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Manfred NERMUTH: THE LINEAR MODEL OF PRODUCTION

Abstract:

The paper gives a mathematically self-contained, concise
exposition of the general linear model with joint production
4 la von Neumann, without indecomposability assumptions.
Labour values, the rate of exploitation, the capacity growth
rate, the warranted rate of profit, the equilibrium price
system, and the "Fundamental Marxian Theorem" are studied
for both the case where the wage is paid in advance (Marx)
and where it is paid post factum (Sraffa). For systems
without genuine joint production, both the Quantity and the
Price version of the general Nonsubstitution Theorem are
proved. The paper summarizes many known results from a

large and diverse literature, and contains also some new ones.

Zusammenfassung:

Die Arbeit gibt eine mathematisch exakte, konzise Darstellung
des allgemeinen linearen Modells mit Kuppelproduktion a la
von Neumann, ohne Unzerlegbarkeitsannahmen. Arbeitswerte,
Mehrwert-, Wachstums- und Profitrate, das Gleichgewichts-
preissystem und das "Fundamentale Marx'sche Theorem" werden
sowohl fiir den Fall eine vorgeschossenen (Marx) als auch
eines im nachhinein bezahlten Lohnes (Sraffa) studiert.

Fiir Systeme ohne echte Kuppelproduktion wird das allgemeine
Nonsubstitutionstheorem in beiden Versionen, der Mengen-
version und der Preisversion, bewiesen. Die Arbeit faBt
viele Resultate aus einer weit verstreuten Literatur
zusammen, und enthidlt auch einige neue Ergebnisse.
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§1. Introduction

1.1. Motivation and aim of the present study

The linear model of production is the simplest
representation of a fully disaggregated economic system,
but at the same time general enough to provide a suitable
framework for the analysis of many important and interesting
questions. For example, it is the basis for Leontief's
input-output analysis and for von Neumann's model of
economic growth; and it has also been instrumental for a
better understanding of certain problems in capital theory
(following the Sraffian critique of 'aggregate' neoclassical
theory, in particular the discovery of the "reswitching”
phenomenon) . Moreover, the linear model of production has
been used by many authors to study more rigorously certain
'classical’ problems of economic theory already discussed
. by Ricardo and Marx, especially the influence of changes in
the distribution of income upon relative prices (Ricardo's
problem of an "invariant standard of value"), and the
relationship between equilibrium prices and labour values
(Marx' "transformation problem"). Using the mathematical
duality between the price and quantity systems, the 'linear’
approach has also clarified the relationship between wages
and profits (resp. consumption and growth), and the precise
conditions under which prices (resp. optimal techniques)
can be determined independently of the structure of demand

("nonsubstitution theory").

The relevant results - especially when one includes joint
production - are scattered in a large and variegated '
literature whose fundamental unity is often obscured by the
substantial differences in emphasis and terminoloay among

different authors.

The aim of the present paper is to improve this situation
by providing a concise, yet mathematically self-contained
exposition of the basic formal theory.



The choice of material was motivated mainly by the
classical problems mentioned above (cf. also the overview
of contents in Sec.1.2). We assume throughout a uniform
profit and wage rate, no scarce resources, and only one
primary factor, viz. homogenous labour. The number of goods
and processes is finite, but we allow arbitrary joint
production systems, without further restrictive assumptions
like indecomposability etc.

The'analysis is based on a suitably modified von Neumann
model (i.e. we use inequalities rather than equalities)
resp. on methods of Linear Programming. Whether this approach
does justice to the classics or not, will not be discussed
herez); in any case, the classical tradition is followed
at least insofar as

(a) the main emphasis is on production,

3), and

(b) subjective preferences play no rdle

(c) the distribution (the "real wage") is exogenous.
Moreover, the price-quantity svstem is always determined
in such a way that

(d) it is compatible with the distribution, and

(e) all quantities are nonnegative.

| As already mentioned, the present study concentrates on
the formal aspects of the theory. Accordingly - and also for
the sake of brevity - economic interpretations have been kept
to a minimum. Extended discussions of the economic significance
of various results can be found in the large existing literature,
to which the reader is referred (see Sec. 1.4).

Remark: Theories which lack the last two properties (d) and (e)
must be rejected as unsatisfactory from the economic viewpoint.
This 1s true in particular of Sraffa's price theory and of his
‘additive' computation of labour values under joint production.
Given the extraordinary influence of this author (Roncaglia's
"Bibliography of Writings Relating to 'Production of Commodities
by Means of Commodities'" contains more than 400 items, cf.
RONCAGLIA 1978), a more detailed discussion of his theory might
seem to be warranted. However, this would be beyond the scope



of this short introduction, and we limit ourselyes to the
following two observations: |

ad (d): Sraffa varies the distribution for a given size
and composition of output. This is clearly inadmissible, since
a change in distribution, in general, leads to changes in output
(e.g. more investment goods, less consumption goods, or vice
versa)?) One might be justified in neglecting these quantity
changes, if they left invariant the price equations. But this
is not the case, because the coefficients of these equations
are precisely the input and output quantities in the various
industries. Starting from a certain initial state, Sraffa
changes the rate of profit, while keeping the remaining coefficient
of his price equations constant. The resulting prices, being
computed, so to speak, on the basis of the original quantity
system, will, in general, be incompatible with the new quantity
system required by the new rate of profit, and, hence, economically
meaningless§) It is well known that this problem does not arise
when there are constant returns to scale in all industries,
and if tg;Fe is no 'genuine' joint production, so that the
Nonsubstition Theorem holds (cf. sectién 5.1. below). But
these are assumptions that Sraffa did not make.

ad (e): The possibility of negative prices and labour values
was pointed out by Sraffa himself (cf. also MANARA'1968,
SCHEFOLD'1971, STEEDMAN'1977).

1.2. Summarv of contents

We give now a brief overview of the main results contained
in this paper. Familiarity with the basic concepts of the
linear model is here assumed. The technology is given by
an input coefficients matrix A, an output coefficients matri¥ B,
and a vector of labour input coefficiets 1. Throughout the
paper we take the workers' daily consumption bundle c (the
"real wage") as the exogenous variable, and determine all
other variables (growth rate, profit rate, prices, etc.) as

functions of c.

In Sec.2, after some basic definitions, we introduce
Marxian labour values v and show that a positive rate of
exploitation e is equivalent to productivity of the augmented
system (A+cl,B).



In Sec.3 we consider the system when the wage is advanced
‘at the beginning of the production period (as is usual in
Marxian theory), and show that for every real wage ¢ (which
is feasible and does not consist entirely of free goods) there
exists a (in general nonuniéue) equilibrium price system p
. and a uniquely determined nonnegative equlibrium rate of
profit r. r is equal to the capacity growth rate g,and r is
positive iff. the rate of exploitation e is positive ("Fundamental
Marxian Theorem"). If the wage increases, the rate of profit
goes down, i.e. pc' > pc implies r' < r ("generalized
wage-profit frontier"; here r' is the rate of profit
associated with c'). If two consumption bundles give rise to
the same rate of profit, the correspondinag price systems will
still in general be different, i.e. the prices depend not
only on the distribution of income, measured by r, but also

on the structure of demand.

In Sec.4 we consider the same model, but with the wage
paid at the end of the production period (4 la Sraffa).
Surprisingly, with joint production, this tiny modification
destroys several of the attractive features of the model
considered in Sec.3: the equilibrium rate of profit can
become negative, need not be unique, and the Fundamental
Marxian Theorem is no longer true. Apart from these differences,
Sec.4 parallels Sec.3 very closely.

In Sec.5 we consider the special case of the linear
model of production where the so-called "Nonsubstitution
Theorem” holds. This case is characterized by the absence
of "genuine" joint production (single-product industries are
a further special case). We state and prove a general
("dynamic") Nonsubstitution theorem in both the price and
the quantity version. It implies that the price system p
and the technique used depend both only on the rate of
profit r, but not on the structure of demand. Moreéver,
relative prices are uniquely determined by r, and become
proportional to labour values for r=0. For all practical
purposes, the theory becomes identical to the one for



_single-product industries (no joint production). We point
out that only under the conditions of the Nonsubstitution
theorem is it legiﬁimate to consider the price system and
the quantity system separately, and to draw wage-profit
curves in the usual way, with the optimal technique
depending only on the rate of profit, without worrying
about the structure of final demand.

1.3. Some new aspects

Although the present paper is essentially a systematic
exposition of known results, it also offers some new, or

hitherto neglected, aspects:

(I) The classical authors, in particular Marx, generally
assumed (at least in their attempts at formalization) that

the wage is paid at the beginning of the production period

and forms a part of the capital advanced by the capitalists.

In Sraffa's analysis, by contrast, the wage is paid at the

end of the production period and is regarded as the share

of the workers in the total surplus product. We give a complete
and parallel treatment of both cases (§3 and §4). In spite of
great similaritles, the theoretical results in the two cases

are not the same (cf. e.g. point (V) below).

(II) We vary the per-capita consumption of the workers (the

'real wage') in the space of all technically feasible consumption
bundles. The wage-profit-curve is thus replaced by a correspondence
associating with each rate of profit r the set of all per-capita
consumption bundles compatible with r. In the literature, it is
usually assumed that workers conéume only one consumption good
(BURMEISTER & KUGA'1970) or a fixed commodity basket (MORISHIMA'1971

(III) This correspondence between real wage and profit rate has

the following strong monotonicity property: Let c¢ be a
consumption vector with associated equilibrium rate of profit r



and price system p, and let c' be another consumption yectox
*which has a higher yalue than é, evaluated‘at the prices p
(pc' » pc). Then the xate of profit assoclated with c' is
lower: r' s r. This result can also be viewed as an optimality
propérty of the price system. Of course it implies immediately
the known monotonicity properties of the usual wage-profit

curve, even for joint production.

(IV) It is known that the assumption of a poéitive wage
suffices to determine uniquely the rate of profit, even when
the technology is decomposable (cf. FUJIMOTO'1975). We show
that this result is not true when the wage is paid post factum

(cf. Ex.4.3.2).

As a by-product of our main investigation, we obtain also,
almost effortlessly, some results on the relationship between
the (labour) value system and the price system. Surprisingly,
it turns out that

(V) the so-called "Fundamental Marxian Theorem" (MORISHIMA'1974)
is not true when the wage is paid 'post factum'. This contra-
dicts an incorrect assertion in WOLFSTETTER'1977 (his "Satz 2",

p.51 ££.).

The "Transformation Problem" proper, viz. the transformation
of labour values into prices, is not treated at all in this
paper, because there is no economically meaningful connection
between these two sets of variables, at least not in a joint
production system. Cf. Samuelson's famous "erasing algorithm".s)
The last section of the paper is devoted to the important
special case where there is no "genuine" joint production.
Among other things, we prove

(VI) the general7) Nonsubstitution Theorem in its two dual
versions, the Quantity Version and the Price Version, for
any admissible growth resp. profit rate, and without the
restrictive assumption that production uses every industry
(cf. MIRRLEES'1969, assumption (A'.3) on p.70; or BLISS'1975,
Th.11.3 on p.267).
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1.4. Further remarks and references

The mathematical prerequisites for understanding the
following pages can be found in any introduction to the theory
of linear models, e.g. GALE'1960 or NIKAIDO'1968. For the
convenience of the reader, some frequently used results are.
listed in an Appendix. The various examples in the text are
all counterexamples, designed only to demonstrate the invalidity
of certain assertions, not to illustrate the positive results

in the paper.

Proofs are usually collected in a separate subsection
labelled "O" at the end of each section; e.g. the proofs
for Sec. 3.3 are to be found in 3.3.0.

The literature on the linear model of production is
huge. A small selection: (1) systematic expositions: DORFMAN,
SAMUELSON & SOLOW'58, GALE'60, NIKAIDO'68, K.&W.HILDENBRAND'7S5,
BLISS'75, PASINETTI'77. (2) Input-output analysis: LEONTIEF'51,
'66. (3) Marxian Econonomics: MORISHIMA'73, '74, NUTZINGER &
WOLFSTETTER (eds.)'74, WOLFSTETTER'77, STEEDMAN'77. (4) Neo-
Ricardian Theories: SRAFFA'60, SCHEFFOi‘D '*71, RONCAGLIA'78.
(5) Questions of Capital theory: HARCOURT & LAING (eds.)'71,
BLISS'75. (6) Nonstubstitution theory: BLISS'75. Further
references, in paritcular to original articles, can be found

in these books.



