
Integer Programming Models and

Branch-and-Cut Approaches to Generalized

{0,1,2}-Survivable Network Design Problems

Markus Leitner∗

Department of Statistics and Operations Research,

University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

markus.leitner@univie.ac.at

October 6, 2015

Abstract

In this article, we introduce the Generalized {0, 1, 2}-Survivable Net-
work Design Problem ({0, 1, 2}-GSNDP) which has applications in the
design of backbone networks. Different mixed integer linear program-
ming formulations are derived by combining previous results obtained for
the related {0, 1, 2}-Survivable Network Design Problem and Generalized
Network Design Problems. An extensive computational study comparing
the correspondingly developed branch-and-cut approaches shows clear ad-
vantages for two particular variants. Additional insights into individual
advantages and disadvantages of the developed algorithms for different
instance characteristics are given.

Keywords. Generalized Network Design, Survivability, Biconnectivity,
Branch-and-cut, Mixed Integer Linear Programming

1 Introduction

The optimal design of (telecommunication) networks has been the topic of
numerous scientific articles and a variety of different (classes of) combinato-
rial optimization problems arising in that domain have been studied in de-
tail. Generalized Network Design Problems (GNDPs) are one particular class
among these that are motivated from the design of backbone networks, see, e.g.,
[3, 4, 10, 22] and the references therein. In GNDPs we are given an undirected
graph G = (V,E) with nonnegative edge weights ce, ∀e ∈ E, in which the set of
nodes V is partitioned into k disjoint clusters Vi, 1 ≤ i ≤ k. Thereby, each node
represents a possibility to connect a local network to a backbone network and
all nodes within the same cluster belong to the same local network. Usually,
the goal is to identify a minimum-cost backbone network such that precisely
one node from each local network is connected to it. Depending on the addi-
tional constraints on the structure of the backbone network one obtains different

∗Supported by the Austrian Science Fund (FWF) under grant I892-N23.

1

GNDPs such as the Generalized Minimum Spanning Tree Problem (GMSTP),
see, e.g., [5, 6, 9, 13, 20, 21, 23, 24], or the Generalized Traveling Salesman
Problem, cf. [7, 11, 16, 27].

To ensure connectivity of the backbone network even after the outage of
a single link, Huygens [15] introduced the Generalized Minimum Edge Bicon-
nected Network Design Problem (GMEBCNP) and studied possibilities to model
this problem as an integer linear program (ILP). The GMEBCNP as well as a
variant in which connectivity is maintained even after a single node failure have
also been studied in [12, 14] where mainly (meta-) heuristic approaches are pro-
posed. While the issue of survivability has received only little attention for the
case of generalized network design, a huge amount of literature is available for
“classical” survivable network design (SND), see, e.g., [17]. One particular sub-
class that is of major relevance for what follows are the so-called {0,1,2}-SND
problems where a value associated to each node specifies the required level of
redundancy, see, e.g., [2].

In this work, we generalize the latter problem to the case of generalized net-
work design by introducing the Generalized {0,1,2}-Survivable Network Design
Problem ({0,1,2}-GSNDP). To formally define the problem, let G = (V,E) be
an undirected graph with nonnegative weights ce ≥ 0 associated to edges e ∈ E
whose node set is partitioned into k disjoint clusters Vi, i = 1, . . . , k. Let fur-
thermore, ρi ∈ {0, 1, 2}, i = 1, . . . , k, denote the connectivity requirements of
cluster i. Thereby, mandatory clusters with ρi ∈ {1, 2} need to be connected in
any feasible solution while all remaining ones (with ρi = 0) are optional clusters.
As in classical survivable network design problems, redundant clusters Vi with
ρi = 2 need to be connected redundantly, i.e., they need to remain connected
(to all other redundant clusters) after a single node or edge failure.

A feasible solution G′ = (V ′, E′) to an instance of the {0,1,2}-GSNDP is a
subgraph of G that contains precisely one node from each mandatory cluster
and at most one node from each optional cluster. Furthermore, for each pair
of clusters Vi and Vj (i, j ∈ {1, . . . , k}, i 6= j) solution G′ has to contain at
least ρij = min{ρi, ρj} vertex disjoint paths connecting the nodes selected in
these clusters. The objective is to identify a solution G∗ = (V ∗, E∗) yielding
overall minimum edge costs

∑

e∈E∗ ce. Figure 1 shows an example instance of
the {0,1,2}-GSNDP together with a solution to this instance.

Scientific Contribution and Outline of the Paper. The main contribu-
tions of this article are the introduction of the new problem with applications
in backbone network design and the development of (mixed) integer linear pro-
gramming ((M)ILP)) formulations of polynomial and exponential size. As these
formulations heavily rely on a recent result by Chimani et al. [2], we recall this
result and discuss its consequences at the end of this section after summarizing
necessary notation. Compact MILP formulations involving a polynomial num-
ber of variables and constraints (w.r.t. to the size of the input graph) based on
multi-commodity flows are introduced in Section 2.1. ILP formulations with an
exponential number of (efficiently separable) constraints are proposed in Sec-
tion 2.2. In addition we analyze possibilities to formulate the problem by using
an exponential number of path and cycle variables in Section 2.3. Branch-and-
cut approaches for the formulations from Sections 2.1 and 2.2 are developed

2

V1

V2

V3

V4

V5

V6

V7

V8

Figure 1: An instance and a feasible solution of an instance to the {0,1,2}-
GSNDP for ρi = 2, i ∈ {2, 5, 8}, ρi = 1, i ∈ {1, 6, 7}, and ρi = 0, i ∈ {3, 4}.
Dotted edges are not included in the solution.

and compared from a computational perspective in Section 3 using well known
benchmark instances for generalized network design problems. Finally, conclu-
sions are drawn in Section 4. We also note, that all formulations described in
the following are easily modified to the edge-disjoint variant of the problem.
They can also be directly used for the important special case when all clusters
need to be connected redundantly, i.e., when ρi = 2, 1 ≤ i ≤ k.

Notation and Assumptions. In the following, C = {1, . . . , k} is used to
denote the set of clusters and Cl = {i ∈ C | ρi = l}, l ∈ {0, 1, 2}, to easily
distinguish between the different cluster classes. Throughout this article we
will also assume that there exist at least two type-2 clusters, i.e., |C2| ≥ 2.
For C′ ⊆ C, we will also use V (C′) =

⋃

i∈C′ Vi to denote all nodes of cluster
subset C′. In the formulations in Section 2, we will also make use of arc set
A = {(u, v) | {u, v} ∈ E} obtained by bi-directing edge set E and assume that
the given cost function is appropriately defined on it as well, i.e., cuv = cvu = ce,
∀e = {u, v} ∈ E. For node sets S, S′ ⊂ V , common notation for cutsets δ+(S) =
{(u, v) ∈ A | u ∈ S, v /∈ S}, δ−(S) = {(u, v) ∈ A | u /∈ S, v ∈ S}, and δ(S, S′) =
{(u, v) ∈ A | u ∈ S, v ∈ S′} will be used. Notation A(w) = δ+({w}) ∪ δ−({w})
will be used to refer to the set of arcs adjacent to node w ∈ V . Finally, for
a set of variables ω defined on set Ω and subset Ω′ ⊆ Ω, we will use notation
ω[Ω′] =

∑

i∈Ω′ ωi.

