Vector valued Fourier transforms and Fourier type operators

Mariusz Piotrowski

Former: CMUC Coimbra, FSU Jena
http://homepage.univie.ac.at/mariusz.piotrowski

Seminar talk, Vienna, October 30, 2006
Outline

1. Introduction
 - Motivation
 - Abstract harmonic analysis, examples
 - Fourier type operators-Definitions

2. Fourier type p with respect to the Cantor group
 - Old and new results

3. B-convexity and Fourier type
 - B-convex spaces
 - Bourgain’s Hausdorff-Young inequalities

4. Fourier type 2 operators
 - Kwapień’s result and factorization though a Hilbert space
 - Transference principle for Fourier type 2 operators

5. Final remarks and discussion
Outline

1. Introduction
 - Motivation
 - Abstract harmonic analysis, examples
 - Fourier type operators-Definitions

2. Fourier type p with respect to the Cantor group
 - Old and new results

3. B-convexity and Fourier type
 - B-convex spaces
 - Bourgain’s Hausdorff-Young inequalities

4. Fourier type 2 operators
 - Kwapięń’s result and factorization though a Hilbert space
 - Transference principle for Fourier type 2 operators

5. Final remarks and discussion
All Banach spaces are equal but some Banach spaces are more equal than others.
Motivation and Introduction

Problem

- **Scalar-valued results**
 - EXTENSION ?
- **Vector-valued results**

Possible answers

- Results remain true for any Banach space,
- Only “trivial” extensions remain true,
- Extension depends on the structure and geometry of Banach space.
Motivation and Introduction

Problem

Scalar-valued results \(\sim \) ? Vector-valued results

Possible answers

- Results remain true for any Banach space,
- Only “trivial” extensions remain true,
- Extension depends on the structure and geometry of Banach space.
Hausdorff-Young inequality

Fourier transform

For a function $f \in L_1(\mathbb{R})$ the Fourier transform $\mathcal{F}_\mathbb{R} f$ is given by

$$(\mathcal{F}_\mathbb{R} f)(s) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-ist} \, dt$$

Hausdorff-Young inequality

If $1 \leq p \leq 2$ then we have

$$\|\mathcal{F}_\mathbb{R} f\|_{L'_p(\mathbb{R})} \leq c \|f\|_{L_p(\mathbb{R})} \quad \text{for all} \quad f \in L_p(\mathbb{R}).$$

We study Hausdorff-Young inequalities for vector-valued functions.
For a function $f \in L_1(\mathbb{R})$ the Fourier transform $\mathcal{F}_\mathbb{R} f$ is given by

$$(\mathcal{F}_\mathbb{R} f)(s) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t)e^{-ist} \, dt$$

If $1 \leq p \leq 2$ then we have

$$\|\mathcal{F}_\mathbb{R} f\|_{L'_p(\mathbb{R})} \leq c \|f\|_{L_p(\mathbb{R})} \quad \text{for all} \quad f \in L_p(\mathbb{R}).$$

We study Hausdorff-Young inequalities for vector-valued functions.
Abstract harmonic analysis

- We work in the framework of a *locally compact abelian group* G (shortly: lca) which comes equipped with its *Haar measure* μ_G.
- A *character* γ on G is a continuous homomorphism from G into the torus \mathbb{T}. The collection of characters on G is an abelian group under pointwise multiplication and carries a natural locally compact topology. The resulting lca group is the *dual group* G' of G.
- For a function $f \in L_1(G)$, the *Fourier transform* $\mathcal{F}_G f$ is defined by

$$
(\mathcal{F}_G f)(\gamma) = \int_G f(t)\overline{\gamma(t)} \, d\mu_G(t) \quad \text{for} \quad \gamma \in G'.
$$
We work in the framework of a *locally compact abelian group* G (shortly: lca) which comes equipped with its *Haar measure* μ_G.

A *character* γ on G is a continuous homomorphism from G into the torus \mathbb{T}. The collection of characters on G is an abelian group under pointwise multiplication and carries a natural locally compact topology. The resulting lca group is the *dual group* G' of G.

