Universality of fluctuations in the dimer model

Nathanaël Berestycki∗ Benoît Laslier† Gourab Ray‡

March 31, 2016

Abstract

We present a general result which shows that the winding of the branches in a uniform spanning tree on a planar graph converge in the limit of fine mesh size to a Gaussian free field. The result holds true assuming only convergence of simple random walk to Brownian motion and a Russo–Seymour–Welsh type crossing estimate.

As an application, we prove universality of the fluctuations of the height function associated to the dimer model, in several situations. This includes the case of lozenge tilings with boundary conditions lying in a plane, and Temperleyan domains in isoradial graphs (recovering a recent result of Li [27]).

The robustness of our approach, which is a key novelty of this paper, comes from the fact that the exactly solvable nature of the model plays only a minor role in the analysis. Instead, we rely on a connection to imaginary geometry, where the limit of a uniform spanning tree is viewed as a set of flow lines associated to a Gaussian free field.

Figure 1: Height function of a dimer model (or lozenge tiling) with planar boundary conditions on a triangle. ©R. Kenyon.

∗Supported in part by EPSRC grants EP/L018896/1 and EP/I03372X/1
†Supported in part by EPSRC grant EP/I03372X/1
‡Supported in part by EPSRC grant EP/I03372X/1
1 Introduction

1.1 Main results

Let G be a finite bipartite planar graph. A dimer covering of G is a set of edges such that each vertex is incident to exactly one edge; in other words it is a perfect edge-matching of its vertices. The dimer model on G is simply a uniformly chosen dimer covering of G. It is a classical model of statistical physics, going back to work of Kasteleyn [13] and Temperley–Fisher [38] who computed
its partition function. It is the subject of an extensive physical and mathematical literature; we refer the reader to [14] for a relatively recent discussion of some of the most important progress. The popularity of this model stems from its “exactly solvable” character: in particular, a key feature is its determinantal structure ([13]) which can be used to link it to a wide range of topics such as discrete complex analysis, Young tableaux, algebraic geometry.

We can associate with the dimer model a height function which describes a surface in \mathbb{R}^3, and which contains all the information about the dimer configuration. Hence the dimer model can be thought of as specifying naturally a random function indexed by G^\dagger (the dual of G). A key question in the dimer model concerns the large-scale behaviour of this height function. It is widely believed that in the planar case and under very general assumptions, the fluctuations of the height function are described by (a variant of) the Gaussian free field. See Section 2.2 for definitions, but suffice it to say for now that this is perhaps the canonical Gaussian conformally invariant process on domains of the complex plane.

In this paper we present a robust approach to the problem of proving universality of the fluctuation of the dimer model on planar bipartite graphs. We now state an example of application of this technique. Consider the dimer model on a finite subgraph of $H^\#_\delta$, the hexagonal lattice with mesh size δ. Then a dimer covering is equivalent to a lozenge tiling as in Figure 2 or equivalently to a stack of cubes of height δ. The height function is simply defined as the z coordinate of the stack at each point. Set $\chi = 1/\sqrt{2}$ (this is the parameter in imaginary geometry associated with $\kappa = 2$, see [29, 30]).

Theorem 1.1. Let P be a plane in \mathbb{R}^3 and let λ be a closed simple loop in P admitting a C^1 parametrisation. Then there exists a sequence of domains $U^\#_\delta \subset H^\#_\delta$ such that if $h^\#_\delta$ is the height function associated to the dimer model (or equivalently the lozenge tiling) of $U^\#_\delta$ then $h^\#_\delta(\partial U^\#_\delta) \to \lambda$ as closed sets in \mathbb{R}^3 and

$$\delta^{-1}(h^\#_\delta - \mathbb{E}(h^\#_\delta)) \circ \ell \to \frac{1}{2\pi \chi} h^0_{\text{GFF}},$$

in distribution where ℓ is an explicit linear map determined by P and h^0_{GFF} is a Gaussian free field with Dirichlet boundary conditions.

The convergence in distribution here is in the sense of finite dimensional marginals when viewed as a process indexed by smooth, compactly supported functions: that is, if we consider a fixed number of given test functions f_1, \ldots, f_k and call $X_i = \sum_{v \in U^\#_\delta} (h^\#_\delta - \mathbb{E}(h^\#_\delta)) \circ \ell(v) f_i(v)$, then
the \(k \)-tuple of random variables \((X_i)_{i=1}^k\) converges to the \(k \)-tuple \(((\frac{1}{2\pi\chi} h_{\text{GFF}}^0, f_i))_{i=1}^k\). In fact, the convergence also holds in distribution on the Sobolev space \(H^{-1-\eta} \) for all \(\eta > 0 \), once \(h_{\#}^\delta \) has been extended to a continuous function (essentially by interpolation), see Section 5.2.

As we will see, Theorem 1.1 is an easy consequence of a much more general result proved in this paper and an earlier result of the second author [23]. We now state roughly this general theorem, before explaining further applications to the dimer model. To explain the idea, it is known since the work of Temperley that, on \(\mathbb{Z}^2 \), the height function of the dimer model on corresponds to the winding of the branches in a uniform spanning tree. It was observed by Kenyon, Propp and Wilson [21] that this equivalence (known as Temperley’s bijection) extends to the superposition of a planar graph and its dual (see below). A more delicate construction due to Kenyon and Sheffield [22] extends this further to general bipartite planar graphs; it is this construction which we rely on here, see [3] for further details.

Hence the general theorem concerns the winding of branches in a uniform spanning tree. We now state this result. Let \(G \) be a planar (possibly directed) graph properly embedded in the plane (so that no two edges cross each other). Let \(G_{\#}^\delta \) be the graph obtained by rescaling the plane by \(\delta \). We assume that \(G_{\#}^\delta \) satisfies some natural conditions: these are stated precisely in Section 4.1. The two main assumptions are as follows: (i) simple random walk on \(G_{\#}^\delta \) converges to a Brownian motion, and (ii) a Russo–Seymour–Welsh type crossing condition: namely, simple random walk can cross any fixed macroscopic horizontal or vertical rectangle with uniformly positive probability.

Let \(D \subset \mathbb{C} \) be a bounded domain. Let \(D_{\#}^\delta \) be the graph induced by the vertices of \(G_{\#}^\delta \) in \(D \). Let \(\chi = 1/\sqrt{2} \) as above.

Theorem 1.2. Let \(T_{\#}^\delta \) be a uniform (wired) spanning tree on \(D_{\#}^\delta \), and for any \(v \in D_{\#}^\delta \) let \(h_{\#}^\delta (v) \) denote the total winding of the branch of \(T_{\#}^\delta \) connecting \(v \) and \(\partial D_{\#}^\delta \). Then

\[
h_{\#}^\delta - \mathbb{E}(h_{\#}^\delta) \xrightarrow{\delta \to 0} \frac{1}{\chi} h_0^0_{\text{GFF}}
\]

in the sense of distributions, where \(h_0^0_{\text{GFF}} \) is a Gaussian free field with Dirichlet boundary conditions.

Here by winding we mean the intrinsic winding, i.e., the sum of the turning angles along the path. See eq. (2.5) for precise definition. Note that the scaling is somewhat different from Theorem 1.1 (there is no renormalisation here) because in that theorem we measure the height defined by lozenges of diameter \(O(\delta) \) whereas here we measure the winding (unnormalised) along paths in the tree.

To get Theorem 1.1 from Theorem 1.2 we use a construction of Kenyon and Sheffield [22] which relates the dimer model on a finite bipartite planar graph (such as a piece of the hexagonal lattice) to a uniform spanning tree on a certain directed planar graph called T-graph. Furthermore, the height function in the dimer model corresponds to the winding of branches in this tree, see [3] for details. The fact that the T-graph satisfy the assumptions in Section 4.1 is proved in [23] and [3].

A stronger and more precise form of Theorem 1.2 is stated later on in the paper, see Theorem 5.1 (in particular, convergence holds in the stronger sense of convergence in distribution within the Sobolev space \(H^{-1-\eta} \)).

1.2 Other applications to the dimer model

Theorem 1.2 above has several further applications to the dimer model. To present them it is useful to first recall more details about the relation between dimers and spanning tree. As is customary,
when considering the dimer model on a weighted graph, we think of the probability measure

$$\mathbb{P}(\omega) \propto \prod_{e \in \omega} w(e), \quad (1.1)$$

where \(\omega \) is a dimer configuration and \(w(e) \) is the weight of an edge. For the UST on a weighted directed graph we consider the measure

$$\mathbb{P}(T) \propto \prod_{\vec{e} \in T} w(\vec{e}), \quad (1.2)$$

where \(\vec{e} \) is an oriented edge and \(w(\vec{e}) \) is its weight and the tree is oriented towards a fixed root.

The Kenyon–Propp–Wilson construction of [21] is a simple generalisation of Temperley’s bijection. We start from an arbitrary planar graph \(G_T \) (which will be the graph in which the UST lives) and we define an auxiliary graph \(G \) for the dimers. The dimer graph \(G \) is simply obtained as the superposition of \(G_T \) and its dual, removing a single point from the boundary. The weights on \(G \) are also directly inherited from the weights of \(G_T \). Then to any dimer configuration \(\omega \) on \(G \) we can associate a spanning tree \(T \) on \(G_T \) by considering a dimer link to be a half-edge in the tree. This establishes a bijection between wired (oriented) spanning trees on \(G_T \) and dimer configurations on \(G \), and if \(\omega \) has the law (1.1) then the law of the associated tree \(T \) is as in eq. (1.2). Finally the dimer height at a point is the winding of the branch from that point in the corresponding tree. See [21] for details.

Using Theorem 1.2 with that construction shows the robustness of our approach. More precisely take \(G_T \) to be any weighted oriented planar graph satisfying our assumptions (Section 4.1), let \(U \subset \mathbb{C} \) a bounded domain with smooth (say \(C^1 \)) boundary. Let \(G_T^#\delta \) denote \(G_T \) rescaled by \(\delta \). Let \(U_T^#\delta \) be the sub-graph of \(G_T \) inside \(U \) and let \(U^#\delta \) be the superposition of \(U_T^#\delta \) and its dual. Let \(x^#\delta \) be a point in \(\partial U_T \) and \(y^#\delta \) be the vertex of \(U^d \) corresponding to the unbounded face of \(U_T^#\delta \). Then our result states:

Theorem 1.3. Let \(h^#\delta \) be the height function associated to a dimer configuration on \(U^#\delta \setminus \{x^#\delta, y^#\delta\} \) with law eq. (1.1). As \(\delta \to 0 \),

$$h^#\delta - \mathbb{E}[h^#\delta] \xrightarrow{\delta \to 0} \frac{1}{2\pi \chi} h^0_{\text{GFF}},$$

in distribution where \(\chi = (1/\sqrt{2}) \) and \(h^0_{\text{GFF}} \) is a Gaussian free field with Dirichlet boundary conditions.

One nice application concerns the universality of the dimer model on domains of the form \(U^#\delta \setminus \{x^#\delta\} \) within isoradial graphs. More precisely, an **isoradial graph** is a planar graph in which each face can be inscribed in a circle of fixed given radius. When considered with a particular choice of weights, called isoradial weights, an isoradial graph with uniformly elliptic angles satisfies our assumptions by results of Chelkak and Smirnov [4] (the crossing assumption is an easy consequence of Theorem 3.10 in [4]). Hence Theorem 1.3 gives GFF fluctuations for the height function of the dimer model on double isoradial graphs.

A very closely related result was obtained recently by Li [27], see Theorem 1 and Theorem 15 for a more precise statement. The difference between the two setups (beyond the slightly different
normalisation of the GFF), is the fact that Li assumes that the boundaries of U and in fact $U^\#\delta$ contains a straight segment (but no smoothness elsewhere). On the other hand, we do not need to assume that the boundaries contain a straight segment, but we require some smoothness. (In fact this assumption can probably be partially relaxed with a bit of work).

Another example where the robustness of our approach can be witnessed is the **dimer model in random environment** where G_T is taken to be \mathbb{Z}^2 with random weights on the (oriented) edges. A simple example is to sample i.i.d. variables $p_{\text{vert}}(v) \in [\varepsilon, 1 - \varepsilon]$ symmetric around $\frac{1}{2}$ for every vertex v and to consider the walk that jump up or down from v with probability $\frac{1}{2}p_{\text{vert}}(v)$ and right or left with probability $\frac{1}{2}(1 - p_{\text{vert}}(v))$. Lawler proved that for almost every realisation of the variables, the resulting walk converges to Brownian motion [24] and the other assumptions are trivially verified (in fact the variables do not need to be i.i.d. but only ergodic). When the graph G_T is \mathbb{Z}^2, the domains $U^\#\delta \setminus \{x^\#\delta\}$ resulting from the construction described above are called Temperleyan domains. Hence we obtain

Theorem 1.4. Let $U^\#\delta \setminus \{x^\#\delta, y^\#\delta\}$ be a sequence of Temperleyan domains with the weights inherited from above. We have

$$h^\#\delta - \mathbb{E}[h^\#\delta] \xrightarrow{\delta \rightarrow 0} \frac{1}{2\pi\chi} h^0_{\text{GFF}},$$

in distribution where $\chi = (1/\sqrt{2})$ and h^0_{GFF} is a Gaussian free field with Dirichlet boundary conditions.

1.3 Discussion of the results

Mean height in dimer models and spanning trees. Theorem 1.1 describes the limiting distribution of $h^\#\delta - \mathbb{E}(h^\#\delta)$ and the reader might be interested to know what can be said about the mean itself, $\mathbb{E}(h^\#\delta)$. First, we point out that on the law of large number scale, the mean height of the lozenge tiling is known by a result of Cohn, Kenyon and Propp [5] to converge to a deterministic function which here is simply an affine function (due to our assumptions about the boundary values of the height function).

Our approach yields further information about $\mathbb{E}(h^\#\delta)$. In the spanning tree setting, if $h^\#\delta$ is the winding of branches in a uniform spanning tree (as in the setup of Theorem 1.2) from a fixed marked point x on the boundary then we obtain

$$\mathbb{E}(h^\#\delta) = m^\#\delta + u_{D,x} + \frac{\pi}{2\chi},$$

where $u_{D,x}$ is the harmonic extension of the anticlockwise winding from x (see eq. (2.8) for a precise definition) and $m^\#\delta$ depends only on the graph and the vertex v at which we are computing the winding (but, interestingly, not the domain in which the spanning tree/dimer configuration is being sampled). Note that a consequence of the above mentioned result of Cohn–Kenyon–Propp [5] is that $m^\delta = o(1/\delta)$ uniformly over the graph; in fact much better bounds can be derived.

For many “reasonable” graphs we suspect that $m^\#\delta$ actually converges to 0, as it is essentially the expected winding of a path converging to a full-plane SLE. Nevertheless some assumptions are clearly needed, as the fact that random walk converges to Brownian motion alone is not enough to give control on the mean winding in a UST. For an example of such a situation, see Figure 3. In this example (which consists of the usual square grid to which spiralling decorations have been
Figure 3: In this graph, random walk converges to Brownian motion and hence loop erased random walk converges to SLE$_2$. Yet each spiral contributes a fixed amount to the winding of a UST.

added at every vertex) it is clear that random walk converges to Brownian motion, but a spanning tree is forced to have some of winding at the tip of each spiral, hence the mean winding is biased at the tip of each spiral. This example shows that it is only the fluctuations which may be hoped to be universal, while the mean itself will depend strongly on the microscopic details of the graph.

Relation to a question of Dubédat and Gheissari The main theorem of this paper, Theorem 1.2, answers a question raised by Dubédat and Gheissari [7], who observed: “Since dimers on G correspond to Uniform Spanning Trees (USTs) on Γ, and USTs can be generated from LERWs, this suggests universality of dimers when the underlying random walk converges to Brownian motion.” Indeed, this is precisely the point of view which we adopt. We answer this question in the positive with the additional minor assumptions such as the Russo–Seymour–Welsh type crossing estimates, see Section 4.1.

Relation to earlier results on fluctuations of dimer models. The study of fluctuations in dimer models has a long and distinguished history, which it is not the purpose of this paper to recall, see [14] for references. However, we mention a few highlights. In [15, 16], Rick Kenyon showed that the height function on the square lattice for Temperleyan domains (for which the boundary conditions are planar of slope 0) converge to a multiple of the Gaussian free field with Dirichlet boundary conditions. The study of dimers on graphs more general than the square or hexagonal lattices was initiated in [20] where they consider tilings on arbitrary periodic bipartite planar graphs. The non-periodic case was first mentioned in [17], also in the whole plane setting.

The interest in the role of boundary conditions was sparked by the observation of the arctic circle phenomenon: for some domains, in the limit the dimer outside of some region (the liquid or temperate region) is deterministic or frozen. This was first identified in the case of the aztec diamond by Jokusch, Propp and Shor [12] (see also the more recent paper [33] by Romik for a different approach and fascinating connections to alternating sign matrices). The case of general boundary conditions for the hexagonal lattice was solved later by Cohn, Kenyon and Propp [5] who obtained a variational problem determining the law of large numbers behaviour for the height function. This variational principle was studied by Kenyon and Okounkov in [19] who discovered
that in polygonal domains the boundary between the frozen and liquid regions are always explicit algebraic curves. In this direction we also point out the recent paper by Petrov [31] who obtained convergence of the height function fluctuations to the GFF in liquid regions for some types of polygonal domains.

A paper by Kenyon [18] discusses the question of fluctuations, with the goal of proving convergence of the centered height function to a (deformation of) the Gaussian free field in the liquid region. Unfortunately, the crucial argument in his proof, Lemma 3.6, is incomplete and at this point it is unclear how to fix it\(^1\). The issue is the following. The central limit theorem proved in [23] provides an information about convergence of discrete harmonic functions to continuous harmonic functions. However what is needed in [18] is an estimate on the discrete derivative of such functions (i.e., the entries of the inverse Kasteleyn matrix) as well as a control on the speed of convergence so that the errors can be summed when integrating along paths. (There is a more general question here, which is to better understand the links between discrete and continuous harmonic functions on quasi-periodic graphs.) Our work can be seen as a way to get around these issues but more importantly provides a unified and robust approach to the question of convergence of fluctuations.

Finally let us mention that all the above works on fluctuations rely on writing an exact determinantal formula for the correlations between dimers. They then find the asymptotic of the entries of these determinant using exact combinatorics or discrete harmonic function techniques. Our approach is completely orthogonal, relying on properties of the limiting objects in the continuum rather than exact computations at the microscopic level.

1.4 Future work

The approach which we take has the potential to apply to a number of situations which we intend to explore in future works. One natural direction will be to remove the planarity assumption in Theorem 1.1, i.e consider boundary curves \(\lambda \) that do not lie in a plane. Similarly, we hope that the techniques introduced here will be useful for proving universality on surfaces of higher genus.

In another direction, the connection to imaginary geometry developed here suggests a number of results concerning interacting dimers recently introduced by Giuliani, Mastropietro and Toninelli [11], namely we believe that the Temperley tree has a Peano curve converging to a certain space-filling SLE\(_{2}\) defined by Miller and Sheffield [30] in these cases.

1.5 Overview of the proof and organisation of the paper

For the convenience of the reader, we summarise briefly the main steps of the proof of Theorem 1.2. We first formulate in Theorem 3.2 a continuous analogue of this theorem, where we study the winding of truncated branches in a continuum wired Uniform Spanning Tree. Branches of this tree are SLE\(_2\) curves, and the notion of winding must be defined carefully. A key tool for studying this winding is then to prove by hand a version of the change of coordinate formula in imaginary geometry:

\[\tilde{h} \circ \varphi - \chi \arg \varphi' = h \]

where \(\varphi : D \to \tilde{D} \) is a conformal mapping and \(h, \tilde{h} \) are GFF with appropriate boundary conditions in the domains \(D, \tilde{D} \). This equation is taken as the starting point of the theory of imaginary geometry (see e.g. [29, 37]) but here it must be derived from the model. Together with the domain Markov

\(^1\)We thank Fabio Toninelli and Rick Kenyon for helpful discussions regarding this lemma.
property of the GFF and of the continuum UST (inherited from the domain Markov property of SLE), this implies that the winding of a continuum UST is a Gaussian free field with appropriate boundary conditions.

Returning to the discrete UST, we write

\[h^\#_\delta = h^\#_{\delta t} + \epsilon^{\#_\delta} \]

(1.3)

where \(h^\#_\delta \) is the winding of the branches of the discrete tree, \(h^\#_{\delta t} \) is the winding of the branches truncated at capacity \(t \), and \(\epsilon^{\#_\delta} \) is the difference. When \(t \) is fixed and \(\delta \to 0 \) there is no problem in showing that \(h^\#_{\delta t} \) converges to the regularised winding of the continuum UST (this essentially follows from results of Yadin and Yehudayoff [39]). By Theorem 3.2 mentioned above, we also know that as \(t \to \infty \), \(h_t \) converges to a GFF. It remains to deal with the error term \(\epsilon^{\#_\delta} \). Using a multiscale coupling with independent full plane USTs, we are able to show that the terms \(\epsilon^{\#_\delta} \) are roughly independent from point to point and have a fixed mean. This is enough to show that when we integrate against a test function the contribution of these terms will vanish. In order to do so we need to evaluate the moments; however this requires precise a priori bounds on the moments of the discrete winding. Such bounds are obtained by a careful hands-on analysis which relies heavily on our RSW estimates in the assumptions.

Organisation of the paper. The paper is organised as follows. In Section 2, some background and definitions are provided. In Section 3 we formulate and prove the continuum analogue of Theorem 1.2, Theorem 3.2. In Section 4 we derive the required a priori estimates on winding and describe the multiscale coupling. We put all those ingredients together in Section 5, which completes the proof of Theorem 1.2.

Throughout the paper, \(c, C, c', C' \) etc. will denote constants whose numerical value may change from line to line.

2 Background

2.1 Schramm–Loewner evolution

In this section, we are going to provide some background material on SLE or Schramm–Loewner evolution or SLE is a family of conformally invariant random curves in the unit disc \(\mathbb{D} \) which are supposed to describe several aspects of statistical physics models. In this paper we are concerned with the radial version of SLE, see [25] for more details. Radial SLE in a domain \(D \) with parameter \(\kappa \leq 4 \) starting from a point \(a \in \partial D \) and targeted towards \(z \in D \) is described by a family of curves \(\gamma[0, t] \) for \(t > 0 \) where \(t \) is the capacity defined by \(e^{-t} = R(z, D \setminus \gamma[0, t]) \) (we call this parametrization by capacity). SLE\(_\kappa\) in the unit disc \(\mathbb{D} \) starting from 1 and targeted to 0 can be defined via the (unique) family of conformal maps \(g_t : \mathbb{D} \to \mathbb{D} \setminus g_t \) with \(g_t(0) = 0 \) and \(g'_t(0) > 0 \) which satisfy the following differential equation (called the radial Loewner equation) for each \(z \in \mathbb{D} \setminus \gamma_t \):

\[\frac{\partial g_t}{\partial t} = \frac{\partial}{\partial t} \left(\frac{e^{2\kappa B_t}}{e^{2i\kappa B_t}} \right) = \frac{g_t(z)}{e^{2i\kappa B_t}} \]

(2.1)

SLE\(_\kappa\) enjoys conformal invariance hence one can obtain radial SLE\(_\kappa\) curves in other domains for other starting and target points simply by applying conformal maps to the curve described by (2.1). It is worthwile to note here that radial SLE\(_\kappa\) curves targeted to 0 is symmetric under reflection.
Notation. For \(z \in D \), we denote by \(R(z, D) \) the conformal radius of \(z \) in the domain \(D \). That is, if \(g \) is any conformal map sending \(D \) to the unit disc \(\mathbb{D} \) and \(z \) to 0, then \(R(z, D) = |g'(z)|^{-1} \).

2.2 Gaussian Free Field

We include a few lines of definition of the GFF mostly to fix normalisation. See [36] and [2] for more thorough definitions. Let \(D \) be a domain in \(\mathbb{C} \). Let \(G_D \) be the Green function in \(D \) (with Dirichlet boundary conditions), i.e., \(G_D(x, y) = \int_0^\infty p^D_t(x, y)dt \) where \(p^D_t \) is the transition kernel for a Brownian motion killed upon exiting \(D \). The Gaussian free field, viewed as a stochastic process indexed by test functions \(f \in C^\infty(D) \), is the centered Gaussian process such that \((h, f)\) is a normal random variable with variance \(\int f G_D(x, y) f(x) f(y)dx dy \).

Alternatively, if \(f_n \) is an orthonormal basis for the Sobolev space \(H^1_0(D) \) induced by the Dirichlet inner product

\[
(f, g)_{\mathcal{V}} = \frac{1}{2\pi} \int_D \nabla f \cdot \nabla g, \tag{2.2}
\]
then \(h = \sum_n X_n f_n \) where \(X_n \) are i.i.d. standard real Gaussian random variables. As a consequence of Weyl’s law, it can be seen that this sum converges almost surely in the Sobolev space \(H^{-\eta} \) for any \(\eta > 0 \). (In fact, when \(\eta > 1 \) the series converges absolutely a.s.). Note that even though the GFF is not defined pointwise we will sometimes freely abuse notations and write \(\mathbb{E}(h(x_1) \ldots h(x_k)) \) for its \(k \)-point moments (which are unambiguously defined if the \(x_i \) are distinct).

Finally, for any function \(u \) on the boundary of \(D \), a GFF in \(D \) with boundary condition given by \(u \) is defined to be a Dirichlet GFF in \(D \) plus the harmonic extension of \(u \) in \(D \). (In fact this also makes sense when \(u \) is rougher than a function, provided that it can be integrated against harmonic measure).

2.3 Topological and intrinsic winding of curves

The goal of this section is to make precise several notions of windings of curves which we use in this paper. A self avoiding curve is an injective continuous map \(\gamma : [0, T] \to \mathbb{C} \) for some \(T \in [0, \infty) \).

Topological winding: The winding of a curve around a point \(p \notin \gamma[0, T] \) taken continuously (or topological winding thereafter) is defined as follows. We can write

\[
\gamma(t) - p = r(t)e^{i\theta(t)} \tag{2.3}
\]
where the function \(\theta(t) : [0, \infty) \to [0, \infty) \) is taken to be continuous. We define the winding for an interval of time \([s, t] \), denoted \(W(\gamma[s, t], p) \) to be \(\theta(t) - \theta(s) \). We can also define the total winding of \(\gamma \) around \(p \) from time \(s \) to be \(W(\gamma[s, T], p) = \lim_{t \to T} \theta(t) - \theta(s) \) if this limit exists. With this definition, winding is additive: for any \(0 \leq s \leq t \leq T \)

\[
W(\gamma[0, t], p) = W(\gamma[0, s], p) + W(\gamma[s, t], p). \tag{2.4}
\]
Notice that we can take \(p \) to be the endpoint \(\gamma(T) \). Sometimes for a curve \(\gamma : [0, t] \to \mathbb{C} \), we simply write \(W(\gamma, p) \) to mean the winding up to the endpoint \(W(\gamma[0, t], p) \).

10
Intrinsic winding: The notion of intrinsic winding we describe now is perhaps a more natural definition of windings of curves. This notion is the continuous analogue of discrete windings of loop erased paths in \mathbb{Z}^2 which can be defined just by the number of anticlockwise turns minus the number of clockwise turns. Notice that we do not need to specify a reference point with respect to which we calculate the winding, hence our name “intrinsic” for this notion.

We call a curve smooth if the map γ is smooth (continuously differentiable). Suppose γ is smooth and $\forall t, \gamma'(t) \neq 0$. We write $\gamma'(t) = r_{\text{int}}(t)e^{i\theta_{\text{int}}(t)}$ where again $\theta_{\text{int}}(t) : [0, \infty) \mapsto [0, \infty)$ is taken to be continuous. Then define the intrinsic winding in the interval $[s, t]$ to be

$$W_{\text{int}}(\gamma, [0, t]) := \theta_{\text{int}}(t) - \theta_{\text{int}}(s).$$

The total intrinsic winding is again defined to be $\lim_{t \to T} W_{\text{int}}(\gamma, [0, t])$ provided this limit exists. Note that this definition does not depend on the paramaterisation of γ subject to smoothness and the derivative being nonzero.

The following topological lemma connects the intrinsic winding with the winding around p taken continuously.

Lemma 2.1. Let D be a domain and let $\gamma[0, t]$ be a smooth self-avoiding curve from $\gamma(0) \in \partial D$ to $\gamma(t) \in D$ with $\gamma'(s) \neq 0$ for any $s \in [0, t]$. Let $\gamma'(0)$ be the right hand derivative of γ at 0. Then

$$W_{\text{int}}(\gamma) - W(\gamma, \gamma(t)) = \text{arg}_{\gamma(0)-D}(\gamma(0) - \gamma(t)) - \text{arg}(\gamma'(0))$$

where Arg is the principal value of argument taken with branch cut $(-\infty, 0]$ and $\text{arg}_{\gamma(0)-D}$ is the version of the argument taken in $\gamma(0) - D$ (which does not contain 0 since $\gamma(0) \in \partial D$) so that the arg matches with Arg in the direction of $-\gamma'(0)$.

Proof.

Let $x \ [2\pi]$ denote x modulo 2π for any real number x. Note that

$$\lim_{u \to s} \text{arg}(\gamma(u) - \gamma(s)) = \pi + \text{arg}(\gamma'(s))[2\pi].$$

Consequently, for any $0 \leq s < t$,

$$W_{\text{int}}(\gamma[0, s]) - W(\gamma[0, s], \gamma(s)) \equiv \text{arg}(\gamma'(s)) - \text{arg}(\gamma'(0)) - \left(\text{arg}(\gamma'(s)) + \pi - \text{arg}(\gamma(s) - \gamma(0)) \right)[2\pi]$$

$$\equiv -\text{arg}(\gamma'(0)) + \text{arg}(\gamma(s) - \gamma(0))[2\pi]$$

where the second equivalence is because we are doing everything mod 2π so far. Hence for some integer k_s possibly depending on s, we have

$$W_{\text{int}}(\gamma[0, s]) - W(\gamma[0, s], \gamma(s)) = \text{arg}_{\gamma(0)-D}(\gamma(0) - \gamma(s)) - \text{arg}(\gamma'(0)) + 2\pi k_s. \tag{2.7}$$

Since $\text{arg}_{\gamma(0)-D}$, $W_{\text{int}}(\gamma[0, s])$ and $W(\gamma[0, s], \gamma(s))$ are continuous in s (which follows from the smoothness assumption), $k_s = k_0$. But $k_0 = 0$ by our choice of normalization of $\text{arg}_{\gamma(0)-D}$ at $\gamma(0)$.

Remark 2.2. Lemma 2.1 is significant for our analysis of winding of curves which are rough. Typically the curves will be non rectifiable (like SLE curves) or piecewise smooth discrete paths. In both these cases, only the topological winding is well defined. We will therefore use Lemma 2.1 to emulate the intrinsic winding for curves where it cannot directly be defined.
2.4 Wilson’s algorithm

Given a finite weighted, directed irreducible graph G, recall that a spanning tree is a spanning subgraph with no (undirected) cycle oriented towards a fixed vertex called the root. The measure defined in eq. (1.2) is called (with a small abuse of language) the Uniform Spanning Tree measure or UST for short.

A crucial tool for studying the UST is Wilson’s celebrated algorithm, which we recall here for convenience (since we need it in the context of directed and weighted graphs). In the first step, we fix a vertex, the root. To sample a uniform spanning tree rooted at that vertex, we now pick any vertex and perform a loop erased random walk: that is, we chronologically erase the loops in a simple random walk starting from that vertex until it hits the root. We now define the updated root by adding this loop erased path to the old root and iterate this procedure until there are no isolated vertices remaining. It is easy to see that such a process in the end produces a tree. This tree has the law of the uniform spanning tree ([28]). Further, the law of this tree does not depend on the choice of the ordering of vertices from which we draw loop erased paths while performing Wilson’s algorithm.

