τ ≤ (1+ε)n log n with high probability, we have by Theorem 7.2 that sep((1+ε)n log n)→ 0,
which gives the upper bound.

For the lower bound, we point out that at any time t, intuitively the least likely point on
the hypercube for Xt is the opposite corner y = 1 . . . 1, since this requires all coordinates to
have been touched. (Indeed it is easy to check, by observing that every touched coordinate
is random). Hence

sep(t) ≥ 1− P t(x, y)

π(y)
= 1− P(τ ≤ t)π(y)

π(y)
= P(τ > t)
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Hence if t = (1− ε)n log n, τ > t with high probability and sep(t)→ 1, as desired.

7.3 Lovász–Winkler optimality criterion

Here we focus our attention to stationary times (which are not necessarily strong stationary
times) and a beautiful optimality criterion due to Lovász and Winkler. Here optimal refer to
the fact that that the expected value of τ is minimal among all stopping times such that Xτ

has the desired stationary distribution π. For this we need the notion of a halting state.
We will consider stationary times, which are stopping times τ having the property that

P(Xτ = y) = π(y) (but note that Xτ is not assumed to be independent of τ , so τ is not neces-
sarily a strong stationary time). We will look to characterise “best” or “optimal” stationary
times. First, let us now define precisely the notion of optimality we wish to consider.

Definition 7.4. For a given starting state x, or more generally for a given starting distribu-
tion µ, we say that the stationary time τ is mean-optimal or simply optimal for the starting
distribution µ on S if Xτ = π in distribution and Eµ(τ) is minimal among all stationary
times.

The following beautiful optimality criterion for stationary times is due to Lovász and Win-
kler, and relies on the notion of a halting state.

Definition 7.5. Let τ be a (randomised) stopping time and suppose X0 = x ∈ S. We say
that τ has a halting state y ∈ S, if Xt = y implies τ ≤ t. In other words, y is a halting state
if τ ≤ Ty with probability one, where Ty is the hitting time of y.

Example 7.4. Consider the lazy random walk on the hypercube Hn. The first time τ that all
coordinates have been touched is a strong stationary time. Moreover, the state y = 11 . . . 1 is
a halting state for τ and the starting state x = 00 . . . 0. Indeed, if Xt = y then all coordinates
must have been touched so τ ≤ t.

Theorem 7.4. A stationary time τ is optimal for a starting distribution µ if and only if it
has a halting state.

For instance, for the lazy random walk the hypercube, the strong stationary time τ where
all coordinates have been touched has a halting state (namely, the opposite corner 1 . . . 1) and
hence is mean-optimal.

Proof. We start with if part (if there is a halting state then the stationary time is optimal).
Let Vx denote the number of times the chain leaves vertex x ∈ S before being stopped at time
τ , so Vx =

∑τ−1
t=0 1{Xt=x}. (Note that since there is a halting state, τ is finite a.s. and in fact

E(τ) <∞).) Let vx = E(Vx) <∞ (sometimes called the exit frequencies). So E(τ) =
∑

x vx.
We claim that for every y ∈ S, ∑

x

pxyvx = vy + πy − µy. (34)

The reason is that the number of times that the chain leaves y is equal the number of times the
chain enters y, except for the initial and final visits (recall that µ is the starting distribution).
Now let τ ′ be another stationary time, and we can assume for the proof of optimality that
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E(τ ′) < ∞ as well (since at least τ has finite expectation). Let v′x denote the corresponding
exit frequencies. Then from (34) we see that∑

x

pxy(v
′
x − vx) = v′y − vy.

Since the chain is irreducible, invariant measures are unique up to constants. It follows that
for some α ∈ R,

v′x − vx = απx (35)

for all x ∈ S. Summing over x, we get α = E(τ ′) − E(τ). Now let y be a halting state for
τ (so far we have not really used that assumption except to say E(τ) < ∞). Then vy = 0.
Since v′y ≥ 0 we deduce from (35) that α = E(τ ′)− E(τ) ≥ 0, so τ is optimal.

We now examine the converse, the only if part (if a stationary time is optimal then it must
have a halting state). Suppose we can find some stationary time τ with a halting state. Let
us check that any optimal stationary time τ ′ must also have a halting state. To see this, note
that by the first part we know τ is also optimal so E(τ) = E(τ ′). Hence by (35) we see that
the exit frequencies vx and v′x are equal. In particular since τ has a halting state y say, we
see that vy = v′y = 0. This implies that y is also a halting state for τ ′ (a state y is halting if
and only if vy = 0 !) Hence the proof of the theorem is complete if we can prove that there
exists a stationary time τ with a halting state.

Lovász and Winkler give several examples of a stationary time with a halting state. Here
is one simple one, which they call the local rule. Fix a set vx of numbers satisfying the
“conservation equations” (34) subject to the constraint minx vx = 0; these are our candidate
exit frequencies for the stationary time. It is not hard to see that a solution to these equations
exist: we are trying to solve (I − P )v = π − µ. The solutions of this equation must of the
form v + tπ, where t ∈ R and v is any particular solution to this equation, such as the exit
frequencies obtained by letting the Markov chain run until it hits an independent sample from
the equilibrium distribution. Since v, π both have positive entries it is easy to check that we
can find t ∈ R such that minx(vx + tπx) = 0, e.g. by considering the infimum over all t such
that minx(vx + tπx) ≥ 0, which must be finite by considering the situation as t→ −∞.

Given such a vector vx, the local rule is simply as follows. At node x, stop with probability
πx/(πx + vx). The probability of stopping depends just on the state and not on the time.
Moreover clearly if vx = 0 then the rule stops at x with probability 1, so x is a halting state.
It remains to check that τ is stationary.

Lemma 7.2. The local rule induces a stationary time, i.e., P(Xτ = x) = π.

Proof. Let v′x denote the exit frequency of τ at x and let π′x denote the distribution of Xτ .
We would like to show that π′ = π; note that it suffices to show that v′ = v (by (34)). The
main claim is that v′x/vx = π′x/πx. To see this, note that

π′x = P(Xτ = x) =
∞∑
k=0

P(Xk = x, τ = k) =
∞∑
k=0

P(Xk = x, τ ≥ k)
πx

vx + πx

whereas

v′x =

∞∑
k=0

P(Xk = x; τ > k) =

∞∑
k=0

P(Xk = x, τ ≥ k)
vx

vx + πx
.
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Noting that v′x is zero whenever vx = 0, we deduce

v′x
vx

=
π′x
πx
.

Let α = maxx π
′
x/πx. Since both vectors sum to 1, it must be that α ≥ 1. Hence using the

conservation law (34) but for v′, ∑
x

pxyv
′
x = v′y + π′y − µy (36)

If y is a maximiser of π′x/πx, which is also a maximiser of v′x/vx by the above, we see that∑
x

pxyαvx ≥
∑
x

pxyv
′
x = α(vy + πy)− µy ≥ α(vy + πy − µy).

But the right hand side is, using the conservation law for v, also equal to α
∑

x pxyvx, which
is the left hand side. Hence all inequalities must have been equalities, and we deduce that
v′x = αvx for every x such that pxy > 0.

Applying the same argument to those x and going on inductively, we deduce (since the chain
is irreducible we can eventually reach every x in the state space) that v′x = αvx for every x.
But then v′/v is the constant vector α, and hence so is π′/π. Since

∑
x π
′
x =

∑
x πx = 1 it

must be α = 1 and we have π′x = πx.

Since the lemma implies the “only if” part of the result, we have finished the proof of
Theorem 7.4.

7.4 Stationary times are comparable to mixing times

We have so far in these notes focused on the notion of mixing in the sense of approximating
the invariant distribution for the total variation distance. But another natural definition is to
define the mixing time as a mean-optimal stationary time in the above sense of Lovász and
Winkler. This leads the following definition.

Definition 7.6. Let tstat = supx infτ Ex(τ), where the sup is over all starting point x and the
inf over all stationary times from x. We call tstat the stationary mixing time.

A natural question is to ask whether tmix and tstat are roughly identical. While tstat ≤ c tmix

is always true, it turns out that the converse requires nonperiodicity or at least laziness (as
the following example shows: consider two vertices joined by an edge plus a self-loop of weight
e−n: then tmix is of order en, but tstat is of order 1). However, making these assumptions, we
have the following result.

Theorem 7.5 (Aldous [1]). There exist two universal constants c1, c2 such that if X is a lazy
reversible chain then

c1 tmix ≤ tstat ≤ c2 tmix . (37)

Proof. We only show here the “easy direction”, which is tstat ≤ c2 tmix for some universal
constant c2 (and which doesn’t require any assumptions on the chain). Set t = tmix and
define a stopping time τ as follows. Take a coupling of Xt with π. If the coupling succeeds
set τ = t. If not, condition on Xt and consider the chain at time 2t, try again to couple it
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with π. If the coupling succeeds, set τ = 2t, and so on and so forth. Then note that Xτ has
by definition the distribution of π, and moreover τ has the same distribution as N tmix, where
N is a Geometric random variable with probability of success 1/4. Hence E(τ) = 4 tmix and
we get the desired inequality with c2 = 4.