§2. The linear model of production

2.1. General assumptions

The general linear model of production has the following
structure : 8)

There are m ® 1 produced goods, labelled i = 1,.. m,
and one nonproduced ressource, viz. homogeneous labour.
Moreover there are n ® 1 technically feasible production
processes, labelled j = 1,.. n, all with constant returns to
scale. The j-th process, when operated at unit intensity level,
transforms an input vector aj into an output vector bj'
using the amount of labour lj. Here 'aj and bj are
m-dimensional column vectors whose i-th component aij resp. bij
is the amount of good i used up as an input resp. prroduced
as an output by process j.

The technology (A,B,1) is thus given by an (mwn)-dimensional

matrix of input coefficients A= [a13]i=1,.. o (a1,.. a)
j=1,.. n
and an (mxn) matrix of output coefficients B = [bij] = (b1,.. bn),

plus an n-dimensional row vector 1 = (11,.. ln) of labour
input coefficients. The columns of Aand B correspond to processes,

and the rows to goods.

If process j is operated at the intensity level Xy > o,

it transforms the input vector asxy into the output vector

bjxj' and uses the amount of labour ljxj. Collecting the

intensities x; (j=1,.. n) into an n-dimensional column
vector x, we obtain: the economy as a whole transforms the
inputs Ax =2ajxj into the gross outout Bx =ijxj, using
the amount of labour L=1x =21jxj; the net output is (B-A)x.
x 1is called intensity or activity vector. The j-th process is
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called active at x, or x-active, when X3 > 0. We denote
by X:= {x 20 / (B-A)x 2 O} the set of all intensity vectors
which yield a semipositive net output, and assume that the

technology (A,B,l) satisfies the following assumptions:

Assumption I

(1) A20, B20, 10 (nonnegativity)

(ii) 1.A > 0, i.e. every column of A contains at least one
positive element (every process needs inputs)

(iii) There exists an activity vectorl x° ® 0 such that
(B-A)x° % 0, i.e. it is possible to produce a positive
net output of all goods simultaneously (the system is

productive)

(iv) 1x » O for all x¢€ X, i.e. labour is indispensable

(no full automation)

Ass.I(iii) implies B.15% O, i.e. every row of B contains
at least one positive element.

A set of goods S € {1,.. m} is called an independent

subset for (A,B) if there exists a set of processes

.T ¢ i1,.. n} such that a4 = O for i¢ s, JjeT; and for
every good i€ S there is a process Jj€T with bij > 0.

I.e. the processes in T need only goods in S as inputs,

and every good in S is an output of some process in T.

The pair (A,B) is called reducible (or decomposable) if there
exists a proper indemendent subset for (A,B). Otherwise, (A,B)

is called irreducible (indecomposable). In what follows, we

shall not assume irreducibility, unless explicitly stated

otherwise.

Finally, we denote by p, > 0 the price of one unit of the

i-th good, by p = (p1,.. pm) 5 O the price vector, by w 20

-
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thé wage rate (nominal wage), and by r ® O the profit rate
(rate of inte}est). It is assumed that w and r are uniform
throughout the economy. A good whose price is zero is called
a free good. If the per-capita-consumption of the workers is
given by a commodity bundle ¢ (¢ is an m-dimensional column

vector), then we have obviously w = pc (workers do not save).

In this paper we shall determine the price-quantity system
(r,p,x) as a function of the consumption bundle (the "real

wage") c, i.e. as a function of the distribution of income,

for a given technology (A,B,1l).
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2.2. Labour values

Let an arbitrary commodity bundle d @ O be given (d is an

9)

m-dimensional column vector). The labour value v(d) of @4

is defined as the minimum amount of labour necessary to produce

i.e. the value of the following Linear Programme:

min 1x
X } (2.2.1)
s.t. (B-A)x > 4, x 20

v._):

The Dual of (2.2.1) is (with v:=(v1,.. m :

max vd
(2.2.2)
s.t. v(B-a) £ 1, v 20

Theorem 2.2. (Labour wvalues)

Under Ass.I, every commodity bundle d @ O has a uniquely
determined, nonnegative labour value V(d). V(d) is a
continuous function of d, zero for d=0, positive for d;O,
and (weakly) monotonically increasing with 4, i.e. 4 £ g
implies Vv(d) 4 v(d'). Moreover V(k.d) = k.V(d) for every

scalar k ® 0; and V(d) -»e0  for 2d, -» 00 .

By Th.2.2., the two programmes (2.2.1) and (2.2.2) have

optimal vectors x¥ and " (cf. Appendix). The components

vI of v* can be interpreted as prices ("shadow prices" or

"optimal prices"), with a wage rate w=1 and a rate of profit

10) =

r=0. Although the optimal price system v for a given

commodity bundle d need not be uniquely determined, the

labour value V(d) = v".d =:Ev:.di is uniquely determined.

If in particular 4 = e;, the i-th unit vector 11), then

V(ei) is the labour value of good i, i.e. the amount of
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labour necessary to produce one unit of good 1i. The labour

value of an arbitrary commodity bundle 4 1is in geﬁeral smaller
than the sum of the labour values of its components:

v(d) £Zdi.v(ei), with equality in special cases only. The
.reason for this is of course that, under joint production, the
optimal technique (given by the nonzero components of the activity
vector xﬂ) depends on the final demand vector d. We shall

see in §5 that in the absence of joint production this is

not the case, by the Nonsubstitution Theorem, and labour values

can be computed 'additively' (cf. Th.5.2.).

2.2.0

Proof of Th.2.2.: Existence and continuity of V(d) follow
immediately from the theory of Linear Programming (cf. Th.A.3
and Th.A.4): Under Ass.I, both programmes (2.2.1),(2.2.2) are

feasible. Therefore they have optimal vectors x*, v? with

1x* = v*(B-a)x* = v®™a = v(d@). Clearly V(0) = 0; and
v({d) > 0 for d#0 by Ass.I(iv). An increase of d strengthens
the constraint in (2.2.1) and increases the maximand in (2.2.2),

so that the value of the problem can only increase. Further,

linear homogeneity is obvious from (2.2.2). Finally, if

:Edi 2 K for an arbitrary constant K, then d, ® ¥ for

i m
at least one i. On the other hand, (2.2.?) has at least one
feasible vector v with vy = Viey) 7 O. This implies

MK
max vd m.V(ei).

Q.E.D.
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2.3. The set of feasible real wages

Let the per-capita consumption of the workers be given by
a commodity bundle c ® 0 (an m-dimensional column vector).
A consumption bundle c¢ 1is called feasible if it can be
‘produced by the technology (A,B,l), i.e. if there exists
an activity vector xe€X s.t. net output per worker is at

least as large as c:
d xex with (B-A)x = c.1x - (2.3.1)

Condition (2.3.1) can also be written in the form

[B - (A+cli]x > 0. The matrix A+cl is called augmented

input matrix. It has as typical element aij + cilj and

takes account not only of the physical inputs of production (aij)

but also of the need to feed the workers (cilj).

*

Lemma 2.3. (Feasible consumption bundles)

A consumption bundle c¢ is feasible if and only if ("iff!)

its labour value is less than one, V(c) £ 1.

The set of all feasible consumption bundles, denoted by C,
is a subset of the commodity space RT. A commodity bundle ¢ 2 O
is certainly feasible if all its components are sufficiently
small (by Productivity, Ass.I(iii)), in particular,' c=0 is
feasibie. If c20 is feasible, then every smaller vector
c' with 0 £ c' £ ¢ is also feasible. The set C is convex

and compact. (This follows immediately from (2.3.1), Th.2.2.,

and Lemma 2.3.).
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_2.3.0.

Proof of Lemma 2.3. (by means of Th.2.2):
Let c be feasible, i.e. (2.3.1) is satisfied =D JIx with

1x = 1, s.t. (B-A)x 2 ¢, i.e. V(c) £ 1.
Conversely, assume V(c) £ 1 = 3Ix with 1x £ 1 s.t.

(B-A)x ¥ ¢ =) (B-A)x ® c.lx, i.e. c is feasible.

Q.E.D.
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2.4. The réte of exploitation

Let the per-capita consumption of the workers be given by -

a consumption bundle c. We define the rate of exploitation

(for c):
1 - V(c)
e(c) := ——————= for c#0 ,
V(c) (2.4.1)
e(c) := o0 for ¢ =0

e(c) is the ratio of "surplus labour” to "necessary labour"
(cf. MORISHIMA'1973 & '1974, WOLFSTETTER'1977). By Lemma 2.3.

we have e(c) ® 0 for every feasible c.

Lemma 2.4.

Let ¢ be’feasible consumption bundle. The following conditions

are equivalent:

(1) e(c) ) O the rate of exploitation is positive

(ii) Vic) £ 1 the labour value of ¢ is less than one

(iii) JIxe€ X with (B-A)x ) clx

(iv) dc'eC with ¢'» c, i.e. there is a feasible consumption
bundle which is strictly greater than c.

(v) The "augmented system" (A+cl,B) is productive in the

sense of Ass.I(iii).
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_2.4.0.

Proof of Lemma 2.4.: we prove only the equivalence of (ii)

and (iii), the remaining Iimplicatj.ons being trivial.

First assume that (iii) is satisfied = dx with 1x = 1

s.t. (B-A)x» c => dx with 1lx ¢ 1 s.t. (B-A)x 2 c,

i.e. V(c) € 1.

Now assume that (ii) is satisfied, i.e. V(c) ¢ 1 =>» Ix with
1x ¢ 1 s.t. (B-A)x > ¢ = y:= (B-A)x - c.1lx >0 and
yi> 0 for cy 2 O. Choose (by Ass.I(iii)) a sufficiently
small (componentwise) activity vector x° with (B-A)x° » o0
and define z:=y + (B-aA-c1)x°. 1If ci> O, then zi> o]

12)

because x° was chosen sufficiently small; if ci=0, then

D [(B-A-cl)xo_]. [(B-A) xo] lx 20 by def. of x°.
-—O
Therefore z = (B-A-cl) (x+x° )>» 0, i.e. (iii) is satisfied.

Q.E.D.
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§3. The system with the wage paid in advance

In this section we assume that the wage is paid at the
Beginning of the production period. Wages are part of the
capital advanced by the capitalists. In the framework of a
‘von Neumann model, this case was studied, e.g. by MORISHIMA'1974.

We assume that the technology (A,B,l) satisfies Ass.I.

3.1. The capacity growth rate

Let ¢ @ 0 be a feasible consumption bundle. In order to
find the largest growth rate of the system, compatible with c,
we consider the following nonlinear programme:

Problem I

max g

s.t. [B - (1+g9) (a+cD)]x 2 o, x ¥ 0 (3.1.1)

If this problem has a solution we denote it by g = g(c)

and call g(c) the cavacity growth rate for c. g(c) is the

largest rate at which the system (A,B,l1) can grow in a
balanced fashion, if the consumption per worker is ¢ and the

‘wage is paid at the beginning of the production period.

Theorem 3.1. (Capacity growth rate)

(i) For every feasible c¢ there is a unique nonnegative
capacity growth rate g(c)

(ii) g(c) 1is weakly monotonically decreasing in ¢, i.e.
c ¢ implies gl(c) £ g(c')

(iii) g(c) = 0 if and only if e(ec) =0
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(iv) g(0) =: Imax is the largest possible growth rate of

the system; and for every feasible c¢ we have:

£ £
0 g(c) Qmax'

(v) The inequality [B - (1+g(c))(A+clﬂ.x 2 0 has at

least one solution x ?ﬂ O with 1lx)»oO.

A feasible consumption vector ¢ is called inefficient if

all its nonzero components can be increased without lowering

the growth rate:
k> 1 with g(kc) = g(c) (3.1.2)

c is called efficient if it is not inefficient. Trivially,
c=0 is inefficient, but not every c¢#0 is efficient, as is

shown by the following example:

Example 3.1.1. A= (1)' B = (g)' 1=1(1), c= (?)

We have g(c) = g(2¢c) = 1.