It follows that from every vertex, one can generate branches of the uniform spanning tree from that vertex to the root by sampling loop erased random walk from those vertices to the root. Often we will be interested in the wired uniform spanning tree, which is the UST on the graph where we have identified together a given set of “boundary” vertices to be the root.

2.5 Continuum uniform spanning tree and coupling with GFF

Our interest in this section lie in the scaling limits of uniform spanning trees of a domain in the square lattice \mathbb{Z}^2. In this section, we summarise some results which we shall need later regarding the uniform spanning tree and its coupling with Gaussian free field with certain boundary conditions. More specifically, we need a continuum version of Temperleyan bijection between dimers and spanning trees [21] as is stated in Theorem 2.4. Some of this is implicit in [6, 30]. We will give below a precise statement (and a complete proof in appendix A) for completeness, as it will be needed in our analysis.

Continuum spanning trees. Informally the Continuous (Wired) Uniform Spanning Tree (or CWUST for short), in a simply connected domain D, is the scaling limit (in the sense of Schramm’s topology, see e.g. [34]) of the above discrete UST in an approximation $D^\#_\delta$ of D where we have wired all vertices on $\partial D^\#_\delta$. We do not need to give a precise definition here, but see appendix A for details.

All we will need to recall for now is the following fact which is easy to understand. Let z_1, z_2, \ldots, z_k be distinct points in D. A landmark result of Lawler, Schramm and Werner [26] shows that loop erased random walk in a domain $D^\#_\delta$ of \mathbb{Z}^2 approximating D from a vertex closest to z_i converges as $\delta \to 0$ to a radial SLE$_2$ curve from a point on the boundary picked according to harmonic measure from z_i, to z_i (the convergence is in the Hausdorff sense or curves up to reparametrisation, see appendix A). It is shown in Theorem 1.5 of [34] that the branch from a point in a domain is almost surely unique; it is easy to see that this branch is unique a.s. for Lebesgue-almost every point $z \in D$. (Actually Theorem 1.5 in [34] deals with uniform spanning tree in the sphere but the same argument works in a domain, see [34, Theorem 11.1.]) It is therefore easy to deduce:
We define intrinsic winding boundary condition and extend it harmonically to boundary by u in an anticlockwise direction (meaning that D lies to left of the curve) and such that $\beta(0) = x$. We define intrinsic winding boundary condition on (D, x) to be a function u defined on the boundary by $u_{(D,x)}(\beta(t)) := \text{Wint}(\beta(0,t))$. We call $u_{(D,x)}$ the intrinsic winding boundary function and extend it harmonically to D.

We extend this definition to any domain D smooth in a neighbourhood of a marked point x (but not necessarily smooth elsewhere on the boundary and possibly unbounded) as follows. Let $\varphi : D \to \mathbb{D}$ be a conformal map which maps x to 1. Let $u_{(\mathbb{D},1)}$ be the intrinsic winding boundary function on $(\mathbb{D}, 1)$. Define $u_{(D,x)}$ on D by

$$u_{(D,x)} = u_{(\mathbb{D},1)} \circ \varphi - \text{arg}_{\varphi'(D)} \varphi'.$$

where we define $\text{arg}_{\varphi'(D)}$ as the argument defined continuously in $\varphi'(D)$ with the global constant chosen such that h_D jumps from 2π to 0 at x.

It is elementary but tedious to check that this definition makes sense in that it does not in fact depend on the choice of the conformal map φ: indeed, if one applies a Möbius transform of the disc, winding boundary conditions are changed into winding boundary conditions.

The following theorem is essentially explained in [6]. However we provide a complete proof in appendix A because the result we need is not precisely stated there. Fix $\chi = 1/\sqrt{2}$. This is a notation for an important parameter in the theory of imaginary geometry whose value for $\kappa = 2$ is $1/\sqrt{2}$. Again, see appendix A for details.

Theorem 2.4 (Imaginary geometry coupling). Let D be a domain with a marked point x on the boundary. Let $h = \chi u_{(D,x)} + h_G^{0}$ where h_G^{0} is a GFF with Dirichlet boundary conditions. There exists a coupling between the continuum wired UST on D and h such that the following is true. Let $\{\gamma_i\}_{1 \leq i \leq k}$ be the branches of the continuum wired UST from points $\{z_i\}_{1 \leq i \leq k}$ in D. Then the conditional law of h given $\{\gamma_i\}_{1 \leq i \leq k}$ is the same as $\chi u_{(D\setminus\bigcup_{1 \leq i \leq k} \gamma_i, x)} + h_G^{0}$.

3 Continuum windings and GFF

3.1 Winding in the continuum and statement of the result

The goal of this section is to show that the winding of the branches in a continuum UST gives a Gaussian free field. By analogy with the discrete, we wish to show that the intrinsic winding (in the sense of earlier definitions) of the branches of the continuum UST up to the end points is the Gaussian free field. However there are two obstacles if we want to deal with this. Firstly, the branches are rough and hence intrinsic winding does not make sense. Secondly, the winding up to the end point blows up because the branches wind infinitely often in every neighbourhood of their endpoints (indeed this should be the case since the GFF is not defined pointwise).
To tackle the first problem, we note that the topological winding is well defined even for rough curves. We will therefore study the topological winding and add the correction term from Lemma 2.1 by hand (see also the remark immediately after Lemma 2.1 as well as Remark 3.5).

We address the second problem by regularizing the winding to obtain a well defined function. The regularisation we use is simply to truncate the UST branches at some point. We will therefore have to show that this regularised winding field converges to a GFF as the regularisation vanishes.

Let D be a (bounded) domain with the boundary being a smooth (C^1) closed curve. Let x be a marked point on the boundary. Let T be a continuum wired uniform spanning tree in D, which is obtained by performing Wilson’s algorithm in the continuum (see the previous section and appendix A). Recall that, viewed as a random variable in Schramm’s space, a.s. for Lebesgue-almost every $z \in D$ there is a unique branch connecting z to ∂D and for a fixed z this has the law of a radial SLE$_2$. Given z, we define γ_z the branch of the UST from z to x as follows. The curve γ_z follows the UST branch to the boundary (let z^* be the point where it hits ∂D) then continues along ∂D from z^* to x. Recall that for any point z, z^* has the distribution of Harm$_D(z, \cdot)$ and that given z^*, the part of the curve between z^* to z is a radial SLE$_2$ curve in D from z^* to z in law. Let us parametrise the curve which lies in ∂D by $[-1, 0]$ (with some choice of parametrisation) so that $\gamma_z(-1) = 1$ and $\gamma_z(0) = z^*$. For $t \geq 0$, define $\gamma_z[0, t]$ the SLE curve up to capacity $t + \log(R(z, D))$. Define

$$h^D_t(z) = W(\gamma_z[1-t], z) + \frac{\pi}{2} + \arg_{1-D}(1-z) \tag{3.1}$$

where \arg_{1-D} is defined as in Lemma 2.1. The intuition behind adding these extra terms is to work with the intrinsic winding rather than the topological one via the formula derived in Lemma 2.1. Indeed, this is the formula one gets by rotating and translating D so that the tangent vector at x in D matches up with the tangent vector at 1 in \mathbb{D} (all of which do not affect the winding) and applying Lemma 2.1. Note that h_t is defined almost surely as an almost everywhere function and hence in particular can be viewed (a.s.) as a random distribution.

For the sake of clarity, we are going to work in the unit disc \mathbb{D} until Section 3.5 where we prove our theorem in a general domain D. To lighten notation, we shall write h_t in place of h^D_t where there is no chance of confusion. We take $\arg_{1-D} \in (-\pi/2, \pi/2)$ is the unique argument in $1 - \mathbb{D}$. The goal of this section is to show that h_t as a distribution converges in law.

The presence of the term $\pi/2$ in the above definition of h_t is perhaps a bit unclear at this point. One reason it needs to be there has to do with the fact that in the discrete, when the path γ_z enters the unit disc, it picks up an additional $\pi/2$ amount of intrinsic winding. This carries over to the continuum. Another reason, has to do with imaginary geometry [30], where the branches of the continuum uniform spanning tree are flow lines of the GFF, with angle $-\pi/2$.

The winding of a single SLE branch has been studied extensively starting with the original paper of Schramm [34] itself. In particular, Schramm obtained the following result:

Theorem 3.1 ([34], Theorem 7.2). We have the following equality in law

$$W(\gamma_0[0, t], 0) = B(2t) + y_t, \quad W(\gamma_0[1-0], 0) = \Theta$$

where $B(\cdot)$ is a standard Brownian motion started from 0, y_t is a random variable having uniform exponential tail and $\Theta \sim \text{Unif}[0, 2\pi)$. In fact $e^{i(B(2t) + \Theta)}$ is the driving function for the SLE curve γ_0. Also for all $s > 0$

$$\mathbb{P}(|\gamma_0(t)| > e^{-s} + s) \leq ce^{-cs} \tag{3.2}$$

for some $c, c' > 0$.

14
As a side note, we remark that it is precisely this observation which led Schramm to conjecture that loop-erased random walk converges to SLE$_2$, by combining this result together with Kenyon’s work on the dimer model and his computation of the asymptotic pointwise variance.

Coming back to the continuum uniform spanning tree, for a.e. z we get a branch γ_z which is an SLE$_2$ and to which Theorem 3.1 naturally applies. In particular, for a.e. z we get a driving Brownian motion $B_z(t)$, which forms a Gaussian stochastic process when indexed by \mathbb{D}. Essentially, the next result, which is the main result of this section, says that this Gaussian process converges to the Gaussian free field as $t \to \infty$. (In fact, the result below even deals with the error term y_t). Set $\chi = 1/\sqrt{2}$, and recall that $u(D,x)$ is the function which gives the intrinsic winding of the boundary curve ∂D, harmonically extended to D (see (2.8)).

Theorem 3.2. As $t \to \infty$, we have the following convergence in probability:

$$h_t \overset{t \to \infty}{\rightarrow} h_{\mathrm{GFF}}.$$

The convergence is in the Sobolev space $H^{1-\eta}$ for all $\eta > 0$, and holds almost surely along the set of integers. Moreover, $\mathbb{E}([\|h_t - h_{\mathrm{GFF}}\|_{H^{1-\eta}}^k]) \to 0$ for any $k \geq 1$. The limit h_{GFF} is a Gaussian free field with variance $1/\chi$ and winding boundary conditions: i.e., we have

$$h_{\mathrm{GFF}} = \frac{1}{\chi}(h^0_{\mathrm{GFF}} + \pi/2) + u(D,x)$$

where h^0_{GFF} is a GFF with Dirichlet boundary conditions on D and $u(D,x)$ is defined in (2.8).

In fact, the coupling between $(\mathcal{T}, h_{\mathrm{GFF}})$ defined by this convergence has the same distribution as the imaginary geometry coupling of [6], see section 8.1, and [30]. See Appendix A for further details about this connection. In particular, we recover the fact that h is measurable with respect to \mathcal{T} (which was already a consequence of [6]). The explicit construction of the GFF in terms of \mathcal{T} which comes from the above result is in our opinion quite simple and in particular has the advantage that it is suited for taking scaling limits, as will be apparent in the proof of the main theorem.

The rest of this section is dedicated to the proof of Theorem 3.2. The general strategy is to first study the k-point function $\mathbb{E}[[\prod h_t(x_i)]]$ and to only integrate them at the last step to obtain moments of the integral of h_t against test functions. The advantage of working with the k-point function is that it only depends on k branches of the tree, which we know how to sample using Proposition 2.3. The first step is therefore to obtain a precise understanding of the behaviour of the winding under conformal maps, which is done in Section 3.2. Given that, the existence of $\lim_{t \to \infty} \mathbb{E}[[\prod h_t(x_i)]]$ follows from relatively simple distortion arguments and is proved in Lemma 3.11. This essentially shows that $\lim h_t$ exists in the sense of moments. To identify the limit, we again use the behaviour of the winding under conformal maps to show that the conditional expectation of $\lim h_t$ given some tree branches agrees with the imaginary geometry definition (Sections 3.3 and 3.4). The uniqueness in imaginary geometry concludes. Finally, Section 3.5 covers the extension from the disc to general smooth domains, which is essentially an application of Section 3.2, and Section 3.6 upgrades the convergence from finite dimensional marginals to $H^{1-\eta}$ using the moment bounds derived earlier.

Let us note that it would be interesting to be able to compute $\lim_{t \to \infty} \mathbb{E}[[\prod h_t(x_i)]]$ directly as it would provide an alternate self-contained construction of the imaginary geometry coupling.
3.2 Conformal covariance of intrinsic winding

The goal of this first section is to understand how the winding of a curve changes when a conformal map is applied to it. Lemma 3.4 is one of the key deterministic statements used in this paper; it states that the change in winding under an application of conformal map f is roughly $\arg f'$. Before stating the lemma we first recall some known estimates from conformal maps.

Lemma 3.3 (Distortion estimates). Let D be a domain containing 0 and let $\delta = R(0, D)$. Let g be a conformal map defined on D mapping 0 to 0. Then for any $z \in B(0, \delta/8)$,

$$|g(z)| \leq 4|zg'(0)|; \quad |g(z) - g(0)z| < \frac{|z|^2}{\delta}|g'(0)|.$$

In particular, the image of a straight line joining a point at a distance $\varepsilon < \delta/8$ to 0 under g lies within a cone of angle $\arctan(6\varepsilon^2)$.

Proof. The first statement follows from applying the Growth theorem (see Theorem 3.23 in [25]) to the function $g(\delta z/4)/g'(0)/4$, which is defined on the unit disc by Koebe’s 1/4 theorem. The second statement follows from applying Proposition 3.26 in [25] with $r = 1/2$ to the same function. \qed

Now we state and prove our lemma for change in winding under conformal maps. The reader should keep in mind that we are going to use the following lemma for SLE curves where the properties of the conformal maps stated below will be clear.

We start with the setup. Let $D \subset \mathbb{C}$ and $z \in D$. Let $\gamma[0, t]$ be a curve in \overline{D} with $\gamma(0) \in \partial D$; $\gamma[0, t] \in D$ and $z \notin \gamma[0, t]$. Let $\{\psi_s\}_{s \geq 0}$ be a family of conformal maps such that ψ_s is defined on a neighbourhood A_s of z with ψ_0 being the identity map. We will not assume that A_s contains γ, as part of γ is allowed to lie on the boundary of A_s (and it will typically do so in our application). We will also assume that a choice of extension of ψ_s to γ has been made such that for each $s \geq 0$, the curve $\psi_s(\gamma)$ is a continuous curve in \overline{D} and as a function of $s \geq 0$ these curves are continuous with respect to the uniform topology on $C([0, t])$ and $\psi_s(\gamma(0)) = \gamma(0)$ and $\psi'_s(\gamma(0)) \in \mathbb{R}$.

Let $A = \cap_s A_s$ be a common domain of definition of $\{\psi_s\}_{s \geq 0}$ and assume that A is an open set containing z. Further assume that there exists a curve λ in A joining $\gamma(0)$ and z such that $s \mapsto \psi_s(z)$ is pointwise continuous in a bounded neighbourhood of λ.

Note that since $\gamma(0) \in \partial D$, the domain $\gamma(0) - D$ (i.e., the translation of $-D$ by $\gamma(0)$) does not contain 0. We thus define $\arg_{\gamma(0) - D}$ to be the argument defined continuously in $\gamma(0) - D$ up to some fixed arbitrary constant in $2\pi \mathbb{Z}$. We also let $\arg_{\psi'_s(A)}(z)$ be the argument defined continuously in $\psi'_s(A)$ (which do not contain 0 since ψ_s is a conformal map) such that $\arg_{\psi'_s(A)}(\psi'_s(\gamma(0))) := 0$.

Figure 5: A typical application of Lemma 3.4. Here $D = \mathbb{D}$, $\gamma = \gamma_z$ (the curve going from 1 to z in a continuum UST). ψ_s is the Loewner flow associated with γ_0, with A_s the domain of definition of ψ_s. Note that $\psi_s(\gamma_z)$ is well-defined as a continuous curve in $\overline{\mathbb{D}}$, and that $\psi'_s(\gamma_z(0)) = \psi'_s(1) \in \mathbb{R}$.

16
Lemma 3.4. In the above setup let $\delta = R(z, A)$ and assume that $|z - \gamma(t)| \leq \delta/8$. Then we have

$$W(\psi_s(\gamma), \psi_s(z)) - W(\gamma, z) = \arg\psi_s'(A)(\psi_s'(z)) + \arg\psi_s'(A)(\gamma(0) - z) - \arg\psi_s'(A)(\gamma(0) - \psi_s(z)) + O(\varepsilon/\delta). \quad (3.3)$$

where the implicit constant in $O(|z - \gamma(t)|/\delta)$ is universal. If $z = \gamma(t)$ and γ is smooth in some neighbourhood of z then (3.3) is true without the error term $O(|z - \gamma(t)|/\delta)$.

Proof. Let $\text{Arg} \in (-\pi, \pi]$ be the principal branch of the argument with branch cut $(-\infty, 0]$. For $x \in \mathbb{R}$, let $x[2\pi]$ denote the value of x modulo 2π. We have by definition

$$W(\psi_s(\gamma), \psi_s(z)) \equiv \text{Arg}(\psi_s(\gamma(t)) - \psi_s(z)) - \text{Arg}(\gamma(0) - \psi_s(z)) \quad [2\pi]$$

$$\equiv \text{Arg}(\psi_s'(z)) + \text{Arg}(\gamma(t) - z) + O(\varepsilon/\delta) - \text{Arg}(\gamma(0) - \psi_s(z)) \quad [2\pi]$$

$$\equiv \text{Arg}(\psi_s'(z)) + W(\gamma, z) + \text{Arg}(\gamma(0) - z) - \text{Arg}(\gamma(0) - \psi_s(z)) + O(\varepsilon/\delta) \quad [2\pi]$$

where in the second line above we use the distortion estimate Lemma 3.3 taking $\varepsilon = |z - \gamma(t)|$ and the implicit constant in $O(\varepsilon/\delta)$ is bounded by 6. Hence for some integer k_s,

$$W(\psi_s(\gamma), \psi_s(z)) - W(\gamma, z) = \arg\psi_s'(A)(\psi_s'(z)) + \arg\psi_s'(A)(\gamma(0) - z)$$

$$- \arg\psi_s'(A)(\gamma(0) - \psi_s(z)) + O(\varepsilon/\delta) + 2\pi k_s. \quad (3.4)$$

The left hand side is continuous in s and equals 0 for $s = 0$ so to get rid of the additional $2\pi k_s$ we just need that our choice of arguments satisfies the same thing on the right hand side (indeed note that the term $O(\varepsilon/\delta)$ is bounded $6/8 < 2\pi$). The equality at $s = 0$ is clear so it suffices to prove continuity of the right hand side, excepting the term $O(\varepsilon/\delta)$. Note that the terms $\arg\psi_s'(A)(\gamma(0) - z) - \arg\psi_s'(A)(\gamma(0) - \psi_s(z))$ are trivially continuous by composition. Also $\arg\psi_s'(A)(\psi_s'(z))$ is continuous in s because, for any s such that ψ_s is not the identity, using the curve λ from the assumptions,

$$\arg\psi_s'(A)(\psi_s'(z)) = \arg\psi_s'(A)(\psi_s'(z)) - \arg\psi_s'(A)(\gamma(0))$$

$$= \Im \int_{\psi_s'(\lambda)} \frac{dz}{z}$$

$$= \Im \int_0^1 \frac{\psi_s'(\lambda(u))\lambda'(u)}{\psi_s'(\lambda(u))} du$$

and note that this expression remains valid even if ψ_s is the identity. Continuity in s now follows by an application of the dominated convergence theorem and the fact that continuity of ψ_s in a neighbourhood of λ implies uniform convergence of its derivatives in a neighbourhood of λ.

For the final assertion, follow the proof written above for $\gamma(0, t')$ as $t' \to t$. Observe that the winding of $\gamma(0, t')$ converges to that of $\gamma(0, t)$ around z because of the smoothness assumption. Finally observe that the error term vanishes as $t' \to t$ to complete the proof.

Remark 3.5. In the SLE/GFF coupling results developed by Dubédat, Miller and Sheffield [6, 30] (referred to as imaginary geometry), the harmonic extension of intrinsic winding of an SLE curve was defined using a change in coordinate formula under conformal map. Lemma 3.4 is essentially a direct proof of this change of coordinate formula for topological winding. This along with Lemma 2.1
shows that the intrinsic notion of winding is consistent with the formulation in \[30, 6\]: that is, the boundary conditions of the free field in imaginary geometry can be viewed as the harmonic extension of the intrinsic winding (while the intrinsic winding itself doesn’t make sense, its harmonic extension does).

In order to investigate the \(k\)-point moment function, we need the following application of Lemma 3.4.

Lemma 3.6. Let \(a_1, \ldots, a_k \in \mathbb{D}\) be distinct and let \(K = \gamma_{a_1} [0, t_1] \cup \ldots \cup \gamma_{a_k} [0, t_k] \) where \(0 \leq t_i \leq \infty\). Fix \(z \in \mathbb{D}\) distinct from any of the \(a_i\), and \(T > 0\). Let \(D' = \mathbb{D} \setminus K\) and let \(g : D' \rightarrow \mathbb{D}\) be a conformal map such that \(g(1) = 1\) (note such a map is not unique). Also let \(\delta = R(z, D')\) and suppose \(\gamma_z(T) \in B(z, \varepsilon)\) where \(\varepsilon \leq \delta/8\). Then

\[
W(g(\gamma_z[-1, T]), g(z)) + \arg_{1-\mathbb{D}}(g(z) - 1) - \arg_{g(D')} (g'(z)) + \epsilon(T) = W(\gamma_z[-1, T], z) + \arg_{1-\mathbb{D}}(z-1)
\]

where \(|\epsilon(T)| = O(\varepsilon/\delta)\) and the implied constant depends only on \(k\).

Furthermore, assume that \(\text{dist}(z, K \cup \partial \mathbb{D}) > \text{dist}(z, \gamma_z[0, T])\). Then

\[
e^{-T} \frac{4}{\epsilon} \leq \frac{R(g(z), \mathbb{D} \setminus g(\gamma_z[0, T]))}{R(g(z), \mathbb{D})} \leq e^{-T} \text{dist}(z, K \cup \partial \mathbb{D})^{-1}
\]

Proof. We can assume without loss of generality that \(k = 1\), by iterating the result for \(k = 1\). Then let \(a_1 = a\), let \(t = t_1\) and let \(D'_t = \mathbb{D} \setminus \gamma_a [0, t]\). Let \(\{g_s : D'_s \rightarrow \mathbb{D}\}_{0 \leq s \leq t}\) be a family of conformal maps satisfying \(g_s(1) = 1\) for all \(0 \leq s \leq t\). Notice that writing \(g = g_t\), the expression in the lemma is exactly what is stated in Lemma 3.4 for this family with \(D = \mathbb{D}\) and \(A = D't\). The only thing we need to verify is that \(\{g_s\}_{0 \leq s \leq t}\) satisfies the conditions of Lemma 3.4 (see Figure 5 which covers this setup precisely). All the conditions are trivially satisfied except possibly the fact that \(g_s'(1) \in \mathbb{R}^+\) so we provide an argument. This follows from the fact that 1 is a smooth point of \(g_s\) (i.e., \(g_s\) has a smooth extension to a neighbourhood of 1 by Schwarz reflection) and \(g_s(1) = 1\), hence the tangent at 1 to the unit disc is sent to itself and the derivative is positive.

We now check the way the capacity of the curve \(\gamma_z = \gamma_z [0, T]\) is changed when applying the map \(g\). Note that by Schwarz’s lemma, if \(D' = D'_T\),

\[
|g'(z)| = \frac{R(g(z), \mathbb{D})}{R(z, D')} \leq R(g(z), \mathbb{D})/ \text{dist}(z, K \cup \partial \mathbb{D}).
\]

Hence by conformal covariance and domain monotonicity of the conformal radius,

\[
R(g(z), \mathbb{D} \setminus g(\gamma_z)) = R(z, \mathbb{D} \setminus (K \cup \gamma_z)) |g'(z)| \leq |g'(z)| R(z, \mathbb{D} \setminus \gamma_z) \leq R(g(z), \mathbb{D}) e^{-T} \text{dist}(z, K \cup \partial \mathbb{D})^{-1}
\]

which gives the upper bound. In the other direction, we find (since \(|g'(z)|/R(g(z), \mathbb{D}) = 1/R(z, D') \geq 1\) by domain monotonicity of the conformal radius),

\[
\frac{R(g(z), \mathbb{D} \setminus g(\gamma_z))}{R(g(z), \mathbb{D})} \geq R(z, \mathbb{D} \setminus \gamma_z \cup K) \geq \text{dist}(z, \gamma_z \cup K \cup \partial \mathbb{D}) \geq e^{-T}/4
\]

by our assumption that \(\gamma_z\) is closer to \(z\) than \(A \cup \partial \mathbb{D}\) and Koebe’s 1/4 theorem. This proves (3.6). \(\square\)
Theorem 3.1 deals with SLE curves towards 0. We first provide an extension of this result for SLE curves towards an arbitrary point in the unit disc.

Lemma 3.7. Let z in \mathbb{D} and let $\psi: \mathbb{D} \mapsto \mathbb{D}$ be the Möbius transformation mapping z to 0 and 1 to 1. If the tip of $\gamma_z[-1, t]$ lies in $B(z, \varepsilon)$ where $\varepsilon \leq R(z, \mathbb{D})/8$, then we have the following pointwise relation:

$$ W(\psi(\gamma_z[-1, t]), 0) = W(\gamma_z[-1, t], z) - \arg_{1-D}(1 - z) + \epsilon(t) $$

(3.7)

where the error term $|\epsilon(t)| \leq c\varepsilon/R(z, \mathbb{D})$ for some universal constant $c > 0$ and \arg_{1-D} is the argument function in the domain $1 - \mathbb{D}$ with value in $(-\pi/2, \pi/2)$. Also for all s, t

$$ \mathbb{P}(|\gamma_z(t) - z| > e^{-t+s}R(z, \mathbb{D})) \leq ce^{-c's} $$

(3.8)

where c, c' are independent of z.

Proof. We are going to apply Lemma 3.4 with $D = A = \mathbb{D}$. The family $\{\psi_s\}_{0 \leq s \leq 1}$ of conformal maps we use are Möbius transforms of \mathbb{D} mapping sz to 0 and 1 to 1 which has an explicit expression and clearly satisfies the assumptions of Lemma 3.4 (we can talk about derivative of ψ_s at 1 since we can extend ψ_s analytically to a neighbourhood around 1). Computing $\psi'_1(t)$ for $t \in \mathbb{D}$:

$$ \psi'_1(t) = \frac{1 - |z|^2}{(1 - t\bar{z})^2} \frac{1 - \bar{z}}{1 - z}. $$

(3.9)

Now we argue that $\arg_{\psi'_1(\mathbb{D})}(-)$ can be taken to be $\Arg \in (-\pi, \pi]$ with branch cut $(-\infty, 0]$. Indeed let us describe $\psi'_1(\mathbb{D})$. First, $1 - \pi\mathbb{D}$ is a disc of radius $|z|$ contained in the right half plane $\{z : \Re(\varepsilon) > 0\}$. Therefore $1/(1 - D\varepsilon)$ is a subset of the right half plane since $z \mapsto 1/z$ preserves the right half plane. Thus $(1 - D\varepsilon)^{-2}$ does not contain $(-\infty, 0]$. Multiplying by the positive real number $(1 - |z|^2)$ and rotating by $\theta = \Arg((1 - \varepsilon)/(1 - z))$, we see that $\psi'_1(D)$ does not contain the half line w joining 0 and $e^{i(\theta - \pi)}$. Therefore $\arg_{\psi'_1(D)}$ coincides with the argument \Arg with branch cut w that can take the value 0 (since they differ by some multiple of 2π and agree at $\psi'(1)$ by definition). With our choice of θ, $\Arg(-)$ takes values in $(\theta - \pi, \theta + \pi)$. Therefore $\Arg((1 - \bar{z})/(1 - z)) = \Arg((1 - z)/(1 - z))$ and hence,

$$ \arg_{\psi'_1(D)}(1 - \bar{z})/(1 - z)) = \Arg(1 - \bar{z})/(1 - z)) = \theta $$

$$ = \Arg(1 - \bar{z})/(1 - z)) = -2\Arg(1 - z) = -2\arg_{1-D}(1 - z) $$

where in the second line we used that 1 - z is in the right half-plane, so the additivity of the arguments holds. Plugging this in Lemma 3.4 and making the cancellation, we have the desired expression (3.7).

Now without loss of generality, assume $t - s \geq 10$. Applying Koebe’s 1/4 theorem (see Theorem 3.17 in [25]), we see that $B(0, e^{-t+s}/4) \subset \psi_1(B(z, e^{-t+s}R(z, \mathbb{D})))$. Hence applying (3.2) in Theorem 3.1 we have (3.8).

We now want to regularise h_t a bit further by restricting it to an event where the tip is not too far away from the endpoint. Define for $t \geq 0$ and $z \in \mathbb{D}$,

$$ A(t, z) := \{|\gamma_z(t) - z| < e^{-t/2}R(z, \mathbb{D})\} \quad \hat{h}_t(z) := h_t(z)1_{A(t, z)}. $$

By Theorem 3.1, $A(t, z)$ is a very likely event:

$$ \mathbb{P}(A(t, z)) > 1 - e^{-c't} $$

(3.10)

for some universal constant $c > 0$. 19
Lemma 3.8. We have for every \(z \in \mathbb{D} \),
\[
\lim_{t \to \infty} \mathbb{E}(\hat{h}_t(z)) = \frac{3\pi}{2} + 2 \arg_{1-D}(1 - z) \quad (3.11)
\]
Also, we have the following bounds on the moments:
\[
\mathbb{E}(|\hat{h}_t(z)|^k) \leq c(k)(1 + t^{k/2}) \quad \mathbb{E}(|\hat{h}_t(z)|^k) \leq c(k)(1 + t^{k/2}) \quad (3.12)
\]

Proof. We first check eq. (3.11) and eq. (3.12) for \(z = 0 \). Then \(\gamma_z(0) \) is uniformly distributed on \(\partial \mathbb{D} \), contributing an expected topological winding of \(\pi \). Adding the term \(\pi/2 \) in the definition of \(h_t \) in eq. (3.1) shows that \(\mathbb{E}(h_t) = 3\pi/2 \) (using the fact that the Loewner equation is invariant under \(z \mapsto \bar{z} \)). Furthermore, by Schramm’s theorem (Theorem 3.1), we have \(\mathbb{E}(h_t(0)^2) \leq 2t + o(t) \) and since \(\mathbb{P}(A(t, z)) \geq 1 - e^{-ct} \) we deduce from Cauchy–Schwarz that \(\lim_{t \to \infty} \mathbb{E}(\hat{h}_t(0)) = 3\pi/2 \). The moment bound for \(h_t(0) \) follows again from Theorem 3.1 and the inequality \(|a + b|^k \leq 2^{k-1}(|a|^k + |b|^k) \).

For any other \(z \in \mathbb{D} \), we start by proving the moment bound eq. (3.12). We join \(\gamma_z(t) \) and \(z \) by a hyperbolic geodesic in \(\mathbb{D} \), call the resulting union \(\gamma' \), and apply \(\psi \) to it. Then the image becomes a concatenation of an SLE\(_2\) curve targeted towards 0 and another hyperbolic geodesic. Using eq. (3.7) (which is deterministic) with \(\varepsilon = 0 \), \(W(\gamma', z) - W(\psi(\gamma'), 0) = -\arg_{1-D}(1 - z) \).

Since the winding of the hyperbolic geodesics are bounded by at most \(\pi \), and the winding of \(\psi(\gamma) \) possesses the required moment bounds, this proves eq. (3.12) in \(\mathbb{D} \).