For a function $f \in L_1(G)$, the *Fourier transform* $\mathcal{F}_G f$ is defined by

$$ (\mathcal{F}_G f)(\gamma) = \int_G f(t)\overline{\gamma(t)} \, d\mu_G(t) \quad \text{for} \quad \gamma \in G'. $$
Examples

Integers \mathbb{Z}

The characters on \mathbb{Z} are given by $\gamma(k) = z^k$ for some $z \in \mathbb{T}$. It turns out that $\mathbb{Z}' \cong \mathbb{T}$ and the Fourier transform is given by

$$(\mathcal{F}_\mathbb{Z} f)(e^{it}) = \sum_{n \in \mathbb{Z}} f(n)e^{-int} \quad \text{for} \quad e^{it} \in \mathbb{T}.$$
Integers \(\mathbb{Z} \)

The characters on \(\mathbb{Z} \) are given by \(\gamma(k) = z^k \) for some \(z \in \mathbb{T} \). It turns out that \(\mathbb{Z}' \cong \mathbb{T} \) and the Fourier transform is given by

\[
(\mathcal{F}_\mathbb{Z} f)(e^{it}) = \sum_{n \in \mathbb{Z}} f(n)e^{-int} \quad \text{for} \quad e^{it} \in \mathbb{T}.
\]

Torus \(\mathbb{T} \)

The characters on \(\mathbb{T} \) are given by \(\gamma(z) = z^k \) for some \(k \in \mathbb{Z} \). It turns out that \(\mathbb{T}' \cong \mathbb{Z} \) and the Fourier transform is given by

\[
(\mathcal{F}_\mathbb{T} f)(n) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it})e^{-int} \, dt \quad \text{for} \quad n \in \mathbb{Z}.
\]
Introduction

Fourier type \(p \) with respect to the Cantor group
\(B \)-convexity and Fourier type
Fourier type 2 operators
Final remarks and discussion

Motivation

Abstract harmonic analysis, examples
Fourier type operators-Definitions

More examples

Real line \(\mathbb{R} \)

The characters on \(\mathbb{R} \) are given by \(\gamma(x) = e^{ixy} \) with \(y \in \mathbb{R} \). It turns out that \(\mathbb{R}' \cong \mathbb{R} \) and the Fourier transform is given by

\[
(F_{\mathbb{R}}f)(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iyx} \, dx \quad \text{for} \quad y \in \mathbb{R}.
\]

Cantor group \(\mathbb{D} = \mathbb{Z}_2^\infty = \{0,1\}^\mathbb{N} \)

For \(n \in \mathbb{N}_0 \) let \(n = \sum_{k=0}^{\infty} n_k 2^k \) with \(n_k \in \{0,1\} \). The characters on \(\mathbb{D} \) are given by \(\psi_n(x) = (-1)^{\langle n,x \rangle} \) with \(\langle n,x \rangle = n_0x_0 + n_1x_1 + \ldots \) (mod 2) for \(n \in \mathbb{N}_0 \) and \(x \in \mathbb{D} \). It turns out that \(\mathbb{D}' \cong (\mathbb{N}_0, \oplus) \) and the Fourier transform is given by

\[
(F_{\mathbb{D}}f)(n) = \int_{\mathbb{D}} f \psi_n \, d\mu, \quad \text{for} \quad n \in \mathbb{N}_0.
\]
More examples

Real line \(\mathbb{R} \)

The characters on \(\mathbb{R} \) are given by \(\gamma(x) = e^{ixy} \) with \(y \in \mathbb{R} \). It turns out that \(\mathbb{R}' \cong \mathbb{R} \) and the Fourier transform is given by

\[
(F_{\mathbb{R}} f)(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ixy} \, dx \quad \text{for} \quad y \in \mathbb{R}.
\]

Cantor group \(\mathbb{D} = \mathbb{Z}_2^\infty = \{0,1\}^\mathbb{N} \)

For \(n \in \mathbb{N}_0 \) let \(n = \sum_{k=0}^{\infty} n_k 2^k \) with \(n_k \in \{0,1\} \). The characters on \(\mathbb{D} \) are given by \(\psi_n(x) = (-1)^{\langle n, x \rangle} \) with \(\langle n, x \rangle = n_0x_0 + n_1x_1 + \ldots \) (mod 2) for \(n \in \mathbb{N}_0 \) and \(x \in \mathbb{D} \). It turns out that \(\mathbb{D}' \cong (\mathbb{N}_0, \oplus) \) and the Fourier transform is given by

\[
(F_{\mathbb{D}} f)(n) = \int_{\mathbb{D}} f \psi_n \, d\mu, \quad \text{for} \quad n \in \mathbb{N}_0.
\]
Introduction
Fourier type p with respect to the Cantor group
B-convexity and Fourier type
Fourier type 2 operators
Final remarks and discussion