Orientation of 2-node connected graphs. All MILP formulation intro-
duced in the following section exploit the following recent orientation result for
2-node connected graphs by Chimani et al. [2].

Theorem 1 (Chimani et al. [2]). An undirected graph G′ = (V ′, E′) is 2-node-
connected if and only if for an arbitrary chosen root node s ∈ V ′ there exists an
orientation Ĝ such that the in-degree of the root node is exactly 1 and for each
node v ∈ V ′ \ {s}, Ĝ contains a directed path from s to v and a directed path
from v to s which are node-disjoint except for s and v.

3

Chimani et al. [2] used their result to derived strong ILP formulations and
effective branch-and-cut approaches for the {0,1,2}-SNDP. For the {0, 1, 2}-
GSNDP studied in this article, their result implies that each solution can be
oriented based on an arbitrarily chosen “root cluster” r ∈ C2 as follows: (i)
There exists a directed path Pi ⊂ A from the node chosen in Vr to a node
selected in any other mandatory cluster i ∈ C1 ∪C2; (ii) There exists a directed
path P ′

i ⊂ A from a node selected in cluster i ∈ C2 to the chosen node in Vr

that is node disjoint with Pi except for its start and end node in Vi and Vr,
respectively.

This characterization has two important consequences for MILP formula-
tions such as the ones introduced in the next section: (i) Instead of the need
to consider paths between all pairs of (mandatory) clusters, it is sufficient to
consider paths from the root cluster to all other mandatory clusters and from all
redundant clusters to the root cluster. (ii) It allows to derive directed formula-
tions which have been shown to be theoretically stronger than undirected ones
for many related problems. More specifically, the directed formulations derived
by Chimani et al. [2] were shown to theoretically dominate a previously exist-
ing undirected one and in fact their proof techniques could be used directly to
derive similar results for the {0, 1, 2}-GSNDP. Thus in the following we refrain
from giving the details which would require to additionally introduce undirected
counterparts of our formulations.

2 Integer Programming Formulations

In this section, we detail our directed (mixed) integer linear programming for-
mulations for the {0,1,2}-GSNDP. All formulations will make use of decision
variables xuv ∈ {0, 1}, ∀(u, v) ∈ A, indicating whether or not arc (u, v) is in-
cluded in the (directed) solution and variables zi ∈ {0, 1}, ∀i ∈ V , which denote
membership of node i in the solution subgraph.

2.1 Flow Formulations

Next, we describe multi-commodity formulations for the {0,1,2}-GSNDP that
differ in the number of involved flow variables and their interpretation.

A first and somewhat natural flow formulation (Fsv) one may think of would
be based on establishing flows between relevant pairs of selected nodes. Thus,
flow variables f st

uv, ∀s ∈ Vr, ∀t ∈ V (C1 ∪ C2 \ {r}), ∀(u, v) ∈ A, would indicate
the amount of flow sent from node s ∈ Vr to node t from a mandatory cluster.
Furthermore, flow variables gtsuv, ∀t ∈ V (C2 \ {r}), ∀s ∈ Vr, ∀(u, v) ∈ A, would
indicate the flow sent back from a node t that requires a redundant connection
(if selected) to a node s from the root cluster r. In addition, binary variables
wsv, ∀s ∈ Vr, ∀v ∈ V (C1 ∪C2 \ {r}), would be used. The latter would be equal
to one if and only if both s and v are included in the solution (i.e., wsv = zszv)
and thus indicate whether or not a connection needs to be installed between
them.

It is well known, however, that using standard techniques to linearize equa-
tions wsv = zszv one obtains an extremely weak formulation. In fact, as will be
detailed in Section 2.2, the linear programming (LP) relaxation of a resulting
formulation will be close to zero in almost all cases. To summarize, one ob-

4

tains a theoretically weak formulation with a quite huge number of variables.
Thus, we refrain from giving further details. In Section 2.2 we will, however,
introduce an analogous formulation but which avoids the use of flow variables
through exponentially many constraints.

Our next model given by (1)–(13) to which we will refer to as (Fu) sig-
nificantly reduces the number of necessary flow variables and eliminates the
“quadratic” variables wsv of above variant. Formulation (Fu) is based on flow
variables f t

uv, ∀t ∈ V (C1 ∪C2 \ {r}), ∀(u, v) ∈ A, indicating the amount of flow
sent from the node selected in Vr to node t selected in a mandatory cluster along
arc (u, v). Similarly, flow variables gtuv, ∀t ∈ V (C2 \ {r}), ∀(u, v) ∈ A, denote
the flow along arc (u, v) of the required backward path from node t chosen in a
redundant cluster to the node selected in Vr

min
∑

(u,v)∈A

cuvxuv (1)

s.t. z[Vi] = 1 i ∈ C1 ∪ C2 (2)

z[Vi] ≤ 1 i ∈ C0 (3)

x[δ−(u)] = zu u ∈ Vr (4)

xuv + xvu ≤ zv v ∈ V, {u, v} ∈ E (5)

f t[δ+(u)]− f t[δ−(u)]

≥ zu + zt − 1 if u ∈ Vr

= −zu if u ∈ Vt

= 0 otherwise

t ∈ V (C1 ∪ C2 \ {r}), u ∈ V (6)

gt[δ+(u)]− gt[δ−(u)]

= zu if u ∈ Vt

≤ 1− zu − zt if u ∈ Vr

0 otherwise

t ∈ V (C2 \ {r}), u ∈ V (7)

f t[δ−(u)] + gt[δ−(u)] ≤ zt t ∈ V (C2 \ {r}), u ∈ V (8)

f t
uv ≤ xuv t ∈ V (C1), (u, v) ∈ A (9)

f t
uv + gtuv ≤ xuv t ∈ V (C2 \ {r}), (u, v) ∈ A (10)

f t
uv ≥ 0 t ∈ V (C1 ∪ C2 \ {r}), (u, v) ∈ A (11)

gtuv ≥ 0 t ∈ V (C2 \ {r}), (u, v) ∈ A (12)

(x, z) ∈ {0, 1}|A|+|V | (13)

The objective function (1) minimizes the installation costs of all arcs included
in the (directed) solution, while constraints (2) and (3) ensure that exactly (at
most) one node is selected within each mandatory (optional) cluster. Equa-
tions (4) are indegree constraints for all nodes from the root cluster that are
valid since the selected root node must have indegree equal to one, cf. afore-
mentioned result by Chimani et al. [2]. Inequalities (5) ensure that at most one
among each pair of oppositely directed arcs can be selected and that only arcs
(u, v) for which nodes u and v are selected as well may be used. Constraints (6)
ensure that exactly one unit of flow f t, t ∈ V (C1 ∪ C2 \ {r}), is consumed by

5

node t (if selected) and that the corresponding flow can only be sent out from
a node u ∈ Vr. Using the linking constraints (5) and (9) we observe that in-
deed flow f t can only be produced at the node selected within Vr. Thus, one
unit of flow will be sent from the node selected in Vr to each selected node
contained in a mandatory cluster. By similar arguments, one can conclude that
the required backward paths from selected nodes within redundant clusters will
be established due to constraints (7) and the two sets of linking constraints.
Inequalities (8) ensure node-disjointness of flows f t and gt for each selected
node t ∈ V (C2 \ {r}) while (9) and (10) link flow and arc design variables. Fi-
nally, notice that (Fu) does not contain unnecessary flow variables f t

us, s ∈ Vr,
(u, s) ∈ A, and gtut, (u, t) ∈ A, which are however included in above formulation
to simplify notation.

