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1 Scientific aspects

1.1 Aims of the project

1.1.1 Scientific background and relevance of the project

Four dimensional quantum field theory suffers from infrared and ultraviolet divergences as well

as from the divergence of the renormalized perturbation expansion. Despite the impressive

agreement between theory and experiments and despite many attempts, these problems are not

settled and remain a big challenge for theoretical physics. Furthermore, attempts to formulate

a quantum theory of gravity have not yet been fully successful. It is astonishing that the two

pillars of modern physics, quantum field theory and general relativity, seem incompatible. This

convinced physicists to look for more general descriptions: After the formulation of super-

symmetry and supergravity, string theory was developed, and anomaly cancellation forced the

introduction of six additional dimensions. On the other hand, loop gravity was formulated, and

led to spin networks and space-time foam. Both approaches are not fully satisfactory. A third

impulse came from noncommutative geometry developed by Alan Connes, providing a natural

interpretation of the Higgs effect at the classical level. This finally led to noncommutative quan-

tum field theory, which is the framework of this project. It allows to incorporate fluctuations of

space into quantum field theory. There are of course relations among these three developments.

In particular, the field theory limit of string theory leads to certain noncommutative field theory

models, and some models defined over fuzzy spaces are related to spin networks.

The argument that space-time should be modified at very short distances goes back to

Schrödinger and Heisenberg. Noncommutative coordinates appeared already in the work of

Peierls for the magnetic field problem, and are obtained after projecting onto a particular Lan-

dau level. Pauli communicated this to Oppenheimer, whose student Snyder [1] wrote down the

first deformed space-time algebra preserving Lorentz symmetry.

After the development of noncommutative geometry by Connes [2], it was first applied in

physics to the integer quantum Hall effect [3]. Gauge models on the two-dimensional non-

commutative tori were formulated, and the relevant projective modules over this space were

classified. Through interactions with John Madore I realized that such Fuzzy geometries allow
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to obtain natural cutoffs for quantum field theory [4]. This line of work was developed fur-

ther together with Peter Presnajder and Ctirad Klimcik [5]. At almost the same time, Filk [6]

developed his Feynman rules for the canonical deformed four dimensional field theory, and Do-

plicher, Fredenhagen and Roberts [7] published their work on deformed spaces. The subject ex-

perienced a major boost after one realized that string theory leads to noncommutative field the-

ory under certain conditions [8, 9], and the subject developed very rapidly; see e.g. [10, 11, 12].

1.1.2 State-of-the-art in Noncommutative Quantum Field Theory

The formulation of Noncommutative Quantum Field Theory (NCFT) follows a dictionary worked

out by mathematicians. Starting from some manifold M one obtains the commutative algebra

of smooth functions over M, which is then quantized along with additional structure. Space

itself then looks locally like a phase space in quantum mechanics. Fields are elements of the

algebra resp. a finitely generated projective module, and integration is replaced by a suitable

trace operation.

Following these lines, one obtains field theory on quantized (or deformed) spaces, and Feyn-

man rules for a perturbative expansion can be worked out. However some unexpected features

such as IR/UV mixing arise upon quantization, which are described below.

Renormalizability of Noncommutative Quantum Field Theory. In 2000 Minwalla, van

Raamsdonk and Seiberg realized [13] that perturbation theory for field theories defined on the

Moyal plane faces a serious problem. The planar contributions show the standard singularities

which can be handled by a renormalization procedure. The nonplanar one loop contributions

are finite for generic momenta, however they become singular at exceptional momenta. The

usual UV divergences are then reflected in new singularities in the infrared, which is called

IR/UV mixing. This spoils the usual renormalization procedure: Inserting many such loops to a

higher order diagram generates singularities of any inverse power. Without imposing a special

structure such as supersymmetry, the renormalizability seems lost; see also [14, 15].

However, crucial progress was made recently, when Raimar Wulkenhaar and the applicant

were able to give a solution of this problem for the special case of a scalar four dimensional

theory defined on the deformed Moyal space R4
θ [16]. The IR/UV mixing contributions were
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taken into account through a modification of the free Lagrangian by adding an oscillator term

with parameter Ω, which modifies the spectrum of the free Hamiltonian. The harmonic oscil-

lator term was obtained as a result of the renormalization proof. The model fulfills then the

Langmann-Szabo duality [17] relating short distance and long distance behavior. Our proof fol-

lowed ideas of Polchinski. There are indications that a constructive procedure might be possible

and give a nontrivial φ4 model, which is currently under investigation [18]. At Ω = 1 the model

becomes self-dual, and will be studied in greater details in this project.