Motivation
Abstract harmonic analysis, examples
Fourier type operators - Definitions

Fourier type of Banach spaces

The Bochner-Lebesgue space

$$L_p^X(G) = \{ f : G \rightarrow X : \int_G \|f(t)\|_X^p \, d\mu_G(t) < \infty \}$$

Definition (J. Peetre 1969 $G = \mathbb{R}$, M. Milman 1984 general case)

A Banach space X has a Fourier type p ($1 \leq p \leq 2$) with respect to G if the operator \mathcal{F}_G originally defined on $L_p(G) \otimes X$ by

$$\mathcal{F}_G (\sum_{i=1}^n \varphi_i x_i) (\gamma) = \sum_{i=1}^n (\mathcal{F}_G \varphi_i) (\gamma) x_i, \quad \varphi_i \in L_p(G), x_i \in X$$

can be extended to a bounded operator $\mathcal{F} : L_p^X(G) \rightarrow L_{p'}^X(G')$. In other words,

$$\|\mathcal{F}f\|_{L_p^X(G')} \leq c \|f\|_{L_p^X(G)}.$$
Fourier type of Banach spaces

The Bochner-Lebegue space

\[L^X_p(G) = \{ f : G \to X : \int_G \| f(t) \|^p_X \, d\mu_G(t) < \infty \} \]

Definition (J. Peetre 1969 \(G = \mathbb{R} \), M. Milman 1984 general case)

A Banach space \(X \) has a Fourier type \(p \) \((1 \leq p \leq 2)\) with respect to \(G \) if the operator \(\mathcal{F}_G \) originally defined on \(L^p_p(G) \otimes X \) by

\[\mathcal{F}_G \left(\sum_{i=1}^n \varphi_i x_i \right)(\gamma) = \sum_{i=1}^n (\mathcal{F}_G \varphi_i)(\gamma)x_i, \quad \varphi_i \in L^p_p(G), x_i \in X \]

can be extended to a bounded operator \(\mathcal{F} : L^X_p(G) \to L^{X'}_{p'}(G') \). In other words,

\[\| \mathcal{F}_G f \|_{L^{X'}_{p'}(G')} \leq c \| f \|_{L^X_p(G)}. \]
Fourier type operators

Definition

An operator $T \in \mathcal{L}(X, Y)$ is said to be of *Fourier type* p ($1 \leq p \leq 2$) with respect to G if the operator

$$\mathcal{F}_G \otimes T : L_p(G) \otimes X \to L'_p(G') \otimes Y$$

extends to a bounded linear operator from $L^X_p(G)$ to $L^Y_p(G')$. In other words

$$\| (\mathcal{F}_G \otimes T)f \|_{L'_p(G')} \leq c \| f \|_{L^X_p(G)}.$$

The class of all operators of Fourier type p equipped with the operator norm of the extended operator (denoted by $\| \cdot \|_{\mathcal{FT}^G_p}$) is a Banach operator ideal \mathcal{FT}^G_p.
Transference principles

Theorem (M. Milman (1984))

Let $1 < p_1 < p_2 < 2$.

$$\mathcal{FT}^G_{p_2} \subset \mathcal{FT}^G_{p_1} \subset \mathcal{FT}^G_1 \subset \mathcal{FT}^G_1 = \mathcal{L}.$$

Problem

Do the ideals \mathcal{FT}^G_p depend at all on the infinite lca group G?

More precisely

Let G_1, G_2 be infinite lca groups and $p \in (1, 2)$.

- Inclusion: $\mathcal{FT}^{G_1}_p \subset \mathcal{FT}^{G_2}_p$?
- Equality: $\mathcal{FT}^{G_1}_p = \mathcal{FT}^{G_2}_p$?
Introduction
Fourier type p with respect to the Cantor group
B-convexity and Fourier type
Fourier type 2 operators
Final remarks and discussion

Motivation
Abstract harmonic analysis, examples
Fourier type operators-Definitions

Transference principles

Theorem (M. Milman (1984))
Let $1 < p_1 < p_2 < 2$.

$$\mathcal{FT}_2^G \subset \mathcal{FT}_{p_2}^G \subset \mathcal{FT}_{p_1}^G \subset \mathcal{FT}_1^G = \mathcal{L}.$$

Problem
Do the ideals \mathcal{FT}_p^G depend at all on the infinite lca group G?

More precisely
Let G_1, G_2 be infinite lca groups and $p \in (1, 2)$.