Now using (3.7):
\[
\mathbb{E}(W(\psi(\gamma_z[-1, t]), 0) \mathbb{1}_{A(t, z)}) = \mathbb{E}(W(\gamma_z[-1, t], z) \mathbb{1}_{A(t, z)}) - \arg_{1-D}(1 - z) \mathbb{P}(A(t, z)) + \mathbb{E}(\epsilon(t) \mathbb{1}_{A(t, z)}) \quad (3.13)
\]

Since \(\psi(\gamma_z[-1, t]) \) is an SLE\(_2\) curve towards 0 the left hand side of (3.13) converges to \(3\pi/2 \). Also from Lemma 3.7, the error term \(|\epsilon(t)| < ce^{-ct} \to 0 \) on \(A(t, z) \) and hence converges to 0 as \(t \to \infty \). Combining all these together with eq. (3.12), we have our result. \(\square \)

3.3 Conformal covariance of \(k \)-point function

In the next lemma, we prove the existence of the limit of the \(k \)-point function of the regularised winding field of the continuum UST. However we do not identify the limit at this point as this requires a separate argument. For this separate argument we will also need a convergence result of the \(k \)-point function given several branches of \(\mathcal{T} \), the continuum UST.

Proposition 3.9. Let \(\{z_1, \ldots, z_k, w_1, \ldots, w_k\} \) be a set of points in \(\mathbb{D} \) all of which are distinct. Let \(A = \{\gamma_{w_1}, \ldots, \gamma_{w_k}\} \) be a set of branches of \(\mathcal{T} \). Then the following is true.

- Both \(\lim_{t \to \infty} \mathbb{E}(\prod_{i=1}^{k} \hat{h}_t(z_i)) \) and \(\lim_{t \to \infty} \mathbb{E}(\prod_{i=1}^{k} h_t(z_i)) \) exist and are equal. Call this limit \(H(z_1, \ldots, z_k) \).
- Let \(\mathbb{E}^A \) denote the conditional expectation given \(A \). Let \(g_A : \mathbb{D} \setminus A \to \mathbb{D} \) be a conformal map which fixes 1 (this is non unique). Let \(\hat{h}_t \) be an independent copy of \(h_t \) in \(\mathbb{D} \). Then
\[
\lim_{t \to \infty} \mathbb{E}^A(\prod_{i=1}^{k} \hat{h}_t(z_i)) = \lim_{t \to \infty} \mathbb{E}^A(\prod_{i=1}^{k} h_t(z_i)) = \lim_{t \to \infty} \mathbb{E}^A(\prod_{i=1}^{k} (\hat{h}_t(g_A(z_i)) - \arg_{g_A'(D \setminus A)}(g_A'(z_i)))) \quad \text{a.s.}
\]

We first need the following estimate on hitting probabilities of an SLE\(_2\).
Lemma 3.10. Let D be a domain in \mathbb{C} with $z, w \in D$. Let γ_w be a radial SLE$_2$ started from a point on the boundary picked according to harmonic measure from w and targeted at w. Let $\delta = |z - w| \wedge \text{dist}(z, \partial D) \wedge \text{dist}(w, \partial D)$. Then for all $0 < \varepsilon < \delta$, there exists a universal constant $c_0 > 0$ such that
\[
P(|\gamma_w - z| < \varepsilon) < \left(\frac{\varepsilon}{\delta}\right)^{c_0}
\]
Now suppose $\varepsilon = \text{dist}(w, \partial D) < \text{Diam}(D)/10$. Then for $\varepsilon' > \varepsilon$
\[
P(|\gamma_w \subset B(w, \varepsilon')|) \geq 1 - c\left(\frac{\varepsilon}{\varepsilon'}\right)^{c'}
\]
Proof. This is a corollary of convergence of loop erased random walk to SLE in \mathbb{Z}^2 (Lawler, Schramm and Werner [26]) and Proposition 4.8 and Lemma 4.14. Proposition 4.8 is exactly the first statement written for a discrete lattice. For the second statement take $K = B(w, \varepsilon') \cap \partial D$ in Lemma 4.14.

The technical part of the proof of Proposition 3.9 is accomplished in the following lemma.

Lemma 3.11. Let $\{z_1, z_2, \ldots, z_k\}$ be a set of points in \mathbb{D} all of which are distinct. Let $r = \min_i \text{dist}(z_i, \partial \mathbb{D}) \wedge \min_{i \neq j} |z_i - z_j|$. Let $t_1 \geq t_2 \geq \ldots \geq t_k > t \geq -10 \log r + 1$ such that $t_1 < 10t_k$. Then there are constants c, c' depending only on k such that
\[
|\mathbb{E}\left(\prod_{i=1}^k \hat{h}_{t_i}(z_i)\right) - \mathbb{E}\left(\prod_{i=1}^k \hat{h}_t(z_i)\right)| < ct^k e^{-c't}
\]
\[
|\mathbb{E}\left(\prod_{i=1}^k \hat{h}_{t_i}(z_i)\right) - \mathbb{E}\left(\prod_{i=1}^k \hat{h}_t(z_i)\right)| < ct^k e^{-c't}
\]
\[
|\mathbb{E}\left(\prod_{i=1}^k \hat{h}_{t_i}(z_i)\right) - \mathbb{E}\left(\prod_{i=1}^k \hat{h}_t(z_i)\right)| \leq ct^{k/2} e^{-c't}
\]
(3.14)

This clearly completes the proof since we can break up the interval $[t, t_k]$ into $\cup_{i=1}^J [t^{2^{i-1}}, t^{2^i}]$ where $t^{2^J-1} \leq t_k < t^{2^J}$. Using the bound (3.14) for each such interval and using $t_1 < 10t_k$,
\[
|\mathbb{E}\left(\prod_{i=1}^k \hat{h}_{t_i}(z_i)\right) - \mathbb{E}\left(\prod_{i=1}^k \hat{h}_t(z_i)\right)| \leq c \sum_{i=1}^J (t^{2^i-1})^{k/2} e^{-c't^{2^i-1}} \leq c \sum_{i=1}^\infty (t^{2^i-1})^{k/2} e^{-c't^{2^i-1}} \leq ct^{k/2} e^{-c't}
\]
(3.15)

from which Lemma 3.11 follows (since $k/2 \leq k$).

To prove (3.14), the idea is to consider several cases depending on how close γ_{z_i} gets to the other points. If it gets very close, the distortion of the conformal map becomes more pronounced and the estimate in Lemma 3.6 carries large errors. But γ_{z_i} getting close to z_j for some $j \neq i$ is unlikely by Lemma 3.10 and comes at a price. So there is a tradeoff between these two situations. Let $\delta_i = \inf_{j \neq i} \text{dist}(z_i, \gamma_{z_j}[0, \infty)) \wedge \tau$ and $\delta_{\text{min}} := \min_i (\delta_i)$.

Case 1: $-\log(\delta_{\text{min}}) > t/4$. By Lemma 3.10 and a union bound, $\mathbb{P}(-\log \delta_{\text{min}} > t/4) \leq ck \left(\frac{e^{-t/4}}{r}\right)^{c_0}$ for universal constants c, c_0. Using the fact that $t > -10 \log r + 1$, we see that $\mathbb{P}(-\log \delta_{\text{min}} > t/4) \leq cke^{-c't}$ for some $c' > 0$. Using the one-point moment bounds (3.12) and Hölder’s (generalised) inequality,
\[
|\mathbb{E}\left(\prod_{i=1}^k \hat{h}_{t_i}(z_i)\right) - \mathbb{E}\left(\prod_{i=1}^k \hat{h}_t(z_i)\right)1_{-\log(\delta_{\text{min}}) > t/4})| < ct^{k/2} e^{-c't}.
\]
(3.16)
for some positive universal constants c, c' since $t > 1$.

21
Case 2: $- \log(\delta_{\min}) \leq t/4$. Let $A_i := \{\gamma_j | 0, \infty : j \neq i\}$. First we observe that it is enough to prove

$$\left| \mathbb{E}(h_{t_i}(z_i) - h_{t}(z_i)|A_i)\mathbbm{1}_{- \log(\delta_{\min}) < t/4} \right| \leq c t e^{-c't} \quad (3.17)$$

since we can use the decomposition

$$\left| \mathbb{E}(\prod_i \hat{h}_{t_i}(z_i)) - \mathbb{E}(\prod_i \hat{h}_t(z_i)) \right| \leq \sum_{i=1}^k \left| \mathbb{E}(\mathbb{E}(\hat{h}_{t_i}(z_i) - \hat{h}_t(z_i)|A_i)\hat{h}_t(z_1) \ldots \hat{h}_t(z_{i-1})\hat{h}_{t_i+1}(z_{i+1}) \ldots \hat{h}_{t_k}(z_k)) \right|$$

and then use Hölder’s inequality, (3.17) and the one-point moment bounds (3.12) to obtain the required bound.

We now concentrate on the proof of (3.17). We wish to use Lemma 3.6 and map out A_i by a conformal map φ mapping z_i to 0 and 1 to 1 and record the change in winding of γ_{z_i}. By (3.6),

$$\frac{e^{-t_i}}{4} \leq R(\varphi(z_i), \mathbb{D} \setminus \varphi(\gamma_{z_i}[0, t_i])) \leq e^{-(t_i - t/4)}.$$

Therefore, using Lemma 3.6 (note that the arg $\varphi'(\mathbb{D} \setminus A_i)$ term cancels) for an independent copy \hat{h} of h, we have

$$\mathbb{E}(\hat{h}_{t_i}(z_i) - \hat{h}_t(z_i)|A_i) = \mathbb{E}\left((\hat{h}_t'(z_i) - \hat{h}_t'(z_i) + \epsilon(t_i) - \epsilon(t))\mathbbm{1}_{A(t, z_i)}\right)$$

where $|t'_i - t_i| < t_i/2$ and $|t' - t| < t/2$ and $|\epsilon(t_i)| \leq e^{-ct}$ on $A(t, z_i)$. Now notice by symmetry, $\mathbb{E}\left((\hat{h}_t'(z_i) - \hat{h}_t'(z_i))\right) = 0$. Now we conclude using Cauchy–Schwarz, the moment bound (3.12) and the bound on the probability on $A(t, z_i)^c$. \qed

We also need the following estimate which says that the k-point function blows up at most like a power of $\log(r)$ as the points come close.

Lemma 3.12 (Logarithmic divergence). For any $k \geq 1$ and any k distinct points $z_1, z_2, \ldots, z_k \in \mathbb{D}$ and $t > 0$,

$$\left| \mathbb{E}\left(\prod_{i=1}^k h_t(z_i)\right) \right| \leq c(1 + \log^k(1/r)) \quad ; \quad \left| \mathbb{E}\left(\prod_{i=1}^k \hat{h}_t(z_i)\right) \right| \leq c(1 + \log^k(1/r))$$

where $r = \min_i \text{dist}(z_i, \partial \mathbb{D}) \wedge \min_{i \neq j}|z_i - z_j|$ and $c = c(k) > 0$ is a constant.

Proof. We only check the first of these inequalities as the proof of the other is identical. Let $t = -10 \log r + 1$. By Lemma 3.8, for $t' \leq t$, we obtain $\mathbb{E}(\prod_{i=1}^k h_{t'}(z_i)) \leq C(1 + (t')^{k/2}) \leq C(1 + t^{k/2})$ which is what we wanted for $t' \leq t$. On the other hand if $t' \geq t$, by Lemma 3.11, $\left| \mathbb{E}\left(\prod_{i=1}^k h_{t'}(z_i) - \prod_{i=1}^k h_t(z_i)\right) \right| \leq c t^k e^{-ct}$. Combining with the result for $t' = t$ we obtained the desired bound also for $t' \geq t$. \qed

Proof of Proposition 3.9. Notice that Lemma 3.11 implies that $\mathbb{E}(\prod_{i=1}^k h_t(z_i))$ (resp. $\mathbb{E}(\prod_{i=1}^k \hat{h}_t(z_i))$) is a Cauchy sequence and hence converges. Moreover,

$$\left| \mathbb{E}\left(\prod_{i=1}^k h_t(z_i) - \prod_{i=1}^k \hat{h}_t(z_i)\right) \right| \leq \mathbb{E}\left(\prod_{i=1}^k |h_t(z_i)|\mathbbm{1}_{\cup_i A(t, z_i)^c}\right) \leq c(1 + t^{k/2}) e^{-c't} \to 0 \quad (3.20)$$
Hence the limits are the same, proving the first point.

To simplify notation, we write g in place of g_A and \arg in place of $\arg g_A(\partial \mathbb{D})$. Let $r = \min_i \text{dist}(z_i, A \cup \partial \mathbb{D})$. Take $t > -11 \log r + 1$. Notice from Lemma 3.6, we see that (using the obvious domain Markov property and conformal invariance of the UST) given A, $h_t(z)$ has the law of $h_t(z) - \arg g'(z) + \epsilon_i(t)$, where

$$t_i = -\log R(g(z_i), \mathbb{D} \setminus g(\gamma_{z_i}[0,t]) + \log R(g(z_i), \mathbb{D}).$$

Hence

$$E^A(\prod_{i=1}^{k} \hat{h}_t(z_i)) = E(\prod_{i=1}^{k} (\hat{h}_t(g(z_i)) - \arg(g'(z_i)) + \epsilon_i(t)) \mathbbm{1}_{A(t,z_i)}) \quad (3.21)$$

By eq. (3.6),

$$|t_i - t| \leq \log 4 + \log(1/r). \quad (3.22)$$

Therefore almost surely, $9t/10 \leq t_i \leq 11t/10$ for all i from the choice of t. Thus $t_i \to \infty$ as $t \to \infty$. Further $|\epsilon_i(t)| = O(e^{-t/2}/r) = O(e^{-t/2}t/10) \to 0$ for all i on the event $A(t,z_i)$ from Lemma 3.6. Using all this information, Cauchy–Schwarz, Lemmas 3.11 and 3.12, we obtain

$$|E(\prod_{i=1}^{k} (\hat{h}_t(g(z_i)) - \arg(g'(z_i)) + \epsilon_i(t)) \mathbbm{1}_{A(t,z_i)}) - E(\prod_{i=1}^{k} (\hat{h}_{t/10}(g(z_i)) - \arg(g'(z_i))))| \leq ct^k e^{-ct}$$

almost surely given A. The second item of the proposition now follows from the first item. \square

To prepare for the proof of convergence in the Sobolev space $H^{-1-\eta}$ for all $\eta > 0$ we need the following convergence of h_t integrated against test functions.

Lemma 3.13. Let $\{f_i\}_{1 \leq i \leq n}$ be smooth compactly supported functions in \mathbb{D}. Then for any sequence of integers k_1, \ldots, k_n,

$$\lim_{t \to \infty} E^n \prod_{i=1}^{n} \left(\int_{\mathbb{D}} h_t(z)f_i(z)dz \right)^{k_i} = \int_{\mathbb{D}^{\sum_{i=1}^{n} k_i}} H(z_{11}, \ldots, z_{1k_1}, \ldots, z_{n1}, \ldots, z_{nk_n}) \prod_{i=1}^{n} \prod_{j=1}^{k_i} f_i(z_{ij})dz_{ij}$$

where H is as in Proposition 3.9.

Proof. Straightforward expansion and Fubini’s theorem yield

$$E^n \prod_{i=1}^{n} (\int_{\mathbb{D}} h_t(z)f_i(z)dz)^{k_i} = \int_{\mathbb{D}^{\sum_{i=1}^{n} k_i}} E^n (\prod_{i=1}^{n} \prod_{j=1}^{k_i} h_t(z_{ij})) \prod_{i=1}^{n} \prod_{j=1}^{k_i} f_i(z_{ij})dz_{ij} \quad (3.23)$$

We can apply Fubini because the term inside the integral is integrable from the moment bounds in Lemma 3.8. We want to take the limit as $t \to \infty$ on both sides of (3.23) and apply dominated convergence theorem and Proposition 3.9 to complete the proof. To justify the application of dominated convergence theorem note that $E|\prod_{i=1}^{n} \prod_{j=1}^{k_i} h_t(z_{ij})| \leq \log^{\sum_{i=1}^{n} k_i/2}(r)$ where $r = \min_{(t,y),(t',y')}|z_{ij} - z'_{ij}| \wedge \min_{ij}|z_{ij} - \partial \mathbb{D}|$ via Lemma 3.12 which is integrable. Further the functions f_i are uniformly bounded. \square
3.4 Identifying winding as the GFF: imaginary geometry

To show that the covariance is small when one of the points is near the boundary we will also require the following lemma.

Lemma 3.14 (distortion of argument). Let \(W : [0, \infty) \mapsto \mathbb{R} \) be a driving function for the radial Loewner differential equation (2.1) for the maps \((g_t)_{t \geq 0} \) parametrised by capacity. Let \((K_t)_{t \in [0,T]} \) be the corresponding hulls and let \(H_t = \mathbb{D} \setminus K_t \). Assume that the diameter of \(K_T \) is smaller than \(\delta \) and \(1 \notin B(K_T, \delta^{1/2}) \). Let \(\tilde{g}_T = g_T/\vartheta(1) \). Then \(|\arg g_{\tilde{g}_T}(0)| < c\delta^{1/2} \).

In the statement above \(\arg g_{\tilde{g}_T}(H_T) \) is the argument in \(\tilde{g}_T(H_T) \) (which does not contain 0) and is normalised so that \(\arg g_{\tilde{g}_T}(H_T)(\tilde{g}_T(1)) = 0 \).

Proof. Since the conformal radius \(R(0, H_t) \) is at least the inradius which is at least \(1 - \delta \), we obtain that the capacity \(t \) of \(K_t \) seen from 0 is always smaller than \(- \log(1 - \delta) \leq c\delta \) for \(t \leq T \), in particular \(T \leq c\delta \). Let \(A_t = \partial \mathbb{D} \setminus g_t(\mathbb{D} \setminus K_t) \), i.e., \(A_t \) is the part of \(\partial \mathbb{D} \) where \(g_t \) maps the boundary of \(K_t \). By definition, \(e^{i\vartheta_t} \in A_t \) for any \(t \). Let \(\text{Harm}_D(z,S) \) be the harmonic measure seen from \(z \) of the set \(S \) in the domain \(D \). Since \(\text{dist}(1, K_T) \geq \delta^{1/2} \), we can find \(\theta_- < 0 < \theta_+ \) such that \(\text{Harm}_D(0, I_{\pm}) \geq c\delta^{1/2} \), \(I_{\pm} \cap K_T = \emptyset \) where \(I_{\pm} \) are the two arcs connecting \(e^{i\vartheta_{\pm}} \) to 1 (see Figure 6). Note that since \(K_t \subset K_T \), the same holds for \(\mu_{\mathbb{D} \backslash K_t} \). Applying conformal invariance of the harmonic measure, we get \(\text{Harm}_D(g_t(I_{\pm})) \geq c\delta^{1/2} \) and therefore \(\text{Diam}(g_t(I_{\pm})) \geq c\delta^{1/2} \). Finally since \(I_{\pm} \) did not intersect \(K_T \), \(g_t(I_{\pm}) \) does not intersect \(A_t \) and therefore \(|e^{i\vartheta_t} - g_t(1)| \geq c\delta^{1/2} \).

Now, the Loewner equation gives \(|\partial_t g_t(1)| = |g_t(1) e^{i\vartheta_t} + g_t(1)| e^{i\vartheta_t} \vartheta_t(1) \leq c\delta^{-1/2} \).

Integrating for a time \(t \leq T \leq c\delta \) gives \(|g_t(1)| \leq c\delta^{1/2} \).

Recall \(\text{Arg} \) is the principal branch of argument in \((-\pi, \pi] \).

This gives \(|\text{Arg}(g_T(1))| \leq c\delta^{1/2} \) and since by definition \(g_t(0) \in \mathbb{R}^+ \),

\[
|\text{Arg} g_t(0)| = |\text{Arg} g_t(0) - \text{Arg} g_t(1)| \leq c\delta^{1/2}, \quad (3.24)
\]

Note that \(\text{Arg} g_t(0) \) is continuous in \(t \) since it is bounded by \(c\delta^{1/2} \) (and so does not come into the region where \(\text{Arg} \) is discontinuous).

We deduce that the same bound as eq. (3.24) holds for \(\arg g_{\tilde{g}_T}(H_T) \) by proceeding in the same way as in the proof of Lemma 3.4. Indeed note that one can find a curve \(\lambda \) connecting 1 to 0 in the domain of definition of the \(\{g_t\}_{0 \leq t \leq T} \) as in the proof of Lemma 3.4 and hence \(\arg g_{\tilde{g}_T}(H_T)(0) \) is continuous in \(t \) too. Also for \(t = 0 \) the difference is 0 trivially. This concludes the proof. \(\square \)

We define

\[
G(z_1, z_2, \ldots, z_k) = \lim_{t \to \infty} \mathbb{E}(\prod_{i=1}^{k}(h_t(z_i) - \mathbb{E}(h_t(z_i))))
\]

(3.25) to be the \(k \)-point covariance function which exists by Proposition 3.9.
Lemma 3.15. For all $|z| \geq 3/4$ and $t_2 \geq t_1 > -10 \log \text{dist}(z, \partial \mathbb{D}) + 1$ such that $t_2 < 10t_1$,

$$|\mathbb{E}\left(h_{t_1}(z)h_{t_2}(0) - \mathbb{E}(h_{t_1}(z))\mathbb{E}(h_{t_2}(0))\right)| \leq c \text{dist}(z, \partial \mathbb{D})e^c.$$

In particular, as $z \to \partial \mathbb{D}$, $G(0, z) \to 0$.

Proof. Let $\delta = \text{dist}(z, \partial \mathbb{D}) = 1 - |z|$. Set $t = -10 \log \delta + 1$. By Lemma 3.11,

$$|\mathbb{E}(h_{t_1}(z)h_{t_2}(0) - h_t(z)h_t(0))| \leq c t e^{-c t}, \quad |\mathbb{E}h_{t_1}(z)\mathbb{E}h_{t_2}(0) - \mathbb{E}h_t(z)\mathbb{E}h_t(0)| \leq c t e^{-c t}.$$

and observe that $c t e^{-c t} \leq c^2 e^c$. Let us define the event $G := A(t, z) \cap \{\gamma_z \subset B(z, \sqrt{\delta})\}$. From the exponential bound on the probability of $A(t, z)$, $A(t, 0)$ and Lemma 3.10, we have

$$\mathbb{P}(G \cap A(t, 0)) \geq 1 - ce^{-c t}. \quad (3.26)$$

By Lemma 3.8 and Cauchy–Schwarz, we see that

$$|\mathbb{E}(h_t(z))h_t(0) - \mathbb{E}(h_t(z)h_t(0))\mathbb{1}_{G,A(t,0)}| \leq c t e^{-c t} \quad (3.27)$$

Let $g : \mathbb{D} \setminus \gamma_z \to \mathbb{D}$ be a conformal map fixing 0 and 1. Then from Lemma 3.6, we have for some independent copy $\bar{h}_t(0)$ of $h_t(0)$,

$$\mathbb{E} \left(h_t(0) \mathbb{1}_{A(t,0)} | \gamma_z \right) \mathbb{1}_G = \mathbb{E} \left((\bar{h}_s(0) - \arg g'(\mathbb{D}\setminus \gamma_z)(g'(0)) + \epsilon(t))\mathbb{1}_{A(t,0)} \right) \mathbb{1}_G \quad (3.28)$$

where $|\epsilon(t)| < c t e^{-c t}$ on $A(t, 0)$ and $t + \log(|z| - \sqrt{\delta}) \leq s \leq t + \log 4$ (as in eq. (3.6)). Note also that $|z| - \sqrt{\delta} \geq 1 - 2\sqrt{\delta} > 0$. Thus we obtain using eq. (3.27),

$$\mathbb{E}(h_t(z)h_t(0)) = O(e^{-c t}) + \mathbb{E} \left(h_t(z) \mathbb{E} \left((\bar{h}_s(0) - \arg g'(\mathbb{D}\setminus \gamma_z)(g'(0)) + \epsilon(t))\mathbb{1}_{A(t,0)} \right) | \gamma_z \right) \mathbb{1}_G \quad (3.29)$$

We now expand the terms in the right hand side and treat each of them separately. Observe that while \bar{h} is independent of h, s still depends on γ_z. Nevertheless, we claim that

$$\mathbb{E}(h_t(z)\mathbb{E}(\bar{h}_s(0) | \gamma_z)) \to H(z)H(0).$$

Indeed first replace $\bar{h}_s(0)$ by $\tilde{h}_{t + \log(1-2\sqrt{\delta})}(0)$ and then the above convergence is true; then using Cauchy–Schwarz and Lemma 3.11 we deduce that the above convergence holds.

Regarding the second term, we claim that $\mathbb{E}(h_t(z)\arg g'(\mathbb{D}\setminus \gamma_z)(g'(0))\mathbb{1}_G)$ converges to 0. Indeed, this follows from Lemma 3.14 and the fact that on G, $\text{Diam}(\gamma_z(t)) < \sqrt{\delta}$. Hence by Cauchy–Schwarz we conclude

$$\mathbb{E}|h_t(z)\arg g'(\mathbb{D}\setminus \gamma_z)(g'(0))\mathbb{1}_G| < t e^{-c t}.$$

Finally, for the third term, since $|\epsilon(t)| \leq e^{-c t}$ on $A(t, 0)$, we deduce that $\mathbb{E}(h_t(0)e(t)\mathbb{1}_{A(t,0),G}) \to 0$ by Cauchy–Schwarz.

Consequently, we have proved

$$|\mathbb{E}(h_t(z)h_t(0)) - H(z)H(0)| \leq c e^{-c t}.$$

Using Lemma 3.11 we deduce that $|\mathbb{E}(h_t(z)h_t(0)) - \mathbb{E}(h_t(z))\mathbb{E}(h_t(0))| \leq c e^{-c t}$. This proves the lemma. □
Lemma 3.16. Let \(\{w_1, w_2, \ldots, w_k\} \) be a set of points in \(\mathbb{D} \) all of which are distinct. Let \(A = \{\gamma w_1, \ldots, \gamma w_k\} \) be the corresponding set of branches of \(T \) in \(\mathbb{D} \). Let \(g : \mathbb{D} \setminus A \to \mathbb{D} \) be a conformal map mapping 1 to 1. Let \(g_z : \mathbb{D} \setminus A \to \mathbb{D} \) be a conformal map which maps \(z \) to 0 and 1 to 1. Then for any test function \(f \) in \(C^\infty(\mathbb{D}) \),

\[
\lim_{t \to \infty} \mathbb{E} \left[\int_{\mathbb{D}} \hat{h}_t(z) f(z) \mathbb{1}_{\operatorname{dist}(z,A) > e^{-t/10}} dz \bigg| A \right] = \int_{\mathbb{D}} \left(\frac{3\pi}{2} + 2 \arg_{-1\mathbb{D}} (1 - g(x)) - \arg_{g'_z(\mathbb{D} \setminus A)}(g'_z(x)) \right) f(x) dx
\]

\[
\lim_{t \to \infty} \text{Var} \left[\int_{\mathbb{D}} \hat{h}_t(z) f(z) \mathbb{1}_{\operatorname{dist}(z,A) > e^{-t/10}} dz \bigg| A \right] = \int_{\mathbb{D} \times \mathbb{D}} G(0, g_z(w)) f(z) f(w) dz dw.
\] (3.30)

almost surely, where \(G(\cdot, \cdot) \) is the two-point covariance function defined in eq. (3.25).

Proof. This proof is an application of dominated convergence theorem. For the first item, note that for a fixed \(t \) we can take the expectation inside by Fubini and the moment bounds of \(\hat{h}_t \). Again observe that from (3.21), we have for an independent copy \(\hat{h}_t \) of \(h_t \) in \(\mathbb{D} \),

\[
\int_{\mathbb{D}} \mathbb{E} \left[\hat{h}_t(z) f(z) \mathbb{1}_{\operatorname{dist}(z,A) > e^{-t/10}} dz \bigg| A \right] = \int_{\mathbb{D}} \mathbb{1}_{\operatorname{dist}(z,A) > e^{-t/10}}(z) \mathbb{E} \left(\hat{h}_t'(z) - \arg_{g'_z(\mathbb{D} \setminus A)}(g'_z(z)) \bigg| A \right) f(z) dz + O(e^{-ct})
\] (3.31)

where \(9t/10 < t' = t'(z) < 11t/10 \) almost surely by Lemma 3.6. Therefore, the first item follows by taking limit on both sides and using dominated convergence theorem (whose application is justified by say Lemma 3.12: in fact, note that \(\mathbb{E}(h_t(z)) \) is bounded since it is zero when \(z = 0 \) by symmetry and for other values of \(z \) we can just use a distortion estimate).

For the variance computation, write \(\mathbb{E}^A \) for conditional expectation given \(A \). Then observe that

\[
\mathbb{E}^A \left[(\hat{h}_t(z) - \mathbb{E}^A \hat{h}_t(z)) \mathbb{1}_{\operatorname{dist}(z,A) > e^{-t/10}} (\hat{h}_t(w) - \mathbb{E}^A \hat{h}_t(w)) \mathbb{1}_{\operatorname{dist}(w,A) > e^{-t/10}} \right] = \mathbb{E}^A \left[\prod_{x \in \{z,w\}} \left(\hat{h}_{t_x}(g_z(x)) + \epsilon_x(t) - \mathbb{E}^A \hat{h}_{t_x}(g_z(x)) \right) \mathbb{1}_{A(t,x) \operatorname{dist}(x,A) > e^{-t/10}} \right]
\] (3.32)

because once we condition on \(A \), the term \(\arg_{g'_z(\mathbb{D} \setminus A)}(g'_z(x)) \) is nonrandom and hence cancels out. Note that since \(z, w \) are at least at a distance \(e^{-t/10} \) away from \(A \), we have \(9t/10 \leq t_x \leq 11t/10 \) for \(x \in \{z, w\} \), and that \(|\epsilon_x(t)| \leq ce^{-ct} \) on \(A(t, x) \). By Cauchy–Schwarz and Lemmas 3.8 and 3.11, note that in the right hand side we can replace \(t_z, t_w \) by \(t \) provided that we add an error term bounded by \(ce^{-ct} \), uniformly in \(z \) and \(w \).

Hence, by Fubini and eq. (3.32),

\[
\text{Var} \left[\int_{\mathbb{D}} \hat{h}_t(z) f(z) \mathbb{1}_{\operatorname{dist}(z,A) > e^{-t/10}} dz \bigg| A \right] = \int_{\mathbb{D}^2} \mathbb{E} \left[\prod_{x \in \{z,w\}} \left(\hat{h}_t(g_z(x)) + \epsilon_x(t) - \mathbb{E}^A \hat{h}_t(g_z(x)) \right) \mathbb{1}_{A(t,x) \operatorname{dist}(x,A) > e^{-t/10}} \right] f(z) f(w) dz dw + \text{error}(t)
\] (3.33)

\[
= \int_{\mathbb{D}^2} \text{Cov} \left(\hat{h}_t(0), \hat{h}_t(g_z(w)) \right) f(z) f(w) dz dw + \text{error}(t)
\]

\[
= \int_{z \in \mathbb{D}} f(z) \int_{y \in \mathbb{D}} \text{Cov} \left(\hat{h}_t(0), \hat{h}_t(y) \right) \left| (g_z^{-1}(y))^2 f(g_z^{-1}(y)) \right| dy dz + \text{error}(t)
\] (3.34)
where the error term satisfies $|\text{error}(t)| \leq cte^{-ct}$.

By Lemma 3.15, one can find a δ such that for all $y \in \mathbb{D}$ with $|y| > 1 - \delta$ and all $t > -12 \log \delta + 1$, $|\text{Cov}(\hat{t}(0), \hat{t}(y))| < 1$ almost surely. Therefore, on the set $\{|y| \geq 1 - \delta\}$, the integrand in eq. (3.34) is bounded by $a(y, z) := (g^{-1}_z)'(y)^2 \|f\|_{L^2}^2$. On the other hand, by Lemma 3.12 the integrand is bounded by $b(y, z) := \log(|y| \wedge (1 - |y|))(g^{-1}_z)'(y)^2 \|f\|_{L^2}^2$ when $|y| \leq 1 - \delta$.