Pop [22] observed that the GMSTP can be modeled by using variables de-
scribing inter-cluster (which he called “global”) connections. Using a classical
spanning-tree model for describing the set of feasible “global” solutions together
with additional variables and constraints ensuring that the cheapest “local” con-
nections corresponding to a particular global solution is chosen, he proposed a
new MILP model for the GMSTP [22]. This idea has turned out to also al-
low to derive quite effective heuristic approaches to different GNDPs, see, e.g.,
[12, 13, 14]. Recently, it has also been used to derive an efficient branch-and-cut
approach for the GMSTP with hop constraints by the current author [18].

Next, we show how to exploit this concept in order to derive an additional
multi-commodity flow formulation for the {0,1,2}-GSNDP with a significantly
smaller number of flow variables than the two formulations described above.
Thereby, arc set AC = {(i, j) | ∃(u, v) ∈ A, u ∈ Vi, v ∈ Vj} is used that contains
an arc between a pair of clusters whenever the there exists at least one edge
between two nodes from the corresponding clusters in the original graph G. In
formulation (14)–(20), paths from the root cluster to each other required cluster
k are realized by using flow variables fk

ij , ∀k ∈ C1 ∪C2 \ {r}, ∀(i, j) ∈ AC, while
paths from each redundant cluster k back to the root cluster are realized using
flow variables gkij , ∀k ∈ C2 \ {r}, ∀(i, j) ∈ AC. As before both kinds of variables
indicate the amount of flow of a particular type on each arc. Indicating that
flows are actually sent between clusters rather than between nodes, (CF) will
be used to refer to model (14)–(20) in the following.

Note that (CF) also uses notation δ+c (i) (and δ−c (i)) to refer to the set of
incoming (outgoing) inter-cluster arcs from AC that are adjacent to cluster i.

min
∑

(u,v)∈A

cuvxuv (14)

s.t. (2)− (5)

fk[δ+c (i)]− fk[δ−c (i)] =

1 if i = r

−1 if i = k

0 otherwise

k ∈ C1 ∪ C2 \ {r}, i ∈ C (15)

6

gk[δ+c (i)]− gk[δ−c (i)] =

1 if i = k

−1 if i = r

0 otherwise

k ∈ C2 \ {r}, i ∈ C (16)

fk[δ−c (i)] + gk[δ−c (i)] ≤ z[Vi] k ∈ C2 \ {r}, i ∈ C (17)

0 ≤ fk
ij ≤ x[δ(Vi, Vj)] k ∈ C2 \ {r}, (i, j) ∈ AC (18)

0 ≤ gkij ≤ x[δ(Vi, Vj)] k ∈ C2 \ {r}, (i, j) ∈ AC (19)

(x, z) ∈ {0, 1}|A|+|V | (20)

Flow conservation constraints (15) and (16) together with disjointness con-
straints (17) model the necessary (disjoint) flows on the inter-cluster level while
linking constraints (18) and (19) ensure that for each used inter-cluster connec-
tion at least one original arc is chosen as well.

A valid formulation is obtained together with previously discussed con-
straints (2)–(5) that ensure that precisely one node is selected within each cluster
to (or through) which flow is sent and that only arcs adjacent to two selected
nodes may be used.

Aggregated Flow Formulations. We note that alternative – but usually
theoretically significantly weaker – formulations could be obtained by certain
aggregations of flow variables in the formulations above. One such option is to
consider only a single commodity of flow variables for all type-1 clusters (nodes
in such clusters, respectively). Thus, |C1| units of such flow will be sent out
from (the node selected in) the root cluster while one unit is consumed by each
(node selected in a) type-1 cluster. It is, however, well known that the additional
coefficient |C1| in the constraints linking flow and arc design variables will result
in weak LP relaxation bounds and thus the resulting formulations typically do
not perform well from a computational perspective. In addition, this concept
cannot be used for (nodes selected in) type-2 clusters as the information on the
destination (source) of each commodity is crucial to ensure the existence of the
two disjoint paths.

2.2 Cut Formulations

It is well known that branch-and-cut approaches based on formulations utilizing
an exponential number of directed connectivity constraints often outperform
approaches based on flow-based models. In this section we describe three such
models that conceptually correspond to the flow formulations described above.
Thus, we start with model (Csv) defined by (21)–(28) which uses the “quadratic”
variables wsv introduced above for model (Fsv); besides using the arc and node
design variables xuv and zu, respectively.

min
∑

(u,v)∈A

cuvxuv (21)

s.t. (2)− (5)

wsv ≤ zs s ∈ Vr , v ∈ V (C1 ∪ C2 \ {r}) (22)

7

wsv ≤ zv s ∈ Vr , v ∈ V (C1 ∪ C2 \ {r}) (23)

wsv ≥ zs + zv − 1 s ∈ Vr , v ∈ V (C1 ∪ C2 \ {r}) (24)

x[δ−(S)] ≥ wsv S ⊂ V, s ∈ Vr \ S, v ∈ V (C1 ∪ C2 \ {r}) ∩ S (25)

x[δ+(S)] ≥ wsv S ⊂ V, s ∈ Vr \ S, v ∈ V (C2 \ {r}) ∩ S (26)

x[δ−(S1) \A(u)] + x[δ+(S2) \A(u)] ≥ wsv u ∈ V \ {s, v},

S1, S2 ⊂ V, s ∈ Vr \ (S1 ∪ S2), v ∈ V (C2 \ {r}) ∩ S1 ∩ S2 (27)

(w,x, z) ∈ {0, 1}|Vr|×|V (C1∪C2\{r})|+|A|+|V | (28)

Constraints (2)–(5) have been discussed in Section 2.1. Constraints (22)–
(24) are the linear inequalities stating that variable wsv is equal to one if and
only if nodes s and v are part of the solution. Inequalities (25) are directed
connectivity cuts that ensure the existence of a path from the selected node in
Vr to any other node from a mandatory cluster that is included in the solution.
Similarly, directed connectivity constraints (26) enforce the required path from
a chosen node that needs to be connected redundantly to the selected root
node. Disjointness of the two paths associated to selected nodes from redundant
clusters is guaranteed due to connectivity cuts (27) which have also been used
by Chimani et al. [2]. The latter state, that a selected node v ∈ V (C2 \ {r})
must still be connected to a chosen node s ∈ Vr (in one of the two directions)
after removing an arbitrary node u ∈ V \ {s, v} and all its adjacent arcs.