We shall see in 5.3. that in the absence of genuine joint
production every c#0 is efficient (cf. Lemma 5.3.1(ii)).’
Inefficiency means that workers could get more of all goods
‘actually contained in their consumption basket, without lowering
the growth rate. This is a degenerate case which can occur only
with joint production; intuitively, the workers' consumption
consists entirely of "surplus goods". However, these surplus
goods can only be produced jointly with some other goods (not
consumed by the workers), and it is these goods that the

constraint on the growth rate comes from.
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"Proof of Th.3.1.: Let c be a feasible consumption bundle.

(i) we denote by G(c) the set of all growth rates g for
which the inequality (3.1.1) has ; solution x # 0. We want to
show that G(c) has a greatest element and that this is non-
negative. The set G(c) is clearly closed. Moreover, (3.1.1)
certainly has a solution for g £ 0, because c 1is feasible
(cf£. (2.3.1)), i.e. G(c) is nonempty. Finally, G(c) is
bounded above: for sufficiently large g we have
1.[B-(1+g) (A+cl)) €& O, because 1.AY»0 (Ass.I(ii)), and

" this implies by Th.A.1 (cf. Appendix) that (3.1.1) has no

solution x ; O. Therefore the solution of Problem I 1is

given by sup G(c) =: g(c) ® 0. This proves (i).

(v) If g(c) = O, the assertion follows from feasibility (2.3.1)..
If g(c) » O, we even have 1lxpO for4 every solution x 5 o)

of (3.1.1). Otherwise (1x=0) (3.1.1) and Ass.I(iv) would

imply: g(c)Ax £ (B-A)x = 0 =» Ax = O, contradicting Ass.I(ii).

This proves (v).

(iii) "=»": If e(c) > O, then, by Lemma 2.4, the inequality

. (B-A-cl)x » O, x 4 0 has a solution = for g sufficiently

all and positive, (3.1.1) has a solution =% g(c) > O.
"&= ": If g(c)l> O, then, by (v), there is an x with 1lx>»O
s.t. y:= (B-A-cl)x > [B-(1+g(c))(A+cli]x > 0 and Y;> 0 for
ci> O; Choose (Ass.I(iii)) a sufficiently small x° with
(B-2)x° »» 0 and define z:=y + (B-A-cl)x®. If c; 20, then
zi) O because .x° was chosen sufficiently small; if ci=0,
o

then z, ® (Bx° - ax°), - c,.1x » O by def. of x =
1 R S

=0
z = (B-A-cl) (x+x°) » 0, x+x°€X, i.e. e(c) > O, by Lerma 2.4.
This proves (iii). Assertions (ii) and (iv) are obvious from

the definitions.
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3.2. The warranted rate of profit

Let ¢ be a feasible consumption bundle. It is a condition
of long-run equilibrium that no processmakes profits in excess
of the ruling rate of profit. The smallest rate of profit

compatible with this condition is called the warranted rate

of profit (cf. MORISHIMA'1974) and denoted by r = r, (c).
rw(c) is the solution (if it exists) of the following

nonlinear programme, dual to Problem I of 3.1.:

Problem II

min r

s.t. p[B - (1+r) (a+cl)] ¢ o, p %0 (3.2.1)

Theorem 3.2. (Warranted rate of profit)

(i) For every feasible ¢ there is a unique nonnegative
warranted rate of profit, rw(c) ‘

(ii) rw(c) is weakly monotonically decreasing in ¢, i.e.

o c 2 ¢' implies r,(c) 4 r (c')

(iii) rw(c) =0 if and only if e(c) =0

(iv) rw(O) is the largest possible warranted rate of profit
and for every feasible ¢ we have 0 £ rw(c) £ rw(O).

(v) The inequality p[B - (1+rw(c))(A4cli]£ O has a solution

P ; o) with pc =0 if and only if rw(c) = rw(O).

Lemma 3.2. (g(c) and rw(c))

IN

(i) rw(c) g(c) for every feasible ¢

(ii) rw(c) g(c) if (A,B) is irreducible

(iii) rw(c) g(c) if rw(c) 4 rw(o)



In general, the capacity growth rate and the warranted rate

of profit are not equal:

Example 3.2.1. _[10 _ {20 _
A"(o1' B‘o3}'1‘

(1,1)

IFor c=0 we have g(c) = 2, rw(c) =1 = rw(O)

For c¢ = (162) we have g(c) = rw(c) = 1/3¢ rw(O)-

3.2.0.

Proof of Th.3.2.: Let ¢ be a feasible consumption bundle, and

choose (by (2.3.1)) an activity vector x€ X with (B-A-cl)x 2 O.

(i) We denote by R(c) the set of all profit rates r for
which the inequality (3.2.1) has a solution p 7 0. We want to
show that R(c) has a smallest element, and that this is
nonnegative. The set R(c) 1is clearly closed. Moreover, for
r sufficiently large, (3.2.1) has a soiution, e.g. p =1,
because 1.5 0 by Ass.I(ii), i.e. R(c) is nonempty.
Finally, for r negative, (3.2.1) has no solution: r ¢ O
implies: y:= [B-(1+r)(A+cli]x 2 0, and y;>C for ¢;>0.
Choose (by Ass.I(iii)) a sufficiently small activity vector
'x° > 0 with (B-a)x° »>»0, and define z:= y + [B-(1+r) (A+CI)] x°.
If ci) O, then zi>~0 because x° was chosen sufficiently -

small; if

Ci=0, then z; > [(B-A-cl)x°]i = [(B-A)xo]i -cilxo') (o]

=0
by def. of x°. => =z = [B-(1+r) (A+cD)] (x+x°) > 0, x+x°€ X,

and this implies by Th.A.1 that (3.2.1) cannot have a solution

P % O. Therefore the closed set R(c) is bounded below by

zero and has a nonnegative smallest element min R(c) =:rw(c) 2 0.

This proves (i).
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(ii) Obviously the set R(c) can only be enlarged, if anything,
by an increase in c¢; this implies the assertion.

(iv) follows directly from (ii).

(iii) By Lemma 2.4, e(c)» 0O if and only if the inequality

(B-A-cl)x »» O, x # O has a solution. By Th.A.1, this is

the case if and only if the inequality p(B-a-cl) £ O, P § 0

has no solution, i.e. if 0O ¢ R(c). This proves (iii).

(v)*=>": p[B-(1+4r_(c)) (a+c1)] 20, pc=0, p¥o
- £ >

=> p[B (1+rw(c))A] O => r_(c)e& R(O) = r (c) ® r_ (0)
=> rw(c) = rw(O).
"¢r ": Assuming for the moment that Lemma 3.2.(i) has already
been proved, we have, by Th.3.1, and with 1lx) O:
LB—(1+r) (A+cl)]x 20 = [B-(1+r)A]x > 0, where r:= rw(c) =
=rw(0) . On the other hand we must also have:
p[B-(14r)a] £ 0 = p[B-(1+x) (a+cl)] £ o.

p[B-(1+r)A]x =0
=> : =) pclx =0 =) pc = 0.

p[B- (1+r) (A+cl)]x = ©

The proof of Th.3.2 will be completed by the proof of L.3.2(i).

"Proof of Lemma 3.2

(i) Because g(c) is maximal in Problem I, the inequality
[B-(1+g(c)) (A+cl)]x >» 0 has no solution x * 0 = (by Th.A.1):
the inequality p[B-(1+g(c))(a+cl)] £ 0 has a solution p %0,
i.e. by def.: gl(c) € R(c) = r(c) = inf R(c) £ g(c). This
proves (i), and completes the proof of Th.3.2.

(i1) By Th.3.1, [B-(1+g(c))(a+cl))x * 0, x % 0, and

by Th.3.2, p[B-(1+rw(C)) (A+cl)] £ 0, p % 0. This implies, by (i):
pBx = (1+g(c))p(A+cl)x = (1+rw(c))p_(A+c1)x. It suffices to

show: pBx > O. The set of all "x-produced goods",
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S:= ii / (Bx)i> O}, is an independent subset because
aij+cilj=0 for i¢ S, jeT, where T={j /xj>0}

is the set of all x-active processes. Irreducibility of (A,B)
implies that S = {1,.. m}, i.e. Bx >0 =0 pBx > O.

.This proves (ii).

(iii) By Th.3.1(v) Ix with [B-(1+g(c)) (A+cl)]x > 0, 1lx>oO.

By Th.3.2(v) dp with p[B-(1+rw(c))(A+cl)]£ 0, pc)>O.

This implies','by (1): pBx = (1+g(c))p(A+cl)x = (1+r (c))p(A+cl)x,
and this implies the assertion, because pclx) O. This proves (iii).

Q.E.D.

Remark: The proof of Lemma 3.2(ii) shows that it suffices

to assume that the pair (4+cl,B) is irreducible.
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3.3. The price system

Let c¢ be a feasible consumption bundle, r a profit rate,

P a price vector, and xe€X an activity vector. A tripel

(r,p,x) is called an-equilibrium for ¢ 1if the following

three conditions are satisfied:

PB £ (141)p(A+cl), pfo (3.3.1)
Bx > (1+r) (A+cl)x, x%0, 1lx>»0 (3.3.2)
pBx > O _ (3.3.3)

(r,p,x) is called an equilibrium with positive wage for c¢

if also
w=pcpy O (3.3.4)

We shall show that for every feasible c¢ there exists an
equilibrium, that w>» O implies «r ='g(c), and that there
exists an equilibrium with positive wage if and only if ¢
is éfficient. But first we interpret the four equilibrium

conditions (3.3.1)-(3.3.4):

(3.3.1) requires that for every process j = 1,.. n:

pbj £ (1+1) (pay + wly) (3.3.1.3)
On the left hand side we have the revenue of the j-th process
(operated at unit intensity), and on the right hand side we
have the costs, viz. the costs of the physical inputs p.aj
plus the wage costs w.ls, both multiplied by the profit
factor (1+r). (3.3.1) requires that in every industry J
the rate of profit is not higher than the ruling rate of profit.
This ;s certainly a necessary condition for long-run equilibrium

and needé no further justification. Process j is called

profitable if (3.3.1.Jj) is satisfied with equality.
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(3.3.2) requires that for every good i = 1,.. m:
(Bx); ® (14r) [(ax); + ¢,.1x] (3.3.2.4)

On the left hand side there is the aggregate output of good i
in a period, and on the right hand side there are those
.quantities of good i which are used as physical inputs of
production (Ax)i, resp. for the consumption of the workers,
ci.lx, both multiplied by (1+r). (3.3.2) requires that the
economy can grow at least with rate r. Otherwise, it would

be impossible for the capitalists - for purely technical reasons -
to invest all their profits. They would have to consume at

least part of their profits. But then the structure of the
capitalits' consumption, i.e. ultimately their

preferences, would influence aggregate demand and hence the
technique in use and, finally, relative prices. Such a theory,
while certainly meaningful in its own right (cf. MORISHIMA'1969,
Ch.6), can no longer be considered as "independent of demand
factors". Rather, it is an application of General Equilibrium
Theory, where prices are determined by the interplay of Supply
and Demand. If one wants to find prices that are irdependent

of subjective preferences, and are determined only by the
technical conditions of production and the distribution of
income (wage and profit rate), then it is best tb assume that
capitalists use their profits for accumulation. Certainly this
assumption is in line with the thihking of the classical authors.
Obviously a necessary condition for such an assumption is that

(3.3.2) be satisfied. A good i is called a surplus good if

(3.3.2.1i) is satisfied with strict inequality.
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\

as
/
Remark: Insofar the workers' consumption is determined

by their preferences, the theory considered in this paper is
also not free from "subjective" influences. However,it may be
argued that c¢ is essentially determined by "objective"
(physical or social) needs. Such a view - which is certainly
consistent with neo-Ricardian price theory, but not with the
spirit of General Equilibrium Theory - will be adopted in this

paper without further discussion.

(3.3.3) requires simply that the value of total gross output
is not zero. This is clearly necessary for any economically

meaningful solution and needs no further justification. This
condition was first introduced into the von Neumann model by

KEMENY, MORGENSTERN & THOMPSON'1956.