- Inclusion: $\mathcal{FT}_p^{G_1} \subset \mathcal{FT}_p^{G_2}$?
- Equality: $\mathcal{FT}_p^{G_1} = \mathcal{FT}_p^{G_2}$?
Introduction

Fourier type p with respect to the Cantor group

B-convexity and Fourier type

Fourier type 2 operators

Final remarks and discussion

Old and new results

Outline

1. Introduction
 - Motivation
 - Abstract harmonic analysis, examples
 - Fourier type operators - Definitions

2. Fourier type p with respect to the Cantor group
 - Old and new results

3. B-convexity and Fourier type
 - B-convex spaces
 - Bourgain's Hausdorff-Young inequalities

4. Fourier type 2 operators
 - Kwapien's result and factorization though a Hilbert space
 - Transference principle for Fourier type 2 operators

5. Final remarks and discussion
Known result

\[\mathcal{F}T_{p}^\mathbb{R} = \mathcal{F}T_{p}^\mathbb{Z} = \mathcal{F}T_{p}^\mathbb{T} = \mathcal{F}T_{p}^\mathbb{R}^n = \mathcal{F}T_{p}^\mathbb{Z}^n = \mathcal{F}T_{p}^\mathbb{T}^n \]

Cantor group

\[\mathbb{D} = \{ x = (x_n)_{n \in \mathbb{N}} : x_n \in \{0, 1\} \} \]

Its continual analogue

\[\mathbb{F} = \{ x = (x_n)_{n \in \mathbb{Z}} : x_n \in \{0, 1\} \text{ and } x_n \to 0 \text{ for } n \to -\infty \} \]
Known result

\[\mathcal{FT}_p^\mathbb{R} = \mathcal{FT}_p^\mathbb{Z} = \mathcal{FT}_p^\mathbb{T} = \mathcal{FT}_p^{\mathbb{R}^n} = \mathcal{FT}_p^{\mathbb{Z}^n} = \mathcal{FT}_p^{\mathbb{T}^n} \]

Cantor group

\[D = \{ x = (x_n)_{n \in \mathbb{N}} : x_n \in \{0, 1\} \} \]

Its continual analogue

\[F = \{ x = (x_n)_{n \in \mathbb{Z}} : x_n \in \{0, 1\} \text{ and } x_n \to 0 \text{ for } n \to -\infty \} \]
Let $1 < p < 2$. For an operator $T \in \mathcal{L}(X, Y)$ the following statements are equivalent:

- T has Fourier type p with respect to group \mathcal{D}.
- T has Fourier type p with respect to group \mathcal{D}^m for all $m \in \mathbb{N}$.
- T has Fourier type p with respect to group \mathcal{F}.
- T has Fourier type p with respect to group \mathcal{F}^m for all $m \in \mathbb{N}$.

Moreover, in this case all norms coincide.

\[\mathcal{F}T_p^{\mathcal{D}} = \mathcal{F}T_p^{\mathcal{F}} = \mathcal{F}T_p^{\mathcal{D}^m} = \mathcal{F}T_p^{\mathcal{F}^m} \]
New result

Theorem

Let $1 < p < 2$. For an operator $T \in \mathcal{L}(X, Y)$ the following statements are equivalent

- T has Fourier type p with respect to group \mathbb{D}.
- T has Fourier type p with respect to group \mathbb{D}^m for all $m \in \mathbb{N}$.
- T has Fourier type p with respect to group \mathbb{F}.
- T has Fourier type p with respect to group \mathbb{F}^m for all $m \in \mathbb{N}$.

Moreover, in this case all norms coincide.

\[\mathcal{F}T_p^\mathbb{D} = \mathcal{F}T_p^\mathbb{F} = \mathcal{F}T_p^{\mathbb{D}^m} = \mathcal{F}T_p^{\mathbb{F}^m} \]
Outline

1. Introduction
 - Motivation
 - Abstract harmonic analysis, examples
 - Fourier type operators-Definitions

2. Fourier type p with respect to the Cantor group
 - Old and new results

3. B-convexity and Fourier type
 - B-convex spaces
 - Bourgain’s Hausdorff-Young inequalities

4. Fourier type 2 operators
 - Kwapięń’s result and factorization though a Hilbert space
 - Transference principle for Fourier type 2 operators

5. Final remarks and discussion
Rademacher type and B-convex spaces

Definition (Rademacher type)

