
Design of survivable networks with vulnerability constraints

Luis Gouveia1 and Markus Leitner2

1Universidade de Lisboa, Faculdade de Ciências, Departamento de Estat́ıstica e

Investigação Operacional, Lisbon, Portugal.

legouveia@fc.ul.pt
2Department of Statistics and Operations Research, Faculty of Business, Economics and

Statistics, University of Vienna, Vienna, Austria.

markus.leitner@univie.ac.at

September 4, 2016

Abstract

We consider the Network Design Problem with Vulnerability Constraints (NDPVC) which simul-
taneously addresses resilience against failures (network survivability) and bounds on the lengths of
each communication path (hop constraints). Solutions to the NDPVC are subgraphs containing a
path of length at most Hst for each commodity {s, t} and a path of length at most H ′

st between s

and t after at most k − 1 edge failures. We first show that a related and well known problem from
the literature, the Hop-Constrained Survivable Network Design Problem (kHSNDP), that addresses
the same two measures produces solutions that are too conservative in the sense that they might
be too expensive in practice or may even fail to provide feasible solutions. We also explain that
the reason for this difference is that Mengerian-like theorems not hold in general when considering
hop-constraints. Three graph theoretical characterizations of feasible solutions to the NDPVC are
derived and used to propose integer linear programming formulations. In a computational study we
compare these alternatives with respect to the lower bounds obtained from the corresponding linear
programming relaxations and their capability of solving instances to proven optimality. In addition,
we show that in many cases, the solutions produced by solving the NDPVC are cheaper than those
obtained by the related kHSNDP.

Keywords: Networks, Integer programming, Survivable Network Design, Hop-constraints, OR
in telecommunications

1 Introduction

For Internet service providers, it is essential to provide stable and reliable communications between
any two points in their supporting telecommunication networks. However, it is not easy to provide a
precise definition of reliability. A vast body of literature, both in the engineering and operations research
community, suggests various concepts for network reliability. This is because the reliability of a network
depends on several factors. On the one side, it depends on the technical equipment installed along the
links and nodes of the network. On the other side, even with the best available equipment, reliability may
be easily destroyed, if the underlying network topology is vulnerable to failures. Therefore, resistance
to network failures (also known as network survivability) has been used in the network optimization
literature as one of the main criteria for designing reliable communication networks (see, e.g., [9]). A
network is said to be survivable, if communications between nodes can be established, even after failures
of a pre-defined number of nodes or links. Starting with the seminal work by Grötschel et al. [8], a large
body of mathematical models and algorithmic approaches for designing survivable networks has been
proposed.

Another important issue for Internet service providers is quality of service, see e.g., Klincewicz [10].
Each packet of a data flow traveling through a path from its source node to its destination node suffers
a total delay that is given by the propagation delay on each link and the queuing and transmission

1

s1 t2 t1

s2

Figure 1: Example of an instance of the NDPVC with R = {{s1, t1}, {s2, t2}}, Hst = 3, H ′
st = 4,

∀{s, t} ∈ R, and a feasible solution to this instance (bold edges).

delays on each intermediate node. Jitter, defined as the time difference between the maximum delay
and the minimum delay among all packets of a data flow, is an important quality of service parameter
that should be bounded to guarantee a given quality of service [16]. This parameter is of particular
importance for multimedia services (see, Roychoudhuri et al. [14]) but also for data service running over
mobile networks (see, Scharf et al. [15]). Note that the dominant factor on jitter is the queuing delay
since propagation introduces a constant delay on each packet and transmission delay is only dependent
on packet size statistics. A simple way of bounding jitter is to bound the number of packet queues, which
is equivalent to bound the number of hops of each routing path. Hence, the quality of service can be
ensured by imposing so-called hop-constraints.

Recent literature suggests to combine survivability and quality of service by additionally imposing
hop-constraints when designing survivable networks. Thus, one guarantees that for every distinct pair
of nodes, there exists a pre-defined number of edge/node disjoint paths, such that each such path does
not exceed the given hop limit [3]. In this article we show that solutions to this problem variant are
too conservative and too expensive, from the perspective of a network provider. We therefore propose
to study a new (and related) problem, that ensures both survivability, and the maintenance of the hop-
limits after a failure of a pre-defined number of nodes or links, but with significantly less restrictions on
the underlying network topology. We call the problem the Network Design Problem with Vulnerability
Constraints (NDPVC). The term “vulnerability” is coined from graph theory (see, e.g., Bermond et al.
[2]) and is usually associated to the study of changes in the distance between pairs of nodes due to graph
alterations (e.g., edge or node removals). We will have more to say about this in Section 2. As in many
related problems, one may consider protection against edge or node failures. We focus on the case of
edge-connectivity for which the formal problem definition is given below. The node-connectivity case
will be briefly addressed in Section 5.

Problem definition and motivation We are given an undirected graph G = (V,E), with nonnegative
edge costs ce ≥ 0, for all e ∈ E, and a parameter k ∈ N specifying the network survivability. In addition,
we are given a set of commodities R ⊆ V × V \ {(v, v) | v ∈ V } and two hop limits, Hst ≤ H ′

st ∈ N,
for each pair {s, t} ∈ R. The goal is to find a minimum cost subgraph of G, such that for each pair
{s, t} ∈ R, it contains a path of length at most Hst, and after removal of any k − 1 edges from it, the
resulting graph contains a path of length at most H ′

st.
Figure 1 illustrates an input graph G with commodities R = {{s1, t1}, {s2, t2}}, k = 2, and hop

limits Hst = 3, H ′
st = 4 for all {s, t} ∈ R, together with a feasible solution. Notice, that the well known,

NP-hard, survivable network design problem (see, e.g., [8]) is a special case of the NDPVC when the
hop-limits are redundant. Thus the NDPVC is NP-hard as well.

A related problem that has already been studied in the literature is the hop-constrained survivable
network design problem (kHSNDP). In this problem, one searches for a minimum-cost subgraph, such
that between each pair of commodities there exist k edge- (node-) disjoint paths, each containing at
most H edges. Various integer programming formulations and solution algorithms have been proposed
recently for the kHSNDP, see, e.g., [3, 6, 12]. At first one may assume that the NDPVC and the kHSNDP
are equivalent, at least when H = H ′. The reason for this is that if one would ignore the hop constraints,

2

1 2 3

4 5

Figure 2: A feasible solution for the edge disjoint variant of NDPVC with k = 2, R = {{1, 3}}, H13 = 2,
H ′

13 = 3, that does not contain two edge disjoint paths of length 2 and 3 between nodes 1 and 3, cf. Exoo
[4].

the two problems, kHSNDP and NDPVC, become equivalent. This equivalence follows immediately from
Menger’s theorem [13]. As a matter of fact, quite often in the literature, mathematical formulations for
modeling survivable networks are derived using the results of the Menger’s theorem (see, e.g, Grötschel
et al. [8], Kerivin and Mahjoub [9], Ljubić [11]).

Unfortunately, once the hop-constraints are imposed, the two problems are no longer equivalent, since
hop-constrained Mengerian-like theorems (see Section 2 for a more formal definition and discussion) are
valid only for small or large hop-limits. To see that the two problems, NDPVC and kHSNDP, are different
in general case, consider the example given in Figure 2. Assume that a network provider wants to make
this network survivable against single edge failures (i.e., k = 2), and to protect the vulnerability of the
network by assuming that for a commodity pair R = {{1, 3}}, the distance between 1 and 3 should be
at most H13 = 2 and, after a single edge failure, this distance should not be greater than H ′

13 = 3. The
path P = (1, 2, 3) is the unique (1, 3)-path of length less than or equal to H13. If an arbitrary edge in this
graph fails, the solution will still contain a feasible (1, 3)-path of length at most three. Hence, the graph
depicted in Figure 2 is a feasible NDPVC solution. On the other hand, if the network provider would try
solve the related kHSNDP on this graph, instead, then one can easily observe that no feasible solution
exist. A feasible kHSNDP solution needs to contain two edge-disjoint paths between 1 and 3, such that
one path contains at most H13 edges and the other at most H ′

13 edges. This is, however impossible,
since the only (1, 3)-path P ′ that is edge disjoint to P , is given by P ′ = (1, 4, 2, 5, 3) and has length four.
This example illustrates that for network providers it could be more attractive to consider the NDPVC
to protect vulnerability of a network, rather than the kHSNDP.

This example can be easily generalized for k ≥ 3 and for other values of Hst and H ′
st, {s, t} ∈ R. The

optimal value of kHSNDP always gives an upper bound on the optimal value of the NDPVC. It is easy to
find examples where solutions to both problems exist but the optimal solution to the kHSNDP is more
expensive than of the NDPVC. Observe that not only the gap between the cost of an optimal solution
of NDPVC and kHSDNP can be arbitrarily large, but, as demonstrated above, there exist networks
which are feasible for NDPVC but infeasible for kHSNDP. Since these relations motivate this work we
summarize them in Observation 1.

Observation 1. Let I be an arbitrary, feasible instance of the NDPVC and v(I) be its optimal cost.
Then, exactly one of the following holds:

(i) There does not exist a feasible solution of the kHSNDP for I.

(ii) v(I) ≤ v′(I), where v′(I) is the optimal cost of the kHSNDP for I.

Furthermore, there exist instances such that v(I) < v′(I) and v′(I)
v(I) can be arbitrary large.

Note also that, cases in which R is induced by all node pairs {s, t} from a given set of “terminals”
T , i.e., R = {{s, t} | s, t ∈ T }, give rise to several interesting diameter variants of the problem. As one
example, we mention the case when Hst = D and H ′

st = D′ for all {s, t} ∈ R, in which case we aim
to identify a minimum cost Steiner subgraph with diameter at most D such that after the removal of k
edges (nodes), the graph is connected and has diameter at most D′.

The remainder of this article in which we mainly focus on the case of single edge failures (i.e.
k = 2) is organized as follows. We point out some graph-theoretical properties concerning the valid-
ity of Mengerian-like theorems involving distance constraints in Section 2. In Section 3 we present the

3

integer linear programming (ILP) formulations for the NDPVC that are based on three graph-theoretical
characterizations of solutions. The results of our computational study are given in Section 4 where we
compare the linear programming (LP) relaxation bounds of all proposed formulations, examine their
efficiency in computing optimal integer solutions and make a comparative study of the optimal solutions
of the NDPVC and the kHSNDP. Finally, we briefly address the node failure case in Section 5 before we
draw final conclusions in Section 6 where we also comment on the case of multiple edge- or node-failures
and point out interesting directions for future work.