Theorem 2 shows that (Csv) is a quite weak formulation.

Theorem 2. If every mandatory cluster contains at least two nodes, then the
optimal value of the LP relaxation of (Csv) does not exceed min{ cus+c

vs′

2 |
{(u, s), (v, s′)} ⊆ δ−(Vr), s 6= s′}.

Proof. For each mandatory cluster i ∈ C1 ∪ C2, let ui and vi be two nodes in
Vi, ui 6= vi. We first observe that assigning values of 0.5 to the corresponding
node variables (zui

= zvi = 0.5, ∀i ∈ C1 ∪ C2) values wsv = 0, ∀s ∈ Vr, ∀v ∈
V (C1 ∪ C2 \ {r}), are feasible according to inequalities (22)–(24). Hence, only
indegree constraints (4) of nodes from Vr force nonzero values of arc variables.
Let s and s′ be the two nodes from Vr such that zs = zs′ = 0.5. Then, a
feasible LP solution can be constructed by setting x[δ−(s)] = x[δ−(s′)] = 0.5.
The theorem follows by choosing s, s′ ∈ Vr and arcs (u, s), (v, s′) ∈ δ−(Vr) (with
xus = xvs′ = 0.5)in a cost minimal way.

We note, that one can strengthen formulation (Csv) by equations

∑

s∈Vr

∑

v∈Vi

wsv = 1 i ∈ C1 ∪C2 \ {r} (29)

These equations ensure that each cut containing all nodes from the root
cluster on its source (target) and all nodes from another mandatory (redundant)
cluster on its target (source) is at least one. It is immediate that they are
strengthening as, e.g., the solution described in the proof of Theorem 2 violates
them.

Similar to (Fu), model (30)–(34) denoted as (Cu) avoids using variables
indicating whether a pair of nodes is included in the solution but instead focuses
on cuts between the root cluster and other selected nodes.

8

min
∑

(u,v)∈A

cuvxuv (30)

s.t. (2)− (5)

x[δ−(S)] ≥ zu S ⊂ V \ Vr, u ∈ V (C1 ∪ C2 \ {r}) ∩ S (31)

x[δ+(S)] ≥ zu S ⊂ V \ Vr , u ∈ V (C2 \ {r}) ∩ S (32)

x[δ−(S1) \A(w)] + x[δ+(S2) \A(w)] ≥ zu w ∈ V \ (Vr ∪ {u}),

S1, S2 ⊂ V \ Vr , u ∈ V (C2 \ {r}) ∩ S1 ∩ S2 (33)

(x, z) ∈ {0, 1}|A|+|V | (34)

To avoid the need of variables indicating the inclusion of node pairs, we use
slightly modified connectivity constraints (31) and (32) ensuring that no nodes
from the root cluster Vr are contained in set S. Thus, the node selected within
Vr (one of them needs to be selected in any solution) is not contained in S as
well and valid connectivity constraints are obtained by using the variable corre-
sponding to a node to which (from which, respectively) a path may be realized
on the right hand side of (31) and (32), respectively. The same argument is used
for ensuring disjointness by (33) where neither S1 nor S2 may contain a node
from Vr. Recall that due to (5) only arcs adjacent to two selected nodes may
be used and thus, we eliminate infeasible solutions that would satisfy the con-
nectivity constraints by using cheap edges out from Vr (or into Vr, respectively)
adjacent to (potentially different) non-selected nodes.

Theorem 3 shows that formulation (Cu) is theoretically weaker than the
conceptually similar flow formulation (Fu). For showing this result, let P(M)
denote the polyhedron associated with the LP relaxation of some formulation
M and proj

x,z(P(M)) be its orthogonal projection to the (x, z)-space.

Theorem 3. Formulation (Fu) is stronger than formulation (Cu), i.e.,
projx,z(P(Fu)) ⊆ P(Cu) and there exist instances for which the inclusion is
strict.

Proof. We first show that every solution in P(Fu) satisfies constraints (31), (32),
and (33), i.e., projx,z(P(Fu)) ⊆ P(Cu). Notice that despite the inequalities in
flow conservation constraints (6) and (7) exactly zt units of flow f t (gt) are
sent out from (consumed by) the root cluster and consumed by (sent out from)
node t ∈ V (C1 ∪ C2 \ {r}) (t ∈ V (C2 \ {r}). Thus, from linking constraints
(9), (10) and the max-flow-min-cut theorem, we conclude that every solution in
P(Fu) satisfies forward and backward cut constraints (31) and (32), respectively.
Furthermore, from inequalities (8) we observe that for each t ∈ V (C2 \ {r}) at
most zt units of the 2 · zt units of flow (f + g)t are sent via arcs adjacent to
any node w ∈ V \ {Vr ∪ {t}}. Thus, at least zt units of flow (f + g)t are routed
in A \ A(w) and hence (33) follow from this observation, (9), (10), and the
max-flow-min-cut theorem. To see that (Fu) is stronger than formulation (Cu),
consider the solution given in Figure 2 which is feasible for P(Cu) but infeasible
for (P(Fu) since flow conservation constraints (6) are violated, e.g., for u = 1
and t = 5.

Finally, we propose formulation (CC) given by (35)–(40) that makes use of
arc set AC introduced in Section 2.1 to consider a solutions structure, i.e., its

9

V1

V2

V3

V4

1
2

3 4

5

6

Figure 2: Graph of a feasible solution to P(Cu) with ρi = 2, i = 1, . . . , 4,
Vr = V1, z5 = z6 = 1, zi = 0.5, i = 1, . . . , 4, x56 = 1, xuv = 0.5, (u, v) ∈
{(2, 3), (2, 4), (3, 5), (4, 5), (6, 1), (6, 2)}.

inter-cluster connections. Thereby, additional variables yij ∈ {0, 1}, ∀(i, j) ∈
AC, will indicate whether or not an arc from a node in cluster i to a node
in cluster j is included in the solution or not. Similar to model (CF), δ+c (S)
(δ−c (S)) is used to refer to the incoming (outgoing) inter-cluster arcs from AC

for a set of clusters S ⊂ C.

min
∑

(u,v)∈A

cuvxuv (35)

s.t. (2)− (5)

x[δ(Vi, Vj)] = yij (i, j) ∈ AC (36)

y[δ−c (S)] ≥ 1 S ⊂ C \ {r}, S ∩ (C1 ∪ C2 \ {r}) 6= ∅ (37)

y[δ+c (S)] ≥ 1 S ⊂ C \ {r}, S ∩ (C2 \ {r}) 6= ∅ (38)

y[δ−c (S1) \AC(w)] + y[δ+c (S2) \AC(w)] ≥ 1 w ∈ C \ {r},

S1, S2 ⊂ C \ {r}, ∃j ∈ S1 ∩ S2 ∩ C2, j 6= r (39)

(x,y, z) ∈ {0, 1}|A|+|AC+|V | (40)

The objective function (35) as well as constraints (2)–(5) have been discussed
before. Equations (36) are linking constraints ensuring that variable yij is set
to one whenever an arc from a node in cluster i to a node in cluster j is selected
and also ensure that at most one such arc can be chosen. Inequalities (37) and
(38) are the directed connectivity constraints appropriately modified to the arc
set AC (i.e., they enforce the existence of the required paths on an inter-cluster
level). Node disjointness of the two paths associated to a cluster from C2 is
ensured by appropriately modified cutset constraints given by inequalities (39).