Note that

$$\int_{\{|y| > 1 - \delta\}} (g^{-1}_z)'(y)^2 dy = \text{Leb}(y : g^{-1}_z(\{|y| > 1 - \delta\}) \leq \pi.$$

Therefore $a(y, z)$ is integrable on $\{|y| > 1 - \delta\}$. Note also that if $|y| \leq 1 - \delta$, $(g^{-1}_z)'(y) = R(g^{-1}_z(y), g^{-1}_z(\mathbb{D}))/R(y, \mathbb{D}) < \delta^{-1}$, so b too is integrable on $\{|y| \leq 1 - \delta\}$. Thus we can take limit inside the integral. Finally, one can use Proposition 3.9, item 1 to conclude.

We are now going to use the imaginary geometry coupling of Theorem 2.4 to prove the following consequence.

Theorem 3.17. Let f be any test function in $C^\infty(\mathbb{D})$. Let $h = h_{\text{GFF}}^0 + \chi_{\mathbb{D}, 1}$ be the Gaussian free field coupled with the UST according to Theorem 2.4, and let $h_{\text{GFF}} = (1/\chi)(h + \pi/2)$. Then we have

$$\lim_{t \to \infty} \mathbb{E}\left(\left(\hat{t}(f) - (h_{\text{GFF}}, f)\right)^2\right) = 0$$

In particular, (\hat{t}, f) converges to (h_{GFF}, f) in $L^2(\mathbb{P})$ and in probability as $t \to \infty$.

Proof. Fix $\varepsilon > 0$. Using Lemma 3.15, pick δ such that $G(0, y) + 2 \log(1/|y|) < \varepsilon$ if $|y| \in (1 - \delta, 1)$. Fix η to be chosen suitably later (in a way which is allowed to depend on ε and δ). Let A be the set of branches of \mathcal{T} from a “dense” set of points, $\frac{\mathbb{Z}^2}{4} \cap \mathbb{D}$, to 1. Note that that $R(z, \mathbb{D} \setminus A) < \eta$ for any $z \in \mathbb{D}$ by Koebe’s 1/4 theorem. Let $D' = \mathbb{D} \setminus A$. Define $\hat{t}(z) = \hat{t}1_{\text{dist}(z, A) > e^{-1/10}}$. First of all notice that

$$\mathbb{E}((\hat{t}(f) - (h_{\text{GFF}}, f))^2) \leq 2\mathbb{E}((\hat{t}(f) - (h_{\text{GFF}}, f))^2) + 2\mathbb{E}((\hat{t}(f) - (\hat{t}, f))^2) \quad (3.35)$$

By adding and removing \hat{t} the last expression on the right hand side of (3.35) converges to 0 by (3.20) and the following fact: using Cauchy–Schwarz and the moment bounds on $\hat{t}(z)$,

$$\mathbb{E}((\hat{t}(f) - (\hat{t}, f))^2) = \mathbb{E} \left(\int_{D'} \hat{t}(z)f(z)1_{\text{dist}(z, A) \leq e^{-t/10}} \right)^2$$

$$\leq \int_{\mathbb{D}^2} \mathbb{E} |\hat{t}(z)|^2 \|f\|_{L^2} < c(1 + t) \int_{\mathbb{D}^2} \mathbb{P} \left(\text{dist}(z, A) \leq e^{-t/10} \right)^2 dz dw$$

$$\leq c\|f\|_{L^2}^2 (1 + t) \mathbb{P}(\text{dist}(U_1, A) \leq e^{-t/10})$$

where $U_i \sim \text{Unif}(\mathbb{D})$ and are independent of everything else and each other. Now if z is a point in $\frac{\mathbb{Z}^2}{4} \cap \mathbb{D}$, then

$$\mathbb{P}(\text{dist}(U, \gamma_z) \leq e^{-t/10}) \leq c_\eta e^{-c't}$$

by Lemma 3.10. Hence summing up over $O(1/\eta^2)$ points and using a union bound, we see that (for every fixed η), $\mathbb{P}(\text{dist}(U_1, A) \vee \text{dist}(U_2, A) \leq e^{-t/10}) \to 0$ exponentially fast and thus the second term on the right hand side of eq. (3.35) tends to 0.
Let \mathbb{E}^A and Var^A denote the conditional expectation and variance given A. It is easy to see
\[
\mathbb{E}^A((\hat{h}_t, f) - (h_{GFF}, f))^2 \leq 3\text{Var}^A(\hat{h}_t, f) + 3\text{Var}^A(h_{GFF}, f) + 3(\mathbb{E}^A(\hat{h}_t, f) - \mathbb{E}^A(h_{GFF}, f))^2 \tag{3.36}
\]
Note that it is enough to show that as $t \to \infty$ the left hand side of (3.36) can be made smaller than ε (in expectation) by choosing η suitably since this implies that the first term in the right hand side of (3.35) is smaller than ε plus a term converging to zero, which completes the proof.

The last term of (3.36) converges to 0 from the convergence of expectations in Lemma 3.16 and the fact that h_{GFF} satisfies the correct boundary conditions given A (which is a consequence of the imaginary geometry coupling).

For the other terms, recall that conditionally on A, h_{GFF} is just a free field in D' with variance $1/\chi^2$ and with Dirichlet boundary condition plus a harmonic function. Recall that the variance of a GFF integrated against a test function is given by an integral of the Green’s function in the domain. Also recall that the Green’s function is conformally invariant. In particular if g_z is the conformal map from D' to D sending z to 0 and 1 to 1, using the explicit formula for the Green’s function in the unit disc, we have
\[
\text{Var}^A(h_{GFF}) = -\int_{D \times D} \frac{1}{\chi^2} \log |g_z(w)|f(z)f(w)dw.
\]
Plugging in the variance formula derived in Lemma 3.16 and since $\chi = 1/\sqrt{2}$,
\[
\mathbb{E}(\text{Var}^A((h_{GFF}, f))) + \mathbb{E}(\lim_{t \to \infty} \text{Var}^A(\hat{h}_t, f))) = \mathbb{E}\left(\int_{D \times D} (G(0, g_z(w)) - 2 \log |g_z(w)|)|f(z)f(w)dw\right) \tag{3.37}
\]
By a change of variable $y = g_z(w),$
\[
\int_{D} (G(0, g_z(w)) - 2 \log |g_z(w)|)|f(w)dw = \int_{D} (G(0, y) - 2 \log |y|)|f(g_z^{-1}(y))|(g_z^{-1})'(y)|^2dy \tag{3.38}
\]
As in Lemma 3.16, we are going to estimate the integral on two domains, $B_\delta = \{ |z| < 1 - \delta \}$ and $B'_\delta := D \setminus B_\delta$. Recall that by the choice of δ, $G(0, y) + 2 \log 1/|y| < \varepsilon$ if $y \in B'_\delta$. Hence
\[
\int_{B'_\delta} |(G(0, y) - 2 \log |y|)|f(g_z^{-1}(y))|(g_z^{-1})'(y)|^2dy < \varepsilon \|f\|_\infty \text{Leb}(g_z^{-1}(B'_\delta)) < \pi \varepsilon \|f\|_\infty \tag{3.39}
\]
To estimate the integral in B_δ, notice that $|(g_z^{-1})'(y)| = R(g_z^{-1}(y), D')/R(y, D) < \eta/\delta$ if $y \in B_\delta$, by Koebe’s 1/4 theorem. Hence
\[
\int_{B_\delta} |(G(0, y) - 2 \log |y|)|f(g_z^{-1}(w))|(g_z^{-1})'(y)|^2dw < \|f\|_\infty \frac{\eta^2}{\delta^2} \int_{B_\delta} |G(0, y) - 2 \log |y||dy \tag{3.39}
\]
The integral on the right hand side is finite via the bound Lemma 3.12. After bounding the integral over w, we bound the integral over z by $\|f\|_\infty$ times the area. This completes the proof since we can choose η such that $\eta/\delta < \varepsilon$ where ε is arbitrary. \qed
Corollary 3.18. For any $p > 0$, and any sequence of test functions $(f_1, \ldots, f_n) \in C^\infty(\bar{D})$ and integers k_1, \ldots, k_n,

$$\mathbb{E}(\prod_{i=1}^{n} (h_t, f_i)^{k_i} - \prod_{i=1}^{n} (h_{GFF}, f_i)^{k_i})^p \to 0$$

(3.40)
as $t \to \infty$.

Proof. It is enough to prove this fact when p is an integer. For $n = 1$ this follows from the fact that (h_t, f) converges in $L^2(\mathbb{P})$ towards (h_{GFF}, f), and (h_t, f) is bounded in L^p for any $p > 1$.

For general $n \geq 1$ we proceed by induction, and note that by the triangle inequality in L^p (i.e., Minkowski’s inequality), if $X_n \to X$ and $Y_n \to Y$ in L^p for every $p > 1$ then $X_nY_n \to XY$ in L^p for every $p > 1$.

\[\square\]

3.5 Change of coordinates

Let h_t^D be the winding field in a general domain smooth bounded domain D with a continuum UST \mathcal{T}^D. Fix a conformal map $\varphi : \mathbb{D} \to D$ and sending the marked point 1 to the marked point $x \in \partial D$. Let h_t^D denote the intrinsic winding field associated to the continuum spanning tree $\mathcal{T} = \varphi^{-1}(\mathcal{T}^D)$.

The general idea is to show that in the limit one has

$$h_t^D \circ \varphi = h_t^D + \arg_{\mathbb{D}}(\varphi'(z)), \quad z \in \mathbb{D}$$

which is the imaginary geometry change of coordinates (see [37]).

Lemma 3.19.

$$|h_t^D \circ \varphi - (h_t^D + \arg_{\mathbb{D}}(\varphi'(\cdot)))| \leq c_D.$$

Proof. For this lemma we can assume without loss of generality that $0 \in D$, x is the rightmost point in ∂D, so D lies in the half plane $\{\Re(z) < \Re(x)\}$. In fact we can assume $x = 1$ (and the tangent at 1 is vertical). Note that $\varphi(\gamma_z[-1, \ell]) = \tilde{\gamma}_\varphi(z)[-1, \ell]$ where $\tilde{\gamma}_\varphi(z)$ is a radial SLE$_2$ in D towards $\varphi(z)$ (in particular the time-parametrisation is invariant). Now add a straight segment from z to $\gamma_z(\ell)$ to obtain a curve γ'. We now aim to use Lemma 3.4 to study how the winding of $\gamma_z[-1, \ell]$ is deformed by φ. To apply this lemma we need a way to continuously deform \mathbb{D} into D through conformal maps. For this we observe that the boundaries of D and \mathbb{D} are homotopic: let η^D and $\eta^\mathbb{D}$ be two (C^1) parametrisations of ∂D and $\partial \mathbb{D}$ respectively. Assume that $\eta^D(0) = \eta^\mathbb{D}(0) = 1$. For $0 \leq t \leq 1$ let $(\eta_t)_{0 \leq t \leq 1}$ be a continuous family of simple loops such that $\eta_0 = \eta^D$ and $\eta_1 = \eta^\mathbb{D}$. Define also φ_t to be the conformal map from \mathbb{D} to the Jordan domain D_t defined by η_t (which we can assume contains 0) such that $\varphi_t(0) = 0$ and $\varphi_t'(0) > 0$. Then by the Carathéodory kernel theorem (Theorem 1.8 in [32]) $\tilde{\varphi}_t$ is locally uniformly continuous in \mathbb{D} as a function of t, and by Corollary 2.4 in [32] this convergence extends in fact uniformly over \mathbb{D}. We can further assume without loss of generality that $\eta_t(0) = 1$ and $\eta_t(0)$ is the rightmost point in D_t, i.e., $D_t \subset \{z; \Re(z) < 1\}$. If we now consider the map φ_t such that $\varphi_t(0) = 0$ and $\varphi_t(1) = 1$ then we immediately deduce from the above that φ_t is continuous in t, uniformly over \mathbb{D}. We can further assume without loss of generality that $\varphi = \varphi_1$.

Then the assumptions of Lemma 3.4 are satisfied with $D = \{z; \Re(z) < 1\}$, $A = \mathbb{D}$ and γ being the union γ' of $\gamma_z[-1, \ell]$ and a straight segment connecting z and $\gamma_z(t)$. (The fact that $\varphi_t(\gamma')$ is continuous in t comes from the above uniform continuity of φ on all of \mathbb{D}). Consequently,

$$W(\varphi(\gamma'), \varphi(z)) = W(\gamma', z) + \arg_{\mathbb{D}}(\varphi'(z)) + \arg_{1-D}(1-z) - \arg_{1-D}(1-\varphi(z)).$$

29
Moreover, the image of the segment is some smooth curve which however has uniformly bounded winding if \(D \) is smooth and bounded (a consequence of Proposition 3.7 in [25]). By definition of \(h^P_t \) the lemma follows.

\[\square \]

Corollary 3.20. Let \(f \) be any test function in \(C^\infty(\bar{D}) \). Let \(h = h^0_{\text{GFF}} + \chi u_{D,x} \) be the GFF coupled to the UST according to the imaginary geometry coupling of Theorem 2.4. Then \((h^P_t, f) \) converges to \((h_{\text{GFF}}, f) \) in \(L^2(\mathbb{P}) \) and in probability as \(t \to \infty \), where \(h_{\text{GFF}} = \chi^{-1}(h + \pi/2) \).

\[\square \]

Proof. It suffices to show that \((h^P_t - h^P_0) \circ \phi - \arg \varphi'(\mathbb{D})(\varphi'(\cdot)), f) \) converges to zero in \(L^2 \). This follows simply from the pointwise convergence to zero of the 2-point moments of \(h^P_t - h^P_0 \circ \phi - \arg \varphi'(\mathbb{D})(\varphi'(\cdot)) \) by change of coordinates and dominated convergence whose application is justified by Lemma 3.19.

\[\square \]

3.6 Convergence in \(H^{1-\eta} \)

Let \((e_j)_{j \geq 1} \) denote the orthonormal basis of \(L^2(D) \) given by the eigenfunctions of \(-\Delta \) in \(D \). Let \(h_{\text{GFF}} \) denote the process defined in Theorem 3.17, which is \((1/\chi) \) times a GFF with winding boundary conditions multiplied by \(\chi \). We now strengthen the convergence from a convergence in probability or \(L^2(\mathbb{P}) \) for finite-dimensional marginals to a convergence in the Sobolev space \(H^{1-\eta} \).

Proposition 3.21. For every \(\eta > 0 \), the field \(h_t \) converges to \(h_{\text{GFF}} \) in \(H^{1-\eta} \) in probability as \(t \to \infty \). Further, \(\{h_n\}_{n \in \mathbb{N}} \) converges almost surely to \(h_{\text{GFF}} \) as \(n \to \infty \) along positive integers.

Proof. The basic idea is to show that \(h_t \) is a Cauchy sequence in \(H^{1-\eta} \). Let \(u \geq t \). We start by getting bounds on \(\mathbb{E}[(h_u - h_t, e_j)^2] \). By Fubini’s theorem and Cauchy–Schwarz,

\[
(\mathbb{E}[(h_u - h_t, e_j)^2])^2 = \left(\int_{D^2} \mathbb{E}[(h_u(z) - h_t(z))(h_u(w) - h_t(w))]e_j(z)e_j(w)dzdw \right)^2 \\
\leq \int_{D^2} \left(\mathbb{E}[(h_u(z) - h_t(z))(h_u(w) - h_t(w))] \right)^2 dzdw \int_{D^2} e_j^2(z)e_j^2(w)dzdw \\
= \int_{D^2} \left(\mathbb{E}[(h_u(z) - h_t(z))(h_u(w) - h_t(w))] \right)^2 dzdw
\]

(3.42)

since \(e_j \) forms an orthonormal basis of \(L^2(D) \). Let \(r(z,w) = |z - w| \wedge \text{dist}(z, \partial D) \wedge \text{dist}(w, \partial D) \). We are going to break up the integral in (3.42) into two cases, either \(t \leq -10 \log(r(z,w)) + 1 \) (i.e., \(r^{10} \leq e^{1-t} \)) or otherwise. In the first case Cauchy–Schwarz and the bound on moment of order two in Lemma 3.8 and Lemma 3.19 yield

\[
\int_{D^2} \left(\mathbb{E}[(h_u(z) - h_t(z))(h_u(w) - h_t(w))] \right)^2 1_{t \leq -10 \log(r(z,w)) + 1}dzdw \\
\leq c(1 + u^2) \int_{D^2} 1_{r(z,w)^{10} \leq e^{1-t}}dzdw \leq c(1 + u^2)e^{-ct}
\]

(3.43)

On the other hand,

\[
\int_{D^2} \left(\mathbb{E}[(h_u(z) - h_t(z))(h_u(w) - h_t(w))] \right)^2 1_{t > -10 \log(r(z,w)) + 1}dzdw \\
\leq cu^2e^{-ct} \int_{D^2} 1_{t > -10 \log(r(z,w)) + 1}dzdw \leq c(1 + u^2)e^{-ct}
\]

(3.44)

30
where the second inequality above follows from Lemma 3.11 (note that the bound of Lemma 3.11 holds also if \(h \) is replaced by \(h_t \), because of the control on moments of \(h_t \) in Lemma 3.8 and the exponential bound on the probability of \(A(t, z)^c \)). Combining (3.43) and (3.44), we obtain
\[
E[(h_u - h_t, e_j)^2] \leq c(1 + u^2)e^{-ct}
\] (3.45)

Now let \(t = n \) and \(n \leq u \leq n + 1 \). Then by Jensen’s inequality
\[
E[(h_u - h_n)^2] \leq E[(h_u - h_n)^2_{H^{-1-\eta}}] \leq \sum_{j \geq 1} E[(h_u - h_n, e_j)^2] \lambda_j^{-1-\eta} \leq c(1 + n^2)e^{-c'n} \sum_{j=1}^\infty \lambda_j^{-1-\eta}
\] (3.46)
and since \(\sum_{j=1}^\infty \lambda_j^{-1-\eta} < \infty \) by Weyl’s law we deduce (by applying Markov’s inequality and the Borel–Cantelli lemma) that \(h_n \) is almost surely a Cauchy sequence in \(H^{-1-\eta} \), and hence converge to a limit \(h_\infty \) almost surely in \(H^{-1-\eta} \). Furthermore by the triangle inequality and (3.46) we get
\[
E(\|h_\infty - h_n\|_{H^{-1-\eta}}) \leq C e^{-c'n}.
\] Then using (3.46) again, we deduce
\[
E(\|h_u - h_\infty\|_{H^{-1-\eta}}) \leq C(1 + u)e^{-c'u}
\]
and hence \(h_u \) converges in probability in \(H^{-1-\eta} \) to \(h_\infty \). Furthermore we have that \(h_\infty = h_{\text{GFF}} \) by considering the action on test functions and Theorem 3.17. This finishes the proof of Proposition 3.21 and hence also of Theorem 3.2.

\[\square\]

4 Estimates on uniform spanning trees

The goal of this section is to gather the lemmas needed in Section 5 for the proof of the main result, Theorem 1.2. To make the purpose of the results in this section more clear, we provide a sketch of the proof of Theorem 1.2. It will be useful for the reader to recall the general overview of the proof in Section 1.5. Recall that one additional difficulty comes from the fact that we need to work with moments and not only in law. Therefore we also need a priori estimates on the tails of our variables to use Cauchy–Schwarz bounds and dominated convergence theorems. In particular a bound on the tail of the winding of loop-erased random walk is derived in Section 4.3.

4.1 Assumptions on the graph.

Let \(G \) be a planar infinite graph embedded properly in the plane. This means that the embedding is such that no two edges cross each other. Vertices of the graph are identified with some points in \(\mathbb{C} \) given by the embedding. We allow \(G \) to have oriented edges with weights and a continuous simple random walk \(\{X_t\}_{t \geq 0} \) on such a graph \(G \) is defined in the usual way: the walker jumps from \(u \) to \(v \) at rate \(w(u, v) \) where \(w(u, v) \) denotes the weight of the oriented edge \((u, v) \). Given a vertex \(u \) in \(F \), let \(\mathbb{P}_u \) denote the law of continuous time simple random walk on \(G \) started from \(u \). Let \(G^\#_\delta \) denote the embedding rescaled by \(\delta \) (this means we look at the embedding which is \(\delta \) times the original embedding). For \(A \subset \mathbb{C} \), we denote by \(A^\#_\delta \) the set of vertices of \(G^\#_\delta \) in \(A \). In this section, \(B(a, r) \) will denote the set \(\{z : |z - a| < r\} \). For \(A \subset \mathbb{C} \), denote by \(A + z := \{z + x : x \in A\} \) to be the translation of \(A \) by \(z \). We assume \(G \) has the following properties.

(i) **(Bounded density)** There exists \(C \) such that for any \(x \in \mathbb{C} \), the number of vertices of \(G \) in the square \(x + [0, 1]^2 \) is smaller than \(C \).
(ii) **(Good embedding)** The edges of the graph are embedded in such a way that they do not cross each other and have uniformly bounded winding. Also, 0 is a vertex.

(iii) **(Irreducible)** The continuous time random walk on \(G \) is irreducible in the sense that for any two vertices \(u \) and \(v \) in \(G \), \(\mathbb{P}_u(X_1 = v) > 0 \).

(iv) **(Invariance principle)** As \(\delta \to 0 \), the continuous time random walk \(\{X_t\}_{t \geq 0} \) on \(G^{#\delta} \) started from 0 satisfies:

\[
(\delta X_{t/\delta^2})_{t \geq 0} \overset{d}{\to} (B_{\phi(t)})_{t \geq 0}
\]

where \((B_t, t \geq 0) \) is a two dimensional standard Brownian motion in \(\mathbb{C} \) started from 0, and \(\phi \) is a nondecreasing, continuous, possibly random function satisfying \(\phi(0) = 0 \) and \(\phi(\infty) = \infty \). The above convergence holds in law in Skorokhod topology.

(v) **(Uniform crossing estimate).** Let \(R \) be the horizontal rectangle \([0,3] \times [0,1]\) and \(R' \) be the vertical rectangle \([0,1] \times [0,3]\). Let \(B_1 := B((1/2,1/2),1/4) \) be the starting ball and \(B_2 := B((5/2,1/2),1/4) \) be the target ball (see Figure 7). There exists universal constants \(\delta_0 > 0 \) and \(\alpha_0 > 0 \) such that for all \(z \in \mathbb{C} \), \(\delta \in (0,\delta_0) \), \(v \in B_1 \) such that \(v + z \in G^{#\delta} \),

\[
\mathbb{P}_{v + z}(X \text{ hits } B_2 + z \text{ before exiting } (R + z)^{#\delta}) > \alpha_0.
\]

Similar statement holds for the vertical rectangle \(R' \). Let \(B'_2 := B((1/2,5/2),1/4) \). Then for all \(z \in \mathbb{C} \), \(\delta \in (0,\delta_0) \), \(v \in B_1 \) such that \(v + z \in G^{#\delta} \),

\[
\mathbb{P}_{v + z}(X \text{ hits } B'_2 + z \text{ before exiting } (R' + z)^{#\delta}) > \alpha_0.
\]

Let us remark here that the crossing estimate is not a consequence of the invariance principle since we do not have a rate of convergence which is uniform over all points in the plane. Also note that the crossing estimates hold for rectangles \(R, R' \) rescaled by \(r > 0 \) and translated by \(z \) for the same \(\alpha_0 \) and \(\delta \in (0,r\delta_0) \). We emphasise here that it is enough to assume the invariance principle starting from a single point.

Remark 4.1. A consequence of the results of Yadin and Yehudayoff [39] is that under these assumptions loop-erased random walk in \(D^{#\delta} \), started from an arbitrary vertex \(z^\delta \to z \) as \(\delta \to 0 \), will converge (for the uniform topology on compacts) towards radial SLE$_2$ in \(D \) towards \(z \). Note that this holds even if \(z \) is distinct from 0. There are a few details worth mentioning here:

1. Yadin and Yehudayoff [39] considered **backward** loop erased random walk, whereas we consider forward LERW (where loops are erased in chronological order). However, these have the same law, even when the graph is directed as is the case here.
2. The result of [39] is stated with \(D = \mathbb{D} \) and \(z = 0 \), but this does not play a role in the proof. notice in particular that the key estimate on the Poisson kernel ([39], Lemma 1.2) is stated with the generality we require. Note that planarity of the graph plays a crucial role to prove this estimate.

Remark 4.2. Let us briefly discuss the role of these assumptions. The invariance principle should be essentially a minimal assumption for the convergence. Indeed the Gaussian free field depends on the euclidean structure of the plane and it is difficult to imagine any graph converging in a sense to the euclidean plane without satisfying an invariance principle. In practice the invariance principle and irreducibility, together with the fact that there is no accumulation point, are exactly the assumption needed the convergence of the loop-erased random walk to SLE2 from [39].

Our main additional assumption is the uniform crossing estimate. It is used extensively to derive various a-priori estimates on the behaviour of the random walk, the uniformity over starting points and scale being a key factor in some different multi-scale arguments. We believe however that there should be some room in our proofs to weaken this assumption, for example only assuming that “good” rectangles form a supercritical percolation.

The bounded density assumption is actually only needed for a union bound in the proof of Lemma 4.15. It is clear from that proof that it would not be needed if the uniform crossing assumption was allowed to “scale” with the local density of the graph.

4.2 Russo–Seymour–Welsh type estimates

Let \(D \) be a domain with \(C^1 \) boundary. Let \(\partial D^{#\delta} \) denote the boundary of \(D^{#\delta} \), which consists of the set of vertices in \(G^{#\delta} \) outside \(D \) which has a neighbour in \(D^{#\delta} \). Let \(\mathcal{T}^{#\delta} \) denote the uniform spanning tree in \(D^{#\delta} \) with wired boundary condition. All the results in this section hold without the assumption on CLT (just assumptions items i and v from Section 4.1 are needed).

We denote by \(A(x, r, R) \) the annulus \(\{ z \in \mathbb{C} : r < |z - x| < R \} \). Let \(v \in A(x, r, R)^{#\delta} \). The random walk trajectory from a vertex \(v \) is the union of the edges it crosses (viewed as embedded in \(\mathbb{C} \)). We say random walk from \(v \) does a full turn in \(A(x, r, R) \), if the random walk trajectory intersects every simple curve starting from \(\{ |z| = r \} \) and ending in \(\{ |z| = R \} \) before exiting \(A(x, r, R) \). We will write \(X[a, b] \) for the random walk trajectory between times \(a \) and \(b \). We will allow ourselves to see \(X[a, b] \) and the loop-erased walk \(Y \) either as a sequences or as sets depending on the place but this should not lead to any confusion. For any continuous curve \(\lambda \in \mathbb{C} \), with a slight abuse of terminology we will freely say that "(\(X_t, t \geq 0 \) crosses (or hits) \(\lambda \) at time \(t > 0 \)" to mean that \(X_t \neq X_{t-} \) and the edge \([X_{t-}, X_t] \) intersects the range of the curve \(\lambda \).

In this section and the next, we will always assume that the loop-erased walk is generated by erasing loops chronologically from a simple random walk. We will allow ourselves to refer to the simple random walk associated to a loop-erased walk without further mention of this.

Lemma 4.3. Fix \(0 < r < R \), \(x \in \mathbb{C} \) and \(\Delta = R - r \). There exists a constant \(C > 0 \) depending only on \(R/r \) such that if \(\delta \leq Cr \delta_0 \) where \(\delta_0 \) is as in item v, and there exists a constant \(\alpha = \alpha(R/r) > 0 \) such that for all \(v \in A(x, r + \Delta/3, R - \Delta/3)^{#\delta} \), the probability that the random walk starting at \(v \) does a full turn before exiting \(A(x, r, R) \) is at least \(\alpha \).

Proof. We use the uniform crossing assumption here and use the notations and terminology as described in Section 4.1. It is easy to see that we can find a sequence of rectangles \(R_1, R_2, \ldots, R_k \subset A(x, r + \Delta/4, R - \Delta/4)^{#\delta} \) where each such rectangle is a rectangle of the form \(\varepsilon R + z \) or \(\varepsilon R' + z \).
Dividing by h together with the Markov property and the uniform crossing estimate this gives γ the hitting time of u.

We see that on the above event we have

$$\partial A(v,v) = \{0, \epsilon,R\}$$

Using the crossing estimate a bounded number of times as in the proof of Lemma 4.3, it is clear that there exists a constant $\alpha = \alpha(R/r, \epsilon/r) > 0$ such that if $\delta \leq C\epsilon_{\delta}^0$ and $x \in C$, the following holds. Let τ be the stopping time where the random walk exits $A(x,r,R)$.

For all $v \in B_1$ and ϵ, R and the number k to be bounded above by a constant $k_0(R/r)$. Applying the uniform crossing estimate and the Markov property of the walk, we see that this probability is bounded below by α^k_0, thus completing the proof.

Actually we will need estimates such as Lemma 4.3 to hold even when we condition on the exit point of the annulus which we will prove now. The first step is to prove a conditional version of the uniform crossing estimate.

Lemma 4.4. Fix $0 < r < R$ and ϵ. There exists a constant C depending only on R/r and ϵ/r and there exists $\alpha = \alpha(r/R, \epsilon/r) > 0$ such that if $\delta \leq C\epsilon_{\delta}^0$ and $x \in C$, the following holds. Let τ be the stopping time where the random walk exits $A(x,r,R)$.

Let R be a rectangle of the form $[0,3\eta] \times [0,\eta]$ such that $R \subset A(x,r + \epsilon, R - \epsilon)$ and $\eta \geq \epsilon$. Let B_1 and B_2 be balls defined as in the uniform crossing estimate, i.e. $B_1 = y + B((\frac{\eta}{2}, \frac{\eta}{2}), \frac{\eta}{2})$ and $B_2 = y + B((\frac{\eta}{2}, \frac{\eta}{2}), \frac{\eta}{8})$.

For all $v \in B_1$ and $u \in \partial A(x,r,R)$ such that $P_v[X_\tau = u] > 0$,

$$P_v[X \text{ hits } B_2 \text{ before exiting } R | X_\tau = u] > \alpha.$$

Proof. Let $h(v) = P_v[X_\tau = u]$. We start by giving a rough bound on h on $A(x,r + \epsilon, R - \epsilon)$. Let us fix $v, v' \in A(r + \epsilon, R - \epsilon)$.

Since h is harmonic, there exists a path $\gamma = \{v, v_1, \ldots\}$ from v to $\partial A(x,r,R)$ along which h is nondecreasing.

Also since h is harmonic and bounded, if τ_γ denotes the hitting time of $\gamma \cup \partial A(x,r,R)$ we have

$$h(v') = E_{v'} h(X_{\tau_\gamma}) \geq h(v) P_{v'}[X_{\tau_\gamma} \in \gamma].$$

Using the crossing estimate a bounded number of times as in the proof of Lemma 4.3, it is clear that there exists a constant $\beta = \beta(R/r, \epsilon/r)$ independent of δ and v' such that

$$P_{v'}[X \text{ does a full turn in } A(x,r,r + \epsilon) \text{ and in } A(x,R - \epsilon, R) \text{ before exiting } A(x,r,R)] \geq \beta.$$

We see that on the above event we have $X_{\tau_\gamma} \in \gamma$ so we have proved

$$\forall v, v' \in A(x,r + \epsilon, R - \epsilon), \beta h(v) \leq h(v') \leq 1/\beta h(v).$$

Now together with the Markov property and the uniform crossing estimate this gives

$$P_v[X \text{ hits } B_2 \text{ before exiting } R \text{ and } X_\tau = u] \geq P_v(X \text{ hits } B_2 \text{ before exiting } R) \inf_{v' \in B_2} h(v') \geq \alpha \beta h(v).$$

Dividing by $h(v)$, the proof is complete.

Using a bounded number of rectangles to surround the center x in $A(x,r,R)$ as in the above lemma, we get the following corollaries.
Lemma 4.5. Suppose we are in the setup of Lemma 4.3 so that \(r, R, C, \delta_0 \) are as in Lemma 4.3. Let \(\tau \) be the stopping time when the random walk exits \(A(x, r, R) \# \delta \). Let \(u \in \partial A(x, r, R) \# \delta \) such that \(\mathbb{P}_v(X_\tau = u) > 0 \). Then for all \(\delta \in (0, Cr\delta_0) \) conditioned on \(X_\tau = u \), the \(\mathbb{P}_v \) probability of the random walk doing a full turn in \(A(x, r, R) \) is at least \(\alpha = \alpha(R/r) > 0 \).