2 Mengerian-like results

The problems dealing with network vulnerability and preservation of diameters (or hop-constraints be-
tween a given subset of node pairs) have been very popular in the graph theory since the 60’s. Most of
these articles, however, study special graph properties related with the concept of edge (or node) persis-
tence of a graph, which is the minimum number of edges (nodes) whose removal increases the diameter.
Apparently, very few edge cost minimization problems addressing vulnerability in the way considered in
this paper, do exist in the literature. One such example is the problem of finding graphs G with a given
number of nodes and with a minimum number of edges, so that the diameter of G is D, and such that
after a removal of any k− 1 edges (nodes) from G, the remaining graph has diameter at most D′, see [2].
This problem might be viewed as a cost minimization problem with uniform edge costs equal to one.

In this section, we describe in more detail Mengerian results with hop constraints. One of the two
results is well known from the literature, see for instance [2] and [4], and the other is a variant where the
hop limit is not the same for all paths. Although Result 2 is new, we only provide a proof sketch below
since a complete proof would be similar to the one of Result 1.

Result 1 (“Mengerian-like result for edge-disjoint hop-constrained paths”, Exoo [4], Bermond et al.
[2]). Let i and j be two distinct nodes of a given graph G = (V,E), such that the length of the shortest
(i, j)-path is H, H ≤ 3 or H ≥ |V |−1. Then, the minimal number of edges that need to be removed from
G in order to increase the length of the shortest (i, j)-path, is equal to the maximum number of pairwise
edge-disjoint paths from i to j of length at most H.

Result 2 (“Mengerian-like result for edge-disjoint hop-constrained paths with H < H ′”). Let i and j
be two distinct nodes of a given graph G = (V,E) that contains at least one path from i to j of length at
most H. Then, minimal number of edges k after whose removal G does not contain a path from i to j
of length at most H ′, H ′ > H, is equal to the maximum number of pairwise edge-disjoint paths from i to
j of length at most H ′ (where one of them is of length at most H) if H ≥ |V | − 1 or H = 1 and either
k = 2 or H ′ ≤ 3 or H ′ ≥ |V | − 1.

Observe that when H ≥ |V | − 1 in Result 1 we obtain the unconstrained case mentioned above. The
NDPVC and the kHSNDP are equivalent if we consider H and H ′ satisfying the conditions of any of
the two results. Also, in such cases we can use the methods already devised for the equivalent kHSNDP
and do not need to look for alternative models.

It is, however, not difficult to see that Result 1 does not hold for the other cases, see Exoo [4] for
counterexamples. Notice, that Result 2 obviously holds for H = 1 and k = 2 since every backup path
of some commodity {s, t} must be edge-disjoint from the only feasible primary path defined by the edge
{s, t}. The example illustrated in Figure 2 shows that Result 2 does not hold for H ≥ 2. The result
follows from observing that the case k ≥ 3 and H = 1 can be reduced to the case of Result 1 by decreasing
k by one, removing the edge {s, t} and setting H = H ′.

3 ILP Formulations

In this section, we will first introduce a generic formulation for the NDPVC, see Section 3.1. For any
{s, t} ∈ R, the required path of length at most Hst will be called primary path while the edges necessary
to ensure the existence of a path of length at most H ′

st after at most k − 1 edge failures will be called
backup edges. We will consider two building blocks, one corresponding to the design of the primary
path, and the other to the set of the backup edges. While models for designing the primary path can be
straightforwardly taken from the literature (see, e.g., [5, 6] and [17] for a more recent article), this is not

4

true for models used to determine the optimal set of backup edges. In Section 3.2, we will provide three
characterizations of valid sets of backup edges.

Each characterization will be used to derive hop-indexed multicommodity flow based formulations in
Section 3.3. For the latter, we will assume k = 2, i.e., we ensure survivability against single edge failures.

Notation In the following, we will use T = {s ∈ V | ∃{s, t} ∈ R, s < t} to denote the set of
commodity origins (sources) and T (s) = {t ∈ V | {s, t} ∈ R, s < t} to denote the set of commodity
destinations (targets) of origin s ∈ T . Let A = {(i, j) | {i, j} ∈ E} denote the arc set obtained from
bi-directing edge set E. For a subset W ⊂ V ′ of nodes of some graph G′ = (V ′, E′), we will use
δ(W) = {{i, j} ∈ E′ | i ∈ W, j /∈ W} to denote the cutset of W with respect to G′. Let, furthermore
dij ∈ N denote the minimum distance between nodes i and j in G (measured in the number of hops).
Then, for each commodity pair {s, t} ∈ R, Ast = {(i, j) ∈ A | dsi + djt + 1 ≤ Hst} and A′

st =
{(i, j) ∈ A | dsi + djt + 1 ≤ H ′

st} are the sets of arcs feasible for establishing a primary or secondary
connection of commodity {s, t}, respectively. Similarly, Est = {{i, j} ∈ E | (i, j) ∈ Ast ∨ (j, i) ∈ Ast}
and E′

st = {{i, j} ∈ E | (i, j) ∈ A′
st ∨ (j, i) ∈ A′

st} are the sets of eligible primary and secondary edges for
commodity {s, t} while Vst = {i ∈ V | ∃{i, j} ∈ Est} and V ′

st = {i ∈ V | ∃{i, j} ∈ E′
st} are the eligible

nodes within a primary or secondary connection, respectively. Finally, for e = {i, j} ∈ E and a set of
arcs A′ let A′[e] = A′ \ {(i, j), (j, i)}.

3.1 Generic Formulation.

Let xe ∈ {0, 1}, for all e ∈ E, be decision variables indicating whether or not an edge e ∈ E is used in a
solution, and let E(x) denote the set of edges such that xe = 1. Let furthermore,

Fst = {x ∈ {0, 1}|E| | ∃ (s, t)-path P in E(x) s.t. |P | ≤ Hst}

be the set of feasible incidence vectors x containing a path of length at most Hst for each commodity
pair {s, t} ∈ R. Similarly, for the set of backup edges, we will denote by

Bst = {x ∈ {0, 1}|E| |∀F ⊂ E, |F | = k − 1,

∃ (s, t)-path P in E(x) \ F s.t. |P | ≤ H ′
st}

the set of feasible incidence vectors of x ensuring the required redundancy, i.e., the existence of a path of
length at most H ′

st for each commodity pair {s, t} ∈ R after removing k − 1 edges. To be more precise
Bst depends on the set of chosen primary edges. To keep notation simple, we will, however, maintain
the notation used above.

A generic ILP formulation for the NDPVC is given by (1)–(4).

min
∑

e∈E

cexe (1)

s.t. x ∈ Fst {s, t} ∈ R, (2)

x ∈ Bst {s, t} ∈ R, (3)

x ∈ {0, 1}|E|. (4)

As pointed out before, modeling Fst is well known from the literature. In the next section we provide
three characterizations for the set of backup edges that will permit us to provide models for Bst.

3.2 Graph theoretical characterization of Bst

In this subsection we provide three characterizations of the set Bst. The first characterization is straight-
forward, while the remaining two are based on less obvious and, as far as we know, new observations that
motivate more efficient models. In fact, we can even say that these new characterizations also motivate
the current study.

5

Characterization 1 (CH1). Let P ⊂ Est be the primary (s, t)-path of length ≤ Hst for a given com-
modity {s, t} ∈ R. Then, a valid set of backup edges Ê is established by ensuring that:

∀e ∈ P, ∃ (s, t)-path P ′[e] ⊂ E′
st \ {e}, s.t. |P ′[e]| ≤ H ′

st.

Thereby, Hst ≤ H ′
st and Ê =

(
⋃

e∈P P ′[e]
)

\ P .

For the remaining two observations, we observe that for each primary path of length l ≤ Hst associated
with some commodity {s, t} ∈ R, it suffices to establish only l additional secondary (s, t)-paths, each of
length at most H ′

st, provided that we additionally ensure that no edge of the primary path is contained
in all of them. Thus, each potentially failing edge (from the primary path) is covered by at least one
backup path.

Characterization 2 (CH2). Let P ⊂ Est be the primary (s, t)-path of length l, l ≤ Hst, for a given
commodity {s, t} ∈ R. Then, a valid set of backup edges Ê is established by ensuring that there exist l
additional (s, t)-paths P ′

i ⊂ E′
st, i = 1, 2, . . . , l, of length at most H ′

st, H
′
st ≥ Hst, such that at most l− 1

of them contain the same edge from P , i.e.:

∃ (s, t)-paths P ′
i ⊂ E′

st, i = 1, 2, . . . , l, s.t. |P ′
i | ≤ H ′

st

and ∀e ∈ P :

l
∑

i=1

|P ′
i ∩ {e}| ≤ l − 1.

Thereby, Ê =
(

⋃l
i=1 P

′
i

)

\ P .

The last characterization is more informative than the previous one. It will permit us to define models
that are disaggregations of the ones based on Characterization 2. To describe the necessary backup edges
for a primary path of commodity {s, t} ∈ R of length l ≤ Hst, we ensure the existence of l additional
(s, t)-path of length at most H ′

st such that the lth such path does not use the lth edge of the primary
path.

Characterization 3 (CH3). Let P = {e1, e2, . . . , el} ⊂ Est be the primary (s, t)-path of length l, l ≤ Hst

for a given commodity {s, t} ∈ R, such that ei = {ui−1, ui}, ui ∈ Vst, i = 1, 2, . . . , l, u0 = s, and ul = t.
Then, a valid set of backup edges Ê is established by ensuring that:

∃ (s, t)-paths P ′
i ⊂ E′

st, i = 1, 2, . . . , l, s.t. |P ′
i | ≤ H ′

st and P ′
i ∩ {ei} = ∅.

Thereby, Hst ≤ H ′
st and Ê =

(

⋃l

i=1 P
′
i

)

\ P .

3.3 Hop-indexed Formulations

In this subsection we present, as noted before, hop-indexed multicommodity flow based formulations for
Fst and Bst.

3.3.1 Formulation for Fst

For a given {s, t} ∈ R, a formulation for Fst can be derived by using variables yst,hij ∈ {0, 1}, indicating
whether or not arc (i, j) ∈ Ast is used at position h, in the path from source s to target t, for all
(i, j) ∈ Ast, h ∈ {1, 2, . . . , Hst}. The following system (5)–(9) can be used to model (2):

∑

(s,j)∈Ast

yst,1sj = 1 (5)

∑

(i,j)∈Ast

yst,hij =
∑

(j,i)∈Ast

yst,h+1
ji i ∈ Vst \ {s, t}, h ∈ {1, . . . , Hst − 1} (6)

Hst
∑

h=1

∑

(i,t)∈Ast

yst,hit = 1 (7)

6

Hst
∑

h=1

(yst,hij + yst,hji) ≤ xe e = {i, j} ∈ Est (8)

yst,hij ∈ {0, 1} (i, j) ∈ Ast, h ∈ {1, . . . , Hst} (9)

Equations (5)–(7) establish the flow system in the space of disaggregated variables while inequal-
ities (8) are the linking constraints between variables y and x. Notice, that constraints (8) can be
strengthened in a similar manner as previously considered inequalities by the so-called bidirectional
commodity-pair forcing constraints, cf. Balakrishnan et al. [1]. Similar ways for strengthening the link-
ing constraints for all models introduced in the remainder of this article can also be proposed. For
simplicity, we will omit references to them in the appropriate places.