A stronger variant of (CC) is obtained by additionally considering node cuts
(31), (32), and (33). We will use (CC)+ to refer to the variant augmented by
these three sets of inequalities.

2.3 Connection Formulations

A third class of possible formulations is obtained from considering exponen-
tially many variables rather than constraints. The basic idea is to introduce
one variable for each feasible connection between the chosen root node and each

10

other selected node from a mandatory cluster. Similar formulations which are
typically solved by branch-and-price (i.e., by embedding column generation into
branch-and-bound) have shown to yield quite effective solution methods for re-
lated problems, see, e.g., [25]. In the following we detail one such formulations
that conceptually corresponds to (Cu) and analyze the resulting pricing sub-
problems. In addition we describe necessary modifications to a further model
that corresponds to (CC).

To derive a set partitioning formulation, consider the set of feasible connec-
tions Pu ⊆ 2|A| for each node u ∈ V (C1 ∪ C2 \ {r}). For nodes u ∈ V (C1),
set Pu contains all directed paths in (V,A) that start from a node s ∈ Vr

and end at node u which do contain at most one node from each cluster, i.e.,
Pu = {{(s = v0, v1), (v1, v2), . . . , (vl−1, vl = u)} | s ∈ Vr, |Vi ∩ (

⋃l

j=0 vj)| ≤
1, 1 ≤ i ≤ k, (vj , vj+1) ∈ A, 0 ≤ j < l}. Similarly, for nodes u ∈ V (C2 \ {r}),
set Pu contains all directed cycles in (V,A) that contain nodes u and s ∈ Vr

and which do contain at most one node from each cluster, i.e., Pu = {{(s =

v0, v1), (v1, v2), . . . , (vl−1, vl = s)} | s ∈ Vr, u ∈
⋃l−1

j=1 vj , |Vi ∩ (
⋃l−1

j=0 vj)| ≤
1, 1 ≤ i ≤ k, (vj , vj+1) ∈ A, 0 ≤ j < l}. Using variables λp ∈ {0, 1},
∀p ∈

⋃

u∈V (C1∪C2\{r})
Pu, indicating which feasible connections will be realized,

formulation (Cu) is obtained from (Cu) by replacing (31)–(33) by (41)–(43).

∑

p∈Pu

λp = zu u ∈ V (C1 ∪ C2 \ {r}) (41)

∑

p∈Pu:(i,j)∈p

λp ≤ xij u ∈ V (C1 ∪ C2 \ {r}), (i, j) ∈ A (42)

λp ∈ {0, 1} u ∈ V (C1 ∪C2 \ {r}), p ∈ Pu (43)

Equations (41) ensure that one feasible connection is chosen for each node
selected in a mandatory cluster while inequalities (42) are linking constraints
ensuring that all arcs contained in at least one realized connection are included
in the final solution. A valid formulation is obtained together with the objective
function (30), the previously discussed constraints (2)–(5), and the definitional
constraints (34) and (43).

Pricing subproblem. To dynamically add connection variables, we need to
identify u ∈ V (C1 ∪ C2 \ {r}) and p ∈ Pu such that variable λp has negative
reduced costs or prove that no such variable exists. Associating dual variables
µu and νuij ≥ 0 to constraints (41) and (42), respectively, a connection corre-
sponding to a variable with minimum reduced can be identified by solving the
optimization problem argminu∈V (C1∪C2\{r}),p∈Pu

{−µu +
∑

(i,j)∈p ν
u
ij}.

Thus, it suffices to find a cheapest feasible connection in (V,A) with respect
to nonnegative arc costs νuij for each u ∈ V (C1 ∪ C2 \ {r}). If the costs of such
a connection are less than µu the corresponding variable has negative reduced
costs. As we will, however, show by the following two theorems, identifying such
a minimum cost connection is NP-hard both for nodes from type-1 and type-2
clusters.

Theorem 4. It is NP-hard to decide whether (V,A) contains a directed path
from an arbitrary (but fixed) node in Vr to a particular node u ∈ V (C1) that
contains at most one node from each cluster Vi, 1 ≤ i ≤ k.

11

Proof. This result follows by reduction from the path with forbidden pairs prob-
lem (PFPP). Given a directed graph (V ,A), two vertices s, t ∈ V , and a collec-
tion L = ({u1, v1}, . . . , {un, vn}), of pairs of vertices from V , the PFPP is the
problem of deciding whether there exists a directed path from s to t in G that
contains at most one vertex from each pair in L. The PFPP is NP-hard even
if all forbidden pairs are disjoint [8]. A transformation of each such instance to
the pricing subproblem for nodes in type-1 clusters is obtained by considering
clusters Vi = {ui, vi}, 1 ≤ i ≤ n, and Vj = {uj}, ∀uj ∈ V\

⋃n

i=1 Vi with Vr = {s}
and u = t.

The following result has been slightly rewritten but otherwise corresponds
to an analogous one shown in Leitner et al. [19] via a reduction from the disjoint
pair of paths problem. As it treats the special case when all clusters contain a
single node only, it implies that the pricing subproblem for nodes u ∈ V (C2) is
NP-hard as well.

Theorem 5. It is NP-hard to decide whether (V,A) contains a directed cycle
including nodes s ∈ Vr and u ∈ V (C2 \ {r}).

An alternative formulation conceptually corresponding to (CC) is obtained
from considering the set of feasible inter-cluster connections, i.e., directed paths
(from the root cluster to the respective target cluster) and cycles (containing
the root cluster and the respective target cluster) on the graph induced by AC.
Considering the set of feasible inter-cluster connections Fu ⊆ 2|AC| for each
mandatory cluster u ∈ C1 ∪ C2 and associated decision variables πp ∈ {0, 1},
∀p ∈

⋃

u∈C1∪C2
Fu, a valid formulation is obtained from (CC) by replacing

(37)–(39) by (44)–(46).

∑

p∈Fu

πp = 1 u ∈ C1 ∪ C2 \ {r} (44)

∑

p∈Fu:(i,j)∈p

πp ≤ yij u ∈ C1 ∪ C2 \ {r}, (i, j) ∈ AC (45)

πp ∈ {0, 1} u ∈ C1 ∪ C2 \ {r}, p ∈ Fu (46)

The interpretation of these three sets of constraints is analogous to the one
of (41)–(43). From the discussion above it is easy to conclude that for type-1
clusters u ∈ C1, the pricing subproblem can be solved by computing a minimum
cost path on the graph induced by AC and given non-negative arc costs obtained
from the dual multipliers associated to constraints (45). Similarly, for each
u ∈ C2, a minimum cost directed cycle containing the root cluster r and u needs
to be identified. Thus, the pricing subproblem can be solved in polynomial time
for type-1 clusters while it is NP-hard for type-2 clusters.