Nonperturbative aspects. Nonperturbative aspects of NCFT have also been studied in recent

years. The most significant and surprising result is that the IR/UV mixing can lead to a new

phase denoted as “striped phase” [19], where translational symmetry is spontaneously broken.

The existence of such a phase has indeed been confirmed in numerical studies [20, 21]. To

understand better the properties of this phase and the phase transitions, further work and better

analytical techniques are required, combining results from perturbative renormalization with

nonperturbative techniques. Here a particular feature of scalar NCFT is very suggestive: the

field can be described as a hermitian matrix, and the quantization is defined non-perturbatively

by integrating over all such matrices. This provides a natural starting point for nonperturbative

studies. In particular, it suggests and allows to apply ideas and techniques from random matrix

theory.

This idea was realized recently by H. Steinacker in [22], by focusing on the eigenvalues of

the scalar field in a matrix model formulation. This allowed to obtain an analytic description

of a non-trivial phase diagram, in accordance with the expectations mentioned above. The

generalization and combination of these techniques is one goal of this proposal.

Remarkably, gauge theories on quantized spaces can also be formulated in a similar way

[23, 24, 25, 26]. The action can be written as multi-matrix models, where the gauge fields are

encoded in terms of matrices which can be interpreted as “covariant coordinates”. The field

strength can be written as commutator, which induces the usual kinetic terms in the commutative

limit. Again, this allows a natural non-perturbative quantization in terms of matrix integrals.

Numerical studies for gauge theories have also been published including the 4-dimensional

case [27], which again show a very intriguing picture of nontrivial phases and spontaneous sym-
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metry breaking. These studies also strongly suggest the non-perturbative stability and renormal-

izability of NC gauge theory, adding to the need of further theoretical work.

Spaces with additional structure, fuzzy spaces An important question in this context is to

which extent the IR/UV problems and the renormalizability depends on the details of the space

under consideration.

Quantum spaces with additional structure, such as covariance under a classical or quantum

group, have been studied extensively. In particular, the so-called “fuzzy spaces” are very im-

portant and useful, and arise in many different contexts. They are typically quantizations of

coadjoint orbits (such as S2, CP 2) in terms of a finite-dimensional Hilbert space. Fields are

then simply N × N matrices. This leads to a very transparent and simple formulation of field

theory with UV cutoff, which has been studied in great detail in both 2 and 4 dimensions; see

e.g. [5, 28, 29, 30, 31, 32, 33, 34, 25, 35, 36]. However, renormalizability has not yet been es-

tablished in these cases. A further variant of these fuzzy spaces are the so-called q-deformed

fuzzy spaces [37, 38], which are covariant under a quantum group but are still finite. This is

again related to string theory [39], and allows to link NC field theory with the representation

theory of quantum groups. We also analyzed the question of IR/UV mixing for the κ - deformed

space [40, 41, 42] in a recent work with Michael Wohlgenannt, by performing a one-loop com-

putation. It turns out that again the typical divergences for exceptional external momenta arise

and IR/UV mixing occurs. As a further example of similar mixing properties we may mention

the work of my PhD student Matthias Kornexl, who analyzed field theories on the deformed

tori. Again there was no obvious way to cure the occurence of mixing. A systematic analysis of

the IR/UV mixing should therefore be developed. Related work on other quantum spaces can

be found e.g. in [43, 44, 45, 46].

In summary, field theory on NC spaces has established itself in recent years as a sound, very

active and rich new branch of theoretical physics, which is likely to play an important role in

the context of fundamental theories of matter and fields. One major goal is the formulation of a

renormalized deformed Standard Model with realistic interactions, taking into account quantum

fluctuations of space-time.
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1.1.3 Innovative aspects of the project

The aim of this research project is to generalize the results and techniques on perturbative

renormalizability of NCFT discussed above [16, 47] to other models and spaces, and to study

nonperturbative aspects of such field theories using a combination with the methods in [22].

The results of this project are expected to establish a broader class of models of NCFT to

be renormalizable and accessible to systematic computational (perturbative) tools. This is very

important for further development of the field, and in particular provides a firm ground for phys-

ical applications in the context of elementary particle theory. In addition, the development of

nonperturbative techniques is crucial to understand important features such as phase transitions

and collective phenomena of the models.

