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1 The fluid model in cosmology

Understanding the dynamics of general relativity is quite complicated. Even
comparatively simple solutions to the vacuum Einstein equations such as
Minkowski space, Schwarzschild or Kerr are still subject of discussion as of
today. Naturally, considering the relativistic dynamics of the universe as a
whole seems impossible and thus calls for a simplified model.

In analogy to classical theories, investigating a large system of particles calls
for a statistical approach. For our model, we will assume that the typical
length scale l between different particles is much larger than their respective
de-Broglie wave length λDB, i.e.

λDB

l
≪ 1,

so that a quantum mechanical description is not necessary. However, we
will also assume that the length scale L of the system itself is much larger
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than l. Classically, it is known that if l
L ≪ 1, a continuous fluid description

appears to be valid. Heuristically, in a fluid description one can assume the
existence of so called fluid elements, which are large enough to contain a high
number of particles, but small enough such that they can be assumed to be
homogeneous with regards to velocity as well as thermodynamic equilibrium.

The description given above appears quite fuzzy but turns out to be very
powerful. Indeed it allows for a description in just a few simple quantities,
yet yields many accurate results for a wide array of phenomenon.

2 Classical fluids and the Euler equations

For starters we will assume the viscosity of our fluid to negligible. Relaxing
this assumption would lead us to the Navier-Stokes-equations which will not
be treated in our models. Note also that we will here present a relatively
straight forward way to derive the classical Euler equations. For a more
physically motivated one we refer to [Relativistic Hydrodynamics, Rezzolla-
Zanotti, 2013] and a more mathematically rigorous and more general one
to [Manifolds, Tensor Analysis and Applications, Abraham-Marsden-Ratiu,
2003].

2.1 The postulates of inviscid fluids

Let us assume we have a regionD ⊂ R3 that is filled with a fluid and consider
a particle moving through x ∈ D at time t. Furthermore, we will denote the
velocity of the particle at that point in time and space as u(x, t). Hence, u
is a vector field on D for every instance of time t. On top of that, for all x
and t we assume a well-defined scalar ρ(x, t), the mass density. Thus, the
mass in a region W ⊂ D at time t is given by

m(W, t) =

∫
W

ρ(x, t).

For now, we assume that ρ and u are regular enough so that we have all
our analytic tools at our disposal. We will derive the Euler equations from
three simple postulate:

1. Mass is conserved;
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2. The rate of change of the momentum of a portion of the fluid is equal
to the force applied to it (Newton’s second law);

3. Energy is conserved.

2.2 Conservation of mass

Let us pick a region W ⊂ D (with smooth boundary) independent of time.
The change of mass in W is given by

d

dt
m(W, t) =

d

dt

∫
W

ρ(x, t) =

∫
W

∂ρ

∂t
(x, t).

The mass flow per unit area of ∂W with unit outward normal n is given by
ρu · n. Hence we find that

d

dt

∫
W

ρ = −
∫
∂W

ρu · n.

By the divergence theorem and the fact that W is arbitrary we hence find

∂ρ

∂t
+∇ · (ρu) = 0.

This is known as the continuity equation.

2.3 Balance of momentum

Let t 7→ x(t) be the path followed by a particle, so that

u(x(t), t) =
dx

dt
(t).

For the acceleration at (x, t) we thus find

a(t) =
d

dt
u(x(t), t) = ∂tu+

∂u

∂xi
ẋi = ∂tu+ (u · ∇)u =:

D

Dt
u.

The operator D
Dt is referred to as material derivative. The force S exerted

on a region W via pressure p(t, x) is given by

S = −
∫
∂W

pn,
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and for any vector v we have

v · S = −
∫
∂W

pv · n = −
∫
W

∇(pv) = −
∫
W
(∇p)v,

and thus

S = −
∫
W

∇p.

Assuming the force on the whole body is given by

F =

∫
W

ρb,

where b(x, t) is some function describing the force per unit mass, we find
that

ρ
D

Dt
u = −∇p+ ρb.