The converse direction was shown by Aldous [1] for a reversible chain in continuous time.
An argument for the lazy chain in discrete time can be found in a paper by Peres and Sousi
[22] (roughly following the same lines as Aldous’ original argument, though a small problem
in the argument of [1] has been corrected there). In that paper, it is further shown that even
if the walk is not assumed to be lazy, then averaging over two consecutive steps is enough
to guarantee the inequality (37). See also [21] for a related independent and simultaneous
work.

7.5 Cover times

We end this section with a brief discussion of cover times. The cover time of a Markov chain
is the first time that all states have been visited at least once. This can be thought of as an
alternative notion of mixing (and indeed in some cases such as on the n-cycle, the cover time
is a strong stationary time).

Everything in this Chapter I have learnt from Yuval Peres in a conversation at dinner in a
sushi restaurant in San Jose. I thank him warmly for his enthusiastic account of Matthew’s
bound, which is close to the one I will give here (and is of course also closely related but
perhaps a bit simpler than the one in [17]).

We start with an incredibly general upper bound on the cover time, due to Matthews,
which relate cover time to maximal hitting times of states. First, some definitions. We let
τcov is the first time all vertices have been covered and set

tcov = inf
x∈S

Ex(τcov).

Example 7.5. On the complete graph Kn with self-loops, τcov is exactly the coupon collector
time so tcov = (1 + . . .+ 1/n).

Example 7.6. Show that on the n-cycle, tcov = n(n− 1)/2.

We turn to hitting times. For y ∈ S, set τy = inf{n ≥ 0 : Xn = y} and set

thit = max
x,y

Ex(τy).

Matthews’ bound is as follows.

Theorem 7.6. If |S| = n we have and X is an irreducible Markov chain on S,

tcov ≤
(

1 + . . .+
1

n

)
thit

At a heuristic level, we “collect” every state at rate at least 1/ thit, so the right hand side
is nothing but the coupon collector bound.

Proof. The proof idea is both simple and subtle. The main is the following. Suppose we order
the states of S uniformly at random, according to some uniform random permutation σ ∈ Sn.
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Let Tk be the time collect (i.e., visit) states σ(1), . . . , σ(k). Then the time to visit σ(k+ 1) is
at most thit in expectation.

But there is also a possibility that this time is zero, if for instance we have already visited
σ(k + 1) by time Tk. This will happen whenever σ(k + 1) is not the last visited sites among
{σ(1), . . . , σ(k + 1)} by the chain. However, since σ is independent of the chain, then the
latter has (by symmetry) probability (1− 1/(k + 1)). Summing gives us the result.

More precisely, let F be the filtration generated by X and by the permutation σ. Then Tk
is an F-stopping time. Furthermore if Ak is the event that σ(k+ 1) is already visited by time
Tk then Ak is FTk -measurable and P(Ak) = 1/(k + 1) by symmetry. Hence

E(Tk+1 − Tk) = E(E(Tk+1 − Tk|FTk))

≤ E(1{Ak} thit)

=
thit

k + 1
.

Summing from k = 0 to n− 1 gives the result.

Surprisingly, Matthew’s bound is sharp in many examples. To get a lower bound, we can
proceed in a relatively similar manner by consider the minimal hitting time, restricted to sets
which are relatively sparse (so that minimal hitting time can be quite large). In graphs where
the walk needs to mix before hitting points, this will give us the right answer.

Thus fix A ⊂ S and let tAmin = minx∈A,y∈A,x 6=y Ex(τy). The proof of the following result is
very similar and is left as an exercise.

Theorem 7.7. For any A ⊂ S,

tcov ≥ tAmin(1 + . . .+
1

k − 1
),

where k = |A|.

A striking recent development in connection with cover times is the beautiful result of
Ding, Lee and Peres [13], which relates the cover time tcov on a graph with vertex se S to
the maximum of the Gaussian free field (hx, x ∈ S). This is the centered Gaussian random
vector such that hv0 = 0 for some fixed v0 ∈ S and with covariance E((hx − hy)2) = R(x, y)
the effective resistance between x and y. Then the Ding, Lee and Peres theorem [13] is the
following:

Theorem 7.8.

tcov � |E|
(
E(max

x∈S
hx)

)2

where the implied constants are universal.

This falls outside the scope of these notes, so we will not give a proof of this result.

7.6 Example: cover time of the torus in dimension d ≥ 3

We explain how to apply Matthew’s method to estimate the cover time on Zdn, the d-
dimensional torus of sidelength as n → ∞, for fixed d ≥ 3. The key to doing this is an
estimate on the hitting time of points. The main estimate is the following:

71



Proposition 7.1. There exists c1, c2 such that for any x 6= y ∈ Zdn, then

c1n
d ≤ Ex(τy) ≤ c2n

d.

Note in particular that these estimates do not depend on the distance between x and y.
The reason is that even when x, y are close, due to transience of Zd for d ≥ 3, there is a
positive probability for the walk to escape. Then the walk will mix before hitting y. Thus
the hitting time is of order 1 on an event of positive probability (when x, y are very close)
but of order nd on an event of positive probability. So up to constant the expectation will be
of order nd.

First we explain why nd is indeed the right order of magnitude, observe that in time nd the
walk is highly mixed, because nd � n2 which is the mixing time. Thus it takes time of order
nd before the expected amount of visits to y is of order 1. A second moment argument then
shows that at that time, the probability of visiting is indeed positive, since at each visit the
total number of visits will be locally bounded (again by transience). The book [17] proves
this using some fairly general theory of electrical network theory (based on looking at the
effective resistance and commute time), but we give a completely elementary proof here.

Proof. We consider separately the lower and upper bound. In both cases we will need the
following lemma.

Lemma 7.3. If x ∈ Zdn and s = cn2 for some fixed c > 0 then Px(τy ≥ s) ≥ 1/C for some
constant C. Also, ExL(s, y) ≤ C for some constant C > 0 where L(s, x) is the number of
visits to x by time s (or local time of the chain at x by time s).

Proof. Note that in Zd, by transience, the walk hits the boundary of a box of size n/2 around
y without hitting y with probability bounded below. Furthermore, if that is the case, there
is positive probability staying away from the box of size n/4 around y during time cn2, but
stay in the box of size 3n/4. If that is the case, the walk on Zdn will definitely not hit y during
[0, cn2], as desired.

The second part follows by applying the Markov property at each successive visit to y.

Given this lemma, let us consider the lower bound. First of all choose c1 and set s = 2 tmix,
and let I = [s, c1n

d]. Then during I, the expected number of visits to y is at most 2π(y)|I| ≤
c1n

d × 2/nd = 2c1. Hence with probability at least 1 − 2c1 there is no visit during I. We
also know from Lemma 7.3 that with positive probability there is no visit during [0, s]. Hence
by choosing c1 sufficiently small and a union bound, we see that τy ≥ c1n

d with positive
probability. Hence Ex(τy) ≥ c′1nd, as desired.

We now turn to the upper bound on τy. Set s = 2 tmix as above. We claim that the
probability of hitting y during [s, 2s] is at least c/nd−2. Indeed let N denote the number of
visits to y during [s, 2s]. Then by Cauchy–Schwarz,

P(N > 0) ≥ E(N)2

E(N2)
.

Now, on the numerator we have

E(N) ≥ (1/2)π(y)s ≥ cn2−d.
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On the other hand, in the denominator, by the Markov property,

E(N2) ≤
∑

s≤j≤k≤2s

E(1{Xj=y,Xk=y})

≤
∑

s≤j≤2s

E(1{Xj=y}Ey(L(s, y)))

≤ CE(N)

by Lemma 7.3. Consequently,

P(N > 0) ≥ cE(N) ≥ cn2−d.

Iterating this bound,

Pk(τy > 2ks) ≤ (1− cn2−d)k ≤ exp(−kcn2−d).

Summing over all k, we get
Ex(τy) ≤ Csnd−2 = Cnd

as desired.

We now estimate the cover times on the torus. By Theorem 7.6 and Proposition 7.1, we
see that

tcov ≤ c2n
d log n.

On the other hand, for the lower bound we can take A to be Zdn itself, since the minimum
hitting time is of the same order of magnitude as the maximum hitting time (even when the
points are close, as explained). Hence

tcov ≥ c1n
d log n.
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8 Nash inequalities.

The reader is advised that this chapter requires extensive rewriting.

8.1 Abstract result

We have already seen that a Poincaré inequality (i.e., a control on the spectral gap) was not
sharp up to logarithms when we use the standard relation between spectral gap and mixing
times (Theorem 2.2). In previous cases, such as the random walk on the circle, we overcame
this difficulty by using an explicit control on all eigenvalues and symmetry properties of the
graph (essentially, vertex-transitivity).

The following result is what people usually refer to as Nash’s theorem, although this isn’t
the language in which it was stated, and uses a slightly sharpened version of the Poincaré
inequality, which doesn’t lead to a log n loss when translating to mixing times. We start with
defining what is a Nash inequality.