(3.3.4) finally requires that the wage is not zero. w=pc=0
would mean that the consumption basket of the workers consists
entirely of free goods. If this is the case, why should workers
work? They might as well consume the free goods on which they
subsist (air, water,.. ) without working. Even if one is willing
to assume, for the purposes of an abstract investigation, that
workers work at any positive wage, however small, one cannot
assume that they work for nothing. Therefore (3.3.4) is also a
necessary condition for an economiqally meaningful equilibrium.
We shall'see that there are certain consumption bundles whose
value at equilibrium is always zero. These are precisely the
."inefficient" consumption bundles defined in (3.1.2). In this
case condition (3.3.4) cannot be satisfied. On the other hand,

it is then always possible to increase the workers' consumption
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without reducing the growth rate (and the profit rate, cf. Th.3.3)~
Therefore, the capitalists will not oppose such an increase,
until an efficient consumption bundle (and a positive wage) is

reached.

The results of this section can be briefly summed up as
follows (neglecting inefficient consumption bundles) :
a) There exists always an equilibrium (Th.3.3)
b) The rate of profit is uniquely determined by the per-capita
consumption of the workers (Th.3.3)
c) The level (not the structure) of the workers' consumption
is uniquely determined by the rate of profit (L.3.3.3)
d) The wage is positive and cannot be increased without reducing

the rate of profit (Th.3.3, L.3.3.2)

All these results are proved for arbitrafy joint production systems

without any restrictive assumptions like irreducibility etc.

First we observe three trivial, but important properties of

any equilibrium (r,p,x) for c:

Lemma 3.3.1. (Rule of profitability, rule of free goods)

Let (r,p,x) be an equilibrium for c. Then:

(i) rw(c) £y £ g(c) the profit rate lies between the warranted
rate of profit and the capacity growth rate

(ii) xj =0 if pbj < (1+r)p(aj + clj) only profitable
processes are active ("rule of profitability")

(11i) p; = 0 if (Bx); > (1+r) [(Ax), + c,.1x] surplus goods

are free goods ("rule of free goods").
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Theorem 3.3. (Existence and Uniqueness)

(i) For every feasible c¢ there is an equilibrium (r,p,x).
There is even an equilibrium with r = g(c).

(ii) There is an equilibrium with positive wage for c¢ if and
only if c¢ is effiqient. r = g(c) for every equilibrium

with positive wage for c.

At an equilibrium which does not have the highest possible
profit rate the wage is necessarily zero. We shall see in 4.3.
that the uniqueness result of Th.3.3(ii) is not true when the

wage is paid post factum.

Remark 1: It is possible that the capital advanced consists
entirely of wages, i.e. that pAx = O for every equilibrium

for c¢. This is shown by the following example:

Example 3.3.1. , _ (;} . (ﬂ 1=1(1), c-= ((1))

It is eésy to see that g(c) = 0. This implies by (3.3.1):

P, = O = pA =0 = pAx =0 for every equilibrium for c.

The case pAx = O cannot be considered as economically meaningless
a priori. It means that all physical means of production are free
goods. At the beginning of the production period, the capitalists
have to advance only the means of subsistence for the workers.

By contrast, when the wage is paid at the end of the production
period, the condition pAx > O is necessary for an economically
meaningful solution of our model (cf. 4.3., in particular (4.3.3)).
In this latter case, pAx =0 would imply that the capitalists
do not advance any capital ﬁt all (neither physical ihputs nor
wages). This would be equivalent to an economy without capitalists
and without capital, and the concept of a rate of profit would

lose all meaning.
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Remark 2: Contrary to an erroneous remark in MORISHIMA'74
(p.621, Footnote 10), w =pc > O does not imply indecomposability.

This is shown by

Example 3.3.2. . _ (1 1 _ ]2 2 _ _ 1)

The system is decomposable (process 1 uses only good 1 and
can be operated independently), but (r,p,x) is an equilibrium
with positive wage for ¢, where r = rw(c) = g(c) = O,

-p= (1,0), and x = (é).

Lemma 3.3.2 (Monotonicity)

Let ¢, ¢' be feasible, and let (r,p,x), (r',p',x') be
equilibria for ¢ resp. <c¢'. Then:

(i) pc'» pc = r'< r

(ii) pc' = pc # 0 = r' £ r

Lemma 3.3.2 says that the wage cannot be increased without
reducing the profit rate. On the other hand we have:
A) pc' £ pc implies nothing for the relationship between «r

and r°'

B) pc' = pc = O implies nothing for the relationship between
r and r°'

This is shown by the following example:

Examole 3.3.3. 10 30 0
A=]01], B o2}, 1=(1,1), c = |0
00 0o 2 1

It is easy to see that g/(c) 1. Two possible equilibrium price

systems for c¢ are given by:
(0,0,1) =D pc =10

(0,1,0) = pPc

A) p

B) p 0
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Moreover it is easy to check that g(c®) = 2 for c° = o,
0] : o]

g(c1) =0 for c1 = (1), g(cz) = 0 for c2 = (O}.
0

Then we have in Case A): pco 14 -pc and g(co) P g(C) » but
pc1 { pcC and g(c1) £ g(c); and in Case B): pc° =pc =0
and g(co)-> gl(c); pc2 =pc =0 and g(éz) € g(c). .

the
Next we turn tdvhuestion of efficiency resp. optimality of
equilibrium. For this purpose we consider the two dual Linear

Programmes (with L = 1x):

min wlx

x (3.3.5)
s.t. [B-(1+r)A]x 2 (1+4r)Lc, x 20 }
max Lpc

P (3.3.6)
s.t. p[B-(1+r)A] < (1+r)wl, p =20 }

Lemma 3.3.3. (Efficiency)

Let -d be a feasible efficient consumption bundle, (r,p,x)

an equiliprium with positive wage for ¢, and L:= 1lx, w:= pc. Then:
(1) r=gl(c)

(ii) x is an optimal vector for (3.3.5)

(iii) p is an optimal vector for (3.3.6)

Lemma 3.3.3 says that the per-capita consumption of the workers
can be neither more nor less than c¢, given the rate of profit r.
By (3.3.5), L = 1lx is the smallest number of workers needed
to produce the means of consumption Lc, under the constraint

Lc

that capitalists accumulate at the rate r. Therefore Ix - €

is the largest possible consumption per capita. On the other
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. hand, by (3.3.6), w = pc 1is the highest value that can be

-

assigned to the commodity bundle ¢ (given the profit rate r
and positive nominal wage w) without violating the equilibrium

condition that no industry makes profits in excess of the
ruling rate of profit. Therefore %E =1
real wage per capita (expressed with the commodity bundle ¢

is the smallest

as numéraire).

Remark: Of course there are other consumption bundles c' # ¢
which are also compatible with the same rate of profit r.

However, these consumption bundles contain the various goods
in different proportions, representing a different structure

of the workers' consumption, and are therefore neither "more"

nor "less" than c¢ (but cf. Lemma 3.3.2).
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3.3.0.

Proof of Lemma 3.3.1: Obvious from (3.3.1) and (3.3.2)

Proof of Theorem 3.3:

(i) Let r:= g(c) and M:= B-(1+g(c)) (A+cl). By Th.A.2,
there are vectors p 20, x 20, with pM £ 0, Mx 2 0, and
pP; = 0 = (Mx)i>0. By Th.3.1(v) we may assume w.l.0.g. that
1x > 0. We claim that pBx)» 0. Otherwise (pBx = O) pi> 0
would imply (Bx); = O, and also [(A+c]}.)x]i = 0. Because
(Mx)i> 0 for P; =0, g(c) would not be maximal, a contra-
diction. Therefore the tripel (r,p,x) satisfies (3.3.1)-~

g(c). This proves (i).

(3.3.3), with «r

(ii) Denote by (%,p,8) the equilibrium defined in (i).
If ¢ 1is efficient, then there exists an i with ci>0
and (Mi‘:)i =0 = i'ii)O =» pc> 0. If (r,p,x) is another
equilibrium for ¢, with r<¢ £ = g(c), then we obtain from
(3.3.1),(3.3.2): pBX = (1+r)p(A+cl)® = (1+f)p(A+c1).5€ =
pcl® = 0 = pc = 0.
If ¢ is inefficient, then there exists a k »1 and an
XxeX with Mo.§ 2 0, where M_:= B-(1+g(c)) (A+kcl) . Now if
(r,p,x) 4is any equilibrium for c, we have: pMx = pM°§ =0
=» pclx = k.pclx =) pc = O. .

Q.E.D.

Proof of Lemma 3.3.2:
Define M:= B-(1+r) (A+cl), M':= B-(1+r"') (A+c'l). We have

PM £ 0 by (3.3.1) and M'x' 2 0, 1x'>0 by (3.3.2).
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(1) pc' > pc, but r' 2r imply: y:= pM' £ 0 and y5¢0

for lj>0. = yx' = 0 = 1x' = 0, contradiction.

(ii) same proof as (i).

Q.E.D.

Proof of Lemma 3.3.3

(i) obvious from Th.3.3

(ii)&(iii): (3.3.1),(3.3.2) imply that the two programmes

(3.3.5),(3.3.6) are both feasible; the assertion then follows

immediately from wlx = wL = Lpc, by the Optimality Criterion

of Linear Programming (Th.A.4(i)).
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3.4. The "Fundamental Marxian Theorem"

Let c be a feasible consumption bundle. The following
statement has been called the "Fundamental Marxian Theorem"

by, e.g., MORISHIMA'1974:

Theorem 3. 4 (Fundamental Marxian Theorem)

A positive rate of exploitation is necessary and sufficient
for positive profits and positive growth, i.e.

e(c) > O <= r,(c) > 0 &= g(c) > 0.

By Lemma 2.4., a positive rate of exploitation means simply
that the labour value of the workers' consumption is less

than one, in other words, that a worker works more than

would be necessary to produce his own means of subsistence.
Precisely in this case is the augmented system (A+cl,B,l)
productive in the sense of Ass.I(iii), where (A+cl) is
obféined from (A,B,1) by adding the necessities of the
workers' consumption, cilj' to the ordinary input coefficients
aij' Pfecisely in this case there is a positive surplus product,
and, consequently, profits and growth. Viewed in this way,

the "Fundamental Theorem" appears almost trivial.

3.4.0.

The proof of Th.3.4. follows immediately from Th.3.1(iii)

and Th.3.2(iii).
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.§4. The system with the wage paid post factum

In this section we assume that the wage is paid at the
end of the production period ("post factum", cf. SRAFFA'1960,§9).
Wages are considered as the workers' share in the surplus
product. In the framework of a von Neumann model this case
was studied e.g. by WOLFSTETTER'1977. We continue to assume

that the technology satisfies Ass.I. §4 is parallel to §3.

4.1. The capacity growth rate

Let ¢ ® 0 be a feasible consumption bundle. In order
to find the largest growth rate of the system, compatible

with c, we consider the following nonlinear programme:

Problem III

max g

s.t. [B - (1+9)a - c{]x > o, x ; o] (4.1.1)

If this problem has a solution we denote it by g = g(c)

and call g(c) the capacity growth rate for c.

Theorem 4.1. (Capacity growth rate)

(1) For every feasible c¢ there is a unique nonnegative
capacity growth rate g/(c)

(i1) g(c) is weakly monotonically decreasing in c, i.e.

c ¢ implies g(c) £ g(c')

(iii) g(c) = implies e(c) =0

is the largest possible growth rate, and

(o]
(iv) g(0) =: gmax

for every feasible c we have: 0 £ g(c) £ Inax
(v) The inequality [B—(1+g(c))A-ci’x >0 has at least one

solution x % 0O with 1lx » O.
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Theorem 4.1. is literally the same as Theorem 3.1., with the
exception of (iii), where the reverse implication is false

'in Theorem 4.1. When the wage is paid post factum it is possible
that e(c) = O, but g(c) » O, as is shown by Example 4.1.1.

In 5.4. we shall see that this cannot happen in the absence

of genuine joint production (cf. Lemma 5.4.1(iv)).

Example 4.1.1. Let A,B,l,é be as in Ex.3.3.1. Then we have

e(c) = 0O because B-A-cl = (;) (cf. Lemma 2.4(iii)); but

the solution of Problem III is g(c) = 1, because B-=2A-cl = (8),

Remark: Ex.4.1.1 shows that the Fundamental Marxian Theorem
need not be true when the wage is paid post factum, cf. 4.4.
Of course this may also be taken as an indication that perhaps
the rate of exploitation should be defined differently in

this case. We shall not pursue this matter here.