2.4 Energy conservation

The energy in some region W is given by

Etotal = Ekin + Eint =
1

2

∫
W

ρ2 + Eint.

Understanding the evolution of the kinetic energy is straightforward, but
the internal energy is a priori not known. Hence, considering the problem of
energy conservation in full detail is quite a quite extensive task and requires
a lot of thermodynamics. Thus we will restrict ourselves to an isentropic
model (Ds

Dt = 0) with equation of state p = p(ρ) to close the system. This
is a natural setting, since we do not expect heat flow in an inviscid model
and can be shown to be consistent with energy conservation (see [Fluid
Mechanics, Spurk-Aksel, 1997]).

3 Relativistic fluids

Our ultimate goal is to treat the classical problem described above in a fully
dynamic relativistic setting, i.e. we want to analyze solutions to the system

R[g]µν −
1

2
R[g]gµν + Λgµν = Tµν ,
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with the appropriate energy momentum tensor Tµν . However, due to the
complicated nature of the Einstein equations, a simplified approach is to
analyze a simpler model first. Since the left hand side of the Einstein equa-
tions is divergence free with respect to the Levi-Civita-connection ∇ of g,
Tµν must satisfy the condition

∇µT
µν = 0.

As we will see shortly, this will imply a relativistic version of the Euler
equations. We shall thus first assume our Lorentzian manifold (M, g) to be
fixed and try to understand the problem with backreaction afterwards.

3.1 The relativistic Euler equations

We are going to use the energy momentum tensor of a so called perfect fluid
given as

Tµν = (ρ+ p)uµuν + pgµν ,

where now u describes the fluid 4-velocity that is normalized via gµνu
µuν =

−1. Note that ρ is not the rest mass density but rather the total energy
density. Also note that this terminology is not standardized and describes
different things depending on the author. It is often defined as the energy
momentum tensor of an isotropic and isentropic fluid (we will explain why),
which is compliant with our models.

In the rest frame of the observer with 4-velocity u,

Tµν = diag(ρ, p, p, p).

This makes sense on a heuristic level since

• T00 should be the energy density,

• The spatial diagonal should be the pressure which should be isotropic,

• Non-vanishing diagonal entries would lead to unwanted stresses.

We will further motivate this description below. However, the unsatisfied
reader may also consult [Relativistic Hydrodynamics, Rezzolla-Zanotti, 2013]
for further details.
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Multiplying ∇µT
µν = 0 with uν , we find

0 = uν∇µT
µν = uν

(
uµuν∂µ(ρ+ p) + (ρ+ p)(uν∇µu

µ + uµ∇µu
ν) + gµν∂µp

)
= −uµ∂µ(ρ+ p)− (ρ+ p)∇µu

µ + uµ∂µp

⇒ 0 = uµ∂µρ+ (p+ ρ)∇µu
µ.

Furthermore we have that

0 = ∇µT
µi = uµui∂µ(ρ+ p) + (ρ+ p)(ui∇µu

µ + uµ∇µu
i) + gµi∂µp

=
(
uµui + gµi

)
∂µp+ (ρ+ p)uµ∇µu

i.

Note that this statement would still be true is we put 0 instead of i. However,
this does not contribute anything, since u0 is already determined by the
normalization condition. We will refer to the two equations above as the
relativistic Euler equations. This is a system of 4 equations in 5 equations.
To close it we need to impose an equation of state p = p(ρ).

Exercise: Using the fundamental thermodynamics relation

p = n
∂ρ

∂n
− ρ,

show that the relativistic Euler equations imply that particle flow is con-
served, i.e. ∇µ(nu

µ) = 0.

It can also be shown (see e.g. [Elements of General Relativity, Chruściel,
2019]) that uµ∂µs = 0 and that if g = η the Minkowski metric, in the
classical limit we recover the Euler equation

ρ
D

Dt
u = −∇p.