Lemma 4.6. Fix \(0 < r < R \). There exists a constant \(C = C(R/r) > 0 \) and \(\alpha \) such that for \(\delta \leq Cr\delta_0 \) and for all \(x, v \in A(x, r + \frac{R-r}{3}, R - \frac{R-r}{3}) \) and \(u \) such that \(\mathbb{P}_v(X_\tau = u) > 0 \), where \(\tau \) is the exit time of \(B(x, R) \), we have

\[
\mathbb{P}_v[X \text{ enters } B(x, r) \text{ before exiting } B(x, R)|X_\tau = u] > \alpha.
\]

The next lemma establishes an exponential tail for the winding of the simple random walk in an annulus conditioned to exit at a vertex. This estimate is needed to establish uniform integrability for the winding of the loop erased walk. Recall that we write \(X[t, t'] \) for the random walk path between times \(t \) and \(t' \) and \(W(\gamma, x) \) for the winding of a path \(\gamma \) around \(x \).

Lemma 4.7. Fix \(r, R, \delta_0, C \) as in Lemma 4.3. There exists \(\alpha = \alpha(R/r) > 0 \) and \(c \) such that for all \(x \in \mathbb{C}, \delta \in (0, Cr\delta_0), v \in A(x, r + \frac{R-r}{3}, R - \frac{R-r}{3}) \# \delta \), \(u \) such that \(\mathbb{P}_v(X_\tau = u) > 0 \) where \(\tau \) is the exit time of \(A(x, r, R) \) and \(n \geq 1 \), we have

\[
\mathbb{P}_v \left[\sup_{\gamma \subset X[0, \tau]} |W(\gamma, x)| \geq n |X_\tau = u \right] \leq c \alpha^n.
\]

where the supremum is over all continuous paths \(\gamma \) obtained by erasing portions from \(X[0, \tau] \).

Proof. The proof is divided in three steps. First we construct a set \(U \subset A(x, r, R) \) such that if the random walk is started in \(U \) it has a positive probability to hit \(u \) without winding around \(x \). In the second step we use the conditional crossing estimate (Lemma 4.4) to show that with positive probability the random walk started from the bulk of the annulus \(A(x, r, R) \) can hit \(U \) without winding either. The basic idea is then to apply the Markov property. However the conditional crossing estimate requires the source and target points to be far from the boundary of the annulus. It turns out that points which are near the boundary component of the annulus containing \(u \) do not cause any problem in this estimate. However, starting the random walk from near the opposite boundary component requires an additional trick which constitutes the third step of the proof (essentially this amounts to shrinking the annulus).

Step 1. Let us assume first that \(u \) is a point on the outer boundary of the annulus. Up to a rotation and a translation of the graph, we can assume that \(x = 0 \) and \(u \) is on the negative real axis. We also simplify notations by writing \(A = A(x, r, R) \). For a continuous path \(\gamma \) we write \(\gamma^\# \delta \) for a discrete path staying at distance \(\delta/\delta_0 \) of \(\gamma \).

We start as in the previous proof by controlling the function \(h(v) = \mathbb{P}_v[X_\tau = u] \). More precisely we claim that there exists \(c \) such that for all \(\rho \leq \frac{R-r}{10} \), for all \(\delta \) small enough (depending on \(\rho \)), for all \(a \in (A \cap \partial B(u, \rho)) \# \delta \) and \(b \in \{ z | \arg(z - u) \in [-\frac{\pi}{4}, \frac{\pi}{4}] \cap \partial B(u, \rho) \} \# \delta \),

\[
h(b) \geq ch(a). \tag{4.1}
\]

Let \(b \in \{ z | \arg(z - u) \in [-\frac{\pi}{4}, \frac{\pi}{4}] \cap \partial B(u, \rho) \} \# \delta \) be fixed and let \(a \) be a point in \((A \cap \partial B(u, \rho)) \# \delta \). Since \(h \) is harmonic there exists a path \(\gamma \) from \(a \) to \(u \) along which \(h \) is non-decreasing and we can
assume that γ does not intersect $(A \cap \partial B(u, \rho))^{\# \delta}$ outside of a (otherwise change a to be the last intersection point). Let τ_γ be the first hitting time of $\gamma \cup \partial A$. By harmonicity we have

$$h(b) = \mathbb{E}_b[h(X_{\tau_\gamma})].$$

On the other hand, by the crossing estimate, the random walk has a positive probability c independent of ρ to surround $\partial B(u, \rho) \cap A$ in the clockwise and anticlockwise directions, staying in the annulus $A(u, 99\rho/100, 101\rho/100)$. If this event occurs, then the walk must intersect γ before leaving A irrespective of the relative positions of a, b, u. Hence using this event to lower bound the expectation, we find

$$h(b) = \mathbb{E}_b[h(X_{\tau_\gamma})] \geq h(a)c.$$ This proves the claim (4.1).

A second claim is that h increases at least polynomially close to u. More precisely, there exists α such that, for all $\rho \leq R-r_{10}$, for all n, for all δ small enough,

$$\sup_{A \cap \partial B(u, \rho)^{\# \delta}} h \leq \alpha^n \sup_{A \cap \partial B(u, 2^{-n} \rho)^{\# \delta}} h.$$ (4.2)

Indeed, by the crossing estimate, there is a uniform upper bound on the probability that the random walk started on a circle of radius ρ reaches a circle of radius $\rho/2$ before hitting the boundary. Then using the same bound iteratively proves (4.2).

Using (4.1) and (4.2), we can define $\mathcal{N} = A^{\# \delta} \cap B(u, R-r_{10})$ and $U' = \{z| \arg(z-u) \in [-\frac{\pi}{4}, \frac{\pi}{4}]\} \cap \partial B(u, \rho)^{\# \delta}$ with ρ small enough such that

$$\forall v \in U', h(v) \geq 2 \sup_{\partial \mathcal{N} \cap A^{\# \delta}} h.$$ Now let us define $U = \{v|h(v) \geq \inf_{U'} h\}$. The same trick of considering non-decreasing path shows that U is connected. It is also obvious that $u \in U$, $U' \subset U$ and $U \subset \mathcal{N}$.

This easily concludes the first step. Indeed if we let $\tau_\mathcal{N}$ denote the exit time of \mathcal{N}, we get for any $v \in U$

$$h(v) = \mathbb{P}[\tau_\mathcal{N} < \tau][X_\tau = u|\tau_\mathcal{N} < \tau] + \mathbb{P}[\tau_\mathcal{N} = \tau \text{ and } X_\tau = u]$$

$$\leq \mathbb{P}[\tau_\mathcal{N} < \tau] \frac{h(v)}{2} + \mathbb{P}[\tau_\mathcal{N} = \tau \text{ and } X_\tau = u].$$
Dividing by \(h(v) \) to evaluate the conditional probability we obtain for any \(v \in U \):
\[
\mathbb{P}_v[X \text{ exits } N \text{ before } \tau|X_\tau = u] \leq \frac{1}{2} \tag{4.3}
\]

Step 2. For technical reasons that will become apparent later, we do not work directly with the winding for the second step but rather with crossings of the real line. Let \(\ell_+ = [r + \frac{R-r}{10}, R]^{\# \delta} \) be a line from distance \(r + (R - r)/10 \) to the boundary of \(A^{\# \delta} \) along the positive real axis. Let \(\ell_- = [-R + \rho, -r - \frac{R-r}{10}] \cup U \) be a similar line along the negative real axis, extended to include all \(U \). Let \(\tau_{+,i} \) be the first hitting time of \(\ell_+ \) and by induction let \(\tau_{-,i} \) the first hitting time of \(\ell_- \) after \(\tau_{+,i} \) and \(\tau_{+,i} \) the hitting time of \(\ell_+ \) after \(\tau_{-,i-1} \). Let \(I_+ \) the number of \(\tau_+ \) before \(\tau \), i.e \(I_+ = \{|i| \tau_{+,i} \leq \tau\} \).

Reformulating (4.3) in that language, we get
\[
\exists \alpha > 0, \forall v \in U, \mathbb{P}_v[I_+ = 0|X_\tau = u] \geq \alpha.
\]
Using Lemma 4.4 to see that the random walk has a positive probability to travel in a straight line along \(\ell_- \) shows that we can start at any point in \(\ell_- \), i.e
\[
\exists \alpha > 0, \forall v \in \ell_-, \mathbb{P}_v[I_+ = 0|X_\tau = u] \geq \alpha.
\]
As a consequence by the Markov property, we can find \(\alpha \) and \(C \) such that
\[
\forall v \in A^{\# \delta}, \forall n, \mathbb{P}_v[I_+ \geq n|X_\tau = u] \leq C \alpha^n. \tag{4.4}
\]

Step 3. Now let \(v \) be a point in \(A(r + \frac{R-r}{5}, R - \frac{R-r}{5}) \). Let \(\tilde{\tau} \) be the hitting time of \(B(x, r + \frac{R-r}{10}) \). By Lemma 4.4, uniformly over \(v \), the random walk conditioned on \(X_\tau = u \) has a positive probability to hit \(U' \) and therefore \(U \) before \(\tilde{\tau} \). Therefore by eq. (4.3) we can find \(\beta \) such that
\[
\mathbb{P}_v[\tau < \tilde{\tau}|X_\tau = u] \geq \beta
\]
for all \(v \in A(r + \frac{R-r}{5}, R - \frac{R-r}{5}) \). Using this estimate together with eq. (4.4), we get
\[
\mathbb{P}_v[I_+ \geq n|X_\tau = u \text{ and } \tau < \tilde{\tau}] \leq \frac{C}{\beta} \alpha^n.
\]

However notice that for any path \(\gamma \) in the smaller annulus \(A(r + \frac{R-r}{10}, R) \), we have the deterministic bound \(\sup_{\gamma} |W(\gamma, x)| \leq 2\pi(I_+ + 1) \). In particular replacing in the last equation we obtain
\[
\mathbb{P}_v\left[\sup_{\gamma \subset X[0,\tau]} |W(\gamma, x)| \geq n|X_\tau = u \text{ and } \tau < \tilde{\tau}\right] \leq C' \alpha^n
\]
for all \(v \in A(r + \frac{R-r}{5}, R - \frac{R-r}{5}) \). Let \(r' = r + (R - r)/10 \) and \(R' = R \). Let \(r' \) be the exit time from \(A(r', R') \). Then since \(r + \frac{R-r}{5} \leq r' + \frac{R-r}{3} \) we deduce that
\[
\mathbb{P}_v\left[\sup_{\gamma \subset X[0,r']}|W(\gamma, x)| \geq n|X_{r'} = u\right] \leq C' \alpha^n
\]
for all \(v \in A(r' + \frac{R-r'}{3}, R' - \frac{R-r'}{3}) \). This is exactly the statement of the lemma, except with \(r' \) and \(R' \) instead of \(r \) and \(R \).

Finally it is clear that the above proof extends to the case where \(u \) is a point in the inner boundary instead of being in the outer boundary. \(\square \)
Recall that we decompose the winding into \(h^\# = h^\#_t + \varepsilon^\# \) (see eq. (1.3)). We have already dealt with the limit of \(h^\#_t \) as \(\delta \to 0 \) in the continuum part. It now remains to say that \(\varepsilon^\#_t \) does not contribute because when \(x \neq x' \) and \(t \) is large, \(\varepsilon^\#(x) \) and \(\varepsilon^\#(x') \) are nearly independent. This is proved in Section 4.4 by constructing a coupling of the sub tree around \(x \) and \(x' \) with independent variables. This coupling is built by sampling tree branches in the right order using Wilson algorithm and analysing carefully which part of the graph the random walks visits while performing the algorithm. In particular, a crucial step is to control the probability that the loop-erased walk from \(x \) comes close to \(x' \) which we now prove.

Proposition 4.8. Let \(D \subset \mathbb{C} \) be a domain and let \(u,v \in D \). Let \(r = |u - v| \wedge \text{dist}(v, \partial D) \wedge \text{dist}(u, \partial D) \). Let \(\gamma \) be a loop erased walk starting from \(u \) until it exits \(D^\# \). Then with \(\delta_0 \) as in the uniform crossing assumption item \(v \) in Section 4.1, for all \(\alpha \in (0, C\delta_0] \) for some universal constant \(C > 0 \), for all \(n \in (0, \log_4(Cr\delta_0/\delta - 1)) \cap \mathbb{N} \),

\[
\mathbb{P}(|\gamma - u| < 4^{-n}r) < \alpha^n
\]

for some universal constant \(\alpha \in (0, 1) \).

Proof. We assume \(|u - v| = r \) for otherwise we can wait until the simple random walk comes closer to \(u \). The idea for the proof is the following. If the loop erased walk comes within distance \(4^{-i}r \) to \(u \), then after the last time the simple walk was within distance \(4^{-i}r \) to \(u \), it crossed \(k \) annuli without performing a full turn. The probability of this event is exponentially small in \(k \) via Lemma 4.5.

Now we write the details. Let \(i_{\max}(\delta) = \lfloor \log_4(C\delta_0r/\delta) \rfloor \). Let \(\{C_i\}_{0 \leq i \leq i_{\max}} \) denote the circle of radius \(4^{-i}r \) around \(u \) and define \(C_{i-1} = \partial D \). We inductively define a sequence of times \(\{\tau_k\}_{k \geq 0} \) as follows. We have \(\tau_0 = 0 \). Having defined \(\tau_k \) to be the smallest time when the random walk crosses (or hits) some circle \(C_i(k) \), we define \(\tau_{k+1} \) to be the smallest time when leaving the annulus defined by \(C_{i-1} \) and \(C_{i+1} \), and define \(i(k+1) \) to be the index of the circle by which the random walk leaves the annulus. If \(i(k) = i_{\max} \), we define \(\tau_{k+1} \) to be smallest time after \(\tau_k \) when the walk leaves the ball defined by \(C_{i_{\max}-1} \). We stop if we leave \(D \) and let \(N \) be the largest index of \(\tau \) after which we stop.

Let \(S := \{X_{\tau_k}\}_{0 \leq k \leq N} \) denote the sequence of crossing positions of the \(C_i \). Notice that conditioned on any \(S \), if \(k < N \), the simple random walk between \(X_{\tau_k} \) and \(X_{\tau_{k+1}} \) is a simple random walk in the annulus \(A(u, C_i(k-1), C_i(k+1)) \) conditioned to exit at \(X_{\tau_{k+1}} \). Furthermore by the Markov property of the walk, conditioned on \(S \), the portions of random walk \(\{X_{[\tau_k,\tau_{k+1}]}) \) are independent.

On the event \(|\gamma - u| < 4^{-n}r \), the sequence of positions \(S := \{X_{\tau_k}\}_{0 \leq k \leq N} \) contains an index when the random walk crosses \(C_n \) since the loop-erased walk is obviously a subset of the walk. Let \(\kappa \) be the index of the last crossing of \(C_n \) by the walk and let \(\gamma' \) be the path obtained by erasing loops from \(X[0, \tau_{\kappa}] \), i.e. the “current loop-erased path” at time \(\tau_{\kappa} \). On the event \(|\gamma - u| < 4^{-n}r \), necessarily the random walk did not hit \(\gamma' \) after \(\tau_{\kappa} \), otherwise the part of the path closer to \(u \) would have been erased. In particular the random walk did not do any full turn after time \(\tau_{\kappa} \). Also by construction we have \(N - \kappa \geq n \).

Therefore we see that conditioned on the sequence of positions \(S \), the event \(|\gamma - u| < 4^{-n}r \) is included in the event that there was no full turn in the last \(n \) intervals \([\tau_k, \tau_{k+1}]\). Choosing the constant \(C \) to be the constant from Lemma 4.5 associated with annuli of aspect ratio \(R/r = 16 \), we can apply that lemma for each annulus, since for each \(i \leq i_{\max} \), if \(r_i \) is the radius of \(C_i \), we have \(\delta \leq Cr_0\delta_0 \) by our choice of \(i_{\max}(\delta) \). Hence using the independence noted above, the conditional probability of this is at most \(\alpha^n \) for some \(\alpha < 1 \), which concludes the proof. \(\square \)
4.3 Tails estimate for winding of loop-erased random walk

Recall that for any vertex \(v \in D^{\#\delta} \) let \(h_t^{\#\delta}(v) \) denote the (topological) winding of the loop erased path from \(v \) to the boundary (i.e. the branch of \(T^{\#\delta} \) from \(v \) to the boundary) up to capacity \(t \) seen from \(v \). We wish to take limits of moments of \(h_t^{\#\delta} \) for a fixed \(t \) as \(\delta \to 0 \) and hence we need to estimate the behaviour of the winding in the discrete as \(\delta \) varies. We prove that in fact \(h_t^{\#\delta} \) has (stretched) exponential tail uniformly in \(\delta \).

We will make use of the following elementary observation. Say that a random variable \(X \) has stretched exponential tail (with parameters \(\alpha, c \)) if \(\mathbb{P}(|X| \geq t) \leq c^{-1} \exp(-ct^\alpha) \) for all \(t > 0 \).

Lemma 4.9. Suppose \((X_i)_{i \geq 1} \) and \(N \) are random variables with stretched exponential tail with parameters \(\alpha \) and \(c \). Then \(\sum_{i=1}^N X_i \) has stretched exponential tail.

Proposition 4.10. Let \(\text{Diam}(D) \) denote the diameter of \(D \) and let \(v \in D^{\#\delta} \). Fix \(t > -10 \log(\text{Diam}(D) \wedge |v - \partial D|) \). Then there exists a universal constant \(C \) such that for all \(\delta \) less than some threshold \(\delta_0 \),

\[
\forall n, \mathbb{P}(\sup_{t \leq t_1, t_2 \leq t+1} |h_{t_1}^{\#\delta}(v) - h_{t_2}^{\#\delta}(v)| > n) < Cc^n.
\]

We first set up a few notations. Those are completely analogous to the ones in the proof of Proposition 4.8 except that we are considering circles of growing size.

Let \(r_i = (4e)^{i-1}e^{-t} \) for \(i \geq -1 \) and \(r_{-2} = 0 \). Let \(C_i \) be the circle of radius \(r_i \) centered at \(v \) as long as \(C_i \subset D \). As soon as \(C_i \) is not a subset of \(D \), define \(C_i = \partial D \) (call the maximum index \(i_{\text{max}} \)). Let \(X \) be a random walk from \(v \) to the boundary \(D \). Let \(Y(t) \) be the loop-erasure of \(X \), reparametrised by capacity seen from \(v \) (so in particular \(Y(0) \in \partial D \) and \(Y(\infty) = v \)). We emphasise that we are indexing circles starting from \(i = -2 \).

We inductively define a sequence of times \(\{\tau_k\}_{k \geq 1} \) as follows. We have \(\tau_0 = 0 \) and \(i(0) = -2 \), \(\tau_1 \) is the time the random walk crosses \(C_{-1} \) and \(i(1) = -1 \). Having defined \(\tau_k \) to be the smallest time when the random walk crosses (or hits) some circle \(C_{i(k)} \), we define \(\tau_{k+1} \) to be the smallest time when it hits \(C_{i-1} \) or \(C_{i+1} \) and define \(i(k+1) \) to be the index of the circle it crosses. When \(i(k) = -1 \) we define \(\tau_{k+1} \) only as the next crossing of \(C_0 \). We define \(S = (X_{\tau_k})_{k \geq 0} \) the sequence of crossing positions. For any \(i_0 \), we also define \(V_{i_0} \) to be the sequence of crossings of the circle \(C_{i_0} \), i.e \(V_{i_0} = \{k | i(k) = i_0\} \). We will call sets of the form \(X[\tau_k, \tau_{k+1}] \) **elementary piece of random walk**. In this proof we also only call **crossing** the times of the form \(\tau_k \).

A first observation from Koebe’s 1/4 theorem is that we only need to look at the portion of \(Y \) from the time it first enters \(C_1 \) until it first enters \(C_0 \). Let \(\mathcal{Y} \) denote this set. The main idea of the proof will be to show that that this portion of the loop erased walk can be generated by erasing loops from a small number of elementary pieces of random walk. Then Lemma 4.7 will show that each piece does not contribute too much to the winding.

To control the number of pieces, we will use two elements. First conditionally on \(S \) we will argue that we only need to look at the last few visits of the simple random walk to any circle because everything else was erased by a loop. Secondly we will show that the sequence \(S \) is not too badly behaved even when we are looking close to the last visit to \(C_0 \). Note that this is non trivial because the last visit to \(C_0 \) is very far from being a stopping time. We now proceed to the actual proof, writing each of these steps as a lemma.

We first note some deterministic facts about the loop erasure (Lemma 4.11), therefore until further notice we work on a given realisation of the random walk. Let \(k_{\text{max}} - 1 \) be the index of the last crossing of \(C_1 \), and let \(N \) be the first \(k \) such that \(i(k) = i_{\text{max}} \).
Let κ_{-1} be the last k such that $i(k) = -1$ and in the interval $[\tau_k, \tau_{k+1}]$ the random walk did a full turn in $A(v, r_{-1}, r_0)$. If there was no such full turn, set $\kappa_{-1} = 0$. Now we define κ_i inductively as follow. If there was a full turn in the annuli $A(v, r_i, r_{i+1})$ after time κ_{i-1} but before k_{max}, then κ_i is the index of the interval where the last of these full turns occurred. Otherwise κ_i is the index of the first crossing of C_i after κ_{i-1} but before k_{max}. If there are no crossing of C_i between κ_{i-1} and k_{max} define $\kappa_i = +\infty$. Finally we define $I = \max\{i | \kappa_i < \infty\}$ and for every $i \leq I$, we let G_i be the set of visits of C_i after κ_{i-1} but before k_{max}, i.e $G_i = \{k \in \mathcal{V} | \kappa_{i-1} \leq k \leq k_{\text{max}}\}$.

Lemma 4.11. The portion \mathcal{Y} of Y from the first time it enters C_1 until the first time it enters C_0, is a subset of

$$\bigcup_{0 \leq i \leq I} \bigcup_{k \in G_i} X[\tau_k, \tau_{k+1}] .$$

Furthermore, one can write $\mathcal{Y} = \bigcup_{k \in \bigcup \mathcal{G}_i} \mathcal{Y}_k$ where \mathcal{Y}_k are disjoint intervals of the loop erased random walk of the form $(Y_{j_k}, Y_{j_k+1}, Y_{j_k+i_k})$ and $\mathcal{Y}_k \subset X[\tau_k, \tau_{k+1}]$.

Proof. We consider the chronological erasure of loops so at each time T we have a loop-erased path $Y^{(T)}$ obtained from erasing loops for the random walk $(X_t)_{t \leq T}$.
Notice that by construction, after time $\tau_{k_{\text{max}}}$ the random walk does not return to $B(0,r_1)$ so $\mathcal{Y} \subset Y^{(\tau_{k_{\text{max}}})}$ (it might be smaller because more loops can occur, erasing further the final set \mathcal{Y}, but no more points can be added to \mathcal{Y} since we do not return to the annulus). This justifies looking only at $k \leq k_{\text{max}}$ above.

The introduction of the κ_i is justified by the following topological fact: if X does a full turn between times τ_k and τ_{k+1}, then $Y^{(\tau_{k+1})} \subset B(v, r_i(k)+1)$. Indeed if $Y^{(\tau_k)} \subset B(v, r_i(k)+1)$ the statement is trivial. Otherwise $Y^{(\tau_k)}$ includes a path from $C_i(k)−1$ to $C_i(k)+1$ which has to be crossed by the full turn at some time T and this erases everything outside of $B(v, r_i(k)+1)$.

In particular, we see that $Y^{\tau_{\kappa−1}+1} \subset B(v, r_0)$. This implies that $\mathcal{Y} \subset X^{[\tau_{\kappa−1}+1, \tau_{k_{\text{max}}}]}$ since all the rest of X either was erased or contributes to parts of Y outside of \mathcal{Y}. Using the same argument, we can erase the part of the walk before κ_0 which is outside of C_1. But we need to keep all the visits to C_0 (that is all the elementary pieces of random walk in \mathcal{G}_0). So we get

$$\mathcal{Y} \subset \bigcup_{k \in \mathcal{G}_0} X^{[\tau_k, \tau_{k+1}]} \cup X^{[\tau_{\kappa_0+1}, \tau_{k_{\text{max}}}]}.$$

We now proceed by induction to complete the proof of the first part of the statement.

For the last sentence, note that the edges of Y are created by the random walk in order from the tip to the boundary. Therefore the set of edges created in an interval of time by the random walk has to form an interval in the loop-erased walk Y. We emphasise that here we only look at the times when edges are added to Y, the full loop-erased walk, and not the loop-erased path Y^t at any intermediate point of time.

The next step is to control the law of the size of the sets \mathcal{G}_j, therefore we go back to considering X as random.

Lemma 4.12. There exists $\delta_0, \alpha \in (0,1)$ and $C > 0$ such that, for all $\delta \leq e^{−1}\delta_0$, for all n, for all $j \geq 1$,

$$\mathbb{P}(I \geq n) \leq C\alpha^n, \quad \mathbb{P}(|\mathcal{G}_j| \geq n) \leq C^{-1} \exp(-Cn^\alpha).$$

As a consequence, $\sum_{1 \leq j \leq i} |\mathcal{G}_j|$ has stretched exponential tail.

Proof. The first statement is fairly straightforward. Condition on the sequence of crossing positions $S = (X(\tau_k))_{k \geq 0}$. Recall that by construction $i(k_{\text{max}}−1) = 1$, therefore for every $i \geq 2$, just after last crossing τ_k of C_i before k_{max} the random walk goes to $C_{i−1}$. In particular if there is a full turn within the annulus $A(v, r_i, r_{i+1})$ during $[\tau_k, \tau_{k+1}]$, then by definition $\kappa_{i+1} = +\infty$. By Lemma 4.5 the conditional probability of a full turn has a uniformly positive probability to happen for each i so we are done.

For the second statement we have to work on the law of S so it is more tricky. Note that by Lemma 4.5, we immediately see that the number of visits to C_i after κ_{κ_i} has geometric tail. (Indeed, conditionally on S, on the event that there are n visits to C_i after κ_{κ_i}, the last n visits to C_i – which are measurable with respect to S – were not followed by a full turn in the annulus $A(v, r_i, r_{i+1})$. But a full turn in this annulus has uniformly positive probability by Lemma 4.5 at each visit, conditionally on S. So this conditional probability has geometric tail, and thus so does the unconditional probability).

However $|\mathcal{G}_i|$ is the number of visits to C_i after $\kappa_{i−1}$, so we also need to exclude the possibility that the random walk alternates many times between C_i and C_{i+1} without crossing $C_{i−1}$. We are
actually going to prove that the number of crossings of \(C_i\) between two successive crossings of \(C_{i-1}\) has an exponential tail. As in the proof of Proposition 4.8, the difficulty comes from the fact that we are looking close to random times which are not stopping times, so we don’t know the law of the walk. To get around this issue we will need to be more careful and discover the set \(S\) in steps.

For any \(j\), let us define \(\tau^j\), \(\iota^j\) and \(S^j\) as before but using \(C_j\) as the reference smallest circle rather than \(C_{-1}\) as above. More precisely, we define \(\tau^j_0 = 0\), \(\tau^j_1\) to be the first crossing of \(C_j\). Then by induction, whenever \(\iota^j(k) = j\) we define \(\tau^j_{k+1}\) to be the first crossing of \(C_{j+1}\) after \(\tau^j_k\) and otherwise if \(\iota^j(k) > j\) then we set \(\tau^j_{k+1}\) to be the first crossing of \(C_{\iota^j(k)+1}\) after \(\tau^j_k\). Finally we set \(S^j = (X(\tau^j_k))_k\). Let us modify this a bit and define a sequence \(\tilde{S}^j\) by inserting in the sequence \(S^j\) the point \(X(\tau_{\text{max}-1})\) where the last crossing of \(C_1\) happens. Let \(\{\tilde{\tau}^j_k\}_{k \geq 0}\) be the times corresponding to the sequence \(\tilde{S}^j\).

As before, conditionally on \(\tilde{S}^j\) the pieces of random walk \(X[\tilde{\tau}^j_k, \tilde{\tau}^j_{k+1}]\) are independent. For any \(k\) such that \(\iota^j(k) = j\), the piece of random walk \(X[\tilde{\tau}^j_k, \tilde{\tau}^j_{k+1}]\) is distributed as a random walk starting at some point on \(C_j\) and conditioned on its exit point of \(B(v, r_{j+1})\). By Lemma 4.6, this random walk has a strictly positive probability to intersect \(C_{j-1}\) and this probability is independent of everything else. Moreover, \(\tilde{S}^j\), looking at the successive visits to \(C_j\), the gaps between visits where the walk also crossed \(C_{j-1}\) have an uniform exponential tail, even if we look at positions relative to \(\tau_{\text{max}}\).

Going back to \(S\), this translate immediately in the fact that the number of crossings of \(C_j\) between two successive crossings of \(C_{j-1}\) has an exponential tail.

Now let \(I_{j-1} = \{k \in V_{j-1} : k \geq \kappa_{j-1}\}\) (which has geometric tail by the initial observation) and for \(k \in I_{j-1}\), let \(\sigma(k)\) be the successor of \(k\), i.e., the next smallest element in \(I_{j-1}\). Then

\[
|G_j| \leq \sum_{k \in I_{j-1}} \# \{ \text{visits to } C_j \text{ between } k \text{ and } \sigma(k) \}.
\]

By the above discussion, conditionally on \(\tilde{S}^j\), each of the terms in the above sum has geometric tail. Moreover the number of terms has geometric tails. By Lemma 4.9, it follows that \(|G_j|\) has stretched exponential tail. The lemma follows.

Now it is easy to complete the proof of Proposition 4.10 using Lemma 4.7. By Lemma 4.11 we can write \(Y = \bigcup_k Y_k\) with for all \(k\), \(Y_k \subset X[\tau_k, \tau_{k+1}]\). Therefore the winding around \(v\) of any \(Y_k\) is bounded by the maximal winding difference between two times in \([\tau_k, \tau_{k+1}]\) which has exponential tail by Lemma 4.7. By Lemma 4.12 the number of terms in the union has stretched exponential tail, so the proposition follows from applying Lemma 4.9.

Remark 4.13. In fact, with relatively little extra work we could obtain exponential tails in Proposition 4.10 but this is not necessary for us.

4.4 Local coupling of spanning trees

Let \(z_1, \ldots, z_k \in D^{#\delta}\). The goal of this section is to establish a coupling between a wired uniform spanning tree \(T\) in \(D^{#\delta}\) and \(k\) independent copies of full plane spanning tree measure \(T_i\) such that for all \(i\), there is a neighbourhood \(N_i\) around \(z_i\) on which \(T\) match with \(T_i\). The diameter of the neighbourhoods \(N_i\) are going to be random but nevertheless we will have a good bound on the probability of the diameter being very small.
The overall strategy will be to sample the spanning tree T in $D^\#\delta$ and the T_i using Wilson algorithm. The coupling will mostly be achieved by using the same random walk for T and the T_i. To achieve independence and obtain the tail estimate for the diameters of the neighbourhoods N_i, we will choose carefully the points from which we sample loop-erased walks and keep track of the distances from $\{z_i\}$ to the sub-tree discovered at any step.

We start with a simple lemma regarding hitting probability of random walk. This is rewriting Lemma 2.1 of Schramm [34] in our setting.