In more detail, we expect new results on the following topics:

1. Renormalizability of scalar and gauge theories on various quantized space-times, focus-

ing on the question of IR/UV mixing.

Up to now, the only known renormalizable model of NCFT in four dimensions without

additional symmetry (such as supersymmetry) has been obtained by myself and Raimar

Wulkenhaar; this will be described below. In this project, we intend to follow these lines

of work and develop similar techniques for models with gauge fields. The major steps

are a reformulation in terms of a dynamical matrix model, and a proof of the appropriate

decay properties of the free propagator.

We will also study renormalizability for certain other quantized spaces. In particular,

renormalizability has not been settled even for scalar fields on the two-dimensional Fuzzy

Sphere. We will also address this question for the κ - Poincare space continuing an

ongoing work with Michael Wohlgenannt, and for the noncommutative torus.

2. Application of nonperturbative methods to NC field theories, in particular matrix model

techniques.

One promising innovative approach to NC field theory was proposed recently by Harold

Steinacker [22]. The basic idea is to look at certain collective degrees of freedom, which

carry enough information for the statistical and thermodynamical properties of the full
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model. This can be achieved by focusing on the eigenvalues of the scalar field in a matrix

model formulation, leading to an analytic description of the phase diagram and the phase

transition.

In this project, we plan to develop further this method by considering the eigenvalue

sector of the models studied in [16, 48], and to other models such as complex scalar

fields, sigma models and eventually gauge fields. This nonperturbative approach will be

combined with the perturbative methods and results discussed above.

3. Application of non-classical representations of Uq(sl(2)) to NC field theory

This third part concerns special structures of field theory which arise on the q-deformed

Fuzzy Sphere. For q being a root of unity, there exist both “classical” as well as “non-

classical” (e.g. indecomposable) representations of the relevant quantum group Uq(sl(2)).

Up to now, almost exclusively the classical ones have been used in physical applica-

tions. However, the non-classical representations are relevant e.g. to field theory on

non-compact quantum spaces with Lorentzian signature [49, 50, 51]. Furthermore, the

quantum coadjoint action can then become nontrivial. The q-deformed Fuzzy sphere is

the simplest toy model [37], where we plan to set up a field theory based on these non-

classical representations.

1.2 Methods

1.2.1 Perturbative quantization on various deformed spaces

We briefly sketch the methods used by Raimar Wulkenhaar and the applicant [16] in the proof

of renormalizability for scalar field theory defined on the 4-dimensional quantum plane R4
θ, with

commutation relations [xµ, xν ] = iθµν . The IR / UV mixing was taken into account through a

modification of the free Lagrangian, by adding an oscillator term which modifies the spectrum

of the free Hamiltonian:

S =

∫

d4x
(1

2
∂µφ ? ∂µφ +

Ω2

2
(x̃µφ) ? (x̃µφ) +

µ2

2
φ ? φ +

λ

4!
φ ? φ ? φ ? φ

)

(x) . (1)
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Here ? is the Moyal star product

(a ? b)(x) :=

∫

dDy
dDk

(2π)D
a(x+ 1

2
θ·k)b(x+y) eiky , θµν = −θνµ ∈ R . (2)

The harmonic oscillator term in (1) was found as a result of the renormalization proof. The

model is covariant under the Langmann-Szabo duality relating short distance and long distance

behavior. At Ω = 1 the model becomes self-dual, and will be studied in greater detail in this

project. This leads to the hope that a constructive procedure around this particular case allows

the construction of a nontrivial interacting Φ4 model, which would be an extremely interesting

and remarkable achievement.

The renormalization proof proceeds by using a matrix base, which leads to a dynamical

matrix model of the type:

S = (2πθ)2
∑

m,n,k,l∈N2

(1

2
φmn∆mn;klφkl +

λ

4!
φmnφnkφklφlm

)

, (3)

where

∆m1

m2
n1

n2 ; k1

k2
l1

l2

=
(

µ2+2+2Ω2

θ
(m1+n1+m2+n2+2)

)

δn1k1δm1l1δn2k2δm2l2

− 2−2Ω2

θ

(

√
k1l1 δn1+1,k1δm1+1,l1 +

√
m1n1 δn1−1,k1δm1−1,l1

)

δn2k2δm2l2

− 2−2Ω2

θ

(

√
k2l2 δn2+1,k2δm2+1,l2 +

√
m2n2 δn2−1,k2δm2−1,l2

)

δn1k1δm1l1 . (4)