Hence, we appear to have found a suitable relativistic analogue to the clas-
sical Euler equations for an isentropic system.

3.2 A side note on well posedness

We would naturally want our system to have (at least a local) solution
given initial data in a certain regularity. Luckily, the classical as well as the
relativistic Euler together with a suitable equation of state can be cast into
the form

∂tU +Ak(U)∇kU = S(U),
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where Ak(U) can be shown to be diagonizable with real eigenvalues and
has a maximal set of linearly independent eigenvectors. Such a system is
referred to as quasilinear hyperbolic first order system and can be shown to
be at least locally well posed. This means that, if initial data is prescribed
on e.g. a certain time, a unique local-in-time solution exists and depends
continuously on the prescribed initial data.

For a detailed discussion see [Relativistic Hydrodynamics, Rezzolla-Zanotti,
2013] and for the illustrative case of isentropic flows in one spatial dimen-
sion see [A Mathematical Introduction to Fluid Mechanics, Chorin-Marsden,
1992].

4 Overview: Results in relativistic fluids

From now on we will only consider so called barotropic and linear equations
of state of the form

p = Kρ, 0 ≤ K ≤ 1

3
.

The parameter K is taken to be constant and satisfies c2s = K, where cs
is the speed of sound of the fluid. This equation of state is often used in
cosmology as it provides a simple enough model to describe cosmological
phenomena.

We distinguish three cases:

• K = 0, referred to as dust,

• K = 1
3 , referred to as radiation, since it appears by taking trTµν = 0,

• 0 < K < 1
3 , referred to as massive fluids.

Furthermore, for now we consider Lorentzian background metrics of the form

g = −dt2 + a(t)2γ,

where a(t) is an increasing function of t and γ is a Riemannian metric. On
such backgrounds, we know that we can find a homogeneous solution, i.e. a
ρ = ρ(t) and u = u(t) that solves the relativistic Euler equations and is
global.
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Exercise: Under the homogeneity condition ∂iρ = 0 and assuming that
uµ = δµ0 , derive that the resulting solution to the relativistic Euler equations
with the metric given above and a(t) = tα, is given by

ρ = ρ0t
−3(1+K)α.

4.1 The notion of stability

Heuristically speaking, we are interested in the following question:

Given a homogeneous solution, what happens if we perturb the homogeneous
initial data a bit? There could be several answers: The new solution could

• exist globally and stay close to our homogeneous solution (we will refer
to this as ‘stable’).

• exist globally but move away from the homogeneous solution.

• cease to exist at some point.

Phenomenologically, we may interpret this in such a fashion: Suppose our
universe displays small inhomogeneities in its early state. If our fluid solution
can be shown to homogenize completely, this solution can not be a good
model for all times, since it prohibits the formation of structures that we
observe today.

Our equations satisfy a

Theorem 1 (Continuation principle). Suppose that our maximal unique
solution s on some interval [T0, Tmax) obtained be local well posedness is in
some Sobolev space HN for all t ∈ [T0, Tmax). Then either Tmax = ∞ or

lim sup
T→Tmax

∥s∥HN = ∞.

This tells us that, should our model universe only exist for finite time, this
necessarily leads to infinite growth of the structures inside of it.
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4.2 Some recent results

Consider an exponentially expanding model, e.g. the de Sitter spacetime

g = −dt2 + e2
√
Λtδijdx

idxj .

Such spacetimes arise as spatially flat FLRW vacuum solutions with non-
vanishing positive cosmological constant Λ. Due to works by Rodnianski,
Speck, Lübbe, Valiente-Kroon, Hadzic, Oliynyk and Friedrich it is known
that all the models we are considering (0 ≤ K ≤ 1

3) are stable under small
perturbations for exponentially expanding spacetimes. This true, even for
the fully coupled Euler-Einstein problem. On the contrary, it is known due
to work by Christodoulou that solutions to the relativistic Euler equations
on a Minkowski background are unstable. They develop singularities in finite
time. The fact that expanding spacetimes can lead to stability is sometimes
referred to as fluid regularization.