Definition 8.1. Assume that (K,π) is irreducible and reversible. We say that it satisfies a
Nash inequality if, for all g ∈ `2(π),

varπ(g)1+2/d ≤ CE(g, g)‖g‖4/d1 . (38)

We will see that in practice, d often represents the “true dimension” of the ambient space
and that C is a constant of the order of the relaxation time.

Theorem 8.1. Then for all t > 0,

‖hxt − 1‖2 ≤
(
dC

4t

)d/4
.

and for all t > 0,

|ht(x, y)− 1| ≤
(
dC

2t

)d/2
.

Proof. Fix f a function such that ‖f‖1 = 1, and set

u(t) = ‖Ht(f − πf)‖22 = varπ(Htf).

By our assumption (38), we have

u(t)1+2/d ≤ CE(Htf)‖Htf‖4/d1

and we have already seen that E(Htf) = −1
2u
′(t). (Here E(h) := E(h, h)).

Note also that since ‖f‖1 ≤ 1, and using reversibility:

‖Htf‖1 =
∑
x

|Htf(x)|π(x)

=
∑
x

∣∣∣∣∣∑
y

Ht(x, y)f(y)

∣∣∣∣∣π(x)

≤
∑
x,y

Ht(x, y)|f(y)|π(x)

=
∑
y

π(y)|f(y)|
∑
x

Ht(y, x)

= ‖f‖1 ≤ 1.
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So we conclude that:

u(t)1+2/d ≤ −C
2
u′(t).

Thus if we set v(t) = (dC/4)u(t)−2/d, we have: v′(t) ≥ 1 for all t and hence since v(0) ≥ 0,
this implies v(t) ≥ t for all t. From this it follows that

‖Ht(f − πf)‖2 ≤
(
dC

4t

)d/4
for all f such that ‖f‖1 = 1. But note that this inequality is scale invariant, so it must hold

for all f . Furthermore, specializing to f = fx(y) =
1{y=x}
π(y) , note that Htf(y) = ht(x, y) by

reversibility and that Eπ(f) = 1, so we obtain the first part of the conclusion, which is:

‖hxt − 1‖2 ≤
(
dC

4t

)d/4
.

Using Lemma ??, together with Cauchy-Schwarz’s inequality, this immediately entails the
second part of the conclusion.

Remark. The constant C in (38) must satisfy:

C ≥ 1/γ. (39)

Indeed, if g is such that Eπ(g) = 0 then by (38) we have:

varπ(g)1+2/d ≤ CE(g)‖g‖4/d1

so by Jensen’s inequality (i.e., Cauchy-Schwartz):

varπ(g)1+2/d ≤ CE(g)‖g‖4/d2

But note that ‖g‖22 = varπ g so this actually means:

varπ(g) ≤ CE(g)

which stays true even if Eπ(g) 6= 0 by adding a suitable constant to g. Since on the other
hand by the variational formulation we know

γ = min
varπ g 6=0

E(g)

varπ(g)

this implies γ ≥ 1/C which is (39).

The conclusion of Theorem 8.1 is usually strong when t is not too large, otherwise Theorems
?? and ?? typically take over. Taking this into account leads to the slightly refined estimate:

Corollary 8.1. If Nash’s inequality (38) is satisfied, then

‖hxt − 1‖2 ≤ min

{(
dC

4t

)d/4
, e−γ(t−dC/4)

}
.

See Corollary 2.3.2 in [24] for a proof.
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8.2 Example

Basically, Nash inequalities are excellent tools to deal with situation where the geometry
is subtle. However at this stage we haven’t yet developed any of the corresponding useful
geometric tools, so our example is fairly basic. Consider the interval S = {−n, . . . , n}, and
consider simple random walk on S with holding probability 1/2 at both hands. (This walk is
always aperiodic). The uniform measure π(x) ≡ 1/(2n+ 1) is stationary and even reversible.
If f : S → R, the Dirichlet form is:

E(f) =
1

2n+ 1

n−1∑
i=−n

|f(i+ 1)− f(i)|2.

Now, it is obvious that

|max f −min f | ≤
n−1∑
i=−n

|f(i+ 1)− f(i)|

so if f is not of constant, in particular

‖f‖∞ ≤
n−1∑
i=−n

|f(i+ 1)− f(i)|.

Let g be such that Eπ(g) = 0, and define a function f = sgn(g)g2. Then writing ∆f(i) for
the increment f(i+ 1)− f(i), it follows

|∆f(i)| ≤ |∆g(i)|(|g(i+ 1)|+ |g(i)|)

so that by Cauchy-Schwartz:

‖f‖∞ ≤
(∑

i

|∆g(i)|2
)1/2(∑

i

(|g(i+ 1)|+ |g(i)|)2

)1/2

The first term is nothing but E(g)1/2(2n + 1)1/2, while the second is smaller than 2‖g‖2 by
Cauchy-Schwartz’s inequality, so we obtain:

‖f‖∞ = ‖g‖2∞ ≤ 2(2n+ 1)E(g)1/2‖g‖2

Using Hölder’s inequality:

‖g‖42 ≤ ‖g‖2∞‖g‖21
≤ 2(2n+ 1)E(g)1/2‖g‖2‖g‖21

and thus, dividing by ‖g‖2 we get:

‖g‖32 ≤ 2(2n+ 1)E(g)1/2‖g‖21

Since g has mean 0, this is the same as

(varπ g)3 ≤ 4(2n+ 1)2E(g)‖g‖41
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after squaring. Changing g into g̃+m with m = E(g) and E(g̃) = 0, we see that ‖g̃‖1 ≤ 2‖g‖1
so the following holds for all g:

(varπ g)3 ≤ 64(2n+ 1)2E(g)‖g‖41.

This is Nash’s inequality (38) with d = 1 (the dimension of the space) and C = 64(2n+ 1)2.
Thus, by (39),

γ ≥ 1

64(2n+ 1)2
.

Nash’s theorem tells us:

‖hxt − 1‖2 ≤
(

64(2n+ 1)2

2t

)1/4

which is the right order of magnitude, while the spectral gap estimate (??) only gives:

‖hxt − 1‖2 ≤
√

2n+ 1e−t/(64(2n+1)2)

which is off because of the square root in front (it shows that roughly n2 log n units of time
are enough to mix, which is more than necessary).
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9 Martingale methods and evolving sets

The reader is advised that this chapter requires extensive rewriting

Evolving sets is an auxiliary process with values in the subsets of the state space V , which
was introduced by Morris and Peres in 2005. They can be used to prove some remarkable
general results about mixing times, which we now describe.

The setup is as follows: we have a countable state space V with irreducible aperiodic
transition probability p(x, y) and stationary distribution π(x). We define the equilibrium
flow from x to y as

Q(x, y) = π(x)p(x, y)

which is a slight change compared to our previous notion of flow in the previous chapters.
(We used to take Q(e) = 1

2(π(x)K(x, y) + π(y)K(y, x)). Thus the two definitions coincide
when the chain is reversible). If S ⊂ V , we further define Q(S, y) =

∑
x∈S Q(x, y).

9.1 Definition and properties

Definition 9.1. The evolving set process is a set-valued Markov chain (Sn, n ≥ 0), whose
transition probabilities are as follow. Given Sn = S ⊂ V , pick U a uniform random variable
on (0, 1). Then Sn+1 = S̃ where

S̃ = {y ∈ V : Q(S, y) ≥ Uπ(y)}.

Note that an immediate consequence of this definition is that if y ∈ V , then

P(y ∈ Sn+1|Sn = S) = P(Q(S, y) ≥ Uπ(y)) =
Q(S, y)

π(y)
.

To get a feel for how this chain works, consider the example where V is given by the
n × n torus in 2 dimensions, and X is the lazy chain: that is, it stays wherever it is with
probability 1/2 and move to a randomly chosen neighbour with probability 1/2. (Thus the
chain is irreducible and aperiodic). The stationary distribution π is then uniform. Thus a
given point y belongs to S̃ if and only if

∑
x∈S p(x, y) > U . Now, if x is a neighbour from

y, then p(x, y) = 1/8, while if x = y, p(x, y) = 1/2. Thus if U < 1/2, the set will grow. If
1/8 < U < 2/8 in the example below, any point on the boundary of S is added provided that
it has at least two neighbours. If on the other hand, 6/8 < U < 7/8 then only points in S
with at least three neighbours in S will be kept next round. This is illustrated in the picture
below.

We now state some of the properties of the evolving set process. The first is martingale
property which shall be very useful in the following.

Lemma 9.1. The sequence {π(Sn)}n≥0 is a martingale.
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Figure 4: The initial state of the evolving set and two possible transitions: (a) 1/8 < U < 2/8
and (b) 6/8 < U < 7/8.

Proof.

E(π(Sn+1)|Sn) =
∑
y∈V

π(y)P(y ∈ Sn+1|Sn)

=
∑
y∈V

π(y)
Q(Sn, y)

π(y)

=
∑
y∈V

π(Sn)p(Sn, y)

= π(Sn)
∑
y∈V

p(Sn, y) = π(Sn).

The next lemma relates the evolving set to the transition probabilities of the Markov chain:

Lemma 9.2. For all n ≥ 0, we have:

pn(x, y) =
π(y)

π(x)
Px(y ∈ Sn).