3 Computational Study

The flow formulations introduced in Section 2.1 as well as branch-and-cut algo-
rithms corresponding to the models from Section 2.2 have been implemented in
C++ using IBM CPLEX 12.6. In what follows, we do, however, not consider
the first two models (Fsv) and (Fu) as preliminary experiments (as expected)

12

showed their inferior performance due to the large numbers of variables involved
and their weak LP relaxation bounds. We also refrain from considering the two
connection formulations introduced in Section 2.3 since the computational re-
sults obtained in Leitner et al. [19] for a closely related problem are not very
promising. In fact, the pricing subproblems arising in the present work even
generalize the ones from Leitner et al. [19]. Hence, a good performance of the
resulting branch-and-price approaches may only be possible through the use of
sophisticated and clever pricing heuristics next to considering stabilization tech-
niques and primal heuristics. Thus, we will compare the developed algorithms
based on models (CF), (Csv), (Cu), (CC), and (CC)+.

An implementation of the push-relabel maximum flow algorithm by
Cherkassky and Goldberg [1] has been used for separating the different classes
of cutset constraints and we generally add cutset constraints only if they are
violated by a value of at least 0.1 in the current LP solution. For (Csv) we
only search for violated “disjointness cuts” (27) if no violated forward (25) or
backward (26) cuts have been identified for the current solution. Strengthen-
ing inequalities (29) are initially added to the model. An analogous strategy is
used for (Cu), (CC), and (CC)+. For the latter, node cuts are only separated if
no further cluster cuts are violated. Each computational experiment has been
performed on a single core of a cluster of computers each consisting of 20 cores
(2.3GHz) and 64GB RAM. An absolute time limit of 10 000 CPU-seconds and
a memory limit of 2.5GB has been applied to each individual run.

3.1 Test Instances

We created sets of benchmark instances with different relative percentage values
of required and redundant clusters that are based on instances by Fischetti et al.
[7] that have been widely used for the evaluation of algorithmic approaches to
generalized network design problems, see, e.g., [13, 14]. Note that these original
instances contain information about the underlying graph, edge costs and the
assignment of nodes to clusters. Furthermore, for each original TSPlib [26]
instance, five instances exist in which the assignment of nodes to clusters has
been done either geographically or grid based (with different numbers of average
nodes per cluster µ according to parameter µ ∈ {3, 5, 7, 10}), see [3, 7] for more
details.

To create benchmark instances for the {0, 1, 2}-GSNDP, for each such in-
stance we randomly select ℓ = ⌈r ·k⌉, r ∈ {0.5, 0.75, 1}, clusters to be mandatory
and ⌈r2 ·ℓ⌉, r2 ∈ {0.5, 0.75, 1}, among those as redundant clusters. By repeating
this process, five different instances have been created for each considered com-
bination of r and r2 except for the case (r, r2) = (1, 1) where we would obtain
five identical instances.

3.2 Results

To analyze the performance of the branch-and-cut algorithms developed for the
different models proposed in Sections 2.1 and 2.2 we first discuss the results
obtained for the five considered variants on instances with less than 100 nodes.
Table 1 reports numbers of instances solved to proven optimality, average CPU-
times in seconds, and average gaps (gaproot) in percent of the lower bound
obtained from solving the root node of the branch-and-cut tree (or the current

13

lower bound in case the root node could not be solved within the time- or mem-
orylimit). These gaps are computed as 100 ·(UB∗−LB)/UB∗ where UB∗ is the
value of the best known solution computed from any of the considered variants
(i.e., the optimal cost in almost all cases) and LB is the root node lower bound
of the respective variant. Notice that these gaps do not necessarily reflect the
theoretical strength of the formulations due to presolving and preprocessing by
CPLEX and since we only separate cutset constraints if they are violated by
a value of at least 0.1. To gain insight into potential advantages and disad-
vantages of the methods, these results are grouped according to three different
characteristics (original instance graph, clustering method, and relative amount
of required and redundant clusters, respectively). The CPU-times of all experi-
ments that terminated due to reaching the memory limit have been considered
as 10 000 seconds when computing the average times.

We observe that, even though the number of flow variables of (CF) is signif-
icantly smaller than for the other flow models it is only able to solve approxi-
mately two-thirds of the instances. Its performance (relative to the other vari-
ants) clearly improves when the number of clusters is relatively small compared
to the number of nodes (i.e., for instances with grid clustering and µ ∈ {7, 10}).
Given the fact that its implementation requires significantly less effort compared
to the variants with an exponential number of dynamically added inequalities, it
might therefore be a viable option for medium sized instances with a moderate
number of clusters. Surprisingly, variant (CC) which is also based on the idea of
focusing on inter-cluster connection, but models them by means of dynamically
separated directed cutset constraints performs even worse than (CF). Notice
that the observed root node gaps also indicate that the lower bounds at the root
node from these two variants are almost identical. We suppose that one reason
for the higher efficiency of (CF) might be a better performance of the general
purpose heuristics implemented in CPLEX for compact models where complete
information is available to the solver. In addition the presolving, probing, and
bound strengthening routines of CPLEX as well as identification of general pur-
pose valid inequalities may be more effective for the same reason.

It is also rather surprising that (Cuv) involving the “quadratic” variables
denoting whether pairs of nodes are selected, outperforms (CC) and (CF) in
particular since its root node gaps are extremely large (in accordance with The-
orem 2). We conclude, that a large number of nodes from the branch-and-cut
tree that can be processed relatively fast seems to partly compensate the poor
bounds (obtained in the root node). We also observe that the performance
(Cuv) deteriorates with an increasing number of average nodes per cluster (i.e.,
with increasing value of µ). Clearly, a smaller number of nodes per cluster (and
thus much less choices for node pairs in the solution) will typically lead to better
bounds already after few branching decisions given the chosen linearization of
the quadratic variables.

Finally, we observe that the branch-and-cut based on cuts to individual nodes
(Cu) and variant (CC)+ combining cluster and node cuts clearly outperform
the other options. Slight advantages with respect to the total number of solved
instances and for cases with relatively few numbers of nodes per cluster can be
observed for (Cu) while the root node gaps of (CC)+ are consistently smaller
than the one of (Cu). In general, however, their performance does not differ too
much on the instances considered in Table 1.

To gain additional insights on the relative performance of these two variants

14

Table 1: Numbers of instances solved to proven optimality (#solved), average CPU-times in seconds (tavg), and average gaps after solving
the root node in percent (gaproot) of branch-and-cut algorithms based on different models grouped by original instance (Inst), clustering
method (Clust), and relative amounts of required and redundant clusters (r, r2), respectively. Average CPU-times (rounded to the nearest
integer) have been computed using a value of 10 000 seconds whenever an approach terminated earlier due to the memory limit.