A feasible consumption bundle c¢ is called inefficient if

Jdk »1 with g(kec) = g(c), (4.1.2)

and efficient otherwise.

4.1.0.

The proof of Theorem 4.1. is completely analogous to the proof

of Theorem 3.1. and is omitted.
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4.2. The warranted rate of profit

Let c be a feasible consumption bundle, and consider the

following nonlinear programme, dual to Problem III of 4.1.:

Problem IV
min r
s.t. p[B- (14r)a —c1] £ 0, p#o0 (4.2.1)

If Problem IV has a nonnegative solution we denote this
solution by rw(c); otherwise, we define rw(c) := 0. rw(c)

is called the warranted rate of profit for c.

Theorem 4.2. (Warranted rate of profit)

(i) For every feasible c¢ there is a unique nonnegative
warranted rate of profit, rw(c)

(ii) r (c) is weakly monotonically decreasing in ¢, i.e.
c®c' implies r_(c) £ r (c')

(iii) rw(c) =0 if and only if e(c) =0

(iv) rw(O) is the largest possible warranted rate of profit,
and for every feasible c we have .O £ r,, (c) 3 r., (0)

(v) The inequality p[B-(1+rw(c))A-cl] € 0 has a solution

P 5 (0] with pc =0 if and only if rw(c) = rw(O).

Remark: It is possible that Problem IV has no solufion or

a negative solution if the rate of exploitation is zero,

e(c) = 0 (cf. Ex.4.2.1 and Ex.4.2.2). In this case we

put rw(c) = 0. This definition is justified by the following

Lemma:



Lemma 4.2.1. (Negative profit rates)

»

Let (i) © be feasible, with (B-A-cl)x O, xe X, and
(11) r <0, with p[B-(1+r)a-cl] £0, »p % o.

Then pBx = pclx > 0, but pPAx = O.

By Lemma 4.2.1 total profits rpAx are equal to zero for
every r £ 0 (provided the system is at least reproducing

itself), i.e. we may w.l.0.g9. put r, = 0.

Example 4.2.1: Let A,B,l,c be as in Examnle 3.3.1.

=9 B-(1+r)A-cl = (1ar). (4.2.1) becomes: p,(1-r)+p,.0 £ O,

D 5 0. If p= (0,1) then (4.2.1) is satisfied for every r,

e

and Problem IV has no solution ("r ., = -o0").
min

Example 4.2.2: _f1o0 _ {2 1 _ _ [0

. A-(o1,B-(1o,,1—(1,1),c—(1)
=) B-(1+xr)A-cl = 1-r 1 . (4.2.1) becomes:

o) -2-r
p,(1-xr) € 0 -
T ’ p%O

p1~p2(2+r) £ 0

If p= (0,1) then (4.2.1) is satisfied for r = -2. It is

easy to see that this is the solution of Problem IV.

We shall see in §5.4. that Problem IV does have a nonnegative
solution for every feasible c¢ if there are no genuine joint

production and no perfectly durable capital goods (cf. Lemma 5.4.2).

Lemma 4.2.2. (g(c) and rw(c))
(1) r_(c) £ g(c) for every feasible c

"(11) rw(c) = g(c) if (A,B) is irreducible
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Remark: The analog of Lemma 3.2(iii) is not true. It is
possible that r _(c) < r (0), but r (c) # g(c); even if

rw(c) is in fact the solution of Problem IV. This is shown by

.2.3: 2
Example 4.2.3 A=((1)C1>,B=(1g,1=(1,1),c=(?,

O, but g(c) = 1.

We have rw(O) 1, rw(C)

4.2.0.

Proof of Theorem 4.2.

()& (iii) : We denote by R(c) the set of all r for which
(4.2.1) has a solution p Z 0. R(c) is closed (trivial) and
nonempty, since for sufficiently large r (4.2.1) has a
solution, e.g. p = 1, because 1.A> O by Ass.I(ii). If
e(c)> O, then there is an x€X with (B-A-cl)x >» 0, by L.2.4.
For r¢O this implies [B-(1+r)A-cl]x »» 0, and hence, by
Th.A.1, that (4.2.1) has no solution p‘% O. Therefore

inf R(c) =: rw(c) > 0. If e(c) = O, then, again by Lemma 2.4,
there is no x€ X with (B-A-cl)x >0 ¢(=> (by Th.A.1):

d p¥ O with p(B-A-cl) 4 0, i.e. O€R(c). This proves (i), (iii).

(ii) , (iv)&(v) are proved as in Th.3.2.

Q.E.D.

Proof of Lemma 4.2.1
(ii) implies y:= p(B-A-cl) £ 0, and yx =0 by (i).

. .= .e. .+pcl. = 4 . )

If Xy> 0 = y;=0, i.e. pajtpcly = pb, : (1+r)pa\J+p¢lJ
by (ii)

= paj=0 because r ¢ O. Therefore pAx = 0.This implies

immediately pBx = pclx, and this expression is positive,

because 1lx» O ; and because pc=0 would imply p(B-A) € O,

’

contradicting (by Th.A.1) Ass.I(iii).
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Proof of Lemma 4.2.2
(i) Analogous to Lemma 3.2(i)
(ii) By Th.4.1, [B-(1+g(c))A-cl)}x >0, x % 0, and

by Th.4.2, p[B-(1+rw(c))A-cl] €0, p # 0. This implies

by (i): p(B-cl)x = (1+g(c))pAx (1+rw(C))pr-

It suffices to show that pAx > 0. The set S:= {i / (Ax)i> o}
is an independent subset = S = {1,.. m}, because (a,B)

is irreducible =5 Ax>» O => pAx » O. This proves (ii).

Q.E.D.

Remark: It is easy to see that it suffices in Lermma 4.2(ii)
if the pair (A,B-cl) is irreducible (of course this pair
is not a von Neumann system in the sense of 2.1., because

B-cl may contain negative elements).
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4.3. The price system

- Let ¢ be a feasible consumption bundle.-A triple (r,o,x)

with r ® 0 is called an equilibrium for c¢ if it satisfies

the following three conditions:

pB £ (1+r)BA + pci, pZo (4.3.1)
Bx = (1+r)Ax + clx, x 2 o, 1x > O (4.3.2)
pAx > O ' (4.3.3)

(r,p,x) is called an equilibrium with positive wage for ¢

if also
w = pco> O. (4.3.4)

The interpretation of the four equilibrium conditions
(4.3.1)-(4.3.4) is analogous to the one given for (3.3.1)-
(3.3.4) in section 3.3. The only difference is that now the
capital advanced by the capitalists consists only of the
physical inputs of production. Therefore an economically
meaningful solution requires pAx » O (and not only pBx > 0O),
as explained in Remark 1 after Theorem 3.3. Moreover, when
the wage is paid post factum, it is necessary to require ex-
olicitly r @ O in the definition of equilibrium, because
(4.3.1)-(4.3.4) may be satisfied for negative r as well,
as shown in Ex.4.3.1. When the wage is advanced (cf. §3),

r * 0 is implied automatically by condition (3.3.1), because
Problem II (unlike Problem IV) always has a nonnegative

solution.

Example 4.3.1: _f{1 o0 _ {1 2 _ _ {0
e 01)' 8={;5) 1=00, c=(9)

(4.3.1)-(4.3.4) are satisfied for r = -1, p= (0,1), x = (1).



43

The results when the wage is paid post factum are similar to ﬂuacage

when the wage is paid in advance, but somewhat less satis—
factory. In particular, the rate of profit need not be uniquely
determined, i.e. (4.3.1)-(4.3.4) may be satisfied for more

than one nonnegative value of r. Moreover, the "Fundamental
Marxian Theorem" is not true, and a warranted rate of profit

in the strict sense need not exist. (cf. 4.4.; resp. 4.2.).

All these difficulties are connected with the presence of

genuine joint production (cf. 5.4.).

Neglecting inefficient consumption bundles, the results of
this section can be briefly summed up as follows (cf. 3.3.):
a) There exists always an equilibrium (Th.4.3)
b) The rate of profit is not necessarily uniquely determined
by the per-capita consumption of th? workers (Ex.4.3.2)
c) The level (not the structure) of the workers' consumption
is uniquely determined by the rate of profit (Lemma 4.3.3)
d) The wage is positive and cannot be increased without reducing

the rate of profit (Th.4.3., Lemma 4.3.2)

- Again we have:

Lemma 4.3.1 (Rule of profitability, rule of free goods)

Let (r,p,x) be an equilibrium for c¢. Then:
(1) r (c) £ r £ g(c)

(ii) xj = 0 for pbj Z (1+r)paj + pclj ("rule of profitability”)

(iii) P; =0 for (Bx)i > (1+r)(Ax)i + ci.lx ("rule of

free goods").
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'Theorem 4.3. (Existence)

(i) For every feasible ¢ there is an equilibrium (r,p,x).
There is even an equilibrium with r = g(c).
(ii) There is an equilibrium with positive wage for c if
and only if ¢ 1is efficient. In this case there is even
an equilibrium with positive wage for ¢ with r = g(c).
also
Unlike the case considered in §3, there may K; equilibria with
positive wage for c such that the rate of profit is strictly
less than the capacity growth rate, as is shown by Ex. 4.3.2.
This indeterminacy of the profit rate is possible only under

genuine joint production, cf. Lemma 5.4.3.

Example 4.3.2. (Nonuniqueness of the rate of profit)

0O 11 1
A= 11 O), B = (2 o}, 1= (1,1, c=1|]o0
o1 O 3 0]

It is easy to see that g(c) = 2. Two equilibria with positive

wage for c¢ are given by: r =2, p= (1,1,1), x = (?];

and r=1, p= (1,1,0), _ IS ((13\.

Lemma 4.3.2. (Monotonicity)

Let ¢, ¢' be feasible and let (r,p,x) resp. (',p',x")
be equilibria for ¢ resp. c¢'. Then:

pc' > pc = r' ¢ r.

This Lemma corresponds to Lemma 3.3.2(i) in §3. Next we

consider the two dual Linear Programmes:

min wlx
(4.3.5)
s.t. [B—(1+r)A]x 2> Lc, x>0
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max Lpc
(4.3.6)
s.t. p[B-(1+r)a]4w1, " p o0

Lemma 4.3.3. (Efficiency)

Let ¢ be a feasible efficient consumption bundle, (r,p,x)

an equilibrium with positive wage for c, and L:= 1lx, w:= pc.
Then: _ | |

(i) x is an optimal vector for (4.3.5)

(ii) p is an optimal vector for (4.3.6).

The interpretation of Lemma 4.3.3 is similar to the inter-

pretation of Lemma 3.3.3.

4.3.0. Proofs

Lemma 4.3.1 follows immediately from (4.3.1),(4.3.2)
Theorem 4.3.: Analogcus to Th.3.3., with M:= B-(1+g(c)a-cl.
Lemma 4.3.2: Analogous to Lemma 3.3.2(i)

Lemma 4.3.3: Analogous to Lemma 3.3.3.
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4.4. The "Fundamental Marxian Theorem"

-When the wage is paid at the end of the production period
the "Fundamental Marxian Theorem" does not hold, i.e. it
is possible that the rate of profit and the rate of growth
are both positive, but the rate of exploitation is zero.

This is shown by

Example 4.4.1: Let A,B,l,c be as in Ex.4.1.1. Then we

have g(c) = 1, but e(c) = 0.

This example contradicts an incorrect assertion in
WOLFSTETTER'1977, p.62. The implication is correct only in

one direction:

Theorem 4.4,

A positive rate of exploitation is sufficient for positive
profits and positive growth, i.e.

e(c) ) 0 =» rw(c)> O and g(c) > O.

In the absence of genuine joint production, the reverse

implication is also true, cf. Lemma 5.4.4.

4.4.0.

Th.4.4. follows immediately from Th.4.1(iii) and Th.4.2(iii).