The interaction part becomes a trace of product of matrices, and no oscillations occur in this

basis. The propagator obtained from the free part is quite complicated, and in 4 dimensions is:

Gm1

m2
n1

n2 ; k1

k2
l1

l2

=
θ

2(1+Ω)2

m
1
+l

1

2
∑

v1= |m1−l1|
2

m
2
+l

2

2
∑

v2= |m2−l2|
2

B
(

1+µ2θ
8Ω

+1
2
(m1+k1+m2+k2)−v1−v2, 1+2v1+2v2

)

× 2F1

(

1+2v1+2v2 , µ2θ
8Ω

− 1
2
(m1+k1+m2+k2)+v1+v2

2+µ2θ
8Ω

+1
2
(m1+k1+m2+k2)+v1+v2

∣

∣

∣

∣

(1−Ω)2

(1+Ω)2

)

(1−Ω

1+Ω

)2v1+2v2

×
2

∏

i=1

δmi+ki,ni+li

√

(

ni

vi+ni−ki

2

)(

ki

vi+ki−ni

2

)(

mi

vi+mi−li

2

)(

li

vi+ li−mi

2

)

. (5)
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These propagators (in 2 and 4 dimensions) show asymmetric decay properties: they decay ex-

ponentially on particular directions, but have power law decay in others. These decay properties

are crucial for the perturbative renormalizability respectively nonrenormalizability of the mod-

els. Our proof in [47] then followed the ideas of Polchinski [52]. The integration of the Polchin-

ski equation from some initial scale down to the renormalization scale leads to divergences after

removing the cutoff. For relevant/marginal operators, one therefore has to fix certain initial con-

ditions. The goal is then to find a procedure involving only a finite number of such operators.

Through the invention of a mixed integration procedure and by proving a certain power count-

ing theorem, we were able to reduce the divergences to only four relevant/marginal operators.

This justifies a posteriori our starting point of adding one new term to the action (1), the oscil-

lator term Ω. A somewhat long sequence of estimates and arguments then leads to the proof of

renormalization. This being established, it was easy to derive beta functions for the coupling

constant flow, which shows that the ratio of the coupling constants λ/Ω2 remains bounded along

the renormalization group flow up to first order. In particular, the beta function vanishes at the

self-dual point Ω = 1, indicating special properties of the model. One part of this project is to

explore this special point in more detail.

Gauge field models. In this project, we will extend this renormalization method and apply it

to other models, in particular to gauge fields. There are two natural approaches:

1. Gauge theories arise naturally in noncommutative geometry from fluctuations of a Dirac

operator [53]. It is not difficult to write down two natural candidates for a four-dimensional

Dirac operator, which are connected to an oscillator potential. One may then obtain an

action for the gauge fields by using the spectral action [53, 54]. This requires a long

calculation of the fluctuation spectrum.

2. A second approach starts from covariant coordinates Xµ = θ−1
µν xν +Aµ, by writing down

the most general quartic gauge invariant action functional using the star product. The

resulting action can then be compared with the one obtained from the spectral action

principle explained above, and might turn out to be identical.
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The next step towards a quantized field theory is to add the ghost sector to the gauge field

action and to promote the gauge symmetry to a nilpotent BRST symmetry. One then has to

control possible violations of the Slavnov-Taylor identities, etc. We plan to collaborate on these

highly nontrivial steps with Raimar Wulkenhaar at the MPI Leipzig. There are obvious relations

in particular for the second approach with the matrix-model formulation of NC gauge theory,

which is discussed in Section 1.2.2 in relation with matrix-model techniques. Combining these

two points of view should allow to make substantial progress in the ambitious goal to establish

renormalizable gauge theories on NC spaces.

Quantization on spaces with additional structure, fuzzy spaces. The extension of these

methods to certain other spaces such as fuzzy spaces will be studied. Even for the case of

the two-dimensional fuzzy sphere, the question of renormalizability for scalar fields has not

been settled. A careful one-loop analysis was performed by H. Steinacker et.al. [31], estab-

lishing a number of useful techniques in this context. In this project, we will try to adapt the

renormalization-group techniques developed for the Moyal case to the fuzzy sphere. In par-

ticular, the decay properties of the propagator must be established, and suitable free actions

must be determined with or without oscillator-like term.Generalizations to 4 dimensions are

also planned, in particular for fuzzy CP 2 [55, 35] and fuzzy S2 × S2 [26].