#solved tavg [s] gaproot[%]
(CF) (Csv) (Cu) (CC) (CC)+ (CF) (Csv) (Cu) (CC) (CC)+ (CF) (Csv) (Cu) (CC) (CC)+

Inst att48 205 205 205 205 204 205 138 47 13 59 8 17.1 59.5 23.3 17.0 10.3

eil51 205 205 205 205 205 205 493 31 8 12 7 14.1 63.3 13.6 14.3 9.4

eil76 205 141 205 203 103 201 4501 471 162 5034 255 21.4 66.5 18.7 21.5 13.0

st70 205 192 205 205 181 205 1497 250 32 1219 25 17.4 74.8 17.6 17.6 10.2

pr76 205 135 203 205 65 205 5257 447 73 6886 71 24.3 51.2 15.0 24.3 10.3

gr96 205 92 194 203 30 201 7466 1650 313 8560 374 17.9 67.0 9.9 17.8 6.6

rat99 205 11 110 200 1 202 9778 5645 942 9953 699 28.4 79.6 27.1 29.3 20.7

Clust geo 287 186 267 287 123 286 4672 1175 221 5739 229 22.8 67.8 21.0 22.9 13.5

µ = 3 287 113 287 284 129 281 6886 159 166 5531 259 9.5 41.9 3.9 10.2 1.9

µ = 5 287 212 282 283 160 284 3662 831 253 4451 197 16.9 64.7 14.4 17.2 8.7

µ = 7 287 233 245 286 165 287 3279 1821 253 4281 173 23.8 75.0 21.8 23.9 14.0

µ = 10 287 237 246 286 212 286 2308 2115 209 2658 169 27.5 80.5 28.4 27.2 19.4

(r, r2) (0.5,0.5) 175 123 161 175 113 175 3560 1361 208 3589 154 22.3 65.0 23.6 23.1 13.7

(0.5,0.75) 175 126 163 175 106 175 3790 1131 133 3984 109 22.0 67.1 20.5 23.1 12.9

(0.5,1) 175 129 165 175 105 175 3478 865 108 4030 92 21.4 64.7 19.7 22.3 12.3

(0.75,0.5) 175 117 158 173 97 174 4218 1548 337 4495 232 20.4 63.7 17.5 20.4 11.7

(0.75,0.75) 175 115 163 175 90 175 4409 1113 170 4881 146 20.3 66.7 16.6 20.2 11.4

(0.75,1) 175 114 163 175 88 173 4413 1046 109 4989 205 19.2 66.1 15.7 18.8 10.3

(1,0.5) 175 116 157 171 89 173 4441 1563 384 4940 263 18.2 66.1 15.6 17.7 10.3

(1,0.75) 175 117 164 172 84 170 4852 1177 319 5220 400 17.8 67.8 15.0 17.3 9.8

(1,1) 35 24 33 35 17 34 4820 1010 197 5164 421 17.3 69.3 13.1 16.2 9.0

Total - 1435 981 1327 1426 789 1424 4162 1220 220 4532 206 20.1 66.0 17.9 20.3 11.5

1
5

an additional set of results on larger instances containing at least 100 nodes is
given in Table 2. Besides the numbers of instances solved to proven optimality,
average CPU-times (again all cases of terminations due to the memory limit have
been considered as 10 000 seconds) and average root node gaps in percent, we
also report the numbers of cases in which one of the two algorithms outperformed
the other. Thereby, an algorithm is considered to outperform the other on an
instance, if it solved it to proven optimality faster (with a difference of at least
ten seconds) or alternatively if its optimality gap is smaller (by at least 1%) in
case none of the two variants solved the instance to proven optimality.

The results from Table 2 show that both (Cu) and (CC)+ perform reasonably
good on the considered set of larger instances. Despite the fact the differences
between the two variants are not too large in some cases one can clearly observe
that (CC)+ outperforms (Cu) with respect to all considered criteria. No clear
correlation between their relative performance and the size of the underlying
instances can be observed. To this end, we note that the performance of (Cu)
and (CC)+ is almost identical for the largest instances considered (i.e, those
based on instance bier127). More conclusions can be drawn when considering the
average number of nodes per cluster, i.e., the influence of parameter µ. Despite
an increasing root node gap, the efficiency of (CC)+ clearly improves with an
increasing value of µ (more instances can be solved to optimality and the average
CPU-times tend to decrease). On the other hand, (Cu) exhibits a relatively
stable (but significantly worse) performance independent of the average number
of nodes per cluster. We also conclude (for both variants) that the difficulty of
an instance seems to correlate with the number of required clusters while this
is not so clear for the relative number of redundant clusters. Independently of
the considered combination (r, r2), however, (CC)

+ outperforms (Cu). While
their relative difference is relatively constant among the considered combinations
with respect to average CPU-times and numbers of cases where one of the two
achieves a better performance, it tends to slightly increase with respect to the
numbers of solved instances with increasing value of r and / or r2.

Overall, we conclude that both (Cu) and (CC)+ achieve a relatively good
and stable performance with clear advantages of the latter variant which seems
particularly well suited for instances with many nodes per cluster and many
mandatory or redundant clusters.

4 Conclusions

In this article, we studied the Generalized {0, 1, 2}-Survivable Network Design
Problem a new survivable network design problem that arises in the context of
backbone network design and generalizes well-known generalized network design
problems as well as classical problems from survivable network design. Using
a recent orientation result with respect to two-node connected graphs by Chi-
mani et al. [2], a number of MILP formulations based on multi-commodity flows,
directed cutset constraints, and exponentially many connection variables have
been derived. One aim of the article was derive formulations with less variables
/ constraints by focusing on inter-cluster connections, a concept that is known to
be quite effective for related generalized network design problems. Our compu-
tational study on a large set of benchmark instances revealed that the achieved
reduction of the formulation size is partly foiled by weaker linear programming

16

Table 2: Numbers of instances solved to proven optimality (#solved), average
CPU-times in seconds (tavg), numbers of cases where an approach obtained the
best performance (#best), and average gaps after solving the root node in percent
(gaproot) for (Cu) and (CC)+ grouped by original instance, clustering method,
and relative amounts of required and redundant clusters, respectively. Average
CPU-times (rounded to the nearest integer) have been computed using a value
of 10 000 seconds whenever an approach terminated earlier due to the memory
limit. An algorithm is considered to yield a better performance than another
one, if it could solve an instance to proven optimality at least ten seconds faster,
if the other one could not solve the corresponding instance, or if the remaining
optimality gap was at least 1% smaller in case both algorithms failed to solve
the instance.