3.3.2 Formulation for Bst based on Characterization 1

We can easily obtain a valid formulation for Bst based on Characterization 1. We will need to provide
a set of variables and a system for each commodity {s, t} ∈ R and each possible edge failure. Thus

consider variables zste,hij ∈ {0, 1}, ∀s ∈ T , ∀t ∈ T (s), ∀e ∈ Est, ∀(i, j) ∈ A′
st[e], ∀h ∈ {1, 2, . . . , H ′

st},
indicating whether arc (i, j) is used at position h of the backup path of commodity {s, t} not using edge
e. The corresponding formulation is given by (10)–(14).

∑

(s,j)∈A′

st
[e]

zste,1sj =

Hst
∑

h=1

(

yst,huv + yst,hvu

)

e = {u, v} ∈ Est (10)

∑

(i,j)∈A′

st
[e]

zste,hij =
∑

(j,i)∈A′

st
[e]

zste,h+1
ji e ∈ Est, i ∈ V ′

st \ {s, t},

h ∈ {1, . . . , H ′
st − 1} (11)

H′

st
∑

h=1

∑

(i,t)∈A′

st
[e]

zste,hit =

Hst
∑

h=1

(

yst,huv + yst,hvu

)

e = {u, v} ∈ Est (12)

H′

st
∑

h=1

(zstb,hij + zstb,hji) ≤ xe b ∈ Est, e = {i, j} ∈ E′
st \ {b} (13)

zste,hij ∈ {0, 1} e ∈ Est, (i, j) ∈ A′
st[e], h ∈ {1, . . . , H ′

st} (14)

For each commodity {s, t} ∈ R, equations (10)–(12) establish that one unit of backup flow (not
using edge e) must be sent between s and t if edge e is contained in the primary path between s and t.
This condition is indicated by the right hand side of equations (10) and (12). Inequalities (13) are the
straightforward linking constraints.

3.3.3 Formulations for Bst based on Characterization 2

Aggregated formulation Characterization 2 can be enforced by using a straightforward hop-indexed
model with an additional set of constraints guaranteeing the condition described in the characterization.
More precisely, for each {s, t} ∈ R, constraint (3) of the generic model is replaced by constraints (15)–

(20). This formulation uses integer variables z̃st,hij ∈ {0, 1, . . . , Hst}, ∀{s, t} ∈ R, ∀(i, j) ∈ A′
st, ∀h ∈

{1, 2, . . . , H ′
st}, indicating the number of backup paths for commodity {s, t} that use arc (i, j) at position

h.

∑

(s,j)∈A′

st

z̃st,1sj =

Hst
∑

h=1

∑

(i,t)∈Ast

hyst,hit (15)

∑

(i,j)∈A′

st

z̃st,hij =
∑

(j,i)∈A′

st

z̃st,h+1
ji i ∈ V ′

st \ {s, t}, ∀h ∈ {1, . . . , H ′
st − 1} (16)

7

H′

st
∑

h=1

∑

(i,t)∈A′

st

z̃st,hit =

Hst
∑

h=1

∑

(i,t)∈Ast

hyst,hit (17)

Hst
∑

h=1

(

yst,hij +yst,hji

)

+

H′

st
∑

h=1

(

z̃st,hij +z̃st,hji

)

≤
Hst
∑

h=1

∑

(i,t)∈Ast

hyst,hit {i, j} ∈ Est (18)

H′

st
∑

h=1

(

z̃st,hij + z̃st,hji

)

≤ Hstxe e = {i, j} ∈ E′
st (19)

z̃st,hij ∈ {0, 1, . . . , Hst} s ∈ T, t ∈ T (s), (i, j) ∈ A′
st (20)

Equations (15)–(17) ensure that for each commodity pair {s, t} ∈ R the amount of flow z̃st sent from
s to t matches the length of the primary path between s and t. Inequalities (18) prevent that all units
of backup flow are routed along a single edge that is used in the primary path and therefore assure the
existence of an (s, t)-path of length at most H ′

st after an edge failure, cf. Characterization 2. Finally,
constraints (19) are the aggregated linking constraints.

The linear programming relaxation of the previous formulation can be improved by observing that
at most all but one of the backup paths of each commodity can be routed via each edge of the primary
path. Thus, for the edges e ∈ Est, that is edges that may be contained in the primary path, we can
strengthen the linking constraints (19) by adding to the left hand side information indicating whether or
not the edge is used in the primary path. That is, for e ∈ Est, we use instead the following set of linking
constraints.

Hst
∑

h=1

(

yst,hij + yst,hji

)

+

H′

st
∑

h=1

(

z̃st,hij + z̃st,hji

)

≤ Hstxe e = {i, j} ∈ Est (21)

Observe that we maintain (19) for edges e ∈ E′
st \ Est. Computational results show that with the

stronger set of linking constraints the bounds of the aggregated models improve substantially on certain
instances.

Disaggregated model It is easy to see that in order to model Characterization 3 we need informa-
tion from each of the paths in each commodity. For that we need a model that can be viewed as a
disaggregation of the previous model. However, we can view this disaggregated model still in terms of
Characterization 2 and as a means to improve the performance of the original “aggregated model”.

Thus, for each commodity {s, t} ∈ R, we consider binary variables ẑstl,hij ∈ {0, 1}, for all (i, j) ∈ A′
st,

l ∈ {1, 2, . . . , Hst}, and h ∈ {1, 2, . . . , H ′
st}. Variable ẑstl,hij is set to one if arc (i, j) is used at position h

in the backup path with index l, and to zero, otherwise. In this model, for each {s, t} ∈ R, constraint
(3) is replaced by (22)–(27).

∑

(s,j)∈A′

st

ẑstl,1sj =

Hst
∑

h=l

∑

(i,t)∈Ast

yst,hit l ∈ {1, . . . , Hst} (22)

∑

(i,j)∈A′

st

ẑstl,hij =
∑

(j,i)∈A′

st

ẑstl,h+1
ji i ∈ V ′

st \ {s, t}, l ∈ {1, . . . , Hst},

h ∈ {1, . . . , H ′
st − 1} (23)

H′

st
∑

h=1

∑

(i,t)∈A′

st

ẑstl,hit =

Hst
∑

h=l

∑

(i,t)∈Ast

yst,hit l ∈ {1, . . . , Hst} (24)

Hst
∑

h=1

(

yst,hij +yst,hji

)

+

H′

st
∑

h=1

Hst
∑

l=1

(

ẑstl,hij +ẑstl,hji

)

≤
Hst
∑

h=1

∑

(i,t)∈Ast

hyst,hit {i, j} ∈ Est (25)

8

H′

st
∑

h=1

(

ẑstl,hij + ẑstl,hji

)

≤ xe l ∈ {1, . . . , Hst}, e = {i, j} ∈ E′
st (26)

ẑstl,hij ∈ {0, 1} (i, j) ∈ A′
st, l ∈ {1, . . . , Hst}, h ∈ {1, . . . , H ′

st} (27)

For each l ∈ {1, . . . , Hst}, constraints (22)–(24) establish that one unit of backup flow must be sent
between s and t if the primary path between s and t has at least l arcs. Inequalities (25) ensure the extra
condition of Characterization 2, namely that no edge of the primary path will be used by all established
backup paths of one commodity. Constraints (26) are the linking constraints but as in the case of the
aggregated model they can be tightened into

Hst
∑

h=1

(

yst,hij + yst,hji

)

+

Hst
∑

l=1

H′

st
∑

h=1

(

ẑstl,hij + ẑstl,hji

)

≤ Hstxe e = {i, j} ∈ Est (28)

for edges e ∈ Est.
It is worth to compare in size, this disaggregated model with the formulation used to model Char-

acterization 1. The latter includes one set of variables and one set of constraints for each commodity
and each possible edge failure. The disaggregated formulation described in this subsection considers one
set of variables and constraints for each commodity and each possible edge failure “of the edges in the
primary path associated to the considered commodity” whose number is bounded from above by Hst.
Thus, we see a substantially gain, at least in terms of size for formulations used for Characterization 2.

Relating the LP bounds of the two formulations We start by pointing out that in several situa-
tions, the aggregated model produces the same LP bound as the disaggregated model, see for instance [6],
in which case it is clearly preferable to the disaggregated one. In fact, it is also with such an aggregated
model that the good results reported in Botton et al. [3] are obtained. However, in many other situations
the models are not equivalent (see, for instance Gouveia et al. [7]) due to extra constraints, although in
most of such cases the aggregated model is more efficient for computing the optimal solutions. In fact,
here we are in a similar situation as we see next.

The following constraints link the two sets of variables, from the disaggregated and the aggregated
model:

z̃st,hij =

Hst
∑

l=1

ẑstl,hij .

This relation permits us to relate the LP relaxation of the two models. In fact it is easy to see
that the disaggregated model is at least as strong as the aggregated model. This follows from the facts
that constraints (18) are constraints (25) rewritten with the aggregated variables and that (19) (or (21))
result from adding (26) (or (28)) for all l ∈ {1, . . . , Hst}. Our computational results show that for some
instances the disaggregated model provides slightly better bounds. It also turns out (see Section 4) that
the aggregated model typically outperforms the disaggregated one when attempting to obtain optimal
integer solutions.

3.3.4 Formulation for Bst based on Characterization 3

Characterization 3 can be easily written in terms of the disaggregated model of the previous subsection,
because the variables associated to the primary path systems have information on the position of each
arc in the path and the disaggregated model has a separate hop-indexed system for each backup path l
with l ∈ {1, . . . , Hst}. Recall that Characterization 3 assumes a one-to-one correspondence between the
lth edge in the primary path, and the lth backup path, and requires that the corresponding backup path
does not contain the lth primary edge. This property can be ensured by replacing inequalities (25) by
the following inequalities.

yst,lij +yst,lji +

H′

st
∑

h=1

(

ẑstl,hij +ẑstl,hji

)

≤ xe e = {i, j} ∈ E′
st, l ∈ {1, . . . , Hst} (29)

9

We observe that the new constraints (29) are a disaggregation of constraints (28). However, the
aggregated constraints (28) do not even guarantee the extra condition of Characterization 2, namely
that no edge of the primary path will be used by all established backup paths of one commodity.
That is why we need constraints (25) to obtain a valid model based on Characterization 2. On the
other hand, constraints (29) guarantee the condition of Characterization 3 and we can obtain a valid
model for Bst by replacing (25) by (29) in (22)–(27). In oder to compare the linear programming
relaxation of the two disaggregated models, the one guaranteeing Characterization 2 and the one just
presented that guarantees Characterization 3, we first observe that by summing constraints (29) over all
l ∈ {1, . . . , Hst} shows that they imply (28). Observe also that the same argument also shows that they
imply (26). However, computational experiments prove that constraints (25) are not implied by (29)
in terms of linear programming relaxations. Preliminary computational experiments showed that the
gain (in terms of LP bounds) from considering both (25) and (29) simultaneously is usually very small
and does not compensate the additional time needed for solving the resulting, even larger model. Thus,
in our computational study we consider this disaggregated formulation without (25) but conclude this
section by emphasizing that from a theoretical perspective the LP relaxation of the last model does not
imply the LP relaxation of the previous one.