Furthermore, we are analyzing the question of IR/UV mixing for the κ - Poincare space in

a current work with Michael Wohlgenannt, by performing a one-loop computation. It turns out

that again the typical IR/UV mixing occurs. Therefore a systematic analysis of IR/UV mixing

will be attempted, which should shed light on the general strategy of controlling them by adding

suitable terms in the action.

1.2.2 Matrix-model techniques

A second method we will use is an extension and refinement of matrix-method techniques, in

particular as developed in [22]. This will be combined with the perturbative methods explained

above. It can be applied in principle to any quantum space which is finite or regularized by a

finite-dimensional Hilbert space.

We briefly explain this method. Consider e.g. the scalar field theory defined by (3). Since

10



φ is a hermitian matrix, it can be diagonalized as φ = U−1diag(φi)U where φi are the real

eigenvalues. Hence the field theory can be reformulated in terms of the eigenvalues φi and the

unitary matrix U . The main idea is now the following: consider the probability measure for the

(suitably rescaled) eigenvalues φi induced the path integral by integrating out U :

Z =

∫

Dφ exp(−S(φ))) =

∫

dφi∆
2(φi)

∫

dU exp(−S(U−1(φi)U))

=

∫

dφi exp(−F̃(φ) − (2πθ)d/2
∑

i

V (φi) +
∑

i6=j

log |φi − φj|), (6)

where the analytic function

e−F̃(φ) :=

∫

dU exp(−Skin(U−1(φ)U)) (7)

is introduced, which depends only on the eigenvalues of φ. The crucial point is that the log-

arithmic terms in the effective action above implies a repulsion of the eigenvalues φi, which

therefore arrange themselves according to some distribution similar as in the standard matrix

models of the form S̃ =
∫

dφ exp(TrṼ (φ)). This is related to the fact that nonplanar diagrams

are suppressed. The presence of the unknown function F̃(φ) in (6) cannot alter this conclusion

qualitatively, since it is analytic. The function F̃(φ) can be determined approximately by con-

sidering the weak coupling regime. For example, the effective action of the eigenvalue sector

for the φ4 model in the noncommutative regime 1
θ
� Λ2 becomes essentially

S̃(φ) = f0(m) +
2N

α2
0(m)

Trφ2 + gφ4, (8)

where α2
0(m) depends on the degree of divergence of a basic diagram [22].

This effective action (8) can now be studied using standard results from random matrix the-

ory. For example, this allows to study the renormalization of the effective potential using matrix

model techniques. The basic mechanism is the following: In the free case, the eigenvalue sector

follows Wigners semicircle law, where the size of the eigenvalue distribution depends on m via

α0(m). Turning on the coupling g alters that eigenvalue distribution. The effective or renormal-

ized mass can be found by matching that distribution with the “closest” free distribution. To
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have a finite renormalized mass then requires a negative mass counterterm as usual.

This approach is particularly suitable to study the thermodynamical properties of the field

theory. For the φ4 model, the above effective action (8) implies a phase transition at strong

coupling, to a phase which was identified with the striped or matrix phase in [22]. Based

on the known universality properties of matrix models, these results on phase transitions are

expected to be realistic, and should not depend on the details of the unknown function F̃(φ).

The method is applicable to 4 dimensions, where a critical line is found which terminates at a

non-trivial point, with finite critical coupling. This can be seen as evidence for a new non-trivial

fixed-point in the 4-dimensional NC φ4 model. This is in accordance with results from the RG

analysis of [56], which also point to the existence of nontrivial φ4 model in 4 dimensions. If

confirmed, this will be a very remarkable result with major impact.

Application and generalization. In this project, this method will be refined, and applied in

particular to complex scalar and sigma models. The required adaptations will be worked out,

and the corresponding phase diagrams will be obtained. In particular, we plan to determine

thermodynamical quantities such as specific heat, critical exponents and susceptibilities, in par-

ticular near the critical point. It should be possible to obtain the critical exponents from the

known results for matrix models, adapted to the present situation. These are expected to be

reliable due to the known universality of matrix models, and can be compared with the results

of numerical simulations.

Furthermore, we plan to generalize this analysis and apply it to the models of [16, 48] with

oscillator term in the free action. This is a more substantial modification. We will focus first

on the self-dual case Ω = 1. Then the model is particularly simple, and we expect it to be

accessible to an exact matrix-model analysis similar to the work of [57]. We have already

conducted some preliminary work, which shows that even though the model is slightly more

complicated than [57], it does admit similar matrix model techniques as discussed above, which

pass nontrivial consistency checks. Therefore we expect to obtain a very good understanding

of this model with Ω = 1 using both perturbative and nonperturbative methods. The 4-point

function will be computed, and analyzed in various scaling limits.