Lemma 4.14. Let $K \subset \mathbb{C}$ be a connected set such that the diameter (in the intrinsic metric of the Euclidean plane) of K is at least R. Then there exists a universal constant $C > 0$ such that for all $\delta \in (0, C \operatorname{dist}(v, K)\delta_0))$, there exist universal constants c_0 and c_1 such that

$$
\mathbb{P}(\text{simple random walk from } v \text{ exits } B(v, R)^{#\delta} \text{ before hitting } K^{#\delta}) \leq c_0 \left(\frac{\operatorname{dist}(v, K)}{R}\right)^{c_1}.
$$

Proof. Let C_i denote the circle of radius 2^{-i} around v for $i \in \mathbb{Z}$. Consider a sequence of stopping times $\{T_k\}_{k \geq 0}$ defined as in Proposition 4.8: if T_k is the time when the walk crosses C_i then T_{k+1} is the smallest time after T_k when the simple random walk crosses C_{i+1} or C_{i-1}. The number of circles which intersect K is at least $c \log_2(\frac{R}{\operatorname{dist}(v, K)})$ for some $c > 0$. The choice of δ is small enough for Lemma 4.3 to apply for the annuli bounded by these circles. Whenever the walk at T_k is in a circle C_i such that both C_{i-1} and C_{i+1} are subsets of D and intersect K, then the walk has probability at least $\alpha > 0$ of performing a full turn in $A(v, 2^{-i+1}, 2^{-i+1})$ via Lemma 4.3. But doing such a full turn implies the walk must hit K. Hence the probability of the walk exiting $D^{#\delta}$ without hitting K has probability at most $(1 - \alpha)^c \log_2(\frac{R}{\operatorname{dist}(v, K)})$ for some $c' > 0$ which concludes the proof.

Let D be a fixed domain, let $v \in D^{#\delta}$, and let r be such that $B(v, r) \subset D$. Using Wilson’s algorithm, we now prescribe a way to sample the portion of the wired uniform spanning tree $T^{#\delta}$ of $D^{#\delta}$ which contains all the branches emanating from vertices in $B(v, r/2)^{#\delta}$. Consider $\{\frac{r}{2^j} \mathbb{Z}^2\}_{j \geq 0}$, a sequence of scalings of the square lattice \mathbb{Z}^2 which divides the plane into square cells. At step j, pick a vertex from each cell which is farthest from v in $B(v, \frac{r}{2}(1 + 2^{-j}))^{#\delta} \cap \frac{r}{2^{j+1}} \mathbb{Z}^2$ (break ties arbitrarily) and is not chosen in any previous step. Call Q_j the set of vertices picked in step j. Now sample branches of $T^{#\delta}$ from each of these vertices in any prescribed order via Wilson’s algorithm, resulting in a partial tree $T_j^{#\delta}$. We continue until we exhaust all the vertices in $B(v, r/2)^{#\delta}$. We call this algorithm the **good algorithm** $GA_D^{#\delta}(r, v)$ to sample the portion of $T^{#\delta}$ containing all branches emanating from vertices in $B(v, r/2)^{#\delta}$ (and in particular, the restriction of $T^{#\delta}$ to $B(v, r/2)^{#\delta}$). Note in particular that $GA_D^{#\delta}(r, v)$ is sure to terminate after step $j = \log_6(Cr/\delta)$, where C depends only on the constant appearing in the assumption item i that the graph has bounded density.

The next lemma is similar to Schramm’s finiteness theorem from [34]. Roughly, this says that for all $\varepsilon > 0$, if we fix a ρ sufficiently small depending only on ε, and reveal the branches of the spanning tree at a finite number of points with density approximately ρ, then with high probability none of the remaining branches would have diameter greater than ε. Schramm’s finiteness theorem is originally stated for the diameter of the remaining branches of the spanning tree (which are loop-erased paths) but in fact the result holds for the underlying random walks themselves. Also the original theorem is interested in sampling the whole tree while we only want to sample $T \cap B(v, r)$.
for some r. Since we will need these properties later on, we write it for completeness, but the proof is exactly the same as in [34].

Lemma 4.15 (Schramm’s finiteness theorem). Fix $\varepsilon > 0$ and let D, v, r be as above. Then there exists a $j_0 = j_0(\varepsilon)$ depending solely on ε such that for all $j \geq j_0$ and all $\delta \leq 6^{-j_0}\delta_0 r$, where δ_0 is as in item v, the following holds with probability at least δ^4.

- The random walks emanating from all vertices in Q_j for $j > j_0$ stay in $B(v, r)$.
- All the branches of $T^\#\delta$ sampled from vertices in $Q_j \cap B(v, r/2)$ for $j > j_0$ until they hit $T^\#\delta_{j_0}$ have Euclidean diameter at most εr. More precisely, the connected components of $T^\#\delta \setminus T^\#\delta_{j_0}$ within $B(v, r/2)$ have Euclidean diameter at most εr.

Proof. For $j \geq 1$, the number of vertices in Q_j is at most 6^j where c is a universal constant. Let $j_{\text{max}} := \lfloor \log_6 (\frac{C\lambda w}{\delta}) \rfloor$. The choice of j_{max} is such that for $j \leq j_{\text{max}}$ our uniform crossing assumption holds and in particular we can apply Lemma 4.14. Notice each vertex in $D^\#\delta$ is within Euclidean distance $4 \cdot 6^{-j}r$ from a vertex in Q_{j-1}. By Lemma 4.14 and the choice of δ, for $j \leq j_{\text{max}}$, there exists a C_0 such that the probability that the simple random walk from a vertex in Q_j reaches Euclidean distance $C_0 6^{-j}r$ from its starting point without hitting $T^\#\delta_{j-1}$ is at most $1/2$. Notice that $j^2 6^{-j} < 2^{-j}$ for all $j \in \mathbb{N}$ and hence using the Markov property, we can iteratively apply the same bound for the walk j^2/C_0 times (this is the reason why in the good algorithm we sample from balls of decreasing size at each step). This shows that the probability that the random walk emanating from a vertex w in Q_j has diameter greater than $j^2 6^{-j}r$ (call this event $D(w, j)$) is at most $(1/2)^{j^2/C_0}$.

Recall that the bounds above hold for $j \leq j_{\text{max}}$. When $j > j_{\text{max}}$ and $w \in Q_j$ we define $D(w, j)$ to be the event that the random walk emanating from w reaches distance $j_{\text{max}}^2 6^{-j_{\text{max}}}r$ without hitting $T^\#\delta_j$ (and in particular $T^\#\delta_{j_{\text{max}}}$). Then observe that we still have $\mathbb{P}(D(w, j)) \leq (1/2)^{j_{\text{max}}^2/C_0}$ in this case. Notice that the number of lattice points in $\cup_{j > j_{\text{max}}} Q_j$ is at most $B 6^{j_{\text{max}}}$ for some constant B depending only on δ_0 in the uniform crossing assumption and bounded density assumptions (items i and v).

Notice that on the complement of

$$D := \cup_{j_0 \leq j} \cup_{w \in Q_j} D(w, j)$$

no random walk emanating from a vertex $w \in Q_j$ can reach distance $j^2 6^{-j}r$ from its starting point and hence stays in $B(r, v)$. Furthermore, by a union bound,

$$\mathbb{P}(D) \leq \sum_{j \geq j_0} c 6^j (1/2)^{j^2/C_0} < \varepsilon \quad (4.5)$$

for large enough choice of $j_0 = j_0(\varepsilon)$ which shows the first property of the lemma.

Also, let $E(w, j)$ be the event that a connection from w to $T^\#\delta_{j-1}$ has diameter at least $j^2 6^{-j}r$. Observe that conditionally on $T^\#\delta_{j-1}$, the probability of the event $E(w, j)$ does not depend on the orders of the points in Q_j and hence we may assume that w is the first point in Q_j when we compute this probability. In that case, the probability in question is at most the one we computed above, and we deduce that $\mathbb{P}(E(w, j) | T^\#\delta_{j-1}) \leq (1/2)^{(j_{\text{max}})}^{j^2/C_0}$. Furthermore, on the complement of

$$E := \cup_{j_0 \leq j} \cup_{w \in Q_j} E(w, j) \quad (4.6)$$

44
each point \(w \in Q_j \) is connected to a point in \(T_{j_0}^{\#} \) by a path of diameter at most \(\sum_{j>j_0} j^{2} 6^{-j} r \leq \varepsilon r \) provided that \(j_0 \) is large enough. Furthermore, as above \(\mathbb{P}(\mathcal{E}) \leq \varepsilon \) if \(j_0 \) is large enough, which concludes the proof.

Now we shall describe the coupling between a wired spanning tree in \(D^{\#} \) and in a full plane. Recall that a priori it is not even clear that the full plane local weak limit of a wired spanning tree exists. For undirected graphs, the existence of this limit follows from the theory of electrical networks. However our setting includes directed graphs where the electrical network theory no longer applies. The existence of this limit will actually come out of our coupling procedure.

The full coupling is an iteration of the following coupling which we call the **base coupling**. Basically, the idea is the following. We wish to couple a uniform spanning tree in \(D \) to a uniform spanning tree in \(D^{\#} \) within a neighbourhood of some fixed vertex \(v \). To do this, we first make sure that the branches from a finite number of vertices coincide for UST’s in \(D \) and \(D’ \) in some neighbourhood, and then we apply Schramm’s finiteness theorem. We now explain this in more details.

Base coupling.

The base coupling we describe now takes the following parameters as input: Two domains \(D, D’ \) and a neighbourhood \(B(v, 10r) \) of a vertex \(v \) such that \(B(v, 10r) \subset D \cap D’ \). Let \(T \) and \(T’ \) denote a sample of uniform spanning tree in \(D^{\#} \) and \(D’^{\#} \) respectively. For any vertex \(u \) in \(D^{\#} \) (resp. \(D’^{\#} \)), let \(\gamma(u) \) (resp. \(\tilde{\gamma}(u) \)) denote the branch of \(T \) (resp. \(T’ \)) from \(u \) to the boundary of \(D^{\#} \) (resp. \(D’^{\#} \)).

1. **(i)** Pick a point \(u_1 \) in \(A^{\#}(v, 8r, 9r) \) and sample \(\gamma(u_1), \tilde{\gamma}(u_1) \) independently. Let \(\mathcal{E}_1 \) be the event that both \(\gamma(u_1) \) and \(\tilde{\gamma}(u_1) \) stay outside \(B(v, 7r) \) and suppose \(\mathcal{E}_1 \) holds.

2. **(ii)** Let \(u_2 \in A^{\#}(v, 2r, 3r) \). We will use the same underlying random walk to couple \(\gamma(u_2) \) and \(\tilde{\gamma}(u_2) \). More precisely, start a simple random walk from \(u_2 \) until it is in one of \(\gamma(u_1) \cap \partial D^{\#} \) or \(\tilde{\gamma}(u_1) \cap \partial D’^{\#} \) at time \(t_1 \). Suppose without loss of generality that the walk hits \(\gamma(u_1) \cup \partial D^{\#} \) at time \(t_1 \). Then we continue the walk from that point until it hits the other path at time \(t_2 \). We then define \(\gamma(u_2) \) to be the loop erased path up to time \(t_1 \) and \(\tilde{\gamma}(u_2) \) to be the loop erased path from time 0 to \(t_2 \).

Let \(\mathcal{E}_2 \) be the event that \(\gamma(u_2) \) and \(\tilde{\gamma}(u_2) \) agree in \(B(v, 6r) \), and suppose \(\mathcal{E}_2 \) holds.

3. **(iii)** Fix a \(j_0 = j_0(1/2) \) as defined in Lemma 4.15. Let \(Q_j \) be a set of points, one in each cell of \(6^{-j}(r/2)(1 + 2^{-j})Z^2 \cap D \) which is farthest away from \(v \), as described in the good algorithm above. Let \(\mathcal{E}_3 \) be the event that the branches from all the vertices in \(\cup_{j \leq j_0} Q_j \) of \(T, T’ \) agree in \(B(v, 5r) \), and suppose that \(\mathcal{E}_3 \) holds.

4. **(iv)** Finally let \(\mathcal{E}_4 \) be the event that all the branches from vertices in \(\cup_i Q_i \) of \(T, T’ \) agree in \(B(v, r) \).

In the steps above if \(\cap \mathcal{E}_i \) does not occur, we say that the **base coupling has failed**. We think of the above process as sampling branches one by one from the prescribed vertices. We stop this process of sampling branches at the first time a sampled branch causes the base coupling to fail.

Lemma 4.16. There exist universal constants \(0 < p_0 < p’_0 < 1 \) and \(C > 0 \) such that for all \(\delta \leq C \delta_0 r \),

\[
p_0 < \mathbb{P}(\text{base coupling succeeds in } D^{\#}) < p’_0
\]

45
Proof. The proof essentially follows from Proposition 4.8 which says that loop erased random walk does not come too close to a particular vertex and Lemma 4.3 which says that random walk makes a full turn in a given annulus with positive probability. To start with, it follows from Proposition 4.8 (possibly replacing 4 there by some other number) that \(\mathcal{E}_1 \) has a positive probability \(p_1 \). Also using the crossing estimate it is easy to see that \(\mathbb{P}(\mathcal{E}_1) < p_0 < 1 \) which completes the proof of the upper bound. Moreover, independently of \(\mathcal{E}_1 \), the walk started from \(v_2 \) after exiting \(B(v, 7r) \) has probability at least \(p_2 \) to make a full turn in \(A(v, 9r, 10r) \) without first hitting \(B(v, 6r) \), by Lemma 4.3. (In particular, this implies \(\mathcal{E}_2 \) has probability at least \(p_2 \), conditionally on \(\mathcal{E}_1 \)).

Now assume \(\mathcal{E}_1 \cap \mathcal{E}_2 \) holds. Let \(w \in Q_j \) for for \(j \leq j_0 \), and assume that revealing previous branches did not make the coupling fail. Then the walk started from \(w \) has a positive probability \(p_3 \) to do a full turn in \(A(v, 3r, 5r) \) before leaving \(B(v, 5r) \). If this occurs then the corresponding branches \(\gamma(w) \) and \(\bar{\gamma}(w) \) will agree in \(B(v, 5r) \) (since the walk is then certain to hit at least both \(\gamma(u_2) \) and \(\bar{\gamma}(u_2) \) in that ball). Iterating this bound over a bounded number of points (of order \(6^{j_0} \)) shows that, conditionally on \(\mathcal{E}_1 \cap \mathcal{E}_2 \), \(\mathcal{E}_3 \) has uniformly bounded below probability.

Finally, conditionally on \(\cap_{1 \leq i \leq 3} \mathcal{E}_i \), \(\mathcal{E}_4 \) has probability at least \(1/2 \) by Schramm’s finiteness theorem (Lemma 4.15), which finishes the proof.

The general idea for the full coupling around one point \(v \) will be that when the base coupling fails there is a not too small neighbourhood around \(v \) which was not intersected by any of the paths we sampled so far. Therefore we will be able to retry the coupling in a new smaller neighbourhood. For the coupling around several points, the idea will be similar. We will show that after doing the full coupling around one point, there are still “unexplored” neighbourhoods around the other points on which we can apply our one-point results.

To implement this strategy we first show that if the base coupling fails, \(v \) remains reasonably isolated at the point when we stop the process with high probability. We say a vertex \(u \) has isolation radius \(6^{-k} \) at scale \(r \) at any step in the above base coupling (targeted at \(v \)) if

\[B(u, 6^{-k}r) \text{ does not contain any vertex from a sampled branch.} \]

We then set \(I_u \) to be the minimum such \(k \geq 1 \) at the time when the base coupling fails.

Lemma 4.17. Let \(I_u \) be as above and suppose that either \(u = v \) or \(|u - v| \geq 10r \). Then there exists a universal constant \(\delta' > 0 \) such that for all \(\delta \in (0, \delta' r) \) and for all \(i \in (0, \log_6(\delta' r/\delta) - 1) \), there exist positive universal constants \(c, c' > 0 \) such that

\[\mathbb{P}(I_u \geq i \mid \text{coupling fails}) \leq ce^{-c'i} \]

Proof. From Proposition 4.8, if one of \(\mathcal{E}_i \) fails for \(i = 1, 2, 3 \), the probability that the isolation radius is at least \(i \) is at most \(C_0 \alpha^i \) for some \(C > 0 \) and \(\alpha \in (0, 1) \) (since it is the maximum of a finite number of variables each with exponential tail). The final case we need to consider is the branches we draw while doing the good algorithm in item iv of the base coupling.

Notice that the number of vertices in \(Q_j \) for \(j \geq j_0 \) is at most \(C_0 \delta^j \) and each of them is at a distance at least \(6^{-k} - 1 \) from \(u \) (note that this holds both when \(u = v \) or \(|u - v| \geq 10r \)). Let \(A(i, j) \) be the event that coupling fails in step \(j \geq j_0 \) and \(I_u \) after this step is at least \(i \). For \(i \in (j^2, \log_6(\delta_0 r/\delta)) \), probability of \(A(i, j) \) is at most the probability that the branch \(\gamma(w) \) from one of the vertices \(w \in Q_j \) comes within distance \(6^{-i-r} \) of \(u \). By Proposition 4.8 and a union bound, this is bounded by \(C_0 \delta_i \alpha^i - j \leq C_0 \delta_i \alpha^i - \sqrt{i} \), which decays exponentially even when we sum over \(j \leq \sqrt{i} \).
Finally if \(i < j^2 \), we bound the probability of \(\mathcal{A}(i,j) \) by using the explicit error bound eq. (4.5) which we obtained in the proof of Schramm’s finiteness theorem: indeed, we showed that the probability one of the branches emanating from a vertex \(w \in Q_j \) leaves the ball of radius \(j^2 6^{-j} \) around \(w \) is less than \(C6^i \alpha^{j^2} \). In particular this is also a bound on the probability that one of these branches leaves \(B(v, r) \). Hence in that \(\mathbb{P}(\mathcal{A}(i,j)) \leq C6^i \alpha^{j^2} \leq C \alpha^{j^2} \) for some \(\alpha' < 1 \). Summing over \(j \geq \sqrt{i} \) we get \(\mathbb{P}(I_u \geq i) \leq C \alpha^i \).

It remains to condition on the event that the coupling fails. But since the coupling fails with probability bounded below by Lemma 4.16, the result follows.

\[\square \]

Iteration of base coupling: We now describe how to iterate the base coupling at different scales to construct the full coupling. We start with a domain \(D \subset \mathbb{C} \) and suppose \(v_1, v_2, \ldots, v_k \in D^{\#\#} \).

Suppose \(r < 1 \) is small enough such that \(B(v_i, 10r) \) are disjoint and contained in \(D \cap \bar{D} \). Fix a small small constant \(C \) (which will be fixed later) and assume that \(\delta \leq C \delta_0 r \).

1. Perform a base coupling with \(D^{\#\#}, \bar{D}^{\#\#} \) and \(B(v_1, r) \). If the coupling succeeds, we move on to vertex \(v_2 \).
2. If the coupling fails, let \(6^{-I_{v_1,1}} r \) be the isolation radius of \(v_i \) at scale \(r \) at the step the coupling has failed. If \(\max_{1 \leq i \leq k} I_{v_i,1} \geq \log_6(C \delta_0 r / \delta) \), we abort the whole process and we say that the full coupling failed.
3. If the coupling has failed but we haven’t aborted, we move to a smaller scale. Let \(T_{i,1} \) be the portion of the uniform spanning tree in \(D \) sampled up to this point. We perform the base coupling in the domains \(D^{\#\#} \setminus T_{i,1}, \bar{D} \) in the ball \(B(v_1, 6^{-I_{v_1,1}} r) \) around \(v_1 \). (We emphasise here that we perform this step with a fresh independent sample of uniform spanning tree of \(\bar{D}^{\#\#} \). Hereafter if the coupling fails at any step, we sample a new independent copy of the spanning tree in \(\bar{D}^{\#\#} \).
4. If the coupling fails, let \(6^{-I_{v_1,1} - I_{v_1,2} r} \) be the isolation radius at scale \(r \) around \(v_1 \) at the step the coupling has failed. Let \(T_{1,2} \supset T_{i,1} \) be the uniform spanning tree of \(D^{\#\#} \) sampled up to this point. If \(\max_{1 \leq i \leq k} (I_{v_i,1} + I_{v_i,2}) \geq \log_6(C \delta_0 r / \delta) \), we abort the whole process. Otherwise we perform the base coupling with \(D^{\#\#} \setminus T_{1,2}, \bar{D}^{\#\#} \) and \(B(v_1, 6^{-(I_{v_1,1} + I_{v_1,2})} r) \).
5. We continue in this way until we either abort or the base coupling succeeds at the \(N_1 \)th iteration. If we haven’t aborted the process along the way, we have obtained a partial tree \(T_{i,N_1} \) which is coupled with an independent sample of the uniform spanning tree in \(D_{i,1}^{\#\#} \) in \(B(v_1, 6^{-(I_{v_1,1} + I_{v_1,2} + \ldots + I_{v_1,N_1 - 1})} r) \).
6. After succeeding around \(v_1 \), we move to \(v_2 \) restarting the whole procedure in \(D^{\#\#} \setminus T_{i,N_1} \) and \(\bar{D}^{\#\#} \) in the neighbourhood \(B(v_2, 6^{-(I_{v_2,1} + \ldots + I_{v_2,N_1})} r) \) of \(v_2 \).
7. For a generic step: let \(I = \sum_{t=1}^{N_1} I_{v_1,t} + \ldots + \sum_{t=1}^{N_j} I_{v_j-1,t} + I_{v_j,1} + \ldots + I_{v_j,j} \) so that \(6^{-I} r \) is the isolation radius around \(v_i \) after the \(j \)th iteration of the above process. When we are doing the base coupling around \(v_i \), suppose the portion of the tree \(T \) sampled after step \(j \) is \(T_{i,j} \). At the \((j + 1)\)th step we perform the base coupling in \(D^{\#\#} \setminus T_{i,j}, \bar{D}^{\#\#} \) and \(B(v_i, 6^{-I} r) \). If the coupling succeeds, we declare \(N_i = j + 1 \), we call \(T_{i,j} = T_{i,j+1,0} \) the resulting tree, we move on to \(v_{i+1} \) (if \(i = k \) we finish). If \(I + I_{v_i,j+1} \geq \log_6(C \delta_0 r / \delta) \), we abort. If the base coupling fails and we haven’t aborted, we move on to the next scale and iterate (vii) to build \(T_{i,j+1} \).
(viii) If we abort the process at step m while performing base coupling around vertex v_i, define $N_i = N_{i+1} = \ldots = N_k = m$ by convention.

We call $I_i = \sum_{\ell=1}^{N_i} I_{v_i,\ell} + \ldots + \sum_{\ell=1}^{N_i-1} I_{v_i,\ell}$, so that $6^{-I_i}r$ is the isolation radius at scale r when we have succeeded in coupling the trees around v_i.

Proposition 4.18. On the event \mathcal{A} that we do not abort the full coupling, we obtain a coupling between \mathcal{T} and independent copies of uniform spanning trees $\tilde{\mathcal{T}}(j)$ in $\tilde{D}^{#\delta}$ for $1 \leq j \leq k$ such that

$$\mathcal{T} \cap B(v_i, 6^{-I_i}r) = \tilde{\mathcal{T}}(j) \cap B(v_i, 6^{-I_i}r)$$

Furthermore, there exists a universal constant $C > 0$ and such that for all $\delta \leq C\delta_0 r$ and $1 \leq i \leq k$,

$$\mathbb{P}(I_i \geq n; \mathcal{A}) \leq ce^{-c' n}$$

for some universal constants $c, c' > 0$.

Proof. Observe that I_i is a sum of $i - 1$ terms of the form $\sum_{\ell=1}^{N_j} I_{v_j,\ell}$ and a final term of the form $\sum_{\ell=1}^{N_i-1} I_{v_i,\ell}$. We claim each of these i terms has a geometric tail: indeed, observe that by Lemma 4.16, N_j has geometric tail (since the coupling has probability bounded below to succeed at every step, independently of the past). Moreover, each $I_{v_j,\ell}$ has uniform exponential tail conditionally on all previous steps by Lemma 4.17. The proposition follows easily. \qed

The following two consequences are immediate:

Corollary 4.19. The probability of aborting the above process is at most $c(\delta/r\delta_0)^{c'}$ for some universal constants $c, c' > 0$.

Proof. The event \mathcal{A}^c occurs precisely when one of the variables I in step (vii) exceeds $\log_6(Cr\delta_0/\delta)$. For the same reason as above, this has exponential tail. \qed

Corollary 4.20. The wired uniform spanning tree measures in $D^{#\delta}$ has a local limit when $\tilde{D} \to \mathbb{C}$ and this limit is independent of the exhaustion taken. We call this measure the **whole plane spanning tree**. In Proposition 4.18 and all the above statements, the spanning tree measure on $\tilde{D}^{#\delta}$ can be replaced by a whole plane spanning tree.

Proof. For the first sentence, consider an exhaustion D_n i.e., an increasing sequence such that $\cup_n D_n = \mathbb{C}$. Applying Proposition 4.18 with the control of the abortion probability from Corollary 4.19 says directly that the spanning tree measures form a Cauchy sequence in total variation, therefore it converges. For the second one, it then follows immediately from the fact that all the statements are uniform on \tilde{D}. \qed

Remark 4.21. Suppose that $(\gamma, \tilde{\gamma})$ are coupled by a global coupling as above. Let T_i be the smallest time t such that $\gamma(t) \in B(z_0, e^{-i})$, and let $T = T_i$. Then given $I = i$ the law of $(\gamma(t), t \geq T)$ is absolutely continuous with respect to the unconditional law of $(\gamma(t), t \geq T_i)$ with Radon-Nikodym derivative bounded by C for some universal constant $C > 0$ (indeed, it is just the law of a loop-erased random walk conditioned on some event of uniformly positive probability).

Also, given $I = i$, the law of the entire path $\tilde{\gamma}$ is absolutely continuous with respect to the unconditional law, with Radon-Nikodym derivative bounded by $C < \infty$.

48
4.5 Comparisons of capacity

In the previous sections, we have proved that each branch of the continuum UST can be has one portion where the SLE approximation holds and another portion where the coupling holds between a path γ in \mathbb{D} and a path $\tilde{\gamma}$ in the whole plane. A difficulty which arises here is that for the SLE approximated portion we want to use the capacity parametrisation to have a direct connection with the continuous estimates. On the other hand in the end part it will be convenient to cut γ and $\tilde{\gamma}$ at exactly the same point. However the capacity parametrisation of γ and $\tilde{\gamma}$ do not agree exactly. In this section we tackle this issue (see e.g. Lemma 4.25). The idea is that the capacities of γ and $\tilde{\gamma}$ are not only close for large values of capacity, the rate of increase of capacities are also close. We can thus couple Poisson processes with very similar intensities in the two capacities so that the first jump matches up and we cut at the first jump time.

We first need some technical estimates on the comparison of the two capacities. In this section D will be a fixed domain. γ and $\tilde{\gamma}$ will always denote two simple paths from a point $z_0 \in D$ to respectively ∂D and infinity and we will always assume that there exists I such that $\gamma \cap B(z_0, e^{-I}) = \tilde{\gamma} \cap B(0, e^{-I})$. For any point $z, z' \in \gamma$ we will write $\gamma(z, z')$ for the part of the path between z and z', $\gamma(z, \partial D)$ for the path between z and the boundary and similarly for $\tilde{\gamma}$. We denote by T and \tilde{T} the capacity in D or \mathbb{C}, i.e $T(z) = -\log R(z_0, D \setminus \gamma(z, \partial D))$ and $\tilde{T}(z) = -\log R(z, \mathbb{C} \setminus \tilde{\gamma}(z, \infty))$, where recall that $R(z, D)$ denotes the conformal radius of z in D.

The following lemma is elementary and well known.

Lemma 4.22. Let D be a simply connected domain and z_0 in D. Let B_t be a Brownian motion started in z_0 and τ the exit time of D. We have

$$\log R(z_0, D) = \mathbb{E}(|\log |B_\tau - z_0||).$$

Lemma 4.23. There exist positive constants C and C' such that for any pair of paths γ and $\tilde{\gamma}$ and any $z \in \gamma \cap B(z_0, e^{-I})$, we have

$$|T(z) - \tilde{T}(z)| \leq C(T(z) - I)e^{-C'(T(z) - I)}.$$

Proof. Let B_t be a Brownian motion and let τ and $\tilde{\tau}$ denote respectively the hitting time of $\partial D \cup \gamma(z, \partial D)$ and $\tilde{\gamma}(z, \infty)$. Let τ_1 denote the exit time of $B(z_0, e^{-I})$.

By Lemma 4.22, $T(z) - \tilde{T}(z) = \mathbb{E}(|\log |B_\tau - z_0| - \log |B_{\tilde{\tau}} - z_0||)$ but the right hand side is 0 whenever $\tau \leq \tau_1$. Furthermore, $d(z_0, \gamma(z, \partial D)) \leq e^{-T(z)}$ by Schwarz’s lemma. Hence let $z' \in \gamma(z, \partial D)$ and such that $|z' - z_0| \leq e^{-T(z)}$. Then by the Beurling estimate (see [25, Theorem 3.76]), $\mathbb{P}(\tau_1 \leq \tau) \leq C\sqrt{|z' - z_0|/e^{-T}} \leq Ce^{-(1/2)(T - I)}$. Let $f := \log |(B_{\tau} - z_0)/(B_{\tilde{\tau}} - z_0)|1_{\tau \geq \tau_1}$. We break $\mathbb{E}[f]$ into $\mathbb{E}[f I_{\{|f| > |T(z) - I|\}}]$ and the rest. Now we use the exponential tail bound on $|f|$ to reach the desired conclusion. \hfill \Box

Now we will compare the growth rate of the capacities of γ and $\tilde{\gamma}$. We will also need to introduce $\tilde{T}(z) = -\log R(z_0; B(z_0, e^{-I}) \setminus \gamma(z, \partial D))$. In other words this is the capacity of $\gamma(z, \partial D)$ within $B(z_0, e^{-I})$. The next lemma depends on the geometry of the curves so it is convenient to go to the unit disc. Let $\varphi : D \to \mathbb{D}$ be the conformal map sending z_0 to 0 and such that $\varphi'(z_0) > 0$.

We parametrise the curve γ by capacity: for $T \geq T_0 = -\log R(z_0, D)$, let $z = z_T$ be the point on γ such that $T(z) = T$ and define $g_T : D \setminus \gamma(z_T, \partial D) \to \mathbb{D}$. Let $K_T = \varphi(\gamma(z_T, \partial D))$ for $T \geq T_0$. Then $(K_T)_{T \geq T_0}$ is a growing family of hulls in the unit discs, let $(g_T)_{T \geq T_0}$ be the (radial) Loewner flow in \mathbb{D} and $(W_T)_{T \geq T_0}$ be the driving function (with $W_T \in \mathbb{R}$). Also set $B' = \varphi(B(z_0, e^{-I}))$, $H_T = \mathbb{D} \setminus K_T$ and finally set $L_T = g_T(H_T \setminus B')$.

49
Lemma 4.24. There exist positive constants C, c, C'' such that the following holds. Let S and S' be fixed with $0 < S' - S < C''$. Let $d = \inf_{S \leq t \leq S'} d(L_T, e^{iW_T})$. Let $w = z(S)$ and $w' = z(S')$. If $S - I$ is large enough and if d is sufficiently large so that both $d \geq e^{-C(S - I)}$ and $d^2 \geq C(S' - S)$ hold, then

$$1 - C e^{-c(S-1)}/d^2 < \frac{\bar{T}(w') - \bar{T}(w)}{S' - S} < 1 + C e^{-c(S-1)}/d^2$$

Proof. Let ρ be the image of $\gamma(w', w)$ under $g_S \circ \varphi$, i.e., the red curve in the rightmost image of Figure 10. First we note that by definition

$$\bar{T}(w) - S = -\log R(0; \mathbb{D} \setminus L_S) \quad (4.8)$$
$$\bar{T}(w') - S = -\log R(0; \mathbb{D} \setminus (L_S \cup \rho)) \quad (4.9)$$
$$S' - S = -\log R(0; \mathbb{D} \setminus \rho) \quad (4.10)$$

Let τ_p, τ_L and τ_θ denote the hitting time of respectively ρ, L_S and ∂D by a Brownian motion B starting from zero. Combining (4.9), (4.8), (4.10) and Lemma 4.22, we have

$$\bar{T}(w') - \bar{T}(w) - (S' - S) = \mathbb{E}^0 \left[-\log |B_{\tau_\theta \wedge \tau_L \wedge \tau_p}| + \log |B_{\tau_\theta \wedge \tau_p}| + \log |B_{\tau_\theta \wedge \tau_L}| \right]. \quad (4.11)$$

Hence it suffices to show that

$$\mathbb{E}^0 \left[-\log |B_{\tau_\theta \wedge \tau_L \wedge \tau_p}| + \log |B_{\tau_\theta \wedge \tau_p}| + \log |B_{\tau_\theta \wedge \tau_L}| \right] \leq \frac{C e^{-c(S-I)}}{d^2}(S' - S). \quad (4.12)$$

Notice that if $\tau_\theta < \tau_L \wedge \tau_p$ then the random variable in the right hand side of (4.11) is zero. We will consider separately the two cases where τ_L is smallest and also τ_p is smallest below in Steps 2 and 3 respectively, but we first establish some geometric estimates on L_S and ρ.