Here Px means that the evolving set starts at S0 = {x}.

Proof. The proof proceeds by induction. The case n = 0 is trivial so assume that n ≥ 1 and
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that the result is true for n−1. Then by decomposing on the state of the chain at time n−1,

pn(x, y) =
∑
z

pn−1(x, z)p(z, y)

=
∑
z

π(z)

π(x)
Px(z ∈ Sn−1)p(z, y)

=
π(y)

π(x)

∑
z

π(z)p(z, y)︸ ︷︷ ︸
=Q(z,y)

1

π(y)
Px(z ∈ Sn−1)

=
π(y)

π(x)
Ex
(

1

π(y)
Q(Sn−1, y)

)
=
π(y)

π(x)
Ex (Px(y ∈ Sn|Sn−1))

=
π(y)

π(x)
Px(y ∈ Sn).

The next lemma states a duality property between Sn and Scn:

Lemma 9.3. The complement Scn of the evolving set is also an evolving set process with the
same transition probabilities.

Proof. Fix n ≥ 0. Note that Q(Sn, y)+Q(Scn, y) = Q(V, y) = π(y) by stationarity. Therefore,
Q(Scn, y) = π(y)−Q(Sn, y). It follows that if U is the random variable used for the construction
of Sn+1 given Sn,

Scn+1 = {y ∈ V : Q(Sn, y) < Uπ(y)}
= {y ∈ V : π(y)−Q(Scn, y) < Uπ(y)}
= {y ∈ V : Q(Scn, y) > (1− U)π(y)}

Since U
d
= 1− U , Scn+1 has the same transition probabilities as the original evolving set.

We may now start to describe the relationship between evolving sets and mixing. We start
by defining the `2-distance between µ and π, where π is a distribution on V , χ(µ, π):

χ(µ, π) =

∑
y∈V

π(y)

[
µ(y)

π(y)
− 1

]2
1/2

To make sense of this definition, note that χ(µ, π)2 is the second moment (with respect to π)
of the Radom-Nikodyn derivative of µ with respect to π, µ(y)/π(y), minus 1. This derivative
would be exactly 1 if µ ≡ π so χ(π, π) = 0. It turns out that χ is a distance, and is a stronger
way to measure distance to stationarity than the total variation distance, as is shown by the
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following computation:

‖µ− π‖ =
1

2

∑
y∈V
|µ(y)− π(y)|

=
1

2

∑
y∈V

π(y)

∣∣∣∣µ(y)

π(y)
− 1

∣∣∣∣
≤ 1

2
χ(µ, π)

by Cauchy-Schwarz’s inequality. Thus if χ(µ, π) is small, then so is ‖µ−π‖. Note furthermore
that by expanding the square in the definition of χ(µ, π), we have

χ(µ, π)2 =
∑
y

µ2(y)

π(y)
− 1.

We introduce the following notation:

S] =

{
S if π(S) ≤ 1/2

Sc otherwise
(40)

Lemma 9.4. Let µn = pn(x, ·) be the distribution of the Markov chain after n steps started
from x. Then

χ(µn, π) ≤ 1

π(x)
E{x}

(√
π(S]n)

)
. (41)

Proof. The idea is to introduce two replicas (independent copies) of the evolving set process
Sn and Λn. Then note that

χ(µn, π)2 =

(∑
y

µn(y)2

π(y)

)
− 1

=

(∑
y

[
π(y)

π(x)
Px(y ∈ Sn)

]2 1

π(y)

)
− 1

=
∑
y

π(y)Px(y ∈ Sn)2

π(x)2
− 1

=
1

π(x)2

(∑
y

π(y)Px(y ∈ Sn)2 − π(x)2

)

=
1

π(x)2

(∑
y

π(y)Px(y ∈ Sn; y ∈ Λn)− π(x)2

)

Now, recall that by the martingale property, π(x) = Ex(π(Sn)), so that by independence
between Sn and Λn, the above may be written as

χ(µn, π)2 =
1

π(x)2
Ex
(
π(Sn ∩ Λn)− π(Sn)π(Λn)

)
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On the other hand, for any sets Λ, S ⊂ V we always have

π(Λ) = π(Λ)π(S) + π(Λ)π(Sc)

and
π(Λ) = π(Λ;S) + π(Λ;Sc)

so that
|π(S ∩ Λ)− π(S)π(Λ)| = |π(Sc)π(Λ)− π(Sc ∩ Λ)|

But note that the expression in the right-hand side is invariant if one replaces Λ by Λc or S
by Sc. Therefore,

|π(S ∩ Λ)− π(S)π(Λ)| ≤ |π(S])π(Λ])− π(S] ∩ Λ])|

Letting p = π(S]) ∧ π(Λ]), this means

|π(S ∩ Λ)− π(S)π(Λ)| ≤ |π(S])π(Λ])− π(S] ∩ Λ])|

≤ |p− p2| ≤ p ≤
√
π(S])π(Λ])

whence

χ(µn, π)2 =
1

π(x)2
Ex
(√

π(S]n)π(Λ]n)

)
and therefore, by independence:

χ(µn, π) =
1

π(x)2
Ex
(√

π(S]n)

)
which ends the proof.

It is interesting to think about the last result in the case where V is say finite. The evolving
set process is a Markov chain where the only two absorbing states are the empty set and states
otherwise communicate. Hence Sn eventually gets absorbed in one of those two states. When
this happens, then S]n = ∅, so (41) suggests that the distance is then close to 0. This idea
can be carried further to construct what is known as a strong stationary time, i.e., a random

time T such that XT
d
= π exactly, and moreover T is independent of XT . See section 17.7 in

[17] for more information about this.

9.2 Evolving sets as a randomised isoperimetric profile

For a set S ⊂ V , let S̃ denote a step of the evolving set process started from S. Define the
boundary gauge:

Ψ(S) = 1− ES

√π(S̃)

π(S)


and let

ψ(r) =

{
inf{Ψ(S) : π(S) ≤ r} if r ∈ [π∗, 1

2 ]

ψ(1/2) otherwise.

Here, π∗ denotes as usual the minimum value of the stationary distribution π∗ = infx∈V π(x).
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Note that ψ(r) is non-increasing on r ≥ π∗. The definition of Ψ and ψ is reminiscent of
the definition of the isoperimetric constant I in Lecture 6. In fact, intuitively speaking ψ(r)
is essentially a “randomized isoperimetric constant” among all sets of mass smaller than r
(where mass is measured in terms of the stationary distribution). It is randomized in the
sense that we don’t simply measure boundary over volume Q(S, Sc)/π(X) as we do for the
isoperimetric constant, but we compare the masses of S̃ with S, where S̃ is chosen according
to the evolving set rules. ψ(r) can thus be thought of as a randomized isoperimetric profile.
We will see more about this line of thought in the next subsection.

The following result gives us an explicit upper-bound for the mixing times of the chain in
terms of this function ψ.

Theorem 9.1. Let x ∈ V and let µn = pn(x, ·). Then for all ε > 0,

χ(µn, π)2 ≤ ε for all n ≥
∫ 4/ε

4π(x)

du

uψ(u)
.

In particular

tmix(
√
ε) ≤

∫ 4/ε

4π∗

du

uψ(u)
.

Proof. Let K(S,A) denote the transition kernel of the evolving set process. We define the
transformed kernel

K̂(S,A) =
π(A)

π(S)
K(S,A),

for which it is easy to check that this is also a transition kernel. To explain the definition,
we note that starting from a state S, the probability that Sn will get absorbed by V rather
than by ∅ is, by the optional stopping theorem, π(S), since π(Sn) is a martingale. Thus
the transition of K̂ are those of K weighted by the probability that, starting from the new
state A, the chain will eventually get absorbed by V rather than by ∅. Doob’s theory of
h-transforms tells us that this is indeed the transition probabilities of the Markov chain Sn
conditioned on eventual absorption by V .

Moreover, by induction on n

K̂n(S,A) =
π(A)

π(S)
Kn(S,A)

and thus for any nonnegative function f :

ÊS(f(Sn)) = Es
(
π(Sn)

π(S)
f(Sn)

)
by the monotone class theorem. Let Zn =

√
π(S]n)/π(Sn). Then if π(Sn) ≤ 1/2, we have

Zn =
√

1/π(Sn), i.e., π(Sn) = Z−2
n for π(Sn) < 1/2.

Using (41), we get:

χ(µn, π) ≤ 1

π(x)
Ex
√
π(S]n) = Ex

π(Sn)

π(x)

√
π(S]n)

π(Sn)


≤ Êx


√
π(S]n)

π(Sn)

 = Êx(Zn).
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Thus to control the `2 distance it suffices to have good bounds on Êx(Zn). However, we
have the following lemma.

Lemma 9.5. Let f : [0,∞) → [0, 1] be a nondecreasing function. Suppose that Zn is a
sequence of random variables such that Z0 = E(Z0) = L0 (say), and for all n ≥ 0:

E(Zn+1|Zn) ≤ Zn(1− f(Zn)).