A Banach space X has the Rademacher type p ($1 \leq p \leq 2$), if there is a constant $c > 0$ such that for any $x_1, \ldots, x_n \in X$

$$\left\| \sum_{k=1}^{n} \varepsilon_k x_k \right\|_{L^2_X} \leq c \left(\sum_{k=1}^{n} \|x_k\|^p \right)^{1/p}.$$

Theorem (G. Pisier, B. Maurey):

A Banach space X is B-convex if and only if it has some nontrivial Rademacher type if and only if it does not contain the spaces ℓ_1^n uniformly.
Rademacher type and B-convex spaces

Definition (Rademacher type)

A Banach space X has the Rademacher type p ($1 \leq p \leq 2$), if there is a constant $c > 0$ such that for any $x_1, \ldots, x_n \in X$

$$\left\| \sum_{k=1}^{n} \varepsilon_k x_k \right\|_{L^2_X} \leq c \left(\sum_{k=1}^{n} \|x_k\|^p \right)^{1/p}.$$

Theorem (G. Pisier, B. Maurey):

A Banach space X is B-convex if and only if it has some nontrivial Rademacher type if and only if it does not contain the spaces ℓ_1^n uniformly.
Bourgain’s Hausdorff-Young inequality for cyclic groups

Theorem (J. Bourgain (1988)): A Banach space X is B-convex if, and only if, it has some nontrivial Fourier type with respect to the classical groups or the Cantor group.

Theorem: Let m be a power of a prime. A Banach space X is B-convex if, and only if, it has some nontrivial Fourier type with respect to \mathbb{Z}_m^∞.
Bourgain’s Hausdorff-Young inequality for cyclic groups

Theorem (J. Bourgain (1988):) A Banach space X is B-convex if, and only if, it has some nontrivial Fourier type with respect to the classical groups or the Cantor group.

Theorem: Let m be a power of a prime. A Banach space X is B-convex if, and only if, it has some nontrivial Fourier type with respect to \mathbb{Z}_m.
Outline

1. Introduction
 - Motivation
 - Abstract harmonic analysis, examples
 - Fourier type operators-Definitions

2. Fourier type p with respect to the Cantor group
 - Old and new results

3. B-convexity and Fourier type
 - B-convex spaces
 - Bourgain’s Hausdorff-Young inequalities

4. Fourier type 2 operators
 - Kwapięń’s result and factorization though a Hilbert space
 - Transference principle for Fourier type 2 operators

5. Final remarks and discussion
Kwapień’s result and factorization though a Hilbert space

Theorem (S. Kwapień (1972):)

A Banach space X has Fourier type 2 with respect to some infinite lca group if and only if it is isomorphic to a Hilbert space.

Open question

Let \mathcal{H} denote the class of all operators T factoring through a Hilbert space. If G is infinite group, is it true that

$$\mathcal{F}T^G_2 = \mathcal{H}?$$

In other words, does every operator of Fourier type 2 with respect to G factor through Hilbert space?
Kwapień’s result and factorization though a Hilbert space

Theorem (S. Kwapień (1972):)

A Banach space X has Fourier type 2 with respect to some infinite lca group if and only if it is isomorphic to a Hilbert space.

Open question

Let \mathcal{H} denote the class of all operators T factoring through a Hilbert space. If G is infinite group, is it true that

$$\mathcal{FT}_2^{G} = \mathcal{H}?$$

In other words, does every operator of Fourier type 2 with respect to G factor through Hilbert space?
Theorem (A. Hinrichs, M.P.): Any operator of Fourier type 2 with respect to the classical groups has Fourier type 2 with respect to all lca groups. More precisely,

\[\mathcal{FT}^T_2 \subseteq \mathcal{FT}^G_2 \quad \text{and} \quad \| T | \mathcal{FT}^G_2 \| \leq \| T | \mathcal{FT}^T_2 \| \]

holds for all lca groups G and all \(T \in \mathcal{FT}^T_2 \).
Introduction

- Motivation
- Abstract harmonic analysis, examples
- Fourier type operators - Definitions

Fourier type p with respect to the Cantor group

- Old and new results

B-convexity and Fourier type

- B-convex spaces
- Bourgain's Hausdorff-Young inequalities

Fourier type 2 operators

- Kwapięń's result and factorization though a Hilbert space
- Transference principle for Fourier type 2 operators

Final remarks and discussion
Research questions

2. Vector–valued Fourier multiplier theorems, pseudodifferential operators with operator valued symbols
THANK YOU FOR YOUR ATTENTION