Naturally, this poses the following question: How low can one go in terms
of expansion rate, so that the fluid retains its stability properties. For rela-
tivistic Euler on the Euklidian spatial background there are these interesting
results [Speck, 2013]:

• Dust: If a(t)−2 is integrable on (1,∞) (e.g. a(t) = t
1
2
+ϵ)⇒ the solution

is stable.

• Radiation: If a(t)−1 is integrable on (1,∞) (e.g. a(t) = t1+ϵ) ⇒ the
solution is stable.

• Dust: If a(t)−1 is not integrable on (1,∞) (e.g. a(t) = t1) ⇒ the
solution is unstable (develops singularities in finite time).

• Massive fluid: The region where a(t)−1 is integrable is not known in
this article.

5 Relativistic fluids in linearly expanding space-
times

Linearly expanding regimes are especially interesting, as they are the fastest
expansion, in which regions in initial data do not causally decouple. For

9



details on this we refer to [Ringström, 2008].

We state the first result for massive fluids in a linearly expanding regime:

Theorem 2 (Fajman-Oliynyk-Wyatt, 2021). The homogeneous solution to
the relativistic Euler equations for massive fluids on the background

([T0,∞)× T3,−dt2 + t2δijdx
idxj)

are non-linearly stable.

Note that this result is in an irrotational setting. By requiring the vorticity
of the fluid to vanish, one may introduce a potential φ, so that ρ and u can
be determined in terms of φ.

The first result for linear expansion in the full coupled Euler-Einstein system:

Theorem 3 (Fajman-MO-Wyatt, 2021). The Milne solution,

(([T0,∞)×M,−dt2 +
t2

9
γijdx

idxj)),

where (M,γ) is closed Riemannian Einstein manifold with R[γ]ij = −2
9γij,

is a non-linearly stable solution to the coupled Einstein-Dust system.

Since this is the fully coupled problem, our solution consists of (g, k, u, ρ)
where g is the metric and k is the second fundamental form. For details on
the Einstein equations as a Cauchy problem see [3+1 Formalism in General
Relativity, Gourgoulhon, 2012].

In our most recent result, we were able to show that even the massive fluid
is stable in linear expansion: The first result for linear expansion in the full
coupled Euler-Einstein system:

Theorem 4 (Fajman-MO-Oliynyk-Wyatt, 2023). The Milne solution,

(([T0,∞)×M,−dt2 +
t2

9
γijdx

idxj)),

is a non-linearly stable solution to the coupled Einstein-Euler system with
linear equation of state and 0 < K < 1

3 .

In particular, this result shows that the irrotational linear expanding massive
case can be extended to rotational fluids. Together with specks result, this
closes the question of stability in the linear expansion case completely.
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5.1 Example of a method used in the proof

Obviously, we cannot go through the proofs of these results in detail. How-
ever, we are going to explain a bit of machinery used in all of these. To
establish global existence of the local solutions, we employ the following
mechanism:

1. Define energy functionals Ek[ρ], Ek[u] that are coercive to some suffi-
cient Sobolev norm, i.e. for all k ≤ N

∥ρ∥HN ≲ EN [ρ], ∥u∥HN ≲ EN [u].

2. The bootstrap: Assume a priori, that for some ϵ > 0

EN−1[ρ] + EN [u] < ϵ.

This always works on some maximal nonempty set [T0, T⋆), by choos-
ing the initial data ρ0, u0 small enough and continuous dependence of
the local solution.

3. Show that one can improve upon the bootstrap, i.e. for example show
that on [T0, T⋆), we have that

EN−1[ρ] + EN [u] ≤ ϵ

2
.

This is usually done controlling the evolution of E, d
dtE, utilizing the

bootstrap.

4. By continuity, we can assume that T⋆ = ∞.

By the continuation principle, this shows global existence.
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