4 Computational Study

The purpose of our computational study is threefold: (i) to empirically compare the quality of the linear
programming relaxations of the proposed models obtained from the three different characterizations; (ii)
to analyze the performance of these models within a general-purpose ILP solver; (iii) to compare the
solutions obtained by considering the NDPVC to those of the kHSNDP. Notice that (i), (ii) and (iii) focus
on the relative potential of the different formulations. Thus, we do not use a problem specific (initial
or primal) heuristic but rely on the heuristics included in the used general-purpose solver. Clearly, the
absolute performance could be improved (for each of the considered formulations) by augmenting the
approach with such heuristic components.

For this purpose, all formulations described in the previous sections have been implemented in C++
using IBM CPLEX 12.6, see Table 1 for a summary. Thereby, standard settings of CPLEX have been used
and each experiment has been performed on a single core within a cluster of computers, each consisting
of 20 cores (2.3GHz). A time limit of 7 200 CPU-seconds and a memory limit of 3GB has been applied to
each experiment. We used identical (commodity independent) primary and secondary hop limits H and
H ′ for all commodities, i.e., Hst = H and H ′

st = H ′, for all {s, t} ∈ R. In our computational study we
have considered uniform hop-limits over all commodities, with the following options for each instance:
H ∈ {Hmin, Hmin + 1, Hmin + 2} and H ′ ∈ {H,H + 1, H + 2} with Hmin = max{s,t}∈R dst indicating the
smallest commodity independent hop limit that may enable a feasible solution of the instance.

Table 1: Overview on all considered formulations. Formulation name (Name), constraints used for Bst

(Cons), used characterization (Char), model variant (Variant), and numbers of variables (#var) per
commodity {s, t} ∈ R.

Name Cons Char Variant #var

H1 (5)–(9) 1 - O(AstHst + A′
stAstH

′
st)

H2 (22)–(27) 2 disaggregated O(AstHst + A′
stHstH

′
st)

HS
2 (22)–(27), (28) 2 disaggregated, strong linking O(AstHst + A′

stHstH
′
st)

HA
2 (15)–(20) 2 aggregated O(AstHst + A′

stH
′
st)

HAS
2 (15)–(20), (21) 2 aggregated, strong linking O(AstHst + A′

stH
′
st)

H3 (22)–(24), (26), (27), (29) 3 - O(AstHst + A′
stHstH

′
st)

4.1 Benchmark Instances

We have created two classes of benchmark instances that are described in detail in the following two
paragraphs. One main difference between the two instances classes is their graph topology. The first
class is based on grid graphs with chords while the second one is generated by keeping only the cheapest
edges from a randomly generated complete graph.

10

Table 2: Summary of parameters used for creating grid instance sets and resulting minimum, average,
and maximum values of Hmin.

Hmin

Set X Y |R| # |V | |E| HL HU Cmin Cmax CD
min CD

max min avg max
C 10 10 5 20 100 342 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 3 4.7 7
C 10 10 10 20 100 342 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 4 5.4 7
C 20 20 5 20 400 1482 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 3 4.7 7
C 20 20 10 20 400 1482 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 4 5.1 7
C 20 20 20 20 400 1482 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 4 5.8 7
C 30 30 5 20 900 3422 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 3 4.7 7
C 30 30 10 20 900 3422 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 4 5.4 7
C 30 30 20 20 900 3422 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 4 5.6 7
C 30 30 30 20 900 3422 2 ∈ {5, 7} 1 10 10 ∈ {20, 50} 4 5.9 7
D 5 5 10 10 25 72 - - 1 10 10 ∈ {20, 50} 3 3.8 4
D 7 7 10 10 49 156 - - 1 10 10 ∈ {20, 50} 4 5.2 6
D 10 10 10 10 100 342 - - 1 10 10 ∈ {20, 50} 7 8.2 9
D 10 10 45 10 100 342 - - 1 10 10 ∈ {20, 50} 6 8.1 9
D 20 20 10 10 400 1482 - - 1 10 10 ∈ {20, 50} 12 14.6 18

Grid instances Within this class, we have created two subsets of benchmark instances which are
based on grid-graphs additionally including two chords for each 4-cycle. Their structure is motivated
from street networks (which may be represented by grid graphs) in which diagonal connections (chords
in the resulting 4-cycles) are possible but usually more expensive. Each generated instance consists of
X · Y nodes, where X and Y are the numbers of columns and rows in the resulting graph, see Figure 3
for one example. Costs of horizontal and vertical edges (that correspond to lay cables along streets) are
integer values chosen randomly from the interval [Cmin, Cmax] while costs of the remaining “diagonal”
edges are random integers from [CD

min, C
D
max].

1

X + 1

X

XY

Figure 3: Structure of the created input graphs for grid instances.

The two subclasses differ with respect to the selection of commodities. For set C, we first chose |R|
nodes as commodity sources uniformly at random. For each source s, we then pick the corresponding
target node at random among all nodes t ∈ V such that dst ∈ [HL, HU], i.e., the distance between s and
t (measured in hops) is at least HL and at most HU. Thereby, we also ensure that no commodity is
created twice. Instances from set D correspond to the diameter variant of the problem mentioned in the
introduction. Thus, |T | nodes are chosen uniformly at random as terminals and one commodity is created

for each pair of selected nodes, i.e., we have |R| =
(

|T |
2

)

and R = {{s, t} | s, t ∈ T, s < t}. In either case
(i.e., both for instances of set C and D) we created five instances for each considered combination of
parameters. Table 2 provides a summary of all considered parameters for grid-graph based instances in
which we also report minimum, average and maximum values of Hmin for the instances of each set.

Random (Euclidean) instances This class consists of two subclasses (EU and RE) of benchmark
instances that have been created as follows: First a complete graph (V,E) is created that consists of

11

Table 3: Summary of parameters used for creating (random) Euclidean instance sets and resulting
minimum, average, and maximum values of Hmin.

Hmin

Set |V | |E| |R| # α β min avg max
E 50 122 10 5 1 0.1 6 7.6 9
E 50 122 45 5 1 0.1 7 8.6 11
E 50 245 10 5 1 0.2 4 4.6 6
E 50 245 45 5 1 0.2 4 4.8 6
E 75 277 10 5 1 0.1 5 5.6 6
E 75 277 45 5 1 0.1 6 8.6 12
E 75 555 10 5 1 0.2 3 4.4 6
E 75 555 45 5 1 0.2 4 4.6 5
E 100 495 10 5 1 0.1 5 5.2 6
E 100 495 45 5 1 0.1 6 7.2 9
E 100 990 10 5 1 0.2 3 4.0 5
E 100 990 45 5 1 0.2 3 4.8 6

RE 50 122 10 5 [1,10) 0.1 3 4.6 6
RE 50 122 45 5 [1,10) 0.1 4 5.2 6
RE 50 245 10 5 [1,10) 0.2 2 2.8 3
RE 50 245 45 5 [1,10) 0.2 3 3.0 3
RE 75 277 10 5 [1,10) 0.1 3 3.8 4
RE 75 277 45 5 [1,10) 0.1 4 4.2 5
RE 75 555 10 5 [1,10) 0.2 2 2.6 3
RE 75 555 45 5 [1,10) 0.2 2 2.8 3
RE 100 495 10 5 [1,10) 0.1 3 3.6 5
RE 100 495 45 5 [1,10) 0.1 4 4.0 4
RE 100 990 10 5 [1,10) 0.2 2 2.0 2
RE 100 990 45 5 [1,10) 0.2 3 3.0 3

|V | nodes which are placed at random integer coordinates (x, y) ∈ [0, 100) × [0, 100). As for instance
set D, |T | of these nodes are chosen uniformly at random as terminals and one commodity is created
for each pair of terminals. Let duv denote the Euclidean distance between nodes u and v. The costs
of each edge (u, v) ∈ E are set to ⌈αduv⌉. Thereby, parameter α is set to one for instance family EU
(Euclidean instances) and to a random value in [1, 10) that is drawn uniformly at random individually
for each edge for instance family RE (random Euclidean instances). Parameter β, 0 ≤ β ≤ 1 defines

the desired density of the resulting graph, i.e., all but ⌊β
(

|V |
2

)

⌋ edges of the previously created complete
graph are removed. To this end, let T be a minimum spanning tree of graph (V,E) and T ′ be a minimum
spanning tree of V,E \ T), i.e., a tree of (V,E) that is edge disjoint from T ensuring that there are at
least two edge disjoint paths between every pair of nodes in (V, T ∪ T ′). Let E′ ⊆ E \ (T ∪ T ′) be the

max{0, ⌊β
(

|V |
2

)

⌋−2(|V |−1)} cheapest edges of E not contained in any of these two spanning trees. Then,
the final graph defining an instance is given by (V,E′ ∪ T ∪ T ′). Five instances have been created for
each subclass and each considered combination of |V | ∈ {50, 75, 100}, |T | ∈ {5, 10}, and β ∈ {0.1, 0.2}.
Table 3 provides a summary of all considered parameters for these instances including minimum, average
and maximum values of Hmin for the instances of each set.

4.2 Quality of the LP Relaxation Values

We first compare the quality of lower bounds (LP relaxation) of the proposed formulations and the time
needed to compute them. For each considered formulation M ∈ {H1, H2, HA

2 , HS
2 , HAS

2 , H3}, Figure 4
shows gaps between the LP relaxation (LP(M)) and the best upper bound (UB) obtained for that
particular instance (by any of the tested formulations) in our computational study which are computed

as UB−LP(M)
LP(M) . Thereby, we only consider those instances for which the optimal solution value of either

the NDPVC or the kHCNDP is known in order to ensure that the value of UB is close to the real
optimum. Corresponding CPU-times for solving the LP relaxations are shown in Figure 5. In addition,
Tables 4 and 5 summarize numbers of instances for which the LP relaxation could be solved within the
given time and memory limits and corresponding average CPU-times grouped by the different instance

12

LP gap [%]

#

0 50 100 150

0
50

0
10

00
15

00
20

00

H1

H2

H2
S

H2
A

H2
AS

H3

(a) Grid instances

LP gap [%]

#

0 50 100 150

0
25

0
50

0
75

0

H1

H2

H2
S

H2
A

H2
AS

H3

(b) (Random) Euclidean instances

Figure 4: Cumulative numbers of instances (#) for which gap of LP relaxation to the best known solution
(LP gap [%]) is within a certain value. (a) Results for instance sets C and D. (b) Results for instance
sets EU and RE.