#solved tavg [s] #best gaproot[%]
(Cu) (CC)+ (Cu) (CC)+ (Cu) (CC)+ (Cu) (CC)+

Inst kroa100 205 182 201 1630 692 56 138 21.5 15.3

krob100 205 168 184 2327 1442 39 149 21.2 14.0

kroc100 205 162 178 2635 1709 29 159 24.7 18.1

krod100 205 184 192 1516 1023 55 136 18.8 12.9

rd100 205 190 192 1019 822 38 140 16.5 10.7

kroe100 205 191 202 1048 401 31 153 14.8 8.7

eil101 205 199 201 649 543 91 97 20.1 13.8

pr107 205 117 199 4998 681 0 205 36.6 4.6

pr124 205 92 143 5893 3361 10 185 25.7 14.8

bier127 205 106 108 5082 4990 72 97 13.8 11.4

Clust geo 410 308 355 3086 1851 107 275 24.7 13.8

µ = 3 410 294 310 2986 2544 86 265 11.7 9.9

µ = 5 410 337 370 2123 1183 69 299 15.1 6.4

µ = 7 410 327 378 2603 1237 72 310 26.6 15.6

µ = 10 410 325 387 2601 1017 87 310 28.8 16.4

(r, r2) (0.5,0.5) 250 225 240 1649 825 51 183 25.1 12.4

(0.5,0.75) 250 226 243 1424 624 52 168 24.6 12.6

(0.5,1) 250 233 240 1087 648 51 170 21.3 11.6

(0.75,0.5) 250 188 220 2987 1662 54 177 19.9 11.3

(0.75,0.75) 250 189 220 2847 1532 46 189 19.6 11.3

(0.75,1) 250 187 213 2859 1746 50 177 20.1 12.3

(1,0.5) 250 155 198 4201 2476 51 190 19.7 12.7

(1,0.75) 250 160 191 3969 2682 57 170 19.9 13.6

(1,1) 50 28 35 4753 3247 9 35 26.0 20.3

Total - 2050 1591 1800 2680 1566 421 1459 21.4 12.4

17

formulations. It also turned out, however, that combining this formulation with
standard cutset constraints yields a variant that clearly outperforms all other
variants studied in this article. The latter is particularly true when the number
of nodes per cluster is relatively large.

Aspects that could be considered in future research include the development
of branch-and-price approaches based on the connection formulations introduced
in Section 2.3. To this end, primal and pricing heuristics as well as stabilization
techniques and careful tuning of parameters are likely to be necessary in order
to obtain a good performance.

References

[1] Boris V. Cherkassky and Andrew V. Goldberg. On implementing push-
relabel method for the maximum flow problem. Algorithmica, 19:390–410,
1994.

[2] Markus Chimani, Maria Kandyba, Ivana Ljubić, and Petra Mutzel.
Orientation-based models for {0,1,2}-survivable network design: Theory
and practice. Mathematical Programming, 124(1-2):413–440, 2010.

[3] Corinne Feremans. Generalized Spanning Trees and Extensions. PhD thesis,
Universite Libre de Bruxelles, 2001.

[4] Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized net-
work design problems. European Journal of Operational Research, 148(1):
1–13, 2003.

[5] Corinne Feremans, Martine Labbé, and Gilbert Laporte. The generalized
minimum spanning tree problem: Polyhedral analysis and branch-and-cut
algorithm. Networks, 43(2):71–86, 2004.

[6] Cristiane S. Ferreira, Luis S. Ochi, Vctor Parada, and Eduardo Uchoa. A
GRASP-based approach to the generalized minimum spanning tree prob-
lem. Expert Systems with Applications, 39(3):3526–3536, 2012.

[7] Matteo Fischetti, Juan José Salazar González, and Paolo Toth. A branch-
and-cut algorithm for the symmetric generalized traveling salesman prob-
lem. Operations Research, 45(3):378–394, 1997.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[9] Bruce Golden, Subramanian Raghavan, and Daliborka Stanojević. Heuris-
tic search for the generalized minimum spanning tree problem. INFORMS
Journal on Computing, 17(3):290–304, 2005.

[10] Bin Hu. Hybrid Metaheuristics for Generalized Network Design Problems.
PhD thesis, Vienna University of Technology, 2008.

[11] Bin Hu and Günther R. Raidl. Effective neighborhood structures for the
generalized traveling salesman problem. In Jano van Hemert and Carlos
Cotta, editors, Evolutionary Computation in Combinatorial Optimisation
(EvoCOP), volume 4972 of LNCS, pages 36–47, 2008.

18

[12] Bin Hu and Günther R. Raidl. A memetic algorithm for the generalized
minimum vertex-biconnected network problem. In 9th International Con-
ference on Hybrid Intelligent Systems (HIS), pages 63–68, 2009.

[13] Bin Hu, Markus Leitner, and Günther R. Raidl. Combining variable neigh-
borhood search with integer linear programming for the generalized mini-
mum spanning tree problem. Journal of Heuristics, 14(5):473–499, 2008.

[14] Bin Hu, Markus Leitner, and Günther R. Raidl. The generalized minimum
edge biconnected network problem: Efficient neighborhood structures for
variable neighborhood search. Networks, 55(3):257–275, 2010.

[15] David Huygens. Version generalisee du probleme de conception de reseau
2-arete-connexe. Master’s thesis, Universite Libre de Bruxelles, 2002.

[16] Daniel Karapetyan and Gregory Z. Gutin. Lin-Kernighan heuristic adap-
tations for the generalized traveling salesman problem. European Journal
of Operational Research, 208(3):221–232, 2011.

[17] Hervé Kerivin and A. Ridha Mahjoub. Design of survivable networks: A
survey. Networks, 46(1):1–21, 2005.

[18] Markus Leitner. Layered graph models and exact algorithms for the gen-
eralized hop-constrained minimum spanning tree problem. Computers &
Operatons Research, 65:1–18, 2016.

[19] Markus Leitner, Günther R. Raidl, and Ulrich Pferschy. Branch-and-price
for a survivable network design problem. Technical Report TR 186-1-10-02,
Vienna University of Technology, Vienna, Austria, 2010.

[20] Yound-Soo Myung, Chang-Ho Lee, and Dong-Wan Tcha. On the general-
ized minimum spanning tree problem. Networks, 26(4):231–241, 1995.

[21] Temel Öncan, Jean-Francois Cordeau, and Gilbert Laporte. A tabu search
heuristic for the generalized minimum spanning tree problem. European
Journal of Operational Research, 191(2):306–319, 2008.

[22] Petrica C. Pop. The Generalized Minimum Spanning Tree Problem. PhD
thesis, University of Twente, 2002.

[23] Petrica C. Pop. New models of the generalized minimum spanning tree
problem. Journal of Mathematical Modelling and Algorithms, 3(2):153–
166, 2004.

[24] Petrica C. Pop, Walter Kern, and Georg Still. A new relaxation method
for the generalized minimum spanning tree problem. European Journal of
Operational Research, 170(3):900–908, 2006.

[25] Deepak Rajan and Alper Atamtürk. A directed cycle-based column-and-cut
generation method for capacitated survivable network design. Networks, 43
(4):201–211, 2004.

[26] Gerhard Reinelt. TSPLIB–a traveling salesman problem library. INFORMS
Journal on Computing, 3(4):376–384, 1991.

19

[27] John Silberholz and Bruce Golden. The generalized traveling salesman
problem: A new genetic algorithm approach. In Edward K. Baker, An-
ito Joseph, Anuj Mehrotra, and Michael A. Trick, editors, Extending the
Horizons: Advances in Computing, Optimization, and Decision Technolo-
gies, volume 37 of Operations Research/Computer Science Interfaces Se-
ries, pages 165–181. Springer, 2007.

20