Then for every n ≥
∫ L0

δ

2dz

zf(z/2)
we have E(Zn) ≤ δ.

Proof. The proof is split into two steps. The first step is to show that if Ln = E(Zn), then

Ln+1 ≤ Ln(1− g(Ln)) (42)

where g(u) = 1
2f(u/2). Indeed, if A = {Zn > E(Zn)/2}, then

E(Zn1{Ac}) ≤
1

2
E(Zn)

so

E(Z1{A}) ≥
1

2
E(Z).

Thus since g is nondecreasing:

E(Zng(2Zn)) ≥ E(Zn1{A}g(Ln)) =
1

2
Lng(Ln).

On the other hand,

E(Zn+1 − Zn) ≤ −E(Znf(Zn)) = −2E(Zng(2Zn)) ≤ −Lng(Ln)

which proves the claim.
The second step is as follows. Note that it suffices to prove that∫ L0

Ln

dz

zf(z)
≥ n.

However,
Ln+1 ≤ Ln(1− g(Ln)) ≤ Lne−g(Ln),

so ∫ Lk

Lk+1

dz

zf(z)
≥ 1

f(Lk)

∫ Lk

Lk+1

dz

z
=

1

f(Lk)
log

Lk
Lk+1

≥ 1.

Summing up over k ∈ {0, . . . , n− 1} gives the result.

End of the proof of Theorem 9.1. Let us compute Êx(Zn+1/Zn|Sn).

Êx
(
Zn+1

Zn

∣∣∣∣Sn) = Ex
(
π(Sn+1)

π(Sn)

Zn+1

Zn

∣∣∣∣Sn)

= Ex


√
π(S]n+1)√
π(S]n)

∣∣∣∣∣∣Sn


= 1−Ψ(S]n).
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Note that Ψ(S]n) ≥ ψ(π(S]n))

Êx
(
Zn+1

Zn

∣∣∣∣Sn) ≤ 1− ψ(π(S]n))

Now, ψ is non-increasing so 1− ψ(·) is nondecreasing. On the other hand we note that it is

always true that π(S]n) ≤ Z−2
n . (It is an equality if π(Sn) ≤ 1/2.) Indeed, this is equivalent

to saying

π(S]n) ≤ π(Sn)2

π(S]n)

or equivalently, π(S]n) ≤ π(Sn), which is obviously true. Thus by monotonicity we get

Êx
(
Zn+1

Zn

∣∣∣∣Sn) ≤ 1− ψ(Z−2
n )

and note that if f(z) = psi(1/z2, which is nondecreasing, then Lemma 9.5 tells us that if
L0 = Z0 = π(x)−1/2, then Ê(Zn) ≤ δ for all

n ≥
∫ π(x)−1/2

δ

2dz

zψ(4/z2)
,

or, after making the change of variable u = 4/z2,

n ≥
∫ 4/δ2

π(x)

du

uψ(u)
.

Thus since Ê(Zn) = χ(µn, π), taking δ =
√
ε, we get χ(µn, π)2 ≤ ε for all

n ≥
∫ 4/ε

π(x)

du

uψ(u)
.

This finishes the proof of Theorem 9.1.

9.3 Application: the isoperimetric profile

Theorem 9.1 can be used to prove a bound on mixing times which slightly more intuitive
than the above, and which is given in terms of the isoperimetric or conductance profile of the
chain. Let us briefly discuss these notions. We have seen in Lecture 6 on geometric tools II
how the isoperimetric constant

I = min
S⊂V,π(S)≤1/2

Q(S, Sc)

π(S)

can be used to bound the spectral gap: we have γ ≥ I2/8 and thus

tmix(ε) ≤ trel log((π∗ε)
−1) ≤ 8I−2(log

1

π∗
+ log

1

ε
). (43)

The quantity ΦS := Q(S, Sc)/π(S) is called the conductance of a set S. One idea that
emerged in the late 90’s is that generally speaking, sets which are “small” (in the sense of
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stationary distribution, say) tend to have a higher conductance, so it is very pessimistic to
always bound it below by I. Instead, it was suggested to consider the isoperimetric profile or
conductance profile

Φ(r) = inf{Φs : π(S) ≤ r}.
It should thus be possible to prove a bound which use the decreasing function Φ(r) rather than
the constant function I = Φ(1/2). Morris and Peres were able to use evolving sets to prove the
following result. Recall the first that the separation distance s(µ, π) = maxy(1− µ(y)/π(y))
is such that ‖µ− π‖ ≤ s(µ, π).

Theorem 9.2. Assume that the chain is irreducible and that p(x, x) ≥ 1/2 for all x ∈ V (in
particular, it is aperiodic). Then for all n such that

n ≥ 1 +

∫ 4/ε

4π∗

4du

uΦ2(u)

then ∣∣∣∣pn(x, y)− π(y)

π(y)

∣∣∣∣ ≤ ε.
In particular, s(µn, π) ≤ ε and thus ‖µn − π‖ ≤ ε.

Note that, using the monotonicity of Φ(u) (which is weakly decreasing with u) we have
Φ(u) ≥ I for all u ≤ 1/2, so we find better bounds than (43).

Proof. The proof is essentially a consequence of Theorem 9.1, and of the following lemma
which relates the conductance ΦS to the boundary gauge Ψ(S) used in the previous theorem:

Lemma 9.6. Let S ⊂ V be nonempty, and assume that p(x, x) ≥ 1/2. Then

Ψ(S) = 1 = ES

√
π(S̃)

π(S)
≥ 1

2
Φ2
S .

In particular, Φ(r)2 ≤ 2ψ(r) for all r ∈ [π∗, 1/2].

See section 4 of the original paper of Morris and Peres for a proof of this result.
Let us now turn to the proof of Theorem 9.2. First recall the time-reversal q(·, ·) which is

a different transition matrix on V × V , which satisfies

π(y)p(y, z) = π(z)q(z, y), y, z ∈ V.

There is a similar formula for the m-step transition probabilities of q, which is given by

π(y)pm(y, z) = π(z)qm(z, y), y, z ∈ V,m ≥ 1.

by summing up over intermediary states and induction on m ≥ 1. Now, note that

pn+m(x, z)− π(z) =
∑
y∈V

(
pn(x, y)− π(y)

)(
pm(y, z)− π(z)

)
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and therefore: ∣∣∣∣pn+m(x, z)− π(z)

π(z)

∣∣∣∣ =

∣∣∣∣∣∣
∑
y∈V

(
pn(x, y)− π(y)

)(pm(y, z)− π(z)

π(z)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈V

π(y)
(pn(x, y)

π(y)
− 1
)(qm(z, y)

π(y)
− 1
)∣∣∣∣∣∣

≤ χ(pn(x, ·), π)χ(qm(z, ·), π)

by Cauchy-Schwarz’s inequality. But now, observe that Q(S, Sc) is the asymptotic fraction of
transitions of the chain from a state in S to a state in Sc at equilibrium. However, every such
transition must be followed by a transition from a state in Sc to a state in S, and therefore, the
asymptotic frequency of these transitions must be equal. It follows that Q(S, Sc) = Q(Sc, S),
and as a consequence the conductance profile of the chain q is identical to the conductance
profile of the chain p. It follows that if

m, ` ≥
∫ 4/ε

4π∗

2du

uΦ(u)2
,

then
χ(pm(x, ·), π) ≤ √ε, χ(q`(x, ·), π) ≤ √ε

and therefore, ∣∣∣∣pm+`(x, z)− π(z)

π(z)

∣∣∣∣ ≤ ε.
This finishes the proof of Theorem 9.2.
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10 Coupling from the past: a method for exact sampling

Around 1996, Propp and Wilson came up with a brilliant algorithm to generate an exact
sample from the equilibrium distribution of a wide class of Markov chains – and this algorithm
also decides how long to the run the chain for. This algorithm is known as coupling from the
past, for reasons which will become clear. The setup in which this algorithm is simplest is when
the Markov chain’s state space has a natural notion of partial order. To keep things simple,
we first introduce a prototypical example of the class of Markov chain to which coupling from
the past applies, and then describe how this works.

10.1 The Ising model and the Glauber dynamics

The Ising model is one of the most basic models of statistical physics, which is a probability
measure on spin configurations over a given graph G. Suppose G = (V,E) is a finite graph,
such as the n×n torus, and let σ ∈ S := {−1, 1}V , i.e., σ is a function from the vertices of G
into {−1, 1} (which is the value of the spin at every vertex). Define the Hamiltonian of the
system by:

H(σ) = −
∑
i∼j

σiσj −
∑
i∈V

Biσi

where (Bi, i ∈ V ) are given numbers called the external field of the system. We define a
probability measure on spin configurations σ ∈ S by:

µβ(σ) := Z−1 exp(−βH(σ))

where β > 0 and Z−1 is a normalizing constant which makes the probabilities add up to 1. µβ
is called the Gibbs distribution of the Ising (ferromagnetic) model with inverse temperature
β. Thus µβ favors configurations on which neighbouring spins agree, and the greater β, the
greater this tendency.