CPU−time [s]

#
so

lv
ed

0 600 3600 7200

0
50

0
10

00
15

00
20

00

H1

H2

H2
S

H2
A

H2
AS

H3

(a) Grid instances

CPU−time [s]

#
so

lv
ed

0 600 3600 7200

0
25

0
50

0
75

0
10

00

H1

H2

H2
S

H2
A

H2
AS

H3

(b) (Random) Euclidean instances

Figure 5: Cumulative numbers of instances (#solved) for which LP relaxation could be solved within a
certain time (CPU-time [s]). (a) Results for instance sets C and D. (b) Results for instance sets EU
and RE.

sets considered in this study.
From Figure 4 we first observe that formulation H3 based on Characterization 3 is significantly

stronger than all other variants on the considered instances. The gaps of its LP relaxation to the best
known solution can still be quite significant but are usually below 50%. In contrast, the gaps of all
other formulations are substantially larger in almost all cases. Formulation H1 seems to be stronger (in
practice) than the formulations based on Characterization 2 on grid based instances (see, Figure 4(a)).
On the contrary, this does not seem to be the case on (random) Euclidean) instances. The results on
the latter instances do not indicate a clear trend regarding the comparison of the empirically observed
LP gaps between H1 and the formulations based on Characterization 2. In both cases, solving the LP
relaxation of H1 was often impossible given the available computational resources due to its large number
of variables.

We also observe that two strengthened formulations based on Characterization 2 (HS
2 , HAS

2) are
significantly stronger than their simpler counterparts H2 and HA

2 , respectively. The bounds obtained
from the aggregated and disaggregated variants of the latter formulations (both for the weak and strong
alternatives) are almost identical. Here, we note that one cannot draw conclusions regarding theoretical
strength relations between the different models as the considered instances are different for the various

13

Table 4: Number of cases in which the LP relaxation could be solved (#solved) and corresponding average
CPU-times in seconds (tavg) for instance sets C and D. Best values are marked in bold.

#solved tavg [s]
Set |R| # H1 H2 HS

2 HA
2 HAS

2 H3 H1 H2 HS
2 HA

2 HAS
2 H3

C10x10 5 180 180 180 180 180 180 180 156 10 57 1 1 34
C10x10 10 180 141 180 177 180 180 180 2074 145 654 8 14 455
C20x20 5 180 143 180 180 180 180 180 1490 11 62 1 1 34
C20x20 10 180 80 180 179 180 180 180 4007 50 289 3 4 160
C20x20 20 180 13 170 146 180 180 148 6681 980 2318 63 130 2157
C30x30 5 180 102 180 180 180 180 180 3125 7 24 1 1 15
C30x30 10 180 21 180 180 180 180 180 6362 69 350 3 5 213
C30x30 20 180 4 176 160 180 180 161 7040 628 1605 30 56 1427
C30x30 30 180 0 144 130 180 180 134 7200 1918 3162 142 309 2813

D5x5 10 90 90 90 90 90 90 90 28 2 8 0 1 4
D7x7 10 90 90 90 90 90 90 90 400 33 167 2 3 81

D10x10 10 90 24 88 69 90 90 77 5498 1063 3221 29 61 2322
D10x10 45 90 0 30 10 90 86 15 7200 5841 6806 1053 2081 6499
D20x20 10 90 0 7 1 81 73 2 7200 6874 7120 2249 2920 7098

- - 2070 888 1875 1772 2061 2049 1797 4200 933 1494 167 266 1331

Table 5: Number of cases in which the LP relaxation could be solved (#solved) and corresponding average
CPU-times in seconds (tavg) for instance sets EU and RE. Best values are marked in bold.

#solved tavg [s]
Set |V | |E| |R| # H1 H2 HS

2 HA
2 HAS

2 H3 H1 H2 HS
2 HA

2 HAS
2 H3

EU

50 122 10 45 45 45 45 45 45 45 157 29 101 2 2 260
50 122 45 45 14 45 39 45 45 31 4997 929 2407 33 45 3068
50 245 10 45 35 45 44 45 45 45 2049 47 414 6 8 565
50 245 45 45 2 29 20 45 45 15 6880 3463 5070 372 651 5413
75 277 10 45 32 45 44 45 45 45 2504 106 642 9 11 771
75 277 45 45 0 16 9 45 45 9 7200 5317 6122 1006 1371 6235
75 555 10 45 7 45 38 45 45 29 6109 597 2246 58 125 3378
75 555 45 45 0 16 6 35 29 7 7200 5189 6490 3085 4155 6642

100 495 10 45 16 45 42 45 45 38 4741 351 1467 25 47 2119
100 495 45 45 0 10 6 33 28 5 7200 5836 6369 3269 4230 6496
100 990 10 45 2 37 23 45 45 20 6880 2239 4376 278 661 4569
100 990 45 45 0 7 5 16 12 5 7200 6222 6441 5319 5785 6446

RE

50 122 10 45 45 45 45 45 45 45 234 14 88 2 3 134
50 122 45 45 20 43 36 45 45 33 4857 1081 2649 57 84 3107
50 245 10 45 37 45 45 45 45 45 1505 18 124 3 6 155
50 245 45 45 15 40 30 45 45 29 5169 1815 3543 212 529 3389
75 277 10 45 36 45 45 45 45 45 1805 29 173 5 8 386
75 277 45 45 8 36 24 45 45 25 6126 2593 4246 330 648 4399
75 555 10 45 21 45 43 45 45 41 3879 128 823 22 46 1403
75 555 45 45 8 24 19 43 35 19 5990 3754 4601 1705 2862 4575

100 495 10 45 21 45 44 45 45 40 3906 212 1103 21 39 1635
100 495 45 45 1 21 12 41 32 13 7040 4667 5757 2182 3136 5796
100 990 10 45 21 45 43 45 45 39 3850 71 1064 26 81 1505
100 990 45 45 0 18 12 25 20 13 7200 4976 5825 4151 4578 5721

- - - 1080 386 837 719 1003 966 681 4778 2070 3006 924 1213 3257

14

CPU−time [s]

#
so

lv
ed

0 600 3600 7200

0
50

0
10

00
15

00
20

00

H1

H2
S

H2
AS

H3

(a) Grid instances

CPU−time [s]

#
so

lv
ed

0 600 3600 7200

0
25

0
50

0
75

0
10

00

H1

H2
S

H2
AS

H3

(b) (Random) Euclidean instances

Figure 6: Cumulative numbers of instances (#solved) solved within a certain time (CPU-time [s]). (a)
Results for instance sets C and D. (b) Results for instance sets EU and RE.

variants (only those instances where the LP relaxation was solved are considered). From our detailed
results, we observe that the disaggregated variants are sometimes slightly stronger than their aggregated
counterparts. This difference was, however, extremely small and the obtained bounds were identical in
many cases.

Considering the CPU-times given in Figure 5 we observe that the LP relaxations of the two aggregated
variants HA

2 and HAS
2 can be solved much faster than those of all others. Solving the LP relaxations of

formulation H3 takes approximately the same time as for the strong variant of the disaggregated model
based on Characterization 2, i.e., HS

2 . Model H1 clearly is too slow to be of much use in practice. Overall,
formulations HAS

2 and H3 seem to provide the best compromises between strength of their LP relaxations
and the time needed to solve them.

These observations are also supported by the more detailed results reported in Tables 4 and 5.

4.3 Capability of Computing Optimal Solutions

Our next goal was to compare the performance of the proposed models, when it comes to finding optimal
or near-optimal solutions. As discussed above, the bounds of formulations H2 and HA

2 are extremely
weak. We therefore do not consider these two variants in the remainder of the study but focus on their
stronger counterparts HS

2 and HAS
2 , respectively. Results are visualized in Figures 6 and 7 which show

cumulative numbers of instances solved within a given time and for which the remaining optimality gap is
within a given value, respectively. Since no feasible solutions could be identified in some cases, optimality

gaps have been computed as UB(M)−LB(M)
UB(M) for each model M ∈ {H1, HS

2 , HAS
2 , H3}. Thereby, UB(M)

and LB(M) denote the upper and lower bound, respectively, obtained by model M .
From Figure 6 we conclude that formulation H3 is able to solve more instances to proven optimality

than any of the other models considered. Despite its significantly weaker LP bounds, formulation HAS
2

comes relatively close possibly due to its capability to enumerate much more branch-and-bound nodes
in the same amount of time. Figure 7 indicates that HAS

2 seems to be able to provide smaller optimality
gaps than H3 in some of the most difficult test instances considered. The other two options (H1, HS

2) are
clearly dominated by H3 and HAS

2 . All these observations hold for instance sets C and D (grid instances)
as well as for instance sets EU and RE (random Euclidean instances).

Additional insights can be obtained from the more fine grained information provided in Tables 6-9
which detail numbers of solved instances, average CPU-times and average optimality gaps grouped by
instance set and considered combination of (H,H ′), respectively.

First consider the results for grid instances that are summarized in Tables 6 and 7. From Table 6 we
conclude that H3 outperforms HAS

2 with respect to numbers of solved instances and average CPU-times
in particular on instances of set C, i.e., those where commodities are generated independently. On the
contrary, they achieve a comparable performance on set D, i.e., the “diameter cases” where commodities

15

gap [%]

#

0 25 50 75 100

0
50

0
10

00
15

00
20

00

H1

H2
S

H2
AS

H3

(a) Grid instances

gap [%]

#

0 25 50 75 100

0
25

0
50

0
75

0
10

00

H1

H2
S

H2
AS

H3

(b) (Random) Euclidean instances

Figure 7: Cumulative numbers of instances (#) for which remaining optimality gap (gap [%]) is within
a certain value. (a) Results for instance sets C and D. (b) Results for instance sets EU and RE.

Table 6: Numbers of instances from instance sets C and D solved to optimality (#solved), average CPU-
times in seconds (tavg), and remaining average optimality gaps (avg. gap [%]). Best values are marked
in bold.