Possible application of this nonperturbative approach to gauge models will also be pursued,
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on the fuzzy spaces CP 2
N and S2

N×S2
N . While the corresponding multi-matrix models cannot be

solved exactly, a similar analysis of suitable collective degrees of freedom in the large N limit

should be possible. This is supported by the broad applicability of matrix models to chaotic

quantum systems, and the structural similarity of NC gauge theories as in [25, 26] with NC

scalar field theories.

1.2.3 Application of representation theory for spaces with additional structure

For some quantum spaces with additional structure such as fuzzy spaces and the q-deformed

fuzzy sphere, one can apply the representation theory of ordinary groups resp. quantum groups.

These spaces can be seen as “covariant lattices”, combining the discreteness of a lattice with co-

variance under some symmetry. A particularly remarkable case is the q-deformed fuzzy sphere

for q a root of unity, where indecomposable representations arise in the fusion structure. Certain

truncation procedures are usually imposed to get rid of the non-standard representations, e.g. in

the work of Alekseev, Recknagel and Schomerus [39].

We want to go beyond these truncations and use the non-classical representations as well.

This opens up the possibility to obtain a nontrivial realization of the quantum coadjoint ac-

tion [58] on these spaces. Different truncation schemes have also been proposed [59], which

are suited for the non-compact case of e.g. fuzzy AdS2. We would like to implement these pos-

sibilities in gauge models similar as those discussed in [37], where different choices of vacua

are possible, in particular those with nontrivial realization of the of the quantum coadjoint ac-

tion. The meaning of this additional symmetry structure can then be studied. We expect that the

realization of these structures in the models is related to recent work done in collaboration with

K-G. Schlesinger [60], which hints at special properties under renormalization.

1.3 Work plan

This project requires 2 postdocs with expertise in the area of NC field theory, working for 2

years each. Some initial investigations along these lines are already under way in collaboration

with Dr. H. Steinacker, Dr. M. Wohlgenannt, and Dr. K-G. Schlesinger.

The following steps of the project will be addressed by the applicant H. Grosse, by the
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proposed collaborator H. Steinacker, and by a further postdoc not yet specified. Other collabo-

rations on individual aspects will be mentioned explicitly. The main, ambitious goal of estab-

lishing new renormalizable field theories on NC spaces is divided into several different steps

and approaches, which allows sufficient flexibility to take into account new developments.

1.3.1 Analysis of the self-dual point Ω = 1 for scalar field theory on R
n
θ

The models (1) at the self-dual model with Ω = 1 are fixed points of the RG flow, and therefore

of particular interest. The model can then be formulated as a matrix model coupled to an

external matrix. We have already conducted some preliminary work, which shows that the

model does admit similar matrix model techniques as discussed above, which pass nontrivial

consistency checks. In particular the eigenvalue distribution can be found, and thermodynamical

properties will be established.

Furthermore, the 4-point function will be computed using similar techniques as in [57], and

analyzed in various scaling limits. It is expected to be nontrivial in a suitable limit, which would

establish the model to be a very simple but nontrivial field theory which can serve as a testing

ground for various ideas in the context of NC field theory.

Once the self-dual point Ω = 1 is fully under control, one can start to slightly perturb it and

study it near Ω = 1 using the perturbative methods established in [16].

Expected duration: 1 year.

Collaborations: E. Langmann from Stockholm University.

1.3.2 IR/UV mixing and renormalization of scalar field theory on other quantum space

The application of the methods explained in Section 1.2 to scalar fields on certain other spaces

such as the fuzzy sphere will be studied. For a perturbative analysis, the propagator will be

expressed in terms of suitable orthogonal polynomials, which are truncated Legendre polyno-

mials [5] in this case. The decay properties will be analyzed, and suitable free actions must be

determined with or without additional oscillator-like term such that the general results [47] can

be applied. We expect no major difficulties in this case, however again the relation with the

nonperturbative matrix model techniques should be particularly instructive here.
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Depending on the time available for this project and on the progress, generalizations to 4

dimensions are also planned, in particular for fuzzy CP 2 which is formally very similar to the

fuzzy sphere. Furthermore, a more general study of IR/UV mixing is envisaged (following a

study for the κ - Poincare space in a current work with Michael Wohlgenannt, and others). The

aim is to find a general strategy of controlling the IR/UV mixing by adding suitable terms in the

action.