To digress a little bit from the main topic, looking at simulations of this model, one guesses
the following phenomenon: there is a phase transition as β increases from 0 to ∞ during
which the following occurs: for small β > 0, the connected clusters of identical spins are small
and widespread “random” (whatever this means), while for large β they are organized: for
instance if Bi > 0 then spins are overwhelmingly negative.

To make simulations, one needs an efficient algorithm for sampling and this is usually done
with the help of the following Markov chain called the Glauber dynamics: this is a Markov
chain which updates the spin values of one site at a time, and does so as follows. We select
a site random, i ∈ V say, and let σi be the value of the spin at i. The update of the site
is essentially the following: we pretend the neighbours j ∼ i are already at equilibrium, and
choose the new value of σi according to the conditional equilibrium distribution of σi given
the values of σj . In practice, this means the following: let U be a uniform random variable,
let p = µβ(σi = +1|σj , j 6= i) and let q = 1− p. Then update σi = 1 if and only if U < p, or
in other words,

U <
1

1 + q/p
,

and put σi = −1 otherwise. Now, observe that q/p may be written as

q

p
= exp(−β∆H), where ∆H = 2

∑
j∼i

σj + 2Bi.
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Thus note that we don’t even need to estimate the normalizing constant Z to do this!

Theorem 10.1. The Gibbs distribution µβ is the unique invariant distribution for the Glauber
dynamics.

Proof. It suffices to prove that the detailed balance condition

µβ(σ)P (σ, σ′) = µβ(σ′)P (σ′, σ)

where P denotes the transition kernel for the Glauber dynamics.
To check it, it suffices to consider σ, σ′ which differ at exactly one vertex i ∈ V . Assume

for instance σi = −1 while σ′i = +1. In µβ(σ), we eliminate the dependence on things other
than σi by writing

µβ(σ) = C exp

−β∑
j∼i

σj − βBi


and

µβ(σ′) = C exp

β∑
j∼i

σj + βBi

 .

Thus it suffices to check

C exp

(
−β∆H

2

)
1

1 + exp(−β∆H)
= C exp

(
β

∆H

2

)(
1− 1

1 + exp(−β∆H)

)
or equivalently, after cancellation of C/(1 + exp(β∆H)):

exp

(
−β∆H

2

)
= exp

(
β

∆H

2

)
exp (−β∆H)

which is obvious.

Monotonicity. There is a natural order relation on spin configurations σ, which is to say
σ � σ′ if σi ≤ σ′i for all i ∈ V . Note that the Glauber dynamics respects this order relation:
that is, if σ1 � σ2, then their respective updates σ′1 and σ′2 will also satisfy the same relations.
This is an immediate consequence of the fact that

∆H = 2
∑
i

Bi + 2
∑
i

σi monotone increasing in every σi

There is one maximal state 1̂ which is the spin configuration where all spins are pointing up,
while there is a minimal configuration −̂1 such that all spins are pointing down.

This monotonicity (and the existence of a minimal and maximal states) are the properties
we are looking for. Rather than state precise conditions, we now describe the method of
coupling from the past for the Glauber dynamics. It will be clear from the example how this
works in general.
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10.2 Coupling from the past.

The algorithm, and the proof that it works, are both deceptively simple: but change one
ingredient and the whole thing collapses. The initial idea is the following. Instead of running
the Markov chain starts at time 0 and we need to run it for a long time, we imagine instead
it has run forever, and we need to choose the starting point far enough into the past (and
the starting states suitably) so that the sample from the Markov chain at time 0 can be
guaranteed to be exactly in equilibrium. To do that, we use the monotonicity of the Glauber
dynamics as follows. Assume that some independent uniform random variables U−1, U−2, . . .
have been fixed once and for all. Let T > 0 and consider the Glauber chain runs between
times −T and 0 using these same random variables for the updates, and suppose also that
T is large enough that if we had started the chain at time −T from the maximal 1̂, then
the state at time 0 would be identical to the state which we would have obtained if we had
started from the minimal state −̂1. In that case, note that any other starting state is always
such that the chain run from that state using the updates U−T , . . . , U0 is always sandwiched
between the chain started from the extremal states. We say that the chain has coalesced.

If the chain has not coalesced during [−T, 0], we start again from −2T and keep running
the chain using the same updates U−2T , . . . , U−T , . . . , U−1, and start again checking whether
the chain has coalesced during [−2T, 0]. So long as the chain hasn’t coalesced then we keep
multiplying T by 2 and checking if the two extremal states coalesce starting from time −T
before time 0. If that is the case, we define our sample X to be the value of the chain at time
0. This is the coupling from the past.

Theorem 10.2. This algorithm terminates almost surely in finite time. Moreover, X
d
= π.

Proof. The update rule of configuration σ given the randomness U may be written as a map
σ′ = φ(σ, U). For s < t ∈ Z, let

ft : S → S defined by ft(σ) = φ(σ, Ut)

and let F ts = ft−1 ◦ ft−2 ◦ . . . ◦ fs. Note that the maps ft are i.i.d. Since the chain is ergodic,
there is an L such that P−̂1(Xt = 1̂) = ε > 0. By monotonicity, this implies

P(F−iL−(i+1)L is constant ) ≥ ε > 0, for all i ≥ 0.

Since these events are independent, by the Borel-Cantelli lemma, a.s. there is some i ≥ 0
such that F−iL−(i+1)L is constant. In this case it follows that F 0

−(i+1)L is also constant, and thus

F 0
−T is almost surely constant for T sufficiently large. Call F 0

−∞ this value, which is the value
returned by the algorithm. It remains to check that F 0

−∞ is distributed according to π. But
note that

F 0
−∞ =d F

1
−∞

and on the other hand, F 1
−∞ is obtained from F 0

−∞ by performing a step of the Markov chain.
Thus the distribution of F 0

−∞ is invariant, and is hence equal to π.

Remark. One could imagine lots of variations to this idea, but it is important to realise that
most will fail: for instance, if you try to coalesce in the future and consider the first time
after time 0 that the coupled chains started from the top and the bottom agree, the resulting
state need not be a sample of the equilibrium distribution. (This is because this time T ? is
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random and is not independent from the chain.) Similarly, it is essential to use the same
fixed randomness U−1, . . . , U−T , . . . at every step of the algorithm. For instance, if coupling
fails and we need to look 2T backwards in time, we cannot refresh the variables U−1, . . . to
generate the chain again.

Let T? be the running time of the algorithm, i.e., the first T such that F 0
−T is constant.

Along with a statement that coalescence eventually occurs, Propp and Wilson show that
actually the distribution of the coalescence time T? is not much greater than the mixing time,
in the following sense. Let

tmix = tmix(1/e),

and let H denote the length of the longest totally ordered chain between the minimal and
maximal elements −̂1 and 1̂.

Theorem 10.3.
E(T∗) ≤ 2 tmix(1 + logH).

In particular, this means that coupling from the past is very efficient, since of course T∗
cannot be smaller than tmix. For instance, in the case of Glauber dynamics on a subgraph G
of Zd, H is only of the order of the volume of the subgraph, which means logH is of order
log n if G has diameter of order n.

Proof. To prove the result, we note that T? has the same distribution as T ?, where T ? is
the time of coalescence forward in time from time 0, i.e., T ∗ is the first T such that F T0 is
constant. Thus we only prove the result about T ?, which is conceptually much simpler than
T?.

Lemma 10.1. For all k ≥ 1,

P(T ? > k)

H
≤ d(k) ≤ P(T ? > k).

The second inequality is trivial, since we have a coupling between Xk and π which works
with probability at least P(T ? ≤ k). The first inequality goes as follows. Let h(x) denotes
the length of the longest totally ordered chain whose top element is x. Then if Xk

− = F k0 (−̂1)

is different from Xk
+ = F k0 (1̂), it must be the case that

h(Xk
−) ≤ h(Xk

+)− 1

since we know that Xk
− � Xk

+. Therefore,

P(T ? > k) = P(Xk
− 6= Xk

+)

≤ E[h(Xk
+)− h(Xk

−)]

≤ E1̂[h(Xk)]− E−̂1[h(Xk)]

≤ ‖pk(1̂, ·)− pk(−̂1, ·)‖H
≤ Hd(k)

from which the inequality follows.
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Lemma 10.2. The quantity P(T ? > k) is submultiplicative: for k1, k2 ≥ 0:

P(T ? > k1 + k2) ≤ P(T ? > k1)P(T ? > k2).

Proof. The event that F k10 is a constant map and the event that F k1+k2
k1

is a constant map

are independent, and if either of those occurs then F k1+k2
0 is also constant.

Lemma 10.3. For all k ≥ 1,

kP(T ? > k) ≤ E(T ?) ≤ k

P(T ? ≤ k)
.

Proof. The first inequality is a trivial consequence of Markov’s inequality. For the second, let
ε = P(T ? > k). By submultiplicativity,

P(T ? > ik) ≤ εi

and thus

E(T ?) =
∞∑
j=0

P(T ? > j) ≤
∞∑
i=0

kP(T ? > ki)

≤
∞∑
i=0

kεi =
k

1− ε =
k

P(T ? ≤ k)
.