Step 1. Let $h = h_{S'-S}$. First we prove that the distance between L_S and ρ is at least $d/10$. From the choice of d, we can draw an arc I_L to the left of the leftmost point in $L_S \cap \partial D$ and I_r to the right of the rightmost point in $L_S \cap \partial D$ both of length at least $d/4$ (and hence they do not intersect e^{iW_S}). Let $b \in L_S \cap \partial D$ and let a, c be the two extremities of the arcs I_L, I_r which are farthest from L_S. Using the radial Loewner equation to $h_t = g_{S+t} \circ g_S^{-1}$ at $z = b$ for now, we see that

$$|\partial h_t| = |h_t e^{iW_{S+t}} + h_t| \leq \frac{2}{d} \quad (4.13)$$

50
for all $t \leq S' - S$ (this is because over this interval of time, we must have $d(h_t(b), e^{\omega_{t+S}}) \geq d$ and hence the denominator in the right hand side is greater than d). Applying the same Loewner equation at $z = a$ and $z = c$, as long as $d(h_t(a), e^{\omega_{t+S}}) \geq d/2$, and that $t \leq S' - S$, we get $|\partial_t h_t| \leq 4/d$. Hence $|\partial_t h_t(a) - \partial_t h_t(b)| \leq 6/d$ on that interval. Combining with the fact that $h_t(b)$ is at least d away from $e^{\omega_{t+S}}$ and eq. (4.13), we deduce that the time it would take for $h_t(a)$ to be less than $d/2$ away from $e^{\omega_{t+S}}$ is at least $d^2/24$. Hence if $S' - S \leq d^2/C$ for some sufficiently large constant $C > 24$, then the condition $d(h_t(a), e^{\omega_{t+S}}) \geq d/2$ is in fact always fulfilled throughout $t \in [0, S' - S]$. Consequently, we deduce that a bound similar to eq. (4.13) holds at $z = a$ and $z = c$ with a different constant: for $t \leq S' - S$,

$$
|\partial_t h_t(z)| = |h_t(z)| \frac{e^{\omega_{t+S}} - h_t(z)}{e^{\omega_{t+S}} - h_t(z)} \leq \frac{4}{d}, \quad z = a, c.
$$

Integrating this bound over $[0, S' - S]$ we see that $h_{S' - S}(I_t)$ and $h_{S' - S}(I_r)$ are arcs whose length is $(d/4)(1 + O(1/C))$ and hence can be made arbitrarily close to $d/4$. Note that the length of these arcs is nothing else but the harmonic measure in $D \setminus \rho$ of I_t, I_r respectively.

From this we can conclude that ρ does not come within distance $d/10$ of L_S. Indeed, if it did, the harmonic measures of I_t or I_r would be small. More precisely, there is a universal constant $c > 0$ such that conditionally on $B_{r_0} \in I_r$ say, B crosses any set coming within distance $d/10$ of L_S with probability at least c: for instance this necessarily happens if B stays in a certain deterministic set consisting of a union of a rectangle of dimensions $d \times (d/20)$ and a disc of radius $1 - d/2$ (see blue set in the accompanying Figure 11).

Note also, for future reference, that $h(I_t)$ and $h(I_r)$ are arcs of length at least $d/8$ and which don’t intersect $h(\rho)$ (since ρ does not hit ∂D).

Step 2. Now we estimate the right hand side of (4.11), which was

$$
\mathbb{E}^0 \left[- \log|B_{t_0 \wedge \tau_L \wedge \tau_\rho}| + \log|B_{t_0 \wedge \tau_L}| + \log|B_{t_0 \wedge \tau_L}| \right],
$$

in the case where the Brownian motion hits ρ before L or ∂D. In this case the first and second terms in the random variable of the right hand side cancel each other and we need to estimate

$$
\mathbb{E}^0(1_{\{t_0 < t_\rho < t_L \}} | \mathbb{E}^{B_{t_\rho}}(\log|B_{t_0 \wedge \tau_L}|)).
$$

Let C denote the circle of radius $d/10$ centered at B_{t_ρ}. Notice that by Step 1, since ρ does not come within distance $d/10$ of L_S,

$$
|\mathbb{E}^{B_{t_\rho}}(\log|B_{t_0 \wedge \tau_L}|)| \leq |\log(1 - \text{Diam}(L_S))| \mathbb{P}^{B_{t_\rho}}(\tau_C < t_\rho)
$$

where τ_C is the stopping time when the Brownian motion hits C. Now, observe that

$$
\text{Diam}(L_S) \leq C \ \text{Harm}_D(0; L_S) \leq C e^{-c(S-1)}
$$

by Beurling’s estimate, where $\text{Harm}_D(z, \cdot)$ denotes harmonic measure in D seen from z. Hence

$$
\mathbb{E}^{B_{t_\rho}}(\log|B_{t_0 \wedge \tau_L}|) \leq C e^{-c(S-1)} \mathbb{P}^{B_{t_\rho}}(\tau_C < t_\rho)
$$

Figure 11: Proof of step 1.
Now it remains to bound $\mathbb{P}^{B_{\rho}}(\tau_C < \tau_\partial)$ from above. Let $z = B_{\tau_\partial}$. Then it is elementary to check that we have $\mathbb{P}^z(\tau_C < \tau_\partial) \leq c(1 - |z|)/d$ for some constant $c > 0$ (this is the probability of reaching distance $d/10$ within a half-plane with boundary at distance $1 - |z|$ from z: after translation so that this half-plane is the negative half-plane, this can be seen by applying the map $z \mapsto z^2$ and Beurling’s estimate). Plugging this back into (4.15), we conclude:

$$\left|\mathbb{E}^{B_\rho}(\log |B_{\tau_0 \wedge \tau_L}|)\right| \leq C e^{-c(S - I)} \frac{1 - |B_{\tau_\rho}|}{d} \leq \frac{Ce^{-c(S - I)}}{d} \log |B_{\tau_\rho}|.$$

Taking expectations with respect to \mathbb{E}^0 on the event $\tau_\rho < \tau_\partial \wedge \tau_L$, we deduce that

$$\left|\mathbb{E}^0[1_{\tau_\rho < \tau_\partial \wedge \tau_L}\mathbb{E}^{B_\rho}(\log |B_{\tau_0 \wedge \tau_L}|)]\right| \leq \frac{Ce^{-c(S - I)}}{d} \mathbb{E}^0 \log |B_{\tau_\rho}| = \frac{Ce^{-c(S - I)}}{d} (S' - S),$$

which is slightly better than the bound $(Ce^{-c(S - I)/d^2})(S' - S)$ we are aiming for.

Step 3. Finally we consider the case where $\tau_L < \tau_\partial \wedge \tau_\rho$, which is the most delicate. If the Brownian motion hits L first then the first and third terms cancel each other and we need to estimate $\mathbb{E}^0(\mathbb{E}^{B_\rho}(\log |B_{\tau_0 \wedge \tau_\rho}|)1_{\tau_L < \tau_\partial \wedge \tau_\rho})$ using the strong Markov property. We now claim that, almost surely,

$$\frac{\left|\mathbb{E}^{B_{\tau_L}}(\log |B_{\tau_0 \wedge \tau_\rho}|)\right|}{\mathbb{E}^0(\log |B_{\tau_0 \wedge \tau_\rho}|)} \leq \frac{C}{d} e^{-c(S - I)}$$

(4.17)

To do this we are going use conformal invariance of harmonic measure and map out ρ via $h_{S' - S}$. Then we can use an explicit bound on the Poisson kernel on the disc which allows us to compare the harmonic measure of a set seen from 0 and from a point in L_S. By conformal invariance of harmonic measure, letting $h = h_{S' - S}$

$$\mathbb{E}^{B_{\tau_L}}(-\log |B_{\tau_0 \wedge \tau_\rho}|) = -\int_{h(\rho)} \log |z| \text{ Harm}_D(h(B_{\tau_L}), dz)$$

$$= -\int_{h(\rho)} \log |h^{-1}(z)| \text{ Harm}_D(h(B_{\tau_L}), dz)$$

$$= -\int_{h(\rho)} \log |h^{-1}(z)| \frac{d\text{ Harm}_D(h(B_{\tau_L}), dz)}{d\text{ Harm}_D(0, dz)} \text{ Harm}_D(0, dz)$$

Observe that if we write $h(B_{\tau_L}) = re^{i\theta} \in L_{S'}$, then the Radon-Nikodym derivative above is simply the Poisson kernel and at the point $z = e^{i\theta}$ it is thus equal to $P_r(\theta - t)$ where

$$P_r(\theta) = \frac{1 - r^2}{1 + r^2 - 2r \cos \theta}$$

Note that when $e^{i\theta} \in h(\rho)$ then $|\theta - t| \geq d/100$ by Step 1. Indeed, we know that $h(I_c)$ and $h(I_r)$ are arcs of length at least $d/8$ which do not intersect $h(\rho)$ (see the end remark of Step 1) and we know that the diameter of $L_{S'}$ is at most $ce^{-c(S - I)} \leq d/10^3$ by assumption and suitable choice of constants. Hence the difference in arguments for a point in $L_{S'}$ and a point in $h(\rho)$ is at least $d/100$. Thus we have $\cos(\theta - t) \leq 1 - d^2/10^5$. Hence

$$P_r(\theta - t) \leq \frac{1 - r^2}{(1 - r)^2 + 2r d^2/10^5} \leq \frac{Ce^{-c(S - I)}}{d^2}$$
by our assumptions on \(d \geq ce^{-c'(S-I)} \) and the fact that
\[
1 - r \leq \text{Diam}(L_{S'}) \leq Ce^{-C'(S'-I)} \leq Ce^{-C'(S-I)}
\]
by eq. (4.16). Since \(E^0(\log|B_{\tau^0_{\Lambda\tau^0_0}|}) = S' - S \), putting everything together we obtain Lemma 4.24.

Taking the increment \(S' - S \) to 0 we get the following corollary:

Lemma 4.25. There exists constants \(C, C' \) such that the following holds. Let \(d = \inf_{S \leq T \leq S + 1/10} d(L_T, e^{iW_T}) \). Let \(w \) and \(w' \) be the two points on \(\gamma \) corresponding respectively to \(S \) and \(S + 1/10 \). Let \(\mu \) and \(\bar{\mu} \) be the measures on \(\gamma \) obtained by capacity in \(D \) and \(B(z_0, e^{-I}) \) respectively: that is, if \(z = z(T) \) and \(z' = z(T') \) then \(\mu(z, z') = |T' - T| \), and likewise for \(\bar{\mu} \). If \(S - I \) is large enough and if \(d \geq Ce^{-C'(S-I)} \), then, uniformly over \(\gamma(w, w') \), we have
\[
1 - Ce^{-C'(S-I)}/d^2 \leq \frac{d\bar{\mu}}{d\mu} \leq 1 + Ce^{-C'(S-I)/d^2}.
\]

Now we check that the assumption on \(d \) in the previous lemma holds when the curve is \(\text{SLE}_2 \) with high probability.

Lemma 4.26. Suppose \(\gamma \) is a radial \(\text{SLE}_2 \) process independent of \(I \). Then defining \(d \) as above, we have
\[
d \geq Ce^{-C(S-I)} \text{ with probability } \geq 1 - C' \exp(-c'(S - I)). \tag{4.18}
\]
If instead \(\gamma \) is a loop-erased random walk in \(D^{\#\delta} \) from \(z_0 \) to \(\partial D \) and \(e^{-I} \) is the isolation radius of \(\gamma \) defined by the full coupling of Proposition 4.18, and let \(d \) be as above. Then there exists \(\delta = \delta(S) \) such that if \(S - I \) is large enough and \(\delta \leq \delta(S) \) we have
\[
d \geq Ce^{-C(S-I)} \text{ with probability } \geq 1 - C' \exp(-c'(S - I)). \tag{4.19}
\]

Proof. Let \(T \) be the smallest \(t \) such that \(\gamma(z(t)) \in B(z_0, e^{-I}) \), and let \(e^{i\theta_t} \) be one of the two images \(\varphi \circ g_t(z) \) where \(z = z(T) \) for \(T \leq t \leq S \). Then note that \(e^{i\theta_t} \in \partial D \cap L_S \). Moreover we claim that with high probability, if \(S - I \) is large, then \(e^{i\theta_t} \) is far away from \(e^{iW_t} \).

We can follow the evolution of \(e^{i\theta_t} \) under the Loewner flow \(g_t \) for \(T \leq t \leq S \) as follows. If \(Y_t = \theta_t - W_t \) then \(Y_t \) solves a stochastic differential equation:
\[
dY_t = \cot(Y_t/2) - dW_t ; \ Y_T = 0.
\]
(see (6.13) in [25]). Note that this diffusion is transient for \(\kappa = 2 < 4 \) and the probability for \(Y_t \) to hit \([0, \delta]\) in any particular interval of length \(O(1) \) is polynomial in \(\delta \). It is easy then to see by comparing to a Bessel process that in the case \(\kappa = 2 \), for any given \(S \) such that \(S - I \) is large enough, since \(|T - I| \leq \log 4 \) by the Koebe (1/4) theorem, then for any \(c, C, \)
\[
P\left(\min_{S \leq t \leq S + 1/10} Y_t \leq 10e^{-c(S-I)}\right) \leq C' \exp(-c'(S - I))
\]
is exponentially small in \(S - I \). Now, since \(\text{Diam}(L_S) \leq Ce^{-c'(S-I)} \) by Beurling’s estimate (see eq. (4.16)) we see that
\[
d \geq Ce^{-C(S-I)} \text{ with probability } \geq 1 - C' \exp(-c'(S - I)).
\]

53
There exists a universal constant D is arbitrary and can be thought of as being the full plane.\hfill\Box

To deduce eq. (4.19), we recall that loop-erased random walk converges to SLE$_2$ under our assumptions (see Remark 4.1). Then use Remark 4.21 to note that conditionally on $I = i$, the law of γ after the first time it hits $B(z_0, e^{-t})$ is, absolutely continuous with respect to $(\gamma_t, t \geq T_i)$ where T_i is the first time the path enters $B(z_0, e^{-t})$, with a derivative bounded by $C > 0$. Since the distance d is a continuous function of γ the estimate eq. (4.18) applies with $\kappa = 2$ for all δ sufficiently small.\hfill\Box

Now we can finally prove our coupling estimate. Recall the full coupling $(\gamma, \tilde{\gamma})$ of Lemma 4.17, where γ is a loop-erased random walk in $D^{\#\delta}$ and $\tilde{\gamma}$ is a loop-erased random walk in $\tilde{D}^{\#\delta}$ where \tilde{D} is arbitrary and can be thought of as being the full plane.

Lemma 4.27. There exists a universal constant c such that the following holds. For any $t > 0$ there exists $\delta = \delta(t)$ such that for any $\delta \in (0, \delta(t))$, we can find a pair of random variables (X, \tilde{X}) such that individually, X and \tilde{X} are each independent of $(\gamma, \tilde{\gamma})$ and

$$\Pr[\gamma(t + X) = \tilde{\gamma}(t + \tilde{X})] \geq 1 - Ce^{-ct}.\vphantom{C}$$

Furthermore, both X and \tilde{X} are bounded random variables (by $1/20$).

In this proof, we will need to choose constants depending on each other so we number them.

Proof. Let μ be the measure on γ defined as in Lemma 4.25 and let $\tilde{\mu}$ be the equivalent measure for the curve $\tilde{\gamma}$. Note that Lemma 4.25 allows us to compare μ to $\tilde{\mu}$ and also $\tilde{\mu}$ to $\tilde{\mu}$ since γ and $\tilde{\gamma}$ are assumed to coincide within $B(z, e^{-t})$. Consequently, we will have a way of comparing μ and $\tilde{\mu}$ and show that the Radon-Nikodym derivative of one with respect to the other is very close to one, from which the result will follow.

Here are the details. Since I has an exponential tail we can assume that $I \leq t/2$, therefore Lemma 4.23 shows that if $z = z(t)$ then $|\tilde{T}(z) - t| \leq e^{-c_1 t}$. We can also assume that γ does not exit $B(z_0, e^{-t})$ after t.

Let d be as in Lemma 4.25 and let \tilde{d} be the equivalent quantity for $\tilde{\gamma}$. By eq. (4.19) we can assume that $d \geq e^{-c_2 t}$ and $\tilde{d} \geq e^{-c_2 t}$ for some c_2 with probability also greater than $1 - e^{-c_2 t}$ and for all $\delta < \delta(t)$ provided that t is large enough. Applying Lemma 4.25 to each path on that event, we find that for t sufficiently large

$$1 - e^{-c_3 t} \leq \frac{d\mu}{d\tilde{\mu}} \leq 1 + e^{-c_4 t}\vphantom{1 + e^{-c_4 t}}$$

on a subset of the path including $\tilde{\gamma}(t + e^{-c_1 t}, t + 1/20 - e^{-c_1 t})$. We call this set Γ. We let $\nu = (1 - e^{-c_3 t})1_{\Gamma} \tilde{\mu}$. Now we choose $0 < c_4 < c_3$ and we define three independent Poisson processes on γ, say P_1, P_2, P_3, with densities respectively $e^{c_4 t} \nu, e^{c_4 t} (\tilde{\mu} - \nu)$ and $e^{c_4 t} (\mu - \nu)$. Note also that the processes P_1 and P_2 depend only on $\tilde{\gamma}$.

Let \tilde{z} be the first point in $P_1 \cup P_2$ after capacity t in \tilde{D} and let z be the first point in $P_1 \cup P_3$ after capacity t in D. Let $X = T(z) - t$ and $\tilde{X} = T(\tilde{z}) - t$; if there are no points in $P_1 \cup P_3$ or $P_1 \cup P_2$ we abort the coupling (this has probability smaller than $e^{-c_4 t / 30}$); note then that $X, \tilde{X} \leq 1/20$ by construction and they are each independent of $(\gamma, \tilde{\gamma})$ (since the conditional marginal law of both X and \tilde{X} is exponential; however, note that the pair (X, \tilde{X}) is not independent from $(\gamma, \tilde{\gamma})$). Now observe that with very high probability both $z, \tilde{z} \in P_1$ and therefore are equal. Indeed, $\Pr(\tilde{z} \notin P_1) \leq e^{(c_4 - c_3) t}$ and similarly $\Pr(z \notin P_1) \leq e^{(c_4 - c_3) t}$ using eq. (4.20) which concludes the proof.\hfill\Box
5 Convergence of the winding of uniform spanning tree to GFF

5.1 Discrete winding, definitions and notations

In this section we prove our main result on the winding of spanning tree.

We define the discrete winding fields in a finite domain properly here. This is completely analogous to the definition in the continuum from Section 3. Let us fix a bounded \(C^1 \) domain \(D \subset \mathbb{C} \) with a marked point \(x \in \partial D \). Let \(\delta > 0 \) and let \(\mathcal{T}^\#_\delta \) be a wired spanning tree of \(D^\#_\delta \). As in the continuum definition, we add to each \(\gamma_v \) a path following \(\partial D^\#_\delta \) clockwise to \(x \). More precisely, we look at the edge \(e \) via which \(\gamma_v \) crosses \(\partial D \). We add to \(\gamma_v \) the portion of \(e \) inside \(D \) and then concatenate it with the portion of \(\partial D \) joining \(e \) and \(x \) in clockwise direction. For simplicity of notation we still call this path \(\gamma_v \). We parametrise the part of the curve in \(\partial D \) by \([-1, 0]\) and the rest by capacity in \(D \) plus \(\log R(z, D) \) as in Section 3), so that \(t = 0 \) will always correspond to hitting the boundary. Let \(\theta = \text{Arg}(-\gamma_v(-1)) \), which does not depend on \(v \) (it is the argument of the tangent to \(\partial D \) at \(x \)). Motivated by the formula connecting intrinsic and topological winding (cf. Lemma 2.1), we define

\[
h^\#_\delta(v) := W_{\text{int}}(\gamma_v(-1, \infty)) \quad \text{(5.1)}
\]

\[
h^\#_\delta(v) := W(\gamma_v[-1, t], z) - \theta + \text{arg}_{x\in D}(x - v) \quad \text{(5.2)}
\]

Consider a full plane discrete UST on \(G^\#_\delta \), \(\mathcal{T} = (\tilde{\gamma}_v)_{v \in G^\#_\delta} \). We parametrise the paths \(\tilde{\gamma}_v \) by full plane capacity, going from \(-\infty\) far away to \(+\infty\) at \(v \). Recall that we denote by \(\gamma(S,T) \) the path between capacities \(S \) and \(T \). We extend the definition of the regularised winding to that setting by defining

\[
\tilde{h}_T(v) - \tilde{h}_S(v) := W(\tilde{\gamma}_v(S, T), v) \quad \text{and} \quad \tilde{h}(v) - \tilde{h}_T(v) := W(\tilde{\gamma}_v(T, \infty), v). \quad \text{(5.3)}
\]

We point out that as \(\delta \to 0 \), the path \(\tilde{\gamma}_v \) converges (uniformly on compacts) towards a full plane \(\text{SLE}_2 \); this follows by a combination of results from Lawler, Schramm and Werner; Yadin and Yehudayoff [26, 39] as well as Field and Lawler [8]. As a consequence, the arbitrary choice of truncating at capacity 0 is irrelevant: this is because the asymptotics of \(m^\#_\delta(v) \) as \(\delta \to 0 \) is independent of the choice of truncation (indeed, for a full plane SLE path, the expected winding between capacity 0 and 1 is zero by symmetry). Readers who are uncomfortable with the notion of full plane \(\text{SLE} \) can replace the full plane by a disc of some large radius in the definition of \(m^\#_\delta \); in which case the above remark relies just on the convergence result of Lawler, Schramm and Werner [26] and Yadin and Yehudayoff [39].

To help with the intuition, recall from the introduction (see Figure 3) that we need to remove by hand microscopic contributions to the expected winding. This is the purpose of \(m^\#_\delta \); note in particular as discussed in the introduction that this does not depend on the domain \(D \).

5.2 Statement of the main result

We now state the main theorem in this section, which is a stronger version of Theorem 1.2 in the introduction. Since we are going to integrate the discrete winding field against test functions, we need to make precise what we mean by this. There are two natural choices to do this integral: one which takes into account the geometry of the underlying graph and another one which accounts...
only for the ambient Euclidean space in which the graph is embedded. The latter turns out to be slightly more natural since the limit in that case is a (conformally invariant) Gaussian free field, i.e., does not depend on the limiting density of vertices.

We proceed as follows. Given $h^{#\delta}$ defined on the vertices of the graph, we can extend $h^{#\delta}$ to a function on the whole domain D using various forms of interpolation. One way to do this is to linearly extend the value of $h^{#\delta}$ to the edges and then take a harmonic extension on the faces. However for concreteness we will look at the following extension: consider Voronoi tessellation of D defined by the vertices of the graph. We then define the extension $h^{#\delta}_{\text{ext}}$ to be constant on each Voronoi cell, equal to $h^{#\delta}(v)$ where v is the centre of the cell. This allows us to use the regular L^2 product to integrate $h^{#\delta}$ against test functions.

$$(h^{#\delta}, f) := \int_D h^{#\delta}_{\text{ext}}(z)f(z)dz.$$

This extension procedure can also be applied to $m^{#\delta}$, leading to a function defined on all of D. We then have the following theorem.

Theorem 5.1. Let G be a graph satisfying the assumptions of Section 4.1, let $D \subset \mathbb{C}$ be a bounded and C^1, simply connected domain, with a marked point $x \in \partial D$. Let T be a uniform spanning tree of $D^{#\delta}$ and let $h^{#\delta}(v)$ denote the intrinsic winding as above, and let $m^{#\delta}$ be defined as above. Then

$$h^{#\delta} - m^{#\delta} \overset{\delta \to 0}{\to} h_{\text{GFF}}.$$

The convergence is in law in the Sobolev space $H^{-1-\eta}$ for any $\eta > 0$. The limit h_{GFF} is a free field with intrinsic winding boundary conditions: that is, $h_{\text{GFF}} = (1/\chi)(h + \pi/2)$ where $h = h^0_{\text{GFF}} + \chi u_{D,1}$ and h^0_{GFF} is a standard GFF with Dirichlet boundary conditions.

Moreover, for all $n \geq 1$, for all $f_1, \ldots, f_n \in H^{1+\eta}$, and for all k_1, \ldots, k_n we have

$$\mathbb{E} \prod_i (h^{#\delta} - m^{#\delta}, f_i)^{k_i} \to \mathbb{E} \prod_i (h_{\text{GFF}}, f_i)^{k_i}$$

and for all $k \geq 1$

$$\mathbb{E} \left(\|h^{#\delta} - m^{#\delta}\|_{H^{-1-\eta}}^k \right) \to \mathbb{E} \left(\|h_{\text{GFF}}\|_{H^{-1-\eta}}^k \right).$$

Remark 5.2. We emphasise that the function $m^{#\delta}$ is a deterministic function which depends only on the point in the graph, and in particular it does not on the domain D. Note also that it follows from this result that $\mathbb{E}(h^{#\delta} - m^{#\delta}) \to \mathbb{E}(h_{\text{GFF}})$ and hence we deduce

$$h^{#\delta} - \mathbb{E} h^{#\delta} \overset{\delta \to 0}{\to} \frac{1}{\chi} h^0_{\text{GFF}}$$

in the same sense as above, where h^0_{GFF} is a Gaussian free field with Dirichlet boundary conditions.

5.3 Other notions of integration

We now comment briefly on other possible definitions of integration against test functions. Another definition which is a priori natural is to consider

$$(h^{#\delta}, f)^{#\delta} := \frac{1}{\mu^{#\delta}(D)} \sum_v h^{#\delta}(v)f(v).$$

56
In that case, $h^\#_\delta$ is viewed as a random measure which is a sum of Dirac masses and there is no hope to get convergence in the strong sense of Sobolev spaces as in the above theorem. We can nevertheless ask about convergence in the space of distributions (for finite dimensional marginals, see e.g. [2, Definition 1.10]). It can be checked that if the uniform distribution on the vertices of the graph converges to a measure μ in C, we have that

$$(h^\#_\delta, f)^{\#_\delta} \xrightarrow{\delta \to 0} h^\mu_{\text{GFF}}$$

where now h^μ_{GFF} is a Gaussian stochastic process indexed by test functions such that $(h^\mu_{\text{GFF}}, \phi) = (h_{\text{GFF}}, \phi \frac{d\mu}{d\text{Leb}})$.

Note that in most cases, for example in any periodic lattice or isoradial graphs or T-graphs where our results apply, μ is just the Lebesgue measure. However there are also interesting examples of graphs where the convergence to a (time-changed) Brownian motion holds but μ is different from Lebesgue measure. For instance, for a conformally embedded random planar map, where such a convergence is expected to hold, the measure μ is a Gaussian multiplicative chaos (see [9] and [10, 1] for an introduction to this topic).

5.4 Proof of the main result

Now we collect the results of the two previous sections to prove Theorem 5.1.

Lemma 5.3. Fix a domain $D \subset \mathbb{C}$ and let $x_1, \ldots, x_k \in D$. For all $v^\delta_1, \ldots, v^\delta_k \in D^{\#_\delta}$ converging to x_1, \ldots, x_k, for all T_1, \ldots, T_k,

$$\mathbb{E}\left[\prod_i h^\#_{T_i}(v_i)\right] \xrightarrow{\delta \to 0} \mathbb{E}\prod_i h_{T_i}(x_i),$$

where h_T is the regularised winding field of a continuum UST in D (see the beginning of Section 3 for the definition).

Proof. Let x_1, \ldots, x_k be fixed, together with the sequences v^δ_i. Then by our assumptions (see Remark 4.1) and by Wilson’s algorithm, the paths $(\gamma^\#_{v_i})_{i=1}^k$ converge to $(\gamma_{x_i})_{i=1}^k$ where the γ_{x_i} are the paths connecting x_i to ∂D in a continuous UST. Furthermore, observe that the function $h_T(v) = h_T(\gamma_v)$ is a continuous function of γ_v (for instance compare with eq. (3.1)). Hence $\prod h^\#_{T_i}(v_i)$ converges in distribution to $\prod h_{T_i}(x_i)$. Using Proposition 4.10, we see that it is also uniformly integrable (in fact, we have stretched exponential tails) and hence the expectation converges.

Combining the above lemma with Theorem 3.2 and Lemma 3.11, we can find a sequence $T(\delta)$ (depending on the v_i’s) going to infinity slowly enough such that whenever $T(\delta) \leq T_i(\delta) \leq T(\delta) + 1/20$,

$$\mathbb{E}\left[\prod_i h^\#_{T_i(\delta)}(v_i)\right] \xrightarrow{\delta \to 0} \mathbb{E}\prod_i h_{\text{GFF}}(x_i).$$

Using the previous lemma with the full coupling of Proposition 4.18, we can control the k-point function for the winding up to the endpoint.

Proposition 5.4. For all k, for all D, for all $v^\delta_1, \ldots, v^\delta_k \in D$ converging to x_1, \ldots, x_k,

$$\mathbb{E}\left[\prod_i (h^\#(v^\delta_i) - m^\#(v^\delta_i))\right] \xrightarrow{\delta \to 0} \mathbb{E}\prod_i h_{\text{GFF}}(x_i).$$
Recall that the right hand side is a notation for the k-point function of a GFF with winding boundary condition, as in Theorem 5.1.

Proof. By definition of our extension of $h^{\#\delta}$ to D, we may assume without loss of generality that $v_i^{\delta} \in D^{\#\delta}$ (this is one of the advantages of working with the Voronoi extension of $h^{\#\delta}$ to D). We write γ_i for $\gamma_i^{\#\delta}$. If δ is small enough, one can apply the coupling of Proposition 4.18. Focusing only on the paths from the v_i, we obtain random variables I_1, \ldots, I_k, all with exponential tails, and independent full plane loop-erased paths $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_k$ such that
\[
\forall j, \gamma_j \cap B(v_j, 6^{-J}r) = \tilde{\gamma}_j \cap B(v_j, 6^{-J}r)
\]
on the event that the coupling succeeds, where $r = (1/10)(\min_{j \neq j'}|v_i - v_j| \wedge \min_i d(v_i, \partial D) \wedge 1)$. Here r is a constant and $\delta \to 0$ so we will not worry about r. Let $\tilde{h}^{\#\delta}$ be the associated field defined as in eq. (5.3) (recall that only its increments in T are defined). We also write $h^{\#\delta}_I = h^{\#\delta}_I(v_j)$ (resp. $\tilde{h}^{\#\delta}_I$) for the winding up to the last time γ_i (resp. $\tilde{\gamma}_i$) enters $B(v_j, e^{-J}r)$. Let $T(\delta)$ be some sequence such that for any T_j such that $T(\delta) \leq T_j \leq T(\delta) + 1/20$ we have
\[
\mathbb{E}[\prod_I h^{\#\delta}_I(v_j)] \to \mathbb{E} \prod_I h^{GFF}(x_j), \tag{5.4}
\]
and Lemma 4.27 holds (this is possible because $T(\delta)$ can be chosen to grow to infinity arbitrarily slowly and for the same reason that $m^{\#\delta}(v)$ does not depend on the capacity cutoff, see the discussion after eq. (5.3)).