#solved tavg [s] avg. gap [%]
Set |R| # H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3

C10x10 5 180 63 28 74 124 5030 6188 4463 2624 29.1 27.8 11.1 5.2
C10x10 10 180 17 4 19 42 6646 7073 6556 5710 62.2 45.2 22.5 24.7
C20x20 5 180 80 42 93 134 4305 5595 3665 2224 30.9 25.4 9.4 3.9
C20x20 10 180 18 4 24 66 6635 7050 6381 4824 68.6 38.4 19.7 12.3
C20x20 20 180 1 0 1 6 7162 7200 7161 6999 97.4 61.9 31.4 44.8
C30x30 5 180 71 37 100 142 4577 5797 3344 1811 53.3 26.0 8.9 3.2
C30x30 10 180 11 7 30 71 6770 6925 6115 4677 92.3 40.6 19.6 12.0
C30x30 20 180 1 1 9 29 7160 7160 6883 6208 98.9 52.9 24.9 29.6
C30x30 30 180 0 1 2 8 7200 7162 7128 6945 100.0 70.6 35.0 52.8

D5x5 10 90 66 60 88 88 2660 2932 437 518 10.0 8.8 1.2 1.1
D7x7 10 90 25 15 53 62 5822 6191 3404 3087 44.9 29.6 9.0 9.2

D10x10 10 90 1 0 9 9 7184 7200 6591 6544 92.5 71.5 26.4 66.5
D10x10 45 90 0 0 0 0 7200 7200 7200 7200 100.0 98.3 67.9 96.6
D20x20 10 90 0 0 0 0 7200 7200 7200 7200 100.0 100.0 70.3 100.0

- - 2070 354 199 502 781 6132 6566 5575 4721 70.1 47.2 23.5 28.3

16

Table 7: Numbers of instances from instance sets C and D solved to optimality (#solved), average
CPU-times in seconds (tavg), and remaining average optimality gaps (avg. gap [%]) for each considered
combination of (H,H ′) = (Hmin + ∆H , Hmin + ∆H + ∆H′). Best values are marked in bold.

#solved tavg [s] avg. gap [%]
Set (∆H ,∆H′) # H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3

C

(0,0) 180 65 50 84 123 4748 5284 3989 2569 45.6 20.6 8.8 3.7
(0,1) 180 57 28 66 109 5085 6151 4669 3128 53.9 28.3 12.1 8.0
(0,2) 180 46 19 56 99 5570 6511 5102 3574 59.8 34.0 13.8 12.3
(1,0) 180 32 13 44 70 6108 6711 5568 4613 67.4 40.4 18.7 13.5
(1,1) 180 22 7 34 61 6442 6944 5980 4899 72.9 44.7 20.5 20.5
(1,2) 180 15 5 24 58 6736 7028 6366 5160 78.6 49.5 22.6 26.7
(2,0) 180 12 2 20 41 6815 7122 6493 5726 81.3 52.0 26.5 27.3
(2,1) 180 7 0 12 37 6951 7200 6739 5969 85.0 56.7 29.1 33.2
(2,2) 180 6 0 12 24 7032 7200 6790 6385 88.0 62.7 30.5 43.3

D

(0,0) 50 15 14 20 19 5183 5206 4352 4477 60.1 49.2 25.4 45.0
(0,1) 50 17 14 23 24 5007 5264 3942 3797 58.6 51.0 23.5 46.4
(0,2) 50 16 13 21 22 5172 5415 4338 4084 61.5 54.6 25.4 47.9
(1,0) 50 13 10 16 20 5959 6141 5094 4724 64.8 59.6 36.3 53.7
(1,1) 50 10 8 17 18 6021 6343 4959 4797 69.4 62.6 34.5 55.8
(1,2) 50 10 7 16 18 6212 6292 4963 4937 71.8 64.8 36.4 58.3
(2,0) 50 4 3 13 13 6809 6838 5622 5684 77.5 70.2 42.6 59.4
(2,1) 50 4 3 13 13 6838 6958 5685 5843 77.6 70.8 43.3 59.8
(2,2) 50 3 3 11 12 6917 6843 5742 5844 84.0 72.0 47.3 65.9

- 2070 354 199 502 781 6132 6566 5575 4721 70.1 47.2 23.5 28.3

Table 8: Numbers of instances from instance sets EU and RE solved to optimality (#solved), average
CPU-times in seconds (tavg), and remaining average optimality gaps (avg. gap [%]). Best values are
marked in bold.

#solved tavg [s] avg. gap [%]
Set |V | |E| |R| # H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3

EU

50 122 10 45 8 2 19 15 6179 6971 4725 5262 63.8 48.4 13.4 27.4
50 122 45 45 0 0 1 0 7200 7200 7065 7200 100.0 79.1 47.0 82.2
50 245 10 45 5 4 10 15 6641 6789 5775 5257 72.8 44.4 25.5 25.4
50 245 45 45 0 0 0 0 7200 7200 7200 7200 100.0 94.4 59.5 90.7
75 277 10 45 1 0 7 8 7052 7200 6329 6016 84.4 50.9 26.8 32.4
75 277 45 45 0 0 0 0 7200 7200 7200 7200 100.0 95.6 73.7 96.5
75 555 10 45 1 1 6 10 7050 7059 6541 5835 92.4 69.8 35.5 48.6
75 555 45 45 0 0 0 0 7200 7200 7200 7200 100.0 97.9 78.7 94.1

100 495 10 45 2 1 4 7 6918 7086 6691 6147 89.9 67.2 37.9 47.5
100 495 45 45 0 0 0 0 7200 7200 7200 7200 100.0 99.8 89.7 99.8
100 990 10 45 1 2 3 6 7045 7068 6724 6257 97.8 80.4 45.8 64.3
100 990 45 45 0 0 0 1 7200 7200 7200 7093 100.0 98.5 94.3 96.0

RE

50 122 10 45 16 13 27 29 4915 5625 3331 3036 40.3 28.9 8.4 13.6
50 122 45 45 3 2 8 6 6825 6902 6217 6474 79.3 72.1 34.2 60.3
50 245 10 45 16 16 26 32 4738 4926 3845 2735 49.7 30.1 14.3 9.6
50 245 45 45 0 0 7 10 7200 7200 6465 6161 87.2 73.8 41.4 56.8
75 277 10 45 12 8 20 25 5774 6070 4352 3615 57.4 38.2 19.9 14.9
75 277 45 45 0 0 1 1 7200 7200 7168 7105 97.1 85.8 51.1 76.1
75 555 10 45 12 13 16 22 5732 5731 4852 3976 66.5 47.4 24.7 24.9
75 555 45 45 2 2 2 7 6881 6880 6880 6318 91.4 79.9 58.4 64.4

100 495 10 45 10 7 16 21 5948 6187 5099 4241 72.4 51.6 27.2 30.4
100 495 45 45 0 0 0 0 7200 7200 7200 7200 100.0 96.6 68.7 88.2
100 990 10 45 15 15 22 32 4898 4981 4215 2818 62.2 37.7 21.5 13.1
100 990 45 45 0 0 0 3 7200 7200 7200 6941 100.0 89.9 72.5 74.8

- - - 1080 104 86 195 250 6608 6728 6111 5770 83.5 69.1 44.6 55.5

17

Table 9: Numbers of instances from instance sets EU and RE solved to optimality (#solved), average
CPU-times in seconds (tavg), and remaining average optimality gaps (avg. gap [%]) for instance sets EU
and RE and each considered combination of (H,H ′) = (Hmin +∆H , Hmin +∆H +∆H′). Best values are
marked in bold.

#solved tavg [s] avg. gap [%]
Set (∆H ,∆H′) # H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3 H1 HS

2 HAS
2 H3

EU

(0,0) 60 3 4 6 8 6987 6939 6547 6256 93.5 76.5 71.1 72.0
(0,1) 60 6 4 16 20 6527 6874 5634 4973 78.1 56.9 29.5 45.2
(0,2) 60 7 1 13 18 6521 7089 5779 5216 79.9 64.9 31.6 51.6
(1,0) 60 1 1 4 5 7122 7129 6819 6645 91.3 71.2 45.9 54.6
(1,1) 60 1 0 3 5 7104 7200 6897 6768 91.7 77.2 50.8 65.7
(1,2) 60 0 0 4 5 7200 7200 6891 6980 96.0 83.4 53.6 71.8
(2,0) 60 0 0 2 1 7200 7200 7029 7161 97.0 82.0 60.3 71.4
(2,1) 60 0 0 1 0 7200 7200 7175 7200 99.0 86.8 63.6 81.8
(2,2) 60 0 0 1 0 7200 7200 7117 7200 99.3 95.9 64.3 89.7

RE

(0,0) 60 15 14 16 25 5528 5676 5392 4543 66.8 58.0 52.3 49.6
(0,1) 60 27 24 34 39 4332 4536 3238 3028 39.4 26.6 7.2 10.6
(0,2) 60 25 23 38 36 4478 4660 3108 3155 50.8 36.8 8.4 20.6
(1,0) 60 9 7 19 29 6529 6811 5408 4089 66.7 51.5 27.2 31.1
(1,1) 60 4 3 14 25 6839 6967 6064 4827 80.3 62.3 33.0 41.8
(1,2) 60 3 2 17 19 6889 7058 5991 5472 89.0 67.8 36.6 52.4
(2,0) 60 1 1 3 7 7084 7092 6967 6585 93.4 75.6 54.2 54.0
(2,1) 60 1 1 2 4 7103 7135 6975 6851 94.5 81.6 55.5 63.6
(2,2) 60 1 1 2 4 7102 7141 6975 6915 96.7 89.0 57.4 71.7

- 1080 104 86 195 250 6608 6728 6111 5770 83.5 69.1 44.6 55.5

are present between each pair of a chosen set of terminals. Table 6 also confirms that the remaining
gaps of HAS

2 after reaching the time- or memory limit tend to be slightly smaller than those of H3 on
particularly hard subsets (e.g., C30x30 with R ∈ {20, 30} or D10x10 and D20x20). A clear correlation
between difficulty of an instance and increasing value of (H,H ′) can be observed from Table 7 for all
formulations both for instance sets C and D. When H and / or H ′ increases, less instances can be solved
to optimality, average CPU-time and remaining optimality gaps increase. We suppose that besides the
additionally considered variables in each formulation (due to a larger number of eligible primary and /
or secondary edges) this stems from typically weaker LP relaxation values (in particular for HS

2 and HAS
2

due to the coefficient H in the linking constraints), and the fact that the used values of H and H ′ are
typically still rather restrictive (recall that we start with the smallest values that may allow for a feasible
solution).

Similar trends can be observed for Euclidean and random Euclidean instances, i.e., from Tables 8
and 9. In addition, we conclude that the Euclidean instance set EU seems significantly harder to solve
than set RE in which the Euclidean distances are multiplied by random values in order to obtain the
edge costs. Many more instances from set RE could be solved to proven optimality and the remaining
gaps are significantly smaller. The results from Tables 8 also clearly indicate that the performance of all
considered formulations heavily suffers from an increasing number of commodities.

Overall, both HAS
2 and H3 can be recommended for solving not too large instances of the NDPVC.

While, the quite large number of variables prevents their direct application to large scale instances in
particular H3 may be a good starting point for a (Benders) decomposition approach in which most of
these variables can be projected out due to its stronger LP bounds.