47

§5. Nonsubstitution Theory

5.1. Introduction

We consider now an importént special case of the general
linear production model developed in §§1-4, viz. the case
where the so-called "Nonsubstitution Theorem" holds. The
Nohsubstitution Theorem says, roughly, that, in equilibrium,
both the technique used and the prices of all goods depend
only on the rate of profit r, but not on the structure of
final demand, i.e. on the composition of the workers consumption
basket c, as long as c¢ 1is compatible with r. Moreover,
the relative prices of all actually produced goods are uniquely
determined by r. In this case - and only in this case -
is it possible to consider the price system and the quantity
system separately and to study the "influence of variations in
the rate of profit upon relative prices" without explicitly
paying attention to the accompanying changes in physical quantities.
Agaiﬂ only in this case does it make sense to speak of an
'optima;' or ‘'profitable’ technique, given the rate of profit,
and to draw the wage-profit curve as is usually done, namely
as a function relating the nominal wage w and r, without
worrying about the numéraire, i.e. the physical composition of
the workers' consumption. This is so because, under the
Nonsubstitution Theorem, a change in the numeraire does not
require a change of the optimal technique, given the rate of
-profit r, and hence leaves invariant the qualitative features

of the w-r-curve, in particular its switch-points.



48

In order to.derive the Nonsubstitution Theérem, we need
one additional assumption, which amounts to excluding genuine
joint production: we shall assume'that every process increases
the quantity of at most one good (cf. Ass.Il below) . An important

special case is of course the case of single-product industries,

where each process produces exactly one good, and completely

uses up all other inputs (i.e. there is only circulating capital).

The absence of genuine joint production not only enables
us to prove the Nonsubstitution Theorem, but it also makes the
theory with the wage paid in advance virtually identical to
the theory with the wage paid 'post factum'. In particular, we
obtain both uniqueness of equilibrium and the Fundamental
Marxian Theorem for the latter case as well (with genuine joint

production this need not be true, cf. §4).

§5 forms, so to speak, a small replica of the entire
first part of the paper. Section 5.k. corresponds to §k,
for k=1,2,3,4, and contains the appropriate modifications
resp. refinements of the theory when there is no genuine joint

. production.
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5.2. The linear production model without genuine joint production

From now on we shall assume that the technology (A,B,1l)

satisfies the following assumption, in addition to Ass.I.:

A ssump¢tion II (No Genuine Joint Production):

For every process j = 1,2,.. n, there exists at most one

good i with bij > a4-

Ass.II means that the net output vector bj-aj has at most
one positive component. In other words, every process increases
the quantity of at most one good. When Ass.II is satisfied we
say that there is "no genuine joint production".

If bi.—aij)»o, we say that the j-th process produces good i

J
(1 £1i £ m). The set of all such processes forms the i-th

industry, denoted by Ti i= {j / bij> aij’ i=1,.. n}. By

productivity (Ass.I.iii), Ti is nonempty for every good

i=1,.. nmn.

Recall from 2.2. that the labour value V(d) of a commodity

bundle d is the minimum amount of labour needed to produce d.

Theorem 5.2. (Labour values)

Let (A,B,1l) satisfy Ass.I and Ass.IX. Then for every commodity
m

bundle d > 0, its labour value is given by V(d) = ;;: Vie;).d; ,
=1

where V(ei)> O 1is the labour value of one unit of

the i-th good (1 £ i £ m).

This result should be compared with the remarks after Th.2.2.
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Next we observe that, when the technology is reducible and the
growth rate sufficiently high, then, in general, not all goods
can be produced in positive quantities. This causes a certain
difficulty in establishing the Nonsubstitution Theorem {(cf.
BLISS'1975, pp.266-268). In order to overcome this difficulty,
we introduce now some auxiliary concepts.

For a nonnegative number g ® O we call good i g-producible

if there exists an activity vector x @ 0 such that

y:= [B-(1+g)A]x 2 0 and yi)o. The set of all g-producible

goods is denoted by S:= S(g). A g-producible good is a good

of which a net surplus ("for consumption") can be produced,

over and above the amount required for investment at growth rate g.
For an arbitrary pair of nonnegative (mxn)-matrices (A,B)
satisfying Ass.II, but not necessarily Ass.I, we give the following

definitions: (A,B) is called semiproductive if there exists

an x 0 s.t. (B-A)x 20, i.e. if X = {x / (B-A)x % O} # Q.

Good i is called prodwcible in (A,B) if there is an xéX

s.t. (Bx-Ax),>» O. Process j 1is called productive in (A,B) if
i

it produces a producible good and if there is an x€&€ X with

X. 0.
i >

Lemma 5.2. (Semiproductive systems)

Let (A,B) be semiproductive and satisfy Ass.II. Then the
productive processes in (A,B) need no net inputs of nonproducible
goods, i.e. bij = a for i s, jeT, where S is the
set of producible goods and T 1is the set of productive

processes in (A,B).
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Proof of Theorem 5.2.

First choose a strictly positive d>»» O, and corresponding
optimal vectors X, v for the Linear Programs (2.2.1), (2.2.2).
Such optimal vectors exist, by the proof of Th.2.2. By the

Basis Theorem of Linear Programming (cf. Th.A.3), X can be
chosen so that it has at most m positive components. Define

13)

=37 %> o}, and denote by M:= By - A, the square

submatrix obtained by striking out all processes not contained
in T. By the Inversion Lemma (Th.A.5), M is nonnegatively

invertible, because MET > 3§ » 0, and all off-diagonal elements

of M are nonpositive, by Ass.II (w.l.o.g. we may arrange the

processes in T in the same order as the goods they produce).

Now let d be any commodity bundle, and define x:= (xT,O),

1

where x.:=M '.d. Then (B-A)x =d, i.e. x is feasible

t
for (2.2.1), and Vv remains feasible for (2.2.2). Moreover,
the pair (x,v) satisfies the complementary slackness condition

(Th.A.4.ii), and hence is optimal. =)

m
v'la =S vie,d,, where
i=1 o

= v(d) =vd = 1lx = 1.

- _ _ -1
v, = V(ei) = lT'M

i -ey >0 is the labour value of one unit

of good 1i.
Q.E.D.

Proof of Lemma 5.2.
Take an arbitrary productive process Jjé€& T, producing, say.,

good s (i.e. j€ T_). There exists an x >0 with x;20 s.t.
>
= sk™k ag Xy (1)

k=1

Y -
Z bhkxk = % ap 1 X for all goods h=1,.. m (2)
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If i ¢ s is a nonproducible good, we must have:
EE b, x = zra. x (3)
i ik“k K ikk

Now for & sufficiently small and positive we méy replace
xj by xj-e without disturbing inequality (1), while inequalities
(2) are, if anything, strengthened, because bhj 4 ahj

for h#s, by Ass.II. If aij) bij then (3) implies
gbikxk - ebijxj > g aikxk - faijxj =
But this would mean that good i is producible, contrary to

hypothesis. Therefore aij = bij'
Q.E.D.

This proof is adapted from Gale's argument for the single-

product case (GALE'1960, p.298).
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5.3. The case of the wage paid in advance

-

In this section we study the model of §3 for the special
case where the technology satisfies Ass.I and Ass.II, i.e.
there is no genuine joint production. Definitions and notation
are taken from §3. . In particulaﬁ,.the wage is paid

ah

at the beginning of the production period,’fﬁe capacity growth

rate g(c) and equilibrium (r,p,x) are defined accordingly.

Let c X 0 be a feasible consumption bundle, and g(c)

the capacity growth rate for c. By Th.3.1.(v), the inequality
Bx  (1+g(c)) (A+cl)x, x # 0, 1x»0 (5.3.1)

has at least one solution X.

Lemma 5.3.1 (Capacity growth rate)

Let (A,B,l) satisfy Ass.I and Ass.II.

(i) . Bx = (1+g(c)) (A+cl)x for every solution x of (5.3.1)

(ii) g(ec) <€ g(c') for c ; c'. In particular, every c#O
is efficient.

(iii) If c#0, then every solution X of (5.3.1) uses only
g(c) -producible goods, i.e. aij = bij =0 for
i¢ S(g(c)), xj70-

Theorem 5.3. (Nonsubstitution Theorem)

Let (A,B,l) satisfy Ass.I and Ass.II and let O £ r= g < Ipnax®

Then there exists a set of processes T = T(g) containing
exactly one process J€ Ti for every g-producible good 1é& s(g).,
and a price vector P = p(r) with positive prices B, >0

for all i€ s(g), s.t. for every feasible ¢ with g(c) =g

the following is true:
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(i) There exists an activity vector R, using only processes

-~
AA

in T (i.e. ij =0 for j¢ T), such that (r,B,R)
is an equilibrium for ¢, with @ = fc = 1.

(ii) If (r,p,x) 1is any equilibrium for ¢, with w = pc » o,
then p, = w.ﬁi for all i with (Bx); > O, i.e. the

prices of all'actually produced éoods are proportional to

those given by p.

The set T = T(g) is called an optimal technique for g.

Usually T is uniquely determined by g; a value of g for

which two or more techniques are optimal is called a switch-point.

-

The existence of an optimal technique T means that a change

-

in final demand ¢, does not require a change of technique T,
i.e. does not require substitution among technical processes,
as long as the rate of growth g remains constant. This

statement is the Nonsubstitution Theorem in its Quantity version.

The dual statement, the Price version of the Nonsubstitution

Theorem, says that relative prices are independent of demand,
i.e. a change in ¢ does not lead to a change in the price
_vedtor Pp = p(r), as long as r remains constant. Relative
prices are determined exclusively, and in fact even uniquely,

by the rate of profit.

Example 5.3.1 shows that both the Quantity version and the
Price version of the Nonsubstitution Theorem are false if the

economy violates Ass.II, i.e. if there is genuine joint production.
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Example 5.3.1 _Jo 11 [0 4 3 _
A‘(1o1 ' B‘(403)' 1=0,1,1)

Consider the three feasible consumption vectors:

1 _ [O 2 _ |3 3_ |2 ky _ )
c = (31, c” = (0,' c” = ‘2}. We have g(c”) = 0 for k=1,2,3;

_but if (r,p,x) 1is an equilibrium for c¢ = ck, then

- e = c1 implies: x uses only the first process, and p1( P,

c 02 implies: x wuses only the second process, and p1)'p2

c = c3 implies: x wuses only the third process.

Lemma 5.3.2 (Labour values and prices)

Let (A,B,l) satisfy Ass.I and Ass.II. Then QéO) = V(ei) for
all goods i=1,.. m, i.e. when the rate of profit is zero,
then prices are equal to labour values, provided the wage is

taken as numéraire (w=1).
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'5.3.0

Proof of Lemma 5.3.1

(i) Let g:= g(c) and assume, indirectly, that the system
((1+g) (A+cl) ,B) is semiproductive. Denote by S the set of
all producible goods and by T the set of all productive
processes for this system. There exists an Xx = 0, with xj> (0]

iff. Jje T, s.t.

n
b, .x. +g). . 1. . £ i€ S

= leJ v (1+9) 2:;-_-(a13+c113)xJ or 1ie€ (1)

Zj bijxj = (1+g). ; (aij+cilj)xj for 1# S (2)

By Lemma 5.2.,

bij = (1+g) (aij+cilj) for ig¢sS, JjerT (3)
If g)» 0, then (3) and Ass.II imply bij = aij+cilj = 0 for
i¢s, jeT; and from (1),(2) one gets a contradiction to

the maximality of g=g(c).

If g=0, then (3) and Ass.II imply, in particular, ci=0 for

ig S. Choose (by Productivity, Ass.I.iii) an x° 20 sufficiently
small and s.t. (B-A)x° » O, and define wu:= (B-A-cl) (x+x°).

For ie€ S, ui> O by (1) and because x° is sufficiently

small; for ifs, u; 2 (on-Axo)i - cilxo > 0 by def. of x°

\h-f:a'

= u ) 0, contradicting g=g(c)=0.

This proves (i).

(ii) Let c % c', but assume indirectly g:= g(c) 2 g(c') =:q'.
For any solution x of (5.3.1) we have, by (i):

O = Bx - (1+g) (A+cl)x £ Bx - (1+g') (A+c'l)y =:y and y;>0

for ci> ci, contradicting (i).

This proves (ii).
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(iii) If g(c)=0 .the assertion is trivial because every good
is O-producible, by Productivity (Ass.I.iii).