Expected duration: 2 years.

Collaborations: R. Wulkenhaar, MPI Leipzig.

1.3.3 Extension of the matrix model analysis to scalar fields and sigma models, and the

Higgs model

Parallel to the above steps, the matrix model approach of [22] to scalar NC field theory will

be refined, and thermodynamic properties such as specific heat, critical exponents etc. will be

computed near the critical point. These can be obtained from the known results for conventional

matrix models, adapted to the present situation. These are expected to be realistic due to the

known universality of matrix models near the critical point. Moreover, they can be compared

with the results of numerical simulations.

In a further step, the necessary generalizations to complex scalar fields and e.g. the (linear)

U(2) sigma model will be worked out. Again, one can apply known results and techniques

from random matrix theory for complex matrices, and adapt the techniques described above.

These techniques are expected to be applicable also to the other parts of the project, providing

consistency checks and new connections.

The next natural step is to apply this analysis to the NC Higgs effect. Using the known

formulation of gauge theory in terms of multi-matrix models [26, 35, 24, 25], a (fundamental

or adjoint) Higgs can be added, or is already part of the gauge multiplet for fuzzy spaces. The

eigenvalue sector of such a Higgs field can be studied using the same methods as discussed

above for the scalar case. The mechanism of symmetry breaking is expected to be the same as

in the φ4 case, and characterized by a split of the eigenvalue distribution into 2 separated pieces.

This is quite different from the conventional mechanism, which should have profound physical

implications. This shall be studied in detail.
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Expected duration: 1 year for scalar case, 1 year for extensions to Higgs.

1.3.4 Renormalization of other models on R4
θ, including gauge fields

As described in Section 1.2, there are two natural approaches to generalize the above perturba-

tive methods to gauge fields:

1. Starting form a suitable Dirac operator. It is not difficult to write down two natural

candidates for a four-dimensional Dirac operator, which are connected to an oscillator

potential. One may then obtain an action for the gauge fields by using the spectral ac-

tion [53, 54]. This requires a long calculation of the fluctuation spectrum, which will be

initiated.

2. A second approach starts from covariant coordinates Xµ = θ−1
µν xν +Aµ, by writing down

the most general quartic gauge invariant action functional using the star product.

After some initial work on both approaches, the most suitable one to proceed will be identified.

Adding ghosts and a nilpotent BRST symmetry is expected to be straightforward. A major step

is then to work out the propagators in a suitable basis, and to determine their decay properties.

The relations in particular for the second approach with the matrix-model formulation of NC

gauge theory will be used. Combining these two points of view should allow to make substantial

progress in the ambitions goal to establish renormalizable gauge theories on NC spaces.

Expected duration: ≥ 2 years, with partial results available earlier.

Collaborations: R. Wulkenhaar, MPI Leipzig.

1.3.5 Non-classical representations on the q-deformed fuzzy sphere, and the quantum

coadjoint action

In previous work with J. Madore and H. Steinacker we formulated scalar and gauge models on

q-deformed Fuzzy spaces, for generic values of the deformation parameter. New phenomena

show up for q being root of unity. Going beyond the truncation used e.g. in work of Alekseev,

Recknagel and Schomerus [39], indecomposable representations arise in the fusion structure.

This opens up in particular the possibility to obtain a nontrivial realization of the quantum
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coadjoint action on these spaces. This additional symmetry structure may be used to single out

special gauge models on these spaces. Our recent work [60] with K.-G. Schlesinger suggests

that such models might have very special properties under renormalization. This part of the

project will be pursued as time permits.

Expected duration: 1 year.

Collaborations: K-G. Schlesinger.

Dissemination. The results of this project will be published and communicated to the sci-

entific community as usual through publications, international conferences and workshops. In

particular, I can take advantage of numerous invitations to conferences and workshops as a

result of recent publications.

1.4 Collaborations with other groups

There are ongoing collaborations with the following scientists, which are relevant to this project

and expected to be continued:

• Dr. R. Wulkenhaar

MPI für Mathematik in den Naturwissenschaften

Leipzig

• Prof. Dr. M. Schweda

Technische Universität Wien

• Prof. Dr. P. Presnajder

Comenius University

Bratislava

• Prof. Dr. Edwin Langmann

KTH University Stockholm

17



2 Human ressources

The persons participating in the project are:

• Prof. Dr. Harald Grosse (Applicant)

Institut für theoretische Physik der Universität Wien.