4.4 Comparison to the kHSNDP

Finally, we compare the solutions obtained from solving the NDPVC to those of the related kHSNDP.
Table 10-13 provide numbers of cases in which the optimal solution to the NDPVC are proven to be
better or equal than those of the kHSNDP (which has been solved by a simple flow formulation and
using a time limit of 10 800 seconds) grouped by instance sets and considered hop limits, respectively.
As above, results are separately shown for grid instances (Tables 10 and 11) and (random) Euclidean
instances (Tables 12 and 13). A feasible solution found by any of the formulations considered for the

18

Table 10: Overall number of cases from instance sets C and D in which solution to NDPVC is provable
better (bt) and provably equal (eq) compared to the kHSNDP and corresponding values obtained for
the different formulations considered grouped for each considered instance set. Remaining cases could
not be decided.

Overall H1 HS
2 HAS

2 H3

Set |R| # bt eq bt eq bt eq bt eq bt eq
C10x10 5 180 48 91 20 45 27 18 45 55 37 91
C10x10 10 180 27 33 4 13 6 4 25 14 15 33
C20x20 5 180 25 115 13 68 19 36 24 82 21 115
C20x20 10 180 52 43 13 12 22 3 47 15 41 43
C20x20 20 180 36 4 2 1 7 0 31 1 22 4
C30x30 5 180 24 122 16 56 23 30 24 84 24 122
C30x30 10 180 31 50 6 5 15 5 28 22 25 50
C30x30 20 180 37 15 0 1 10 1 34 6 28 15
C30x30 30 180 16 6 0 0 1 1 14 2 10 6

D5x5 10 90 44 45 37 30 37 29 44 44 44 44
D7x7 10 90 51 19 23 6 31 6 51 17 47 18

D10x10 10 90 41 4 0 1 11 0 40 4 12 3
D10x10 45 90 4 0 0 0 0 0 4 0 0 0
D20x20 10 90 14 0 0 0 0 0 14 0 0 0

- - 2070 450 547 134 238 209 133 425 346 326 544

NDPVC is better than any feasible solution to the kHSNDP (on the same instance) if its costs are
smaller than the lower bound obtained from solving the kHSNDP. Equality can, clearly, be only shown
if optimal solutions to both variants could be computed. Thus, a quite significant part of all considered
test instances remain undecided.

From Table 10 we conclude that the solutions of the NDPVC than the corresponding ones of the
kHSNDP in a significant number of cases for grid instances from both considered sets C and D. Clearly
this trend is more pronounced for those sets for which more instances could be solved to proven opti-
mality. This is particularly true for instance set D where more interdependencies between the various
commodities are present and one therefore expect more complex solutions graphs. The new problem
considered in this article allows to find better solutions on more than 50% of the comparably small in-
stances from sets D5x5, D7x7, and D10x10 with only ten commodities (and equality could be proven for
only very few of those instances). Thus one can safely expect that this effect will be increased for larger
instances with more commodities. Clearly, the times needed for solving instances of the more complex
NDPVC are significantly higher than those for the kHSNDP. To analyze this in more detail, however,
further problem formulations capable of solving larger instances or decomposition based algorithms for
the present formulations seem necessary. However, the potential savings in solving the NDPVC instead
of the kHSDNP may justify this additional effort.

For instances of set C, the results in Table 11 indicate that the solutions of the NDPVC are often
cheaper than the corresponding ones of the kHSNDP in particular when H ′ is strictly larger than H . A
slightly different behavior can be observed for instance set D where – with the exception of H = 0 – this
effect is not so pronounced.

The results summarized in Table 12 show that solving the NDPVC instead of solving the kHSNDP
may yield cheaper solutions on (random) Euclidean instances as well. These results also indicate that
the number of cases where the optimal solutions of the two problems differ seems slightly larger for
the subclass of Euclidean instances. In addition, the results from Table 13 indicate that the difference
between the two problems is pronounced when the hop limits are tight.

Overall, the large number cheaper solutions clearly justifies studying the NDPVC also from a practical
perspective.

19

Table 11: Overall number of cases from instance sets C and D in which solution to NDPVC is provable
better (bt) and provably equal (eq) compared to the kHSNDP and corresponding values obtained for
the different formulations considered grouped by the considered values of (H,H ′) = (Hmin +∆H , Hmin +
∆H + ∆H′). Remaining cases could not be decided.

Overall H1 HS
2 HAS

2 H3

Set (∆H ,∆H′) # bt eq bt eq bt eq bt eq bt eq

C

(0,0) 180 14 115 3 65 9 50 12 83 13 115
(0,1) 180 86 53 37 26 51 12 82 29 78 53
(0,2) 180 89 42 28 21 48 11 85 28 78 42
(1,0) 180 5 70 0 32 0 13 5 44 3 70
(1,1) 180 32 58 1 21 4 7 27 33 16 58
(1,2) 180 42 44 5 11 13 3 38 20 22 44
(2,0) 180 3 40 0 12 0 2 2 20 2 40
(2,1) 180 12 35 0 7 1 0 11 12 6 35
(2,2) 180 13 22 0 6 4 0 10 12 5 22

D

(0,0) 50 6 16 3 14 4 13 5 16 5 15
(0,1) 50 34 0 19 0 26 0 34 0 25 0
(0,2) 50 30 2 14 2 17 2 30 2 22 2
(1,0) 50 18 9 6 7 9 7 18 9 13 9
(1,1) 50 22 4 9 2 12 2 22 4 15 4
(1,2) 50 21 5 7 3 7 3 21 5 14 5
(2,0) 50 5 12 1 3 2 3 5 11 3 11
(2,1) 50 11 11 0 4 0 3 11 10 3 10
(2,2) 50 7 9 1 2 2 2 7 8 3 9

- - 2070 450 547 134 238 209 133 425 346 326 544

Table 12: Overall number of cases from instance sets EU and RE in which solution to NDPVC is provable
better (bt) and provably equal (eq) compared to the kHSNDP and corresponding values obtained for
the different formulations considered grouped for each considered instance set. Remaining cases could
not be decided.

Overall H1 HS
2 HAS

2 H3

Set |V | |E| |R| # bt eq bt eq bt eq bt eq bt eq

EU

50 122 10 45 7 12 6 2 5 1 7 12 7 8
50 122 45 45 2 0 0 0 0 0 2 0 0 0
50 245 10 45 17 3 6 1 7 1 16 2 15 3
50 245 45 45 3 0 0 0 0 0 3 0 0 0
75 277 10 45 12 2 3 0 3 0 11 2 11 1
75 277 45 45 2 0 0 0 0 0 2 0 1 0
75 555 10 45 6 4 2 1 3 1 6 2 6 4
75 555 45 45 0 0 0 0 0 0 0 0 0 0

100 495 10 45 11 1 2 1 4 1 10 1 9 1
100 495 45 45 1 0 0 0 0 0 1 0 0 0
100 990 10 45 6 4 1 0 3 1 3 1 4 4
100 990 45 45 1 0 0 0 0 0 1 0 1 0

RE

50 122 10 45 8 22 4 12 3 10 7 21 8 21
50 122 45 45 6 3 3 1 3 1 6 3 5 2
50 245 10 45 6 27 3 13 3 13 5 22 6 27
50 245 45 45 6 6 0 0 2 0 6 2 4 6
75 277 10 45 8 18 5 8 4 6 8 14 7 18
75 277 45 45 2 2 0 0 0 0 2 1 1 1
75 555 10 45 6 18 1 11 3 12 6 13 4 18
75 555 45 45 3 6 0 2 0 2 3 2 1 6

100 495 10 45 4 17 3 7 4 4 4 12 4 17
100 495 45 45 3 0 0 0 0 0 3 0 0 0
100 990 10 45 3 29 1 14 3 14 3 19 3 29
100 990 45 45 1 3 0 0 0 0 0 0 1 3

- - - 1080 124 177 40 73 50 67 115 129 98 169

20

Table 13: Overall number of cases from instance sets EU and RE in which solution to NDPVC is provable
better (bt) and provably equal (eq) compared to the kHSNDP and corresponding values obtained for
the different formulations considered grouped by the considered values of (H,H ′) = (Hmin +∆H , Hmin +
∆H + ∆H′). Remaining cases could not be decided.

Overall H1 HS
2 HAS

2 H3

Set (∆H ,∆H′) # bt eq bt eq bt eq bt eq bt eq

EU

(0,0) 60 2 8 0 3 1 4 2 6 2 8
(0,1) 60 25 3 10 0 12 0 23 2 21 2
(0,2) 60 23 2 9 1 9 0 22 1 18 2
(1,0) 60 7 2 0 1 1 1 7 1 6 2
(1,1) 60 6 3 1 0 2 0 4 2 4 3
(1,2) 60 5 4 0 0 0 0 4 4 3 3
(2,0) 60 0 2 0 0 0 0 0 2 0 1
(2,1) 60 0 1 0 0 0 0 0 1 0 0
(2,2) 60 0 1 0 0 0 0 0 1 0 0

RE

(0,0) 60 0 25 0 15 0 14 0 16 0 25
(0,1) 60 17 26 9 18 10 18 16 22 15 26
(0,2) 60 18 26 8 18 8 17 18 25 12 25
(1,0) 60 2 27 1 9 0 7 1 18 2 27
(1,1) 60 8 18 1 3 3 2 8 12 7 18
(1,2) 60 6 16 0 3 3 2 6 11 5 14
(2,0) 60 2 6 1 0 1 0 2 2 1 6
(2,1) 60 2 4 0 1 0 1 1 2 1 4
(2,2) 60 1 3 0 1 0 1 1 1 1 3

- - 1080 124 177 40 73 50 67 115 129 98 169

5 Node-disjoint case

In this section, we focus on the node-disjoint variant of the NDPVC whose definition is obtained from
the NDPVC by ensuring that each solution must contain a path of length at most H ′

st after removing
a subset of nodes W of cardinality k − 1 and all edges incident to nodes in W for each pair {s, t} ∈ R
such that s, t /∈ W . The following Mengerian results for node disjoint paths with hop constraints show
that the resulting problem is different from the node-disjoint variant of the related kHSNDP. As for the
edge disjoint case, the first result is known from the literature [2, 4] and the second, although new can
be proved in a similar manner.

Result 3 (“Mengerian-like result for node-disjoint hop-constrained paths”, Exoo [4], Bermond et al.
[2]). Let i and j be two distinct nodes of a given graph G = (V,E), such that the length of the shortest
(i, j)-path is H, H ≤ 4 or H ≥ |V | − 1. Then, the minimal number of nodes (other than i and j)
that need to be removed from G in order to increase the length of the shortest (i, j)-path, is equal to the
maximum number of pairwise node-disjoint paths from i to j of length at most H.