If g:=g(c) > O,. and x is a solution of (5.3.1),then 1x) 0,
and hence, by (i), c;=0 for i¢ s:= S(g). Note that c#0
implies that S is nonempty and g(gmax, by (ii).

We denote by T the set of all productive processes for the
system ((1+g)A,B), and obtain from Lemma 5.2.:

b,. = (1+g)a15 for i( S, je€T. By Ass.II, this implies

ij
b,. =a,. =0 for i¢s, jerT (»)

ij
Now write x in the form x = (xT,xU), where U:= {1,.. n}'\T
is the set of unproductive processes for ((1+g)A,B), and
define x':= (xT,O), xX'':= (O,fo. Obviously x ; O because
c#0; we want to show that Xy = O (the case where U is empty
is trivial, like the case where g(c)=0). If a process 3je€U
is active, it certainly cannot produce a good i€ S. Therefore
(5.3.1) and (%) imply: Bx'lé (1+g) (A+cl)x'. By (i), there

must be equality, and hence also: Bx'' = (1+g) (A+cl)x''.

Because ci) O for aqleast one ie€ S, and by definition of x'',

this implies Ix'' = 0. By Ass.I(iv), Ax'' = Bx'' = (1+g)Axll
=) Ax'' = 0, and therefore, by Ass.I(ii), x'' = O.

This proves (iii) and Lemma 5.3.1.

Q.E.D.

Proof of Theorem 5.3.
£ .

Let 0 £r =g (¢ Imax*

(i) If ¢ is feasible with g(c) = g, then ¢ must be efficient

and c#0, by Lemma 5.3.1(ii). Moreover ¢,;=0 for igds:= s(g).

Consider the two dual Linear Programmes:
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min 1lx ' '
} (1)
s.t. [B-(1+p)A]x @ (1+r)c, x 20
max pc
} (2)
s.t. p[B-(1+r)A] £ (1+1)1, p=0

By Lemma 3.3.3, the programmes (1),(2) have optimal vectors
X,p. with 1lx = pc = 1. Moreover, if x is.an optimal vector
for (1), we must have, by Lemma 5.3.1(iii):

aij = bij =0 for i¢ S, xj)o (=)
I.e. the non-g-producible goods do not occur at all in the
processes used by x, and we may therefore strike out all
processes which either produce or use a good that is not
g-producible. The restricted programme thus obtained has the
same optimal.vectors (up to certain omitted zero components)
as the original programme (1). Moreover, it has only as many
genuine constraints as there are elements in S, the rows
corresponding to other goods consisting entirely of zeros,
by (%) . Therefore, by the Basis Theorem of LP (cf. Th.A.3),
14)

there exists an optimal vector X(c) with at most card(s)

nonzero components.

‘Now choose a & with éi)<3 for all ie€S. By Ass.II, the

set of active processes for % = X(&) must in fact contain
exactly one process from each industry Ti’ ie S. Define

T := % := {j / ij(é)) 0}. The matrix M:= BS,T - (1+r)AS,T

is square and nonnegatively invertible by Th.A.5, because

MiT > (1+r)6S » 0, and all off-diagonal elements are nonpositive
by Ass.II (w.l.o.g. we may assume the processes in T to be

arranged in the same order as the goods in S they produce).
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Now choose an optimal vector p§ = P(r) f£for (2). By complementary
slackness (Th.A.4.ii), ﬁ[bj - (1+r)aj] = (1+r)1j for jerT.
: A _ ot ~ — . 1
= (by (®)) Ppg.M = (1+r)ly = Pg = (1+r)l .M .
ﬁs must be strictly positive, for if pi=0 for some i€ S,

then the corresponding process in TnTi would make a loss,

by Ass.II and Ass.I(ii), (iv).

Next choose any feasible ¢ with g(c) = g. We claim that T
is an optimal technique, and P an optimal prdice vector

for c. Define x:= (xT,O), where Xp:= M-1.(1+r)cs. =

[B - (1+)A]x = (1+r)c. The pair (x,p) is optimal for (1), (2)
by Th.A.4(ii); in particular 1lx = Pc = 1. But this means

that (r,p,x) 1is an equilibrium for ¢ with the desired

properties. This proves (i).

(ii) If (r,p.x) 1is any equilibrium for ¢, with w = pc > O,
observe first that we can replace x by a vector y using

only the processes in T, s.t. (r,p,y) 1is also an equilibrium
for ¢, with 1ly = 1, and with the same set of actually produéed
goods, R := {i / ®x) >0} = fiy (By) ;> O}. Denote by

U := {j / yj> 0} the set of y-active processes, and by

N:= (1+r)A the corresponding submatrix of M.

Br,u ~ R,U
It is clear that U needs no goods outside R, i.e.

a3 =bjy =0 for ifR, jeu (R%)
Therefore the matrix M is of the form:

-1
_ [N = -1 _ [N »
M—(O*)' with M _(O *).
The vectors vy, 5 are optimal for (1), (2) by Lemma 3.3.3,

and by complementary slackness we have:

5.[bj - (1+r)aj] = (1+r)l;  for Jje€U. By (k%) , this implies
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pR.N = w.(1+r)1u =>

-1

= -_ _1 - a
Pr = w(1+r) 1, " = w. [(1+r)1TM JR = W.Pp-

This proves (ii) and the Theorem.

Proof of Lemma 5.3.2
Let ¢ be a feasible consumption bundle, with r = g(c) = o,
and let x,v be optimal vectors for the LP's (2.2.1),(2.2.2),

where d = c. By Lemma 2.4., Th.3.1, V(c) = vec = 1 and

-

by Th.5.2., vy = V(ei). By def., the tripel (0,v,x) is

an equilibrium with positive wage for c¢ (cf. Footnote 10).
By Th.5.3(ii), this implies v, = ﬁi(O).

Q.E.D.
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5.4. The case of the wage paid post factum

In this section we study the model of §4 for the special case
where the technology satisfies Ass.I and Ass.II, i.e. there is
no genuine joint production. Definitions and notation are taken
from §4. In particular, the wage is paid at the
end of the production period, and the capacity growth rate g(c),
the-warrénted rate of profit rw(c), and equilibrium (r,p,x)
are defined accordingly.

Recall from §4 that with unrestricted joint production, the
model where the wage is paid post factum has a number of
unattractive features, compared to the case of the wage advanced:
zero exploitation does not imply zero growth (Ex.4.1.1),

Problem IV need not have a nonnegative solution (Ex.4.2.1,
Ex.4.2.2), and the equilibrium rate of profit need not be

uniquely determined (Ex.4.3.2). We shall.see in the present
section that all these difficulties disappear when we rule out
genuine joint production (and, in one case, perfectly durable
capital goods as well, cf. Ass.II' below). Section 5.4. is parallel

to, but considerably longer than, section 5.3.

Let c X2 0 be a feasible consumption bundle, and g(c)

the capacity growth rate for c. By Theorem 4.1., the inequality
Bx = [(1+g(c))A + cl]x, x ; 0o, 1lx»oO (5.4.1)

has at least one solution x.
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Lemma 5.4.1. (Capacity growth rate)

Let (A,B,l) satisfy Ass.I and Ass.II.
(i) Bx = [(1+g(c))A + ci]x for every solution x of (5.4.1)
(ii) g(c) ¢ g(c') for c ; c'. In particular, every c # 0O
is efficient.
(iii) If c#0, then every solution x of (5.4.1) uses only
g (c) -producible goods, i.e. aj4 = bij =0 for i # S(g(c));
Xj > 0. .

(iv) g(c) = 0 & e(c) = 0.

Assertions (i) - (iii) are analogous to the corresponding
assertions in Lemma 5.3.1. Assertion (iv) should be compared
with Theorem 4.1.(iii) for the joint production case, where

the implication "e(c) = 0 = g(c) = 0" is not true.

We know from 4.2. that in the case of -joint production the
inequality

p[B - (1+4r)a - cl] £ 0, p Zo0 (5.4.2)
may have solutions p % O even for negative values of r.
This caused some difficulties for the definition of the warranted
rate of profit, r_(c). We shall see now that these difficulties

disappear when the technology satisfies the following assumption,

slightly stronger than Ass.II:

Assump¢tion II' (No Genuine Joint Production and No

Perfectly Durable Capital Goods): For every process j = 1,.. n,

there exists at most one good i with bij 2 aij # O.
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Recall that Ass.II required that for every j- there is at most
one good i with bij > a4 This leaves the possibility that
bij = aij for more than one good i, i.e. the process Jj uses
these goods as perfectly durable capital goods. Under Ass.II',
this is not possible: a process J either does not use a good

at all (bij = a = 0) or decreases its quantity (bij < aij)’

ij
except of course for the single good the process produces
(if it produces anything at all, which is not required by either

Ass.II or Ass.II').

Lemma 5.4.2. (Warranted rate of profit)

Let (A,B,l) satisfy Ass.I and Ass.II'. Then for every feasible c,
Problem IV has a solution, and this solution is equal to the
warranted rate of profit, as defined in 4.2. (in particular,

it is nonnegative).

If Ass.II' is replaced by the (weaker) Ass.II, then Lemma 5.4.2

is not true, as the following example shows:

Example 5.4.1. _ (1 (o] _ {1 2 _ - (0
A- 01 F B— 10' l— (1’0), C 1

The technology (A,B,l) satisfies Ass.I and Ass.II, but Problem_IV
does not have a nonnegative solution: The inequality

>
p[B-(1+r)A-ci] 2 0 has a solution p = (0,1) # 0 for r = -1,

Obviously process Jj=1 violates Ass.II'.

In 4.3. we have seen that in the case of joint production
the four equilibrium conditions (4.3.1) - (4.3.4) could be
satisfied for more than one profit rate r 2 0. This indeterminacy

did not occur when the wage was paid in advance. We show now
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that Ass.II suffices to remove this indeterminacy for the case
when the wage is paid post factum as well, and that the only

possible equilibrium profit rate is the capacity growth rate.

Lemma 5.4.3. (Uniqueness of equilibrium)

Let (A,B,1l) satisfy Ass.I and Ass.II, let c#0 be a feasible
consumption bundle, and let (r,p,x) satisfy (4.3.1)-(4.3.4),

with r 2 0. Then r = g(c).

Next we state the Nonsubstitution Theorem. Its interpretation

is is analogous to the one given for Theorem 5.3.

Theorem 5.4. (Nonsubstitution Theorem)

Let (A,B,l) satisfy Ass.I and Ass.II and let O £ r = g< Inax”

Then there exists a set of processes 5 = %(g) containing
exactly one process Jj € Ti for every é-producible good i€ S(qg),
and a price vector P = P(r) with positive prices ﬁi >0
for all i € S(g), s.t. for every feasible ¢ with g(c) =g
the following is true:
(i) There exists an activity vector X, using only processes
-in T (i.e. ij =0 for j¢ %), such that (r,p,R)
is an equilibrium for c¢, with @ = pc = 1.
(ii) If (r,p,x) is any equilibrium for ¢, with w = pc > O,

then p; = w.p,

i for all i with (BX)iﬁ> O, i.e. the

prices of all actually produced goods are proportional to

those given by BpP.
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We conclude this section with a last look at the connection

between the value and the price systems.

Lemma 5.4.4. (Labour values and prices)

Let (A,B,l) satisfy Ass.I and Ass.II. Then

(1) B;(0) = V(e,) for all goods i = 1,.. .m, i.e. when the
rate of profit is zero, then prices are equal to labéur
values, provided the wage is taken as numéraire (w=1).

(ii) e(c) > 0 &> r_(c) > O ¢= g(c)> 0, i.e. a positive rate
of exploitation is necessary and sufficient for positive

profits and positive growth ("Fundamental Marxian Theorem").

As we already know, both statements of the Lemma are

false if we allow genuine joint production.
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5.4.0.

Proof of Lemma 5.4.1.