For each $1 \leq j \leq k$ we use Lemma 4.27 and we write $T_j = T(\delta) + X_j$ and $\tilde{T}_j = T(\delta) + \tilde{X}_j$ the resulting times. Then we have, dropping the superscripts $\#\delta$ from this calculation for clarity,
\[
\begin{align*}
h(v_j) - m(v_j) &= (h - h_I)(v_j) - (\tilde{h} - \tilde{h}_I)(v_j) \tag{5.6} \\
&+ (h_I - h_{T_j})(v_j) - (\tilde{h}_I - \tilde{h}_{T_j})(v_j) \tag{5.7} \\
&- (\tilde{h}_{T_j}(v_j) - \tilde{h}_0(v_j)) \tag{5.8} \\
&+ h(v_j) - \tilde{h}_0(v_j) - m(v_j) \tag{5.9} \\
&+ h_{T_j}(v_j). \tag{5.10}
\end{align*}
\]
The main term here is the last one, $h_{T_j}(v_j)$, which we will call ξ_j: from eq. (5.4), it follows that $\mathbb{E} \prod_j \xi_j$ converges to $\mathbb{E} \prod_i h^{GFF}(x_i)$. All the other terms will be small in the sense of moments. Let A_j, B_j, C_j, D_j be the random variables in (5.6),(5.7),(5.8),(5.9) respectively and let $\xi_j = h_{T_j}(v_j)$.

Note that A_j is identically zero if the coupling succeeds, by definition of the coupling and Lemma 2.1. Note also that $B_j = 0$ if the coupling succeeds and $T_j \geq I_j$. We expand the product
\[
\prod_j (A_j + B_j + C_j + D_j + \xi_j) = \sum \prod_j \mathcal{L}_j
\]
where $\mathcal{L}_j \in \{A_j, B_j, C_j, D_j, \xi_j\}$. We now summarise the key properties which allow us to deal with this product.

(i) $\mathbb{E}(|A_i|^k) \leq O(\log(1/\delta)^k\delta^v)$.

58
(ii) $\mathbb{E}(|B_j|^k) \leq O(T_j^k e^{-cT_j^\alpha})$.

(iii) $\mathbb{E}(C_j) = o(1)$ and C_j is independent from $(\mathcal{L}_i, i \neq j)$.

(iv) $\mathbb{E}(D_j) = 0$ and D_j is independent from $(\mathcal{L}_i, i \neq j)$.

(v) $\mathbb{E}(|\xi_j|^k) \leq O(T_j^k)$ and $\mathbb{E}(\prod_j \xi_j) = O(1)$ where the product is over any subset of indices.

Hence any product involving D_j for some j will contribute zero to the expectation. If the product involves only of the terms of the form A_j, B_j, ξ_j and there is at least one A_j or B_j, then the contribution to the expectation is $o(1)$ by Hölder. For terms involving only C_j and ξ_j, the C_j factors out and we conclude using item (v) above. For the remaining terms, the C_j also factors out and conclude as above by Hölder.

We now explain the claims above. For item (i), note that $h(v_j) - h_I(v_j)$ only depends on $\gamma_j \cap B(v_j, e^{-L_j})$. So the first term is exactly 0 by construction except in the low probability event of aborting the full coupling. This happens with a probability $O(\delta^\alpha)$ for some power $\alpha > 0$ by Corollary 4.19. On the other hand, note that for any C, $h_{-\log(\delta) - C}(v_j) - h(v_j)$ is bounded by the bounded density and bounded winding assumptions on the graph $(i$ and $ii)$. For example, the total winding in a ball can be bounded by the number of vertices in it. Furthermore if C is chosen large enough, Proposition 4.10 applies for h_t up to to capacity $t = -\log(\delta) - C$ and hence we conclude that the pth moment of $h_{\log(\delta) - C}(v_j) - h_I$ is $O(\log^p \delta)$. The same bounds also holds for $\tilde{h}(v_j) - h_I(v_j)$ so we conclude using Cauchy–Schwarz on the low probability event.

Item (ii) is very similar. B_j is exactly 0 when the coupling succeeds and $T(\delta) \geq I_j$ which happens with probability $1 - O(e^{-cT(\delta)})$. On the other hand, observe that $h_I - h_{T_j}$ is stochastically dominated by a sum of $I - T_j$ terms with stretched exponential tail again by Proposition 4.10, and $|I - T_j|$ has exponential tail. We conclude as above by Cauchy–Schwarz.

We now turn to item (iii) which deals with C_j. Note that C_j involves only $\tilde{\gamma}_j$ and \tilde{X}_j and so by construction of the full coupling this will be independent of $(\mathcal{L}_i, i \neq j)$. Furthermore, $\mathbb{E}(C_j) \to 0$ by eq. (5.5).

For item (iv), the independence holds exactly for the same reason as argued above for C_j. The fact that $\mathbb{E}(D_j) = 0$ is by definition of $m(v_j)$.

Finally, for item (v), the moment bound on ξ_j is a consequence of Proposition 4.10, while the fact that $\mathbb{E}(\prod_j \xi_j) = O(1)$ comes directly from eq. (5.4). This concludes the proof of the lemma.

The above proposition gives a pointwise convergence of the k-point function. We now need some bounds which allow us to integrate this convergence of moments against test functions. For this, we need a priori bounds allowing us to use dominated convergence.

Lemma 5.5. For all $k \geq 2$, for all D, there exists $C = C_k, c$ such that for all $\delta < c\delta_0$, for all $v_{i}^{\#_{\delta}}, \ldots, v_{k}^{\#_{\delta}} \in D^{\#_{\delta}}$,

$$\left|\mathbb{E}\left[\prod h^{\#_{\delta}}(v_{i}^{\#_{\delta}}) - m^{\#_{\delta}}(v_{i}^{\#_{\delta}})\right]\right| \leq C(1 + \log^{4k} r)$$

where $r = (1/10)(\min_{i \neq j}|v_{i}^{\#_{\delta}} - v_{j}^{\#_{\delta}}| \wedge \min_{D}(v_{i}^{\#_{\delta}}, \partial D) \wedge 1)$. The same holds even if we replace $v_{i}^{\#_{\delta}}$ by any point in its Voronoi cell as in our extended definition of $h^{\#_{\delta}}(z)$.

59
Proof. Let us assume $r \geq \delta$ for now. Consider the full coupling of Proposition 4.18. Then we have variables I_j with exponential tails and independent full plane loop-erased path γ_j such that

$$\gamma_j \cap B(v_j, 6^{-l_j} r) = \tilde{\gamma}_j \cap B(v_j, 6^{-l_j} r)$$

on the event that the coupling succeeds.

We use a decomposition similar as in the previous proof (except that we do not need h_{T_j} or \tilde{h}_{T_j}). For clarity let us drop the superscript $\#\delta$ in the following expression:

$$h - m = (h - h_I) - (\tilde{h} - \tilde{h}_I) + \tilde{h}_I - \hat{h}_0 = \hat{h}_0 - m.$$

It suffices to check that the moments of order k are bounded $C(1 + (\log r)^{4k})$. Let $A'_{j_1}, \ldots, D'_{j_n}$ respectively be the four terms in the right hand side above.

Let F be the event that the coupling fails. The first term is exactly 0 on the event that the coupling succeeds. As above on the event that the coupling fails, we can use Cauchy-Schwarz, Proposition 4.10 and Corollary 4.19 to get

$$\left| \mathbb{E}[(A'_{j_1})^k 1_F] \right| \leq (\log 1/\delta)^k (\delta/r)^\alpha \leq C(1 + (\log r)^k).$$

since $\delta \leq r$.

The second term B'_{j_1}, which is the main term, is controlled as follows. Note that

$$|h_I| \leq \sum_{i=-\log(R(v_j,D)/r)}^I w_i$$

where the ith term accounts for the winding in the annulus $A(v_j, e^{-i} r, e^{-i+1} r)$. Now each of these terms have stretched exponential tail by Proposition 4.10, and I itself has exponential tail (independent of r and δ) by eq. (4.7) in Proposition 4.18. Using Lemma 4.9 to control the part of the sum corresponding to $i = 1$ to I, we deduce that $\mathbb{E}(|h_I|^k) \leq C(1 + (\log r)^k)$. Note also that this argument works exactly in the same way for C'_{j_1}, replacing h_I by $\hat{h}_I - \tilde{h}_0$.

As for the last term D'_{j_1}, it is independent from $(L'_{i, i \neq j})$ where $L'_{i, j} \in \{A'_{j_1}, \ldots, D'_{j_1}\}$ and $\mathbb{E}(D'_{j_1}) = 0$. Therefore when we expand the product $\mathbb{E}(\prod_j (A'_{j_1} + \ldots D'_{j_1}))$ every term which includes at least one D'_{j_1} will contribute zero to the expectation. The other terms will contribute at most $C(1 + (\log r)^{4k})$ by Hölder.

Finally if $r < \delta$, we can use Hölder to bound the moment of $h^{\#\delta} - m^{\#\delta}$ by $C(1 + \log^{4k} \delta)$ as above which is at most the required bound.

We can now prove our main theorem.

Proof of Theorem 5.1. Fix f_1, \ldots, f_n to be smooth functions in \bar{D}. Then for any $k_1, \ldots, k_n \geq 1$, we have (combining Proposition 5.4 and Lemma 5.5 for justifying the use of dominated convergence), we see that

$$\mathbb{E} \left[\prod_{i=1}^n (h^{\#\delta} - m^{\#\delta}, f_i)^{k_i} \right] \rightarrow \mathbb{E} \left[\prod_{i=1}^n (h_{GFF}, f_i)^{k_i} \right]$$

60
and hence, since the right hand side is Gaussian (and hence moments characterise the distribution), \((h_i^\# - m_i^\#, f_i)_{i=1}^n\) converges in distribution to \((h_{\text{GFF}}, f_i)_{i=1}^n\). In other words, at this point we already know \(h_i^\# - m_i^\#\) converges to \(h_{\text{GFF}}\) in the sense of finite dimensional marginals (when viewed as a stochastic process indexed by smooth functions with compact support, say). We now check tightness in the Sobolev space \(H^{-1-\eta}\), from which convergence in \(H^{-1-\eta}\) will follow.

Note that by the Rellich–Kondrachov embedding theorem, to get tightness in \(H^{-1-\eta}\) it suffices to prove that \(\mathbb{E}((\|h_i^\# - m_i^\#\|_2^2)_{H^{-1-\eta}}) < C\) for some constant \(C\), for any \(\eta' < \eta\). More generally we will check that \(\mathbb{E}((\|h_i^\# - m_i^\#\|_{2k}^2)_{H^{-1-\eta'}}) < C_k\) for any \(k \geq 1\). Without loss of generality we write \(\eta\) for \(\eta'\).

Let \((e_i)\) be an orthonormal basis of eigenfunctions of \(-\Delta\) in \(L^2(D)\), corresponding to eigenvalues \(\lambda_j > 0\). Then writing \(h = h_i^\# - m_i^\#\) for convenience,

\[
\mathbb{E}(\|h\|_{H^{-1-\eta}}^{2k}) = \mathbb{E} \left(\sum_{j=1}^\infty (h, e_j)_L^2 \lambda_j^{-1-\eta} \right)^k \leq C \sum_{j=1}^\infty \mathbb{E}((h, e_j)_L^2) \lambda_j^{-1-\eta}
\]

by Fubini’s theorem and Jensen’s inequality (since by Weyl’s law, \(\sum_j \lambda_j^{-1-\eta} < \infty\) is summable).

Furthermore,

\[
\mathbb{E}((h, e_j)_L^2) = \int_{D} \mathbb{E}(h(z_1) \ldots h(z_{2k})) e_j(z_1) \ldots e_j(z_{2k}) dz_1 \ldots dz_{2k}
\]

and note that by Lemma 5.5, \(\mathbb{E}(h(z_1) \ldots h(z_{2k})) \leq C(1 + \log \delta r)\) where \(r = r(z_1, \ldots, z_{2k})\) is as in that lemma. Note also that \((\log r)^{8k}\) is integrable and \(D\) is bounded hence using Cauchy–Schwarz, we deduce that \(\mathbb{E}((h, e_j)_L^2) \leq C \int_{D} e_j(z_1)^2 \ldots e_j(z_{2k})^2 dz_1 \ldots dz_{2k} = C\) by Fubini and since \(e_j\) is orthonormal in \(L^2\). Consequently,

\[
\mathbb{E}(\|h\|_{H^{-1-\eta}}^{2k}) \leq \sum_{j=1}^\infty C \lambda_j^{-1-\eta} < \infty
\]

by Weyl’s law. This finishes the proof of Theorem 5.1 and hence Theorem 1.2. \hfill \Box

A Flow lines of the GFF

In this section, we provide a proof of Theorem 2.4. In fact, we prove a more detailed version in Theorem A.5 keeping in mind our future work connecting the flow lines of interacting dimers with the flow line tree of a GFF with a different variance.

The topology used by Schramm to obtain a non trivial continuum object as a scaling limit of the uniform spanning tree in the discrete is the following. Let \(\mathcal{P}(z, w, D)\) be the space of all paths from a point \(z \in D\) to \(w \in D\). Let \(\Omega\) be the space \(D \times D \times \bigcup_{z,w \in D} \mathcal{P}(z, w)\). For any metric space \(X\), let \(\mathcal{H}(X)\) denote the space of subsets of \(X\) equipped with the Hausdorff metric. We view \(\Omega\) as a subset of the compact space \(\mathcal{H}(D \times D \times \mathcal{H}(D))\) equipped with its metric. This is the **Schramm topology**.

Given a planar graph \(G\) with boundary \(\partial G\) (boundary is just a subset of vertices of \(G\)), one can consider a uniform spanning tree in it with either wired (when all the boundary vertices are collapsed into a single vertex) or free boundary condition. Every spanning tree in a planar graph corresponds
to a spanning tree in the dual graph. It is easy to see that the dual of a uniform spanning tree with free boundary conditions is a uniform spanning tree in the dual graph with a wired boundary condition. More generally, it is convenient to sometimes consider **mixed boundary condition**, which is partially free and partially wired. For example, we can divide the boundary D^δ into an union of arcs α^δ and β^δ and consider the spanning tree with wired boundary on α^δ and free boundary on β^δ. Then the dual tree is a spanning tree of the dual $(D^\delta)^\dagger$ with wired condition near β^δ and free condition near α^δ. See e.g. [26] for details.

One can associate with every spanning tree in a planar graph, a curve which forms an interface in between the spanning tree in the graph and the dual spanning tree in the dual graph. In the case of mixed boundary spanning tree described above, the Peano curve joins the endpoints of the two arcs. The convergence of this Peano curve to chordal SLE$_8$ was also established in [26] using the following topology: for paths β, γ in D, let $d_{\text{peano}}(\beta, \gamma) = \inf \sup_t |\beta(t) - \gamma(t)|$ where the infimum is over all possible parametrizations of the curves β, γ. This is the **peano curve topology**.

Recall that in the discrete, the Peano path always has the spanning tree in the primal graph to its left by convention. One can join together every dual vertex with the primal vertices adjacent to its face. These edges along with the primal graph forms a triangulation with every edge belonging to two triangles and thus each triangle has a pair corresponding to the edge, either in the primal or the dual tree, where it belongs. The Peano curve visits each such triangle once. After drawing a certain number of edges in the Peano curve, the triangles visited by the Peano curve whose corresponding pairs are not visited form the boundary of the curve. The boundary triangles corresponding to the dual tree edges form the **left boundary** of the curve and the triangles corresponding to the primal tree edges form the **right boundary** of the curve.

In the continuum and in the mixed boundary case, the Peano curve η (parametrised by capacity) with mixed boundary condition is a chordal SLE$_8$ by Theorem A.1 which is space filling almost surely (see Proposition 6.11 or more precisely Theorem 7.9 in [25]). The function which to a Peano curve η associates an element \mathcal{T} of the Schramm space can be described as follows. Since the curve is space filling, at any stopping time, the complement of the $\eta[0, \tau]$ consists of a single component. Hence for $z, w \in D$, we can grow the curve until times τ_z, τ_w it hits z, w. One can think of the curve as oriented towards its target. Then the path connecting z and w in \mathcal{T} is simply given by the left boundary of $\eta(\min(\tau_z, \tau_w), \max(\tau_z, \tau_w))$. Furthermore, SLE$_8$ visits almost every point only once almost surely, so it is easy to deduce that an SLE$_8$ curve is a.s. a continuity point of the above map. Hence convergence in the Peano sense is stronger than in the Schramm sense for SLE$_8$.

Now consider the boundary ∂_1 of $\eta[0, \tau] \setminus \partial D$. It can be naturally divided into two parts: the **left boundary** and the **right boundary** boundary. By definition, the left boundary is always connected to the wired boundary in the domain and the right boundary is connected to the free boundary in the domain.

Theorem A.1 ([26]). Let ∂D be a C^1 smooth simple closed curve. Let $(D^\delta)^\dagger$ denote the dual graph of D^δ which is a subset of $(\mathbb{Z} + 1/2)^2$.

- The uniform spanning tree with wired and free boundary conditions converge as $\delta \rightarrow 0$ in the Schramm topology. We call the limits continuum wired uniform spanning tree (CWUST) and continuum free uniform spanning tree (CFUST) respectively.
- Let α and β be smooth arcs in ∂D that are complementary: $\alpha \cup \beta = \partial D$ and let a and b be points in ∂D where α and β meet. Let α^δ be an approximation of α in ∂D^δ and β^δ be an approximation of β in ∂D^δ in $(D^\delta)^\dagger$ (the precise sense of this approximation can be found
in Section 4 of Lawler, Schramm and Werner [26]). Consider the UST in \(D^\delta \) with wired boundary condition on \(\alpha^\delta \) and the UST on \((D^\delta)^\dagger\) with wired boundary condition on \(\beta^\delta \). Then the peano curve in between these two trees converge in the peano curve topology to a chordal SLE\(_8\) curve from \(a \) to \(b \) in \(D \).

One issue we have when applying Theorem A.1 is that the convergence of the peano curve is written for spanning trees with mixed boundary condition only. Indeed, for fully wired boundary (or fully free boundary in the dual), the convergence is no longer to a chordal SLE\(_8\) curve, but presumably to a certain space-filling loop. However, we could not locate a convergence result for this loop in the literature, so we bypass this problem using the following lemma.

Lemma A.2. Consider a sequence of arcs \(\beta_n \) and \(\alpha_n \) in \(\partial D \) such that \(\beta_n \cup \alpha_n = \partial D \) and the length of \(\alpha_n = 1/n \). Let \(\alpha_n^\# \) and \(\beta_n^\# \) be a partition of \(\partial D^\# \) into connected segments which approximate \(\alpha_n \) and \(\beta_n \) respectively as \(\delta \to 0 \) in the sense of [26]. Consider a subsequential limit \(T_n \) of spanning tree \(T_n^\# \) in \(D_n^\# \) with wired boundary condition in \(\beta_n^\# \) and free boundary condition in \(\alpha_n^\# \). This theory of imaginary geometry developed by Miller and Sheffield in [29, 30] following earlier work of Dubédat [6] and Schramm–Sheffield [35] gives us a way to couple SLE\(_8\) curve from \(a \) to \(b \) in \(D \).

Proof of Lemma A.2. Let \(T^\# \) denote the discrete tree with fully wired boundary condition. This lemma basically follows from Schramm’s finiteness Theorem (Theorem 10.2 in [34]), a version of which is described in Lemma 4.15. Using this theorem, first choose a set of vertices \(V \) in \(D^\# \) and sample branches \(B_n^V \) and \(B^V \) of \(T_n^\# \) and \(T^\# \) respectively such that for all small enough \(\delta \) the following happens. Any other branch (either of \(T_n^\# \) or \(T^\# \)) starting from any other vertex hits \(B_n^V \) and \(B^V \) respectively within Euclidean distance \(\varepsilon \) with probability at least \(1 - \varepsilon \). Now one can choose \(n(\varepsilon) \) large enough such that none of the branches of \(V \) starting from \(D^\# \setminus B(\alpha_n^\#, 2\varepsilon) \) hits \(\alpha_n^\# \) with probability at least \(1 - \varepsilon \) for all small enough \(\delta(\varepsilon) \). The result now follows by letting \(\delta \to 0 \). \(\square \)

Flow lines. The theory of imaginary geometry developed by Miller and Sheffield in [29, 30] following earlier work of Dubédat [6] and Schramm–Sheffield [35] gives us a way to couple SLE curve realised as flow lines of a Gaussian free field. Fix the constants:

\[
\kappa = 2; \quad \kappa' = 8; \quad \lambda' = \frac{\pi}{\sqrt{8}}; \quad \lambda = \frac{\pi}{\sqrt{2}}; \quad \chi = \chi(\kappa) = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}.
\]

The notations are consistent with the notations in [29, 30]. We write \(\chi = \chi(2), \chi' = \chi(8) \).

Take a domain \(D \subset \mathbb{C} \) with two marked points on the boundary \(a \) and \(b \) (possibly with a boundary which is rough). A canonical example is \((\mathbb{H}, \infty, 0) \) where \(\mathbb{H} \) is the upper half plane. Fix \(\alpha > 0 \). Consider a GFF in \(\mathbb{H} \) with boundary condition given by \(-\lambda' + \alpha \chi'\) on the positive real line and \(\lambda' + \alpha \chi'\) on the negative real line for \(\kappa' \) and \(\lambda + \alpha \chi \) on the positive real line and \(-\lambda + \alpha \chi\) for the negative real line for \(\kappa \). Let \(\varphi_D : D \to \mathbb{H} \) be a conformal equivalence between \(\mathbb{H} \) and \(D \) which maps \(y \) to 0 and \(x \) to \(\infty \). Define a **mixed intrinsic winding boundary condition** GFF with angle \(\alpha \) on \((D, a, b)\) with parameter \(x \in \{\kappa, \kappa'\} \) to be defined by

\[
h \circ \varphi - \chi(x) \arg(\varphi')
\]

(A.1)
When we do not specify the angle, we mean $\alpha = 0$ by default. So that the reader remains in context, this boundary condition will correspond to the mixed boundary uniform spanning tree where the boundary type changes at a and b. Although φ is not unique, this definition defines a unique law via scale invariance.

It can be checked that the mixed intrinsic winding boundary condition $(\mathbb{D}, 1, e^{i\theta_b})$ can be defined as follows:

$$f_{1,b,\kappa'}(e^{i\theta}) = \begin{cases} -\lambda' + \chi'(\theta + \frac{\pi}{2}) & \text{if } 0 \leq \theta \leq \theta_b \\ \lambda' + \chi'(\theta + \frac{\pi}{2}) & \text{if } \theta_b < \theta < 2\pi \end{cases} \quad (A.2)$$

Replacing κ' by κ and λ' by λ we get a function $f_{1,b,\kappa}$. We extend the definition of $f_{1,b,\kappa}$ (resp. $f_{1,b,\kappa'}$) to $\theta_b = 2\pi$ by defining $f_{1,1,\kappa}(e^{i\theta}) = \lambda + \chi(\theta + \pi/2)$ (resp. $f_{1,1,\kappa'}(e^{i\theta}) = -\lambda' + \chi'(\theta + \pi/2)$). Hence $f_{1,1,\kappa}$ (resp. $f_{1,1,\kappa'}$) is the same as χ times (resp. χ' times) the intrinsic winding boundary condition defined in eq. (2.8) plus a global shift. We extend this to all marked domains (D, a, b) via the coordinate change formula eq. (A.1); this defines functions $f_{a,b,\kappa}$ and $f_{a,b,\kappa'}$ on this doubly-marked domain, and with a slight abuse of notation we will still call $f_{a,b,x}$ the harmonic extension for $x \in \{\kappa, \kappa'\}$.

We are going to quote a special case of some theorems from [30].

Theorem A.3. Let (D, a, b) be a domain with two distinct marked points on its boundary. Let $\{z_n\}_{n \in \mathbb{N}}$ be a countable dense set of interior points in D. Let h be a zero boundary GFF in D and let $f_x = f_{a,b,x}$ be as above.

Let $\eta'[0, \infty)$ be an SLE$_{\kappa'}$ curve in (D, a, b) from b to a parametrised by capacity. There exists a unique coupling between h, η' and a set of simple curves $\{\eta[i][0, \tau_i]\}_{i \in \mathbb{N}}$ in D starting at z_i for each $i \geq 1$ (defined up to monotone reparametrisation) where τ_i is the stopping time when the curves hit ∂D, such that the following is true.

i. Let τ'_i be the stopping time when η' hits z_i ($\tau'_i < \infty$ almost surely since η' is space filling almost surely). Then the left boundary of $\eta'[0, \tau'_i]$ is the same as η_i almost surely.

ii. For any stopping time τ' of η', the conditional law of $-h + f_{\kappa'}$ in $D \setminus \eta'[0, \tau']$ (notice that this is a connected domain since SLE$_{\kappa'}$ is space filling almost surely) is given by an independent GFF in $(D \setminus \eta'[0, \tau'], \eta'(\tau'), y)$ with mixed winding boundary condition with parameter κ'. Such a curve η' coupled with h is called a **counterflow line** in the terminology of of [30].

iii. For any $k \geq 1$, for all $1 \leq i, j \leq k$, the curves $\eta[i]$ and $\eta[j]$ have the coalescing property: if they intersect, they continue together until they hit ∂D. In particular, $D \setminus \cup_{i=1}^{k} \eta[i][0, \tau_i]$ is a connected domain. Furthermore, the conditional law of $h + f_k$ given $\cup_{i=1}^{k} \eta[i][0, \tau_i]$ is given by an an independent GFF in $(D \setminus \cup_{i=1}^{k} \eta[i][0, \tau_i], a, b)$ with mixed intrinsic winding boundary condition with angle $\pi/2$. These curves are the **flow lines of h with angle $\pi/2$** in the terminology of [30]. The full set of curves $\eta[i]$ is called a **tree of flow lines** starting from the countable set of points $\{z_i\}_{i \in \mathbb{N}}$ and angle $\pi/2$.

iv. The curve η' determines h and vice versa almost surely. The curves $(\eta[i])_{i \in \mathbb{N}}$ determines h and vice versa almost surely.

Furthermore in the case where $a = b$ we still get a coupling between h and a set of simple curves $\eta[i]$ such that item iii above still holds.
Proof. The coupling between \(\eta', h \) is described in Theorem 1.1 of [29] or Theorem 6.4 in [6], while the coupling between \(h \) and \(\eta^{(i)} \) follows from Theorem 1.8 in [30]. Note that the latter still holds in the case \(a = b \). The properties described in the coupling are special cases of Theorem 1.13 of [30]. That the curve \(\eta' \) determines \(h \) and vice versa follows from Theorem 1.2 of [29, 30] and Theorem 1.16 of [30]. That the curves \(\{\eta^{(i)}\}_{i \in \mathbb{N}} \) determine \(h \) follows from Theorem 1.10 of [30]. \(\square \)

At this point, we know that in the mixed boundary case and \(a \neq b \), the coupling above holds for \(h \), the Peano path \(\eta' \) and the flow lines \(\eta^{(i)} \). We know that \(\eta' \) is a chordal SLE\(_8\) and hence the scaling limit of the discrete Peano path of a mixed UST. Since convergence in the Peano sense is stronger than in the Schramm sense, we know that the left and right boundaries of the path \(\eta' \) are branches in the mixed continuum UST and its dual. By the above theorem these are also the flow lines associated to \(h \) with angle \(\pm \pi/2 \). We want to deduce by letting \(b \to a \) that the tree of flow lines in the case \(a = b \) described in the above theorem are the branches of the wired continuum UST.

Essentially, the argument goes as follows. By Lemma A.2 we know that as \(b \to a \), the mixed continuum UST converges to the wired UST. The GFF determined by the branches of the mixed tree will be shown to converge. This requires an argument because the function which associates a field to a tree of flow lines is not known to be continuous, only measurable. However, the conditional law of the field with mixed boundary conditions, given a finite number of its flow lines, converges to that of a field with wired boundary conditions given these curves. Since these conditional distributions characterise entirely the joint distribution between all the branches and the field, the result follows.

Lemma A.4. Let \((D, x)\) be a domain with a marked point. Let \(\{z_i\}_{i \in \mathbb{N}} \) be a countable dense set of points in \(D \). Then there exists a coupling between a GFF in \((D, x)\) and the continuum wired UST in \(D \) such that flow line tree from \(\{z_i\}_{i \in \mathbb{N}} \) with angle \(\pi/2 \) is equal to the branches of the continuum wired UST from \(\{z_i\}_{i \in \mathbb{N}} \) almost surely.

Proof. Fix \(k \in \mathbb{N} \) and any set of \(k \) points from \(\{z_i\}_{i \in \mathbb{N}} \) and without loss of generality let it be \(\{z_1, \ldots, z_k\} \). It suffices to find a coupling between \((h, T)\) such that in this coupling \(h \) has \(\chi \) times intrinsic winding boundary conditions and \(T \) is a wired UST and such that for each \(k \geq 1 \) the branches \(\bar{\eta}_1, \ldots, \bar{\eta}_k \) emanating from \(z_1, \ldots, z_k \) are equal to the flow lines \(\eta_1, \ldots, \eta_k \) with angle \(\pi/2 \).

To find such a coupling, take a sequence \(y_n \in \partial D \) such that \(y_n \to x \) and call \(\beta_n \) the arc between \(y_n \) and \(x \) (which converges to \(\{x\} \)) and \(\alpha_n \) the complementary arc (which converges to \(\partial D \)). Let \(T_n \) be a mixed boundary continuum uniform spanning tree with free boundary in the arc \(\beta_n \) and wired boundary in the rest. Let \(T_n \) be coupled with a continuum wired UST denoted by \(T \) in \((D, x)\) as in Lemma A.2. The branches \(\eta_{n, i} \) of \(T_n \) from \(\{z_1, \ldots, z_k\} \) (until they hit the wired boundary) in \((D, x, y_n)\) are unique almost surely and are equal to \(\bar{\eta}_1, \ldots, \bar{\eta}_k \) with high probability as \(n \to \infty \). Let \(h_n \) be the field determined by the branches of \(T_n \) viewed as flow lines (such an identification is possible when \(n \) is finite and the boundary conditions are mixed by Theorem A.3). This defines a coupling of \((h_n, T)\) such that the branches \(\bar{\eta}_1, \ldots, \bar{\eta}_k \) are equal with high probability to the flow lines of \(h_n \) with angle \(\pi/2 \). The marginal \(h_n \) in this coupling is a mixed intrinsic winding boundary GFF and so converges to a GFF with \(\chi \) times intrinsic winding minus \(\lambda \) boundary conditions as \(n \to \infty \). Hence \((h_n, T)\) is tight and we can consider a subsequential limit \((h, T)\). Notice that in such a coupling necessarily we have that \(\bar{\eta}_1, \ldots, \bar{\eta}_k \) are flow lines of \(h \), hence we have the desired coupling
(this follows easily from the fact by Lemma A.2 the convergence of the law of \((\eta_{n,1}, \ldots, \eta_{n,k})\) holds in total variation). This completes the proof.

We summarise the findings in this section in the following theorem:

Theorem A.5 (Coupling). Let \(D \subset \mathbb{C}\) be a domain which is not \(\mathbb{C}\). Let \(T\) be a continuum spanning trees in \(D\) with wired condition and root \(x \in \partial D\). There exists a coupling between the \(T\), a Gaussian free field \(h\) on \((D,x)\) with intrinsic winding boundary condition such that \(T\) is the flow line tree of the \(h\) with angle \(\pi/2\).

Consequently, given \(z_1, \ldots, z_k \in D\) and the set of branches \(\mathcal{B}\) of \(T\) from these points to \(x\), the conditional law of \(h\) in \(D \setminus \mathcal{B}\) is given by a GFF in \(D \setminus \mathcal{B}\) with intrinsic winding boundary condition in \((D \setminus \mathcal{B}, x)\). Also, \(T\) determines \(h\) and vice-versa.

References