Result 4 (“Mengerian-like result for node-disjoint hop-constrained paths with H < H ′”). Let i and j be
two distinct nodes of a given graph G = (V,E) that contains at least one path from i to j of length at most
H. Then, the minimal number k of nodes (other than i and j) after whose removal G does not contain a
path from i to j of length at most H ′, H ′ > H, is equal to the maximum number of pairwise node-disjoint
paths from i to j of length at most H ′ (where one of them is of length at most H) if H ≥ |V | − 1 or
H ≤ 2 and either k = 2 or H ′ ≤ 4 or H ′ ≥ |V | − 1).

It is easy to find examples showing that the cost differences between the node-disjoint variants of
solutions to the NDPVC and the kHSNDP can be arbitrary large and that there exist instances that
are feasible for the former but infeasible for the latter problem. One such example is given in Figure 8
which provides a feasible solution of the node-disjoint variant of NDPVC for R = {{1, 4}}, H14 = 3, and
H ′

14 = 4. Since there does not exist a path that is node-disjoint from P = (1, 2, 3, 4) which is the unique
(1, 4)-path of length ≤ H14, the graph does not contain a feasible solution for the node-disjoint variant
of the kHSNDP.

21

1 2 3 4
5 6

7 8

Figure 8: A feasible solution for the node disjoint variant of NDPVC with k = 2, R = {{1, 4}}, H14 = 3,
H ′

14 = 4, that does not contain two node disjoint paths of length 3 and 4 between nodes 1 and 4,
respectively.

We observe that the generic formulation given in Section 3.1 can be adapted to the node-disjoint case
by considering an appropriately modified set of feasible backup edges. Formally these sets are described
by incidence vectors x in

Bst = {x ∈ {0, 1}|E| |∀W ⊂ V, |W | = k − 1, W ∩ {s, t} = ∅,

∃ (s, t)-path P in E(x) \ δ(W) s.t. |P | ≤ H ′
st}.

Thus, the following three characterizations that correspond to those of the edge-disjoint case can be
used to describe set Bst.

Characterization 4. Let P = {e1, e2, . . . , el} ⊂ Est be the primary path of length l, l ≤ Hst, for a given
commodity {s, t} ∈ R such that ei = {ui−1, ui}, ui ∈ Vst, 1 ≤ i ≤ l, u0 = s, and ul = t. Then, a valid
set of backup edges Ê is established by ensuring that:

∀ui ∈ {u1, . . . , ul−1}, ∃ (s, t)-path P ′[ui] ⊂ E′
st \ δ(ui), s.t. |P ′[ui]| ≤ H ′

st.

Thereby, Hst ≤ Hst and Ê =
(

⋃l−1
i=1 P

′[ui]
)

\ P .

Characterization 5. Let P = {e1, e2, . . . , el} ⊂ Est be the primary path of length l, l ≤ Hst, for a given
commodity {s, t} ∈ R such that ei = {ui−1, ui}, ui ∈ Vst, 1 ≤ i ≤ l, u0 = s, and ul = t. Then, a valid
set of backup edges Ê is established by ensuring that there exist l − 1 additional (s, t)-paths P ′

i ⊂ E′
st,

i = 1, 2, . . . , l − 1 of length at most H ′
st, H

′
st ≥ Hst, such that at most l − 2 of them contain the same

node from P \ {s, t}, i.e.:

∃ (s, t)-paths P ′
i ⊂ E′

st, i = 1, 2, . . . , l− 1, s.t. ∀v ∈ Vst :

l−1
∑

i=1

|P ′
i ∩ δ(v)| ≤ 2(l − 2).

Thereby, Hst ≤ Hst and Ê =
(

⋃l−1
i=1 P

′
i

)

\ P .

Notice that the validity of the latter claim follows from the fact that degree of any internal node v in
an (s, t)-path is two.

Characterization 6. Let P = {e1, e2, . . . , el} ⊂ Est be the primary path of length l, l ≤ Hst, for a given
commodity {s, t} ∈ R such that ei = {ui−1, ui}, ui ∈ Vst, 1 ≤ i ≤ l, u0 = s, and ul = t. Then, a valid
set of backup edges Ê is established by ensuring that:

∃ (s, t)-paths P ′
i ⊂ E′

st, i = 1, 2, . . . , l − 1, s.t. |P ′
i | ≤ H ′

st and P ′
i ∩ δ(ui) = ∅.

Thereby, Ê =
(

⋃l−1
i=1 P

′
i

)

\ P .

Based on these characterizations it is not too difficult to adapt the formulations given in Section 3.3 to
the node-disjoint case and we therefore skip the details. Notice, however, that in the node-disjoint case a
formulation based on Characterization 4 only needs to establish O(|V |) additional backup flows for each
commodity while O(|E|) backup flows are necessary in the edge-disjoint case. Thus, a formulation based
on the straightforward Characterization 4 would be computationally more attractive to use than the
one for the edge-disjoint case based on Characterization 1. Even though, our preliminary computational
experiments did, however, indicate that formulations based on the less obvious Characterizations 5 and
6 outperform the former also for the node-disjoint case.

22

6 Conclusions

This article deals with the design of survivable networks in which hop constraints ensure a certain max-
imum distance between each commodity pair before and after each considered set of failures. Motivated
from previous studies related to vulnerability of graphs we show that a previously considered optimization
problem (the kHSNDP) that aims to cover the same kind of scenarios is in fact too conservative in the
sense that it is overly constrained. Thus, we introduce the Network Design Problem with Vulnerability
Constraints (NDPVC) which overcomes this shortage. We show that optimal solutions to the NDPVC
are at least as good than those of the kHSNDP, can be better for almost all relevant hop limits, and
that such solutions may exist even for instances that are infeasible for the kHSNDP. We have introduced
three graph theoretical characterizations of feasible backup systems and proposed integer programming
models for each of them. In a computational study, we have shown that two formulations based on
the the two non-obvious characterizations clearly outperform the one based on the first, and obvious
characterization. Our computational results also confirm that the solutions of the NDPVC are cheaper
than those of the kHSNDP in many cases.

This study also suggests multiple directions for future research. Observe that the three graph theoretic
characterizations provided in Section 3.2 can in principle be extended to the case of multiple edge
failures by appropriately considering all subsets of relevant primary edges of the appropriate size. Such
straightforward extensions will, however, lead to huge formulations at least when following the ideas
presented in the current work. Thus, the study of further characterizations for the case of multiple edge
failures that lead to reasonably sized formulations would be a worthwhile goal for future research. For
the case of single edge failures it would be interesting to derive more sophisticated solution techniques
such as Benders decomposition algorithms based on the formulations introduced in this article in order to
tackle larger problem instances. The linear programming relaxation gaps reported in our computational
study also show the need to identify further valid inequalities in order to reduce the number of branch-
and-bound nodes that need to be enumerated for identifying optimal solutions. The performance of
such approaches can be further improved by (primal) heuristics. The development of heuristics for the
NDPVC seems, however, significantly harder than for the kHSNDP and might be an interesting topic for
future research. Finally, from a practical perspective it would be relevant to study even more complex
variants that are defined on directed input graphs or additionally consider edge capacities and demands
associated to commodities.

7 Acknowledgments

We thank Amaro de Sousa for helpful discussions on the motivation for this paper, in particular with
respect to applications of hop constraints in current telecommunications networks. We would also like
to thank the referees whose suggestions have helped to considerably improve the paper.

This work is supported by National Funding from FCT - Fundação para a Ciência e a Tecnologia,
under the project UID/MAT/04561/2013, by the Austrian Science Fund (FWF), under grant I892-
N23, and by the Vienna Science and Technology Fund (WWTF) through project ICT15-014. Part of
this research has been performed while M. Leitner was a research fellow at the Department of Computer
Science, Université Libre de Bruxelles (Brussels, Belgium) where he was supported by the Interuniversity
Attraction Poles Programme initiated by the Belgian Science Policy Office. These supports are greatly
acknowledged.

References

[1] A. Balakrishnan, T.L. Magnanti, and P. Mirchandani. Modeling and heuristic worst-case perfor-
mance analysis of the two-level network design problem. Management Science, 40(7):846–867, 1994.

[2] J.C. Bermond, J. Bond, M. Paoli, and C. Peyrat. Graphs and interconnection networks: diameter
and vulnerability. In Surveys in combinatorics, volume 82, pages 1–30. Cambridge Univ. Press,
1983.

[3] Q. Botton, B. Fortz, L. Gouveia, and M. Poss. Benders decomposition for the hop-constrained
survivable network design problem. INFORMS Journal on Computing, 25:13–26, 2013.

23

[4] G. Exoo. On a measure of communication network vulnerability. Networks, 12:405–409, 1982.

[5] L. Gouveia. Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and
Steiner Trees with Hop Constraints. INFORMS Journal on Computing, 10(2):180–188, 1998.

[6] L. Gouveia, P. Patricio, and A. de Sousa. Compact models for hop-constrained node survivable
network design: An application to MPLS. In Telecommunications Planning: Innovations in Pricing,
Network Design and Management, volume 33 of Operations Research/Computer Science Interfaces
Series, pages 167–180. Springer, 2006.

[7] L. Gouveia, P. Patricio, and A. de Sousa. Lexicographical minimization of routing hops in hop-
constrained node survivable networks. Telecommunication Systems, 62:417–434, 2016.

[8] M. Grötschel, C.L. Monma, and M. Stoer. Design of survivable networks. In M.O. Ball et al.,
editors, Handbooks in OR & MS, volume 7, chapter 10, pages 617–672. Elsevier, 1995.

[9] H. Kerivin and A.R. Mahjoub. Design of survivable networks: A survey. Networks, 46:1–21, 2005.

[10] J. Klincewicz. Optimization issues in quality of service. In M.G.C. Resende and P.M. Pardalos,
editors, Handbook of Optimization in Telecommunications, pages 435–458. Springer, 2006.

[11] I. Ljubić. A branch-and-cut-and-price algorithm for vertex biconnectivity augmentation. Networks,
56(3):169–182, 2010.

[12] A. R. Mahjoub, L. Simonetti, and E. Uchoa. Hop-level flow formulation for the survivable network
design with hop constraints problem. Networks, 61:171–179, 2013.

[13] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.

[14] L. Roychoudhuri, E. Al-Shaer, and G. Brewster. On the impact of loss and delay variation on
internet packet audio transmission. Computer Communications, 29:1578–1589, 2006.

[15] M. Scharf, M. Necker, and B Gloss. The sensitivity of TCP to sudden delay variations in mobile net-
works. In N. Mitrou, K. Kontovasilis, G.N. Rouskas, I. Iliadis, and L. Merakos, editors, Networking
2004, volume 3042 of LNCS, pages 76–87, 2004.

[16] W. Sheikh and A. Ghafoor. Jitter-minimized reliability-maximized management of networks. In-
ternational Journal of Network Management, 21:185–222, 2011.

[17] B. Thiongane, J. Cordeau, and B. Gendron. Formulations for the nonbifurcated hop-constrained
multicommodity capacitated fixed-charge network design problem. Computers & Operations Re-
search, 53:1–8, 2015.

24