(i)-(iii) are proved by reducing the present case to the case
considered in Lemma 5.3.1. Let us temporarily denote by g{(c)

the capacity growth rate for ¢ when the wage is paid in advance,
as in 5.3. When c is feasible, then c:= T:%TET.C € c is

also feasible (cf£.2.3.). We write g:= g(c), g:= g(c), and

claim that g = g. Obviously (5.4.1) can equivalently be written
in the form:

Bx ® (1+g) (A+cl)x, x %20, 1x>O0 (1)
Since (5.4.1) has a solution, (1) has also a solution, and
therefore g 4 g, by def. of g. Assume indirectly g ¢ g.
There exists an x % O, with 1X » O, such that:

BX * (1+3) (A+Cl)X ¢ BX * [(1+3)a + 129 ]z » [(1+43) avel] ®
e
>1
= § £ g, by def. of g, a contradiction. Therefore g = g,
as asserted, and (5.4.1) can also bé written in the form:
Bx '® (1+3(3)) (A+3l)x, x %0, 1x> O (2)
But the last inequality is exactly of the type (5.3.1) considered
in Lemma 5.3.1. Assertions (i) and (iii) of the present Lemma

follow immediately from Lemma 5.3.1(i), (iii), because x is

a solution of (5.4.1) iff. it is a solution of (2); and (ii)

follows from Lemma 5.3.1(ii) because ¢ increases iff. ¢

increases. This proves (i) - (iii).

(iv) By Th.4.1.(iii) we have only to show: g(c)p> O = e(c)y O.

- Assume that g(c)» O. By Th.4.1(v) there is an x 1 O with

lx = 1 s.t. y:= (B-A-cl)x 2 Bx - (1+g(c))Ax - clx ® 0, and

even Yy % O, because Ax % O, by Ass.I(ii). = c':=(B-A)x ; csf = C

=> v(c)¢ Vic') £1 =D e(c)> O. This proves (iv).

Th.5.2. L.2.4.
Q.E.D.
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Proof of Lemma 5.4.2.
In view of Th.4.2. and its proof it suffices to show that the
set R(c) is bounded below by zero even if e(c) = O. In other
words, if c is a feasible consumption bundle with e(c) = o,
then the inequality (5.4.2) has no solution p i O for r { O.
By Th.A.1. it suffices to show that the inequality

[B - (1+xr)Aa —cl]x » 0, x20 ’ (x)
has a solution for r ¢ O.
Now choose an r ¢ O and a feasible ¢ with e(c) = O. Then
there exists an x 2 0 with 1lx =1 and s.t. (B-A)x = c.
W.l.0.9. we may assume that all x-active processes are productive.
= [B—(1+r)A]x =c-1rAx ¥ c because r{ O and Ax % O by
Ass.I(ii). Denote by S:= {i / (Ax)i> 0} the (nonempty) set of
"capital goods" used by x, and by T:= {j / xj> O, and je Ti
for some ic¢ S} the set of x-active processes producing these
capital goods. By Ass.II', T is nonempty, and by Ass.I(iv),
lpxn 2 O. Now "scale down" all processes in T by a small
factor k, O<Ck<¢ 1, i.e. replace Xy by Yj

and leave all other intensities unchanged, yj = xj for j 4 T.

Then z:= [B-(1+r)a]y = [B-(1+r)a]x - [B-(1+r)a]. (kx;,0) =

:= (1—k)xj for jerT,

= Cc - rAx -k.u, where u:= E (bj—(1+r)a

)X
JeT J ]

By construction (Ax); =u;, =0 for i¢ S; and -r (Ax) ;- kuy 20
for i€ S and k sufficiently small, so that in any case

z; > c;. Moreover 1ly = lx - klpx, ¢ 1. Choose x® with

(B-2)x° »» 0, 1x° + 1y = 1 (cf. Ass.I(iii)). =>

[B;'(1+r)A](y+x°) » e ® c.l(y+x®) (= [B-(1+r)a-c1] (y+x°) > o,

i.e. (%) has a solution.
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Proof of Lemma 5.4.3.
Assume indirectly that «r ¢ g := g(c), and choose (by Th.4.1)
an x' 20 with [B—(1+g)A—cl]x' 2 0. Denote by T:= {j / x5>13}
the set of x'-active processes, by S:= {i / (Aﬁ)i> 0} the
set of all "capital goods" used by x', and by
U:= ije T / jeTi for some i¢ S} the set of x'-_active
processes producing these capital goods. By Ass.II, and because
gy 0, U is noﬁempty. Moreover, (B-A) (x['J,O) 2 O, and hence,
by Ass.I(iv), lU # O.
On the other hand, (4.3.1),(4.3.2) imply, as in the proof of
Th.3.3(ii): pAx' = 0, i.e.

paj =0 for jeT; and P; = 0 for i€ s. (m)
Now take any process Jje U, producing a good i€ S. By
"complementarity" we have p[bj-(1+g)aj—clj] = O. By Ass.II,
(#) implies pbj = pibij =0, and hence, by (4.3.4), 1j = 0.
But this contradicts lU # 0.

Proof of Theorem 5.4.

We prove the theérem by reducing it to the case considered in
Th.5.3. For this purpose, denote temporarily by T, p the
optimal technique resp. price vector corresponding to r = g,
as defined in Th.5.3., and define T := T, f := ——.p.
For an arbitrary feasible ¢ with g(c) = g, denote temporarily
the capacity growth rate when the wage is paid in advance by

g:= g(c), and define <c:= ——.c. From the proof of Lemma 5.4.1.
we know that g = g.

(1) By Th.5.3. there exists an &, using only processes in %,
s.t. (r,p,%) solves [B—(1+r) (A+El)] x >0, X ; 0, 1lx>»O0;

and  p[B-(1+r)(a+cl)] €0, p#0, pcyo; with pc = 1,
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and p;» 0 for all actually produced goods. But this implies
immediately that (r,p,%) satisfies (4.3.1)-(4.3.4), i.e. is

an equilibrium for c, with @ := pc = 1—16.5.(1+g)5 = 1.

This proves (i).

(ii) - If (r,p,x) 1is any equilibrium for c, with pc =w > O,
then (r,p,x) is an equilibrium for ¢ in the sense of Th.5.3.,
with @:= pé = 735.w. Therefore, by Th.5.3(ii),

p; = wp, = T%§‘w‘(1+g)ﬁi = wp; for all i with (Bx); > O.

This proves (ii).
Q.E.D.

Proof of Lemma 5.4.4.

(i) follows from Lemma 5.3.2 because, when r=0, then an
equilibrium with the wage paid post factum is also an equilibrium
with the wage paid in advance.

(ii) follows from Lemma 5.4.1(iv).

Q.E.D.



70

Appendix

~Let A be an arbitrary (msn)-matrix. x denotes an
m-dimensional row vector and y denotes an n-dimensional

column vector.

Theorem A.1. (Semipositive solutions of homogeneous inequalities)

Exactly one of the following alternatives holds:
either (i) Ix # 0 with xA £0

or (ii) dy >0 with Ay>» oO.

Theorem A.2. (Complementary solutions of homogeneous inequalities)

There is an x 20 with =xA >0, and vy >0 with Ay £ 0, s.t.
(i) X, = o = (A.y)i 0

(i1) y; =0 = (xa)y >o0.

Now let b be an m-dimensional column vector and ¢ an
n-dimensional row vector. We consider the two dual Linear

Programmes:

min xb
(A.1)
s.t. XA X ¢c, x>0

max cy
(A.2)
s.t. Ay b, y=2>o0

X ® 0 1is called a feasible vector for (A.1) if it satisfies

the constraint xA 2 c. The programme (A.1) is feasible if it

has a feasible vector. x is a basic vector if it has no

more than n nonzero components (n is the number of constraints

in xA ® ¢). A feasible vector x*© is called optimal for (A.1)
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if x"b 2 xb for all feasible x, i.e. x™ minimizes the

objective function xb. Then x'b is called the value of

the programme (A.1). Analogous definitions apply to (A.2).

Theorem A.3.(Duality theorem and Basis theorem of LP)

If (A.1) and (A.2) are both feasible, then there exist optimal
vectors, even optimal basic vectors, x‘, y', and
x*b = x‘Ay* = cy*. If one of the two programmes is not feasible,

then neither has an optimal vector.

Theorem A.4. (Optimality criterion and Equilibrium theorem of LP)

Two feasible vectors x, y are optimal for (A.1) resp. (A.2)

if and only if one of the following conditions is satisfied:

(i) xb = cy (Optimality criterion)
n
(ii) x; =0 for ;é; aijyj < bi’ an@
m
.. =0 f E .a, . .. I.e. if a constraint is
YJ or < xlalJ > cJ e ns

not binding, then the corresponding variable is equal to

zero ("complementary slackness").

-Theorem A.5. (Inversion Lemma)

_ ] . p
Let M= [mij]i=1,.. n be a square matrix, with mij = O

j=1,.. n
for i#j, and assume that I x > 0 with Mx 0. Then -

M is invertible and M ! ® 0.

Proofs: Th.A.1: GALE'1960 (Th.2.10); Th.A.2: NIKAIDO'1968
(Cor.3 of Th.3.7); Th.A.3 and Th.A.4: GALE'1960, Ch.3, or
NIKAIDO'1968, §9.1. (the Basis Theorem is only in GALE);

Th.A.5: MIRRLEES'1969, pp.68-69.



72

Footnotes

1) There is no Footnote 1).

2) Cf., e.g. the Sraffa - discussion in the Journal of Economic
Literature, in particular the contribution by EATWELL'1977;
also MORISHIMA'1974,pp.611-616, WOLFSTETTER' 1977 ,pp.66-67,
the books by STEEDMAN'1977, RONCAGLIA'1978, etc.

3) In this sense the resulting price theory is 'cost oriented‘,
not 'demand oriented'. An exception is MORISHIMA'1969,Ch.VI,
where preferences are introduced into the von Neumann model.

4) A theoretically conceivable exception would be the case
where both workers and capitalists always consume only
more or less of a certain fixed commodity basket, and where
this commodity basket could also serve as an investment
good. But this would be analytically equivalent to a One-
good-model ('corn'), precisely what Sraffa did not want

to investigate.

5) This argument remains valid even if we accept the interpretation
of J.ROBINSON'1961 (".. we need not take the word 'change’
literally. We are only to compare the effects of having
differing rates of profit, with the same technical conditions
and the same composition of output.”). Of two 'islands'
with the same composition of output, but differing profit
rates, at leasf one is, in general, an a priori impossible
construct, simply because any given quantity system is, in
general, consistent with at most one rate of profit.

6) SAMUELSON'1971,p.400: " ..the 'transformation algorithm’
is precisely of the following form: 'contemplate two
alternative and discordant systems. Write down one. Now
transform by taking an eraser and rubbing it out. Then fill
in the other one. Voild! You have completed your transformation

algorithm.'"
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7) also known as the "dynamic" Nonsubstitution Theorem
(MIRRLEES' 1969) . However, this is an unfortunate terminology
(c£.BLISS'1975, p.260)

8) The following mathematical notation is used: a vector x
(similarly for matrices) is called nonnegative, resp. semi-
positive, resp. strictly positive, written x 2 O, resp.

X § O, resp. x5) 0, if all its components are nonnegative,
resp. all components are nonnegative and at least one
component is positive, resp. all components are positive.
The symbol 1 denotes a summation vector, i.e. a row or
column vector of suitable dimension, all of whose components

are unity.

9) The problem of the definition of labour values under joint
production is discussed, e.g. in MORISHIMA'1973,Ch.14,
MORISHIMA'1974, and STEEDMAN'1977. Our approach is Morishima's.

1o} If d#0, then the tripel (r,p,x) = (O,v*,x*) is an
equilibrium with positive wage w=pc=1 for the per—-capita
consumption vector c¢ = (V(d))-1.d, in the sense of 3.3.

(not necessarily in the sense of 4.3., cf. Ex.4.4.1)

11) The i-th component of e, is equal to one, all other

components are zero.

12) (..)i or ["]i denotes the i-th component of the

vector in brackets

13) For an (man)-dimensional matrix A and subsets S ¢ ... m},
¢ =
TS {1,.. n}] we denote by Ag p = [éij]ie's the submatrix
jeT
obtained from A by striking out all rows resp. columns
whose indices do not belong to ‘S resp. T. Similarly, for

an n-vector x, we denote by x the subvector

= X)ienr
obtained from x by striking out all components whose index
does not belong to T. y:= (xT,O) denotes the n-vector

obtained from x by setting all components whose index
does not belong to T equal to zero, i.e. Y =X, for ie T,

L
and yi=0 for i¢ T.

14) card(s) is the number of elements contained in S.
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