I have been working since 1992 in noncommutative field theory. Together with collabo-

rators we have established several important results in this subject, most notably the first

proof of renormalizability for a φ4 model on noncommutative R4. I consider the goals

of this project as very important and crucial steps in promising area of research, towards

realistic field theoretical models on quantized spaces.

• Doz. Dr. Harold Steinacker (requested postdoc)

24 months, from 1.4. 2006 to 31.3.2008.

Harold Steinacker is presently postdoc at the University of Vienna (his project ends March

2006). He obtained the Habilitation in theoretical physics from the University of Munich

in 2003, and has an excellent scientific background acquired in leading international insti-

tutions. He has contributed many new ideas and results to noncommutative field theory.

We have had ongoing collaborations for many years, with several joint publications. This

project would provide a very important opportunity for him to continue his research on

NC field theory. His international experience and contacts together with the active visitor

program at the ESI Vienna should be an excellent basis for finding a permanent position

in theoretical physics.

• Dr. N.N. (requested postdoc)

24 months, from 1.10. 2005 - 30.9.2007

One excellent candidate would be Dr. M. Wohlgenannt, presently Postdoc at the Univer-

sity of Vienna in my group (his project ends September 2005). He also has many years

of experience in this subject, for example he was part of the collaboration proposing a

deformed standard model based on the Seiberg-Witten map [61].

18



3 Further impact

One can expect that this work will lead to new methods and insights to quantum field theory

(QFT), which would be highly welcome in the wider theoretical physics community, in view

of our poor understanding of physics beyond the standard model. In particular, relations with

quantum gravity and string theory are implicit. Applications in other contexts such as condensed

matter in the presence of magnetic fields (quantum Hall systems) or incompressible fluids can

also be expected.

Furthermore, the clean mathematical formulation of quantum field theory as dynamical (or

multi-) matrix models is very suitable for rigorous investigations, and should lead to exact math-

ematical results in the context of QFT. I would like to point out again here the first renormaliza-

tion proof for a NC field theory, which was appreciated also in the mathematical community as

reflected by numerous invitations to conferences and workshops.

4 Financial aspects

The project will be carried out at the

Institut für theoretische Physik

Universität Wien

Boltzmanngasse 5

1090 Wien

The reserach group of the applicant has the following members

a.o.Prof. Harald Grosse Member of Institute for Theoretical Physics

Doz. Dr. Harold Steinacker financed by FWF project P16779-NO2 until 3/2006

Dr. Karl-Georg Schlesinger currently ESI fellow, previously DFG-Fellow

Dr. Michael Wohlgenannt financed by FWF project P16779-NO2 until 9/2005

Mag. Matthias Kornexl Dissertation fellowship of the ÖAW

Paul Schreivogl Diploma student

Daniela Klammer Diploma student

Christoph Zauner Diploma student
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The institute will provide office space and infrastructure such as computing facilities and

office equipment. The project can use excellent libraries for physics and mathematics.

The project leader is engaged at the Erwin Schrödinger Institute for Mathematical Physics

since its foundation. There will be a follow-up programme on ”String theory in curved back-

grounds and boundary conformal field theory” coorganized by H. Grosse (together with A. Reck-

nagel and V. Schomerus) and a programme “Gerbes, groupoids and quantum field theory” in

2006 co-organised by H. Grosse during which many scientists with related research interests

will be invited. I succeeded in getting Prof. Varghese Mathai as a Senior Fellow at ESI in spring

2006. He will deliver a lecture course. All these interactions will be very useful for the project.

Requested support

Since this research requires sophisticated techniques in a rapidly progressing field of contempo-

rary quantum field theory, financial support is requested for 2 post-docs for 2 years each. This

is necessary in order to pursue simultaneously the different approaches described, which are all

interrelated and not linearly ordered.

Doz. Dr. Harold Steinacker

all aspects, and in particular matrix model tech-

niques

Dienstvertrag Postdoc

50.240, 00 e

year × 2 years = e100.480,00

Post-doc N.N.

Perturbative computations, RG techniques, IR/UV

mixing, ...

Dienstvertrag Postdoc

50.240, 00 e

year × 2 years = e100.480,00

total personal request: e200.960,00

Travel support for conference visits 1 400, 00 e

year for postdoc

total requested non-personal costs: e5 600,00

total request: e206.560,00
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