This proves the lemma.

Proof. (of Theorem 10.3). By definition of tmix, d(tmix) ≤ 1/e. Since d is also submultiplica-
tive, it follows that for k = tmix(1 + logH), d(k) ≤ 1/(eH). Therefore, by Lemma 10.1,

P(T ? > k) ≤ Hd(k) ≤ 1

e

i.e., P(T ? ≤ k) ≥ 1− 1/e. Thus by Lemma 10.3

E(T ?) ≤ k

1− 1/e
≤ 2k = 2 tmix(1 + logH),

as claimed.

92



11 Riffle shuffle

What follows is a set of (informal) notes designed to walk you through the mathematics of the
riffle shuffle, which is a model for the card shuffling method used by casinos and professional
dealers. This was analysed in remarkable detail first by Aldous who found the asymptotic
mixing time in [2] and by Bayer and Diaconis who found an exact formula which considerably
sharpened Aldous’ result.

The basic framework is the Gilbert-Shannon-Reeds model for card shuffling, which is defined
as follows. We first cut the deck in two piles of size k and n − k, where the position k of
the cut follows a Binomial (n, 1/2) distribution. Then, if we imagine that we hold the two
piles in our left and right hand, drop the next card from the left or right pile with probability
proportional to the size of the pile. That is, if there are a cards in the left hand and b cards
in the right hand, drop from the left with probability a/(a + b) and from the right with
probability b/(a+b). This gives you a new deck which is the result of one shuffle. This shuffle
is then repeated many times. We are going to show the proof of the two following results.

Theorem 11.1. (Aldous 1983 [2]) There is a cutoff phenomenon at time

tmix =
3

2
log2 n.

The following results of Bayer and Diaconis analyze this in an exact and much sharper way.
The first amazing result is an exact formula for the probability distribution of the walk after
m steps.

Theorem 11.2. (Bayer-Diaconis 1992 [5]) After m shuffles,

P (Xm = σ) =
1

2mn

(
2m + n−R(σ)

n

)
where R(σ) is the number of rising sequences of σ, defined below.

Using this exact formula, Bayer and Diaconis were able to study in great detail what
happens near the cutoff point, after of order (3/2) log2 n shuffles have been performed.

Theorem 11.3. (Bayer-Diaconis 1992 [5]) Let m = log2(n3/2c). Then

d(m) = 1− 2Φ

(
− 1

4
√

3c

)
+O(n−1/4)

where Φ(x) is the cumulative distribution function of a standard normal random variable:

Φ(x) =

∫ x

−∞
e−u

2/2 du√
2πu

We now comment on the numerical values of those constants for n = 52. First, note that
in this case,

(3/2) log2 n = 8.55 . . .

which indicates that of order 8 or 9 shuffles are necessary and sufficient.
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However, based on the Bayer-Diaconis formula and an exact expression for the number of
permutation with a given number of rising sequences (an Eulerian number, discussed later),
we obtain the exact value for d(m)

m 5 6 7 8 9

d(m) 0.92 0.614 0.33 0.167 0.085

As we see from this table, it is clear that convergence to equilibrium occurs after no less than
7 shuffles. The total variation distance decreases by 2 after each successive shuffle following
the transition point.

Remark. It is interesting to note that while 7 is a very small number compared to the size
of the state-space (52! which has about 60 digits), this is a rather large number in practice.
Nobody ever shuffles a deck of card more than 3 or 4 times. It is easy to take advantage
of this in magic tricks (and in casinos, apparently). Bayer and Diaconis describe some very
pleasant tricks which exploit the non-randomness of the deck at this stage, which are based
on the analysis of the riffle shuffle and in particular of the rising sequences. The reading of
the original paper [5] is wholeheartedly recommended !

We will present the key ideas that lead to the proof of Aldous’ results (Theorem 11.1.) As
we will see, many of the ideas that were used by Bayer and Diaconis were already present in
that paper, which appeared about 10 years before.

Before we do anything, we need to define what are the rising sequences of a permutation σ,
as the analysis essentially concentrates on the description of their evolution under the shuffle.

Definition 11.1. Let σ ∈ Sn. The rising sequences of the arrangement of cards σ are the
maximal subsets of successive card labels such that these cards are in increasing order.

This definition is a little hard to digest at first but a picture illustrates the idea, which is
very simple. For instance, if n = 13 and the deck consists of the following arrangement:

1 7 2 8 9 3 10 4 5 11 6 12 13

then there are two rising sequences:

1 2 3 4 5 6
7 8 9 10 11 12 13

The number of rising sequences of σ is denoted by R(σ). Note that rising sequences form a
partition of the card labels 1, . . . , n.

The reason why rising sequences are so essential to the analysis is because when we perform
a shuffle, we can only double R(σ). The above example illustrates well this idea. The two
rising sequences identify the two piles that have resulted from cutting the deck and that have
been used to generate the permutation σ in one shuffle. This leads to the following equivalent
description of the Gilbert-Shannon-Reeds riffle shuffle measure µ.

Description 2. µ is uniform on the set R of permutation with exactly two rising sequences,
and gives mass (n+ 1)2−n to the identity.

To see this, fix a permutation σ ∈ R. The two rising sequences of σ have length L and
n−L, say. Then as explained above, they identify the cut of the two piles that have resulted
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from cutting the deck. The probability of having made exactly this cut is
(
n
L

)
2−n. We then

need to drop the cards from the two piles in the correct order. This corresponds to the
product of terms of the form a/(a + b), where a and b are the packet sizes. If we focus on
the denominators first, note that this will always be the number of cards remaining in our
hands, hence it will be n, n − 1, . . . , 2, 1. As for the numerators, cards dropping from the
left hand will give us the terms L,L− 1, . . . , 2, 1 and terms from the right hand will give us
n− L, n− L− 1, . . . , 2, 1. It follows that the probability of obtaining σ

µ(σ) =

(
n
L

)
2n

1

n!
L!(n− L)! = 2−n

Note that a riffle is entirely specified by saying which card comes from the left pile and
which from the right pile. Thus, we associate to each card c a binary digit D(c) = 0 or 1,
where 0 indicates left and 1 indicates right. By the above description, the resulting deck can
be described by sequence of n bits which is uniformly distributed over all possible sequences of
n binary digits. (Check that this works with the identity as well). This leads to the following
description. Let µ′(σ) = µ(σ−1) be the measure associated with the reverse move.

Description 3. The reverse shuffle (i.e., the shuffle associated with the measure µ′), can
be described as assigning i.i.d. 0-1 digits to every card c, with P (D(c) = 1) = 1/2 and
P (D(c) = 0) = 1/2. The set of cards c such that D(c) = 0 is then put on top of the set of
cards with D(c) = 1.

The beautiful idea of Aldous is to notice that this reverse description (the backward shuffle)
is a lot easier to analyze. Let (X ′m,m ≥ 0) be the random walk associated with the shuffling
method µ′. Since

X ′m = g′1 . . . g
′
m = g−1

1 . . . g−1
m = (gm . . . g1)−1

we see that
X ′m =d X

−1
m

and it follows easily that the mixing time of the forward shuffle X is the same as the mixing
time of the backward shuffle X ′. In fact if d′ is the total variation function for the walk X ′

we have
d(m) = d′(m)

We are thus going to analyze X ′ and show that it takes exactly 3/2 log2 n steps to reach
equilibrium with this walk.

To describe the state of the deck after m backward shuffles, we successively assign i.i.d.
binary digits 0 or 1 to indicate (respectively) top or bottom pile. E.g., after 2 shuffles:

deck 1st shuffle 2d shuffle

− 1 0
− 0 0
− 0 1
− 1 1
− 1 0
− 0 0

Reading right to left, it is easy to see that the deck consists of the cards with labels 00, then
01, then 10, then 11. This generalizes as follows. For any card c, we attach m binary digits 0
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and 1 which tell us if the card is going to the top or the bottom pile in m successive backward
shuffles. We may interpret this sequence by reading from right to left as the binary expansion
of a number Dm(c). Then the fundamental properties of the deck are:

(a) The deck is ordered by increasing values of Dm(c).

(b) If two cards c and c′ have the same value of Dm(c) = Dm(c′) then they retain their
initial ordering.

Note that the numbers (Dm(c), 1 ≤ c ≤ n) are i.i.d. for different cards, with a distribution
that uniform on {0, . . . , 2m − 1}.

11.1 Lower bounds

A first upper-bound
One immediate consequence of properties (a) and (b) is that if T = the first time at which

all labels Dm(c) are distinct, then the deck is exactly uniformly distributed. We use this
remark to get a first upper-bound on the time it takes to get close to stationarity.

Lemma 11.1. If m� 2 log2 n then with high probability all labels Dm(c) are distinct.

Proof. The proof is elementary, and is a reformulation of the Birthday problem. We view the
M = 2m possible values of Dm(c) as M urns and we are throwing independently n balls into
them at random. The probability that they all fall in distinct urns is

P (all labels distinct) = 1

(
1− 1

M

)(
1− 2

M

)
. . .

(
1− n− 1

M

)

= exp

n−1∑
j=0

ln

(
1− j

M

)
≈ exp

− n−1∑
j=0

j

M

 ≈ exp(−n2/2M)

It follows that if M � n2 then some cards will have the same label, but if M � n2 then
with high probability all cards will have distinct labels. But M = n2 is equivalent to m =
2 log2 n.

To rigorously use Lemma 1 to conclude that the distance function at time (1 + ε) log2 n is
small, we recall that the total variation distance is small if there is a successful coupling with
high probability. Since X ′T =d U is uniform, the above lemma tells us that

d(m) ≤ P (T > m)

and P (T > m)→ 0 if m = (2 + ε) log2 n. This is not the (3/2) log2 n we were hoping for, but
building on these ideas we will do better a bit later.

In the forward shuffle, the essential concept is that of rising sequences. In the backward
shuffle, the equivalent notion is that of descents of a permutation. We say that σ has a descent
at j (where 1 ≤ j ≤ n− 1) if σ(j) > σ(j + 1). Let

Des(σ) = #descents of σ =
∑
j

aj (44)
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where aj is the indicator of the event that σ has a decent at j. It is trivial to observe that

R(σ) = Des(σ−1)− 1

In this lower-bound, we will show that for m < log2 n, the number of descents of X ′m is not
close to the number of descents of a uniform permutation. This will show that the distance
is approximately 1.

Lemma 11.2. Let σ =d U . Then

E(Des(σ)) = (n− 1)/2 and var Des(σ) ∼ n/12 (45)

The expectation is very easy to compute. In a random permutation each j has probability
1/2 of being a descent. Moreover there is a lot of independence between the aj , so it is
not surprising that the variance is of order n. In fact, as we will mention later, Des(σ) is
approximately normally distributed with this mean and variance.

Now, consider our urn representation of the deck X ′m. Each of the 2m urns corresponds
to a possible value of Dm(c), and those cards which fall in the same urn retain their initial
order. It is obvious that each urn can create at most one descent when we put piles on top
of each other (wince within each urn, the order is the same as initially). It follows that

Des(X ′m) ≤ 2m − 1

If m = (1 − ε) log2 n then Des(X ′m) ≤ n1−ε and thus this is incompatible with (45). The
two distributions (X ′m and U) concentrate on permutations with very different number of
descents, hence the total variation is close to 1.

A true lower-bound
Here we we push a bit further the lower-bound of the previous section. We will show that

for m = α log2 n and α < 3/2, then

E(Des(X ′m)) =
n− 1

2
− nβ (46)

with β > 1/2, while the variance of DesX ′m stays O(n). This will imply again that the total
variation distance is approximately 1 in this regime. Indeed, (45) implies that for a uniform
permutation, the number of descents is n/2 ± √n. Here, (46) implies that the number of
descents is n/2−nβ ±√n. Since β > 1/2, this implies that the two distributions concentrate
on permutations with a distinct number of descents.

We need the following lemma, which is a simple modifitcation of the Birthday problem.

Lemma 11.3. Throw n balls in M urns, and suppose M ∼ nα. Let

Un = #{j ≤ n : ball j and ball i fall in same urn, for some i < j}

Then

E(Un) ∼ 1

2
n2−α and var(Un) ∼ 1

2
n2−α (47)

There surely is a central limit theorem, too.

To prove (46), consider the set Jm of positions j in the resulting deck such that the card in
position j and in position j+1 have the same value of Dm. Then note that this j can not be a
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descent for X ′m. On the other hand, note that the random variables aj are almost iid outside
of Jm. More precisely, conditionally on Jm, the random variables (aj , j odd andj /∈ Jm) are
independent, and each has expectation 1/2 (and similarly with even values of J). From this
we deduce:

E(Des(X ′m)|Jm) =
n− 1

2
−#Jm

(each integer gives us probability 1/2 of being a descent, except those who are in Jm). Also,

var Des(X ′m) = O(n)

Now, to conclude, remark that #Jm =d Un in equation (47) and thus

E(#Jm) ∼ 1

2
n2−α.

Since β = 2− α > 1/2, the lower-bound is proved.

11.2 Guessing the true upper-bound

We now wish to prove that after m = (3/2 + ε) log2 n, the deck is well-mixed. Aldous [2]
has a calculation that looks pretty simple but that I haven’t managed to clarify completely.
Instead I propose the following intuitive explanation.

After α log2 n shuffles and α > 3/2, the number of descents can still be written as

n− 1

2
− n2−α + standard deviation term

What happens is that n2−α becomes o(n1/2) and hence the variance term takes over. It
is in fact not hard to believe that at this stage, DesX ′m is in fact approximately normally
distributed with mean n/2 + o(n1/2) and variance cn for some c > 0. This is almost the
same thing as for a uniform permutation, except that the constant for the variance may be
different.

Lemma 11.4. Let X and Y have two normal distribution with mean 0 and variance σ2
1 and

σ2
2. Then

dTV (X,Y ) = f(σ1/σ2).

f satisfies 0 < f(x) < 1 for all x 6= 1

Lemma 11.4 and the above comment thus imply that the total variation distance between
the law of DesX ′m and Desσ (where σ is uniform) is at most a constant < 1.

While that seems pretty far away from our desired conclusion (the total variation distance
between X ′m and σ is also < 1), we can in fact get there by using in anticipation the Bayer-
Diaconis formula. That formula shows that the number of rising sequences of Xm is a sufficient
statistics for Xm. (Here, sufficient statistics refers to the fact that knowing R(σ) is enough
to know the chance of σ - the meaning may be different in statistics...). Thus, Des(X ′m) is a
sufficient statistics for X ′m, and it is obviously so for a uniform permutation as well. On the
other hand,

Lemma 11.5. The total variation distance between X and Y is equal to the total variation
distance between any two sufficient statistics of X and Y .

This is a pretty intuitive fact, and from there the upper-bound follows easily.
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11.3 Seven shuffles are enough: the Bayer-Diaconis result

All the foundations are now laid down, and the Bayer-Diaconis formula will follow instantly
from the following description of the forward riffle shuffle. (It is a consequence of the urns
and balls description of Aldous, but can be proved by other elementary means).

Description 4. Xm is uniform over all ways of splitting the deck into 2m piles and then
riffling the piles together.

We now prove the Bayer-Diaconis formula:

P (Xm = σ) =
1

2mn

(
2m + n−R(σ)

n

)
Let a = 2m. There are an shuffles in total. Hence it suffices to prove that the number of ways
to obtain the permutation σ is

(
2m+n−R(σ)

n

)
.

Note that after the a piles are riffled together, the relative order of the cards within a pile
remains constant. Hence this gives at most a rising sequences. Let r = R(σ), and consider
the partition of σ induced by the rising sequences. These r blocks must correspond to r cuts
of the deck. The remaining a − r cuts may be placed anywhere in the deck. To count how
many ways there are of doing this, we use what Bayer and Diaconis call the “stars and bars”
argument. Increase the deck size to n + a − r. Now, we must choose a − r positions to put
our a− r cuts. There are (

n+ a− r
a− r

)
=

(
n+ a− r

n

)
of doing so. Hence the result!

Using the above formula we can be very explicit about the total variation distance function.
Note that

d(m) =
∑
π∈Sn

(
Pm(π)− 1

n!

)+

=
∑
π∈Sn

1

n!
(n!Pm(π)− 1)+ (48)

Let m = log2(n3/2c).

n!Pm(π) = n!
1

2mn
(2m + n− r) . . . (2m +−r + 1)

n!

=
2m + n− r

2m
. . .

2m − r
2m

= exp

(
n−1∑
i=0

ln

(
1 +

n− r − i
2m

))

After an exciting expansion of the log up to the 4th order, and replacing 2m = n3/2c and
writing r = n/2 + h (where h may range from −n/2 + 1 to n/2, we get

n!Pm(π) = fn(h) := exp

(
−h
c
√
n
− 1

24c2
− 1

2

(
h

cn

)2

+O(1/n) +O(h/n)

)
(49)

Let h∗ be defined by
h ≤ h∗ ⇐⇒ Pm(π) ≥ 1/n!
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This h∗ tells us what are the nonzero terms in (48). Now, by setting the exponent equal to 0
in (49), we obtain

h∗ = −
√
n

24c
+

1

12c3
+B +O(1/

√
n) (50)

It follows that

d(m) =
∑

−n/2≤h≤h∗

Rnh
n!

(fn(h)− 1)

where Rnh is the number of permutations with n/2 + h rising sequences. This number is
well-known to combinatorists. The number of permutations with j rising sequences is called
the Eulerian number anj , see, e.g. Stanley [26]. Tanny and Stanley show the remarkable
formula that if X1, . . . , Xn are i.i.d. uniform on (0, 1)

anj
n!

= P (j ≤ X1 + . . . Xn ≤ j + 1) (51)

This implies in particular the normal approximation for the descents (or the rising sequences)
of a uniform random permutation, with variance equal to n/12 as claimed in (45).

From then on, it is essentially a game of algebraic manipulations to obtain Theorem 11.3.
We refer the interested reader to p. 308 of [5] for details.
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