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Lecture 0

Mathematical Notation.

We will use the following notation throughout: A vector x (similarly for matrices) is called
nonnegative, resp. semipositive, resp. strictly positive, written x = 0, resp. x 	 0 , resp.
x > 0, if all its components are nonnegative, resp. all components are nonnegative and at
least one component is positive, resp. all components are positive. We also write x = y if
x − y = 0, etc. The set of nonzero components of a vector x = (xi) is the support of x,
denoted by supp(x) = {i |xi 6= 0}. If J is a subset of K, we write J ⊂ K, and J $ K if
J 6= K is a proper subset. The unit matrix (of any dimension) is denoted by I. Its rows
and columns are unit vectors. We write ei for the i-th row and ej for the j-th column
of I. The symbol e = (1, 1, . . . , 1) denotes a summation vector. The n-dimensional
unit simplex is ∆ = ∆n = {x ∈ Rn |x = 0 and

∑n
i=1 xi = 1}. Two vectors x, y are

proportional, written x ∼ y, if x = ky for some number k 6= 0. For a square matrix A
we define A0 = I. The transpose of a matrix A is denoted by AT. The transpose of a
column vector is a row vector and vice versa. In general, we use column vectors to denote
quantities, and row vectors for prices or values. In an expression like Ax or pA, where A
is a matrix and x, p are vectors, it is always assumed that x is a column vector and p is a
row vector (of suitable dimension). We write [Ax]i =

∑
j aijxj for the i-th component of

the column vector Ax, and similarly [pA]j =
∑

i piaij for the j-th component of the row
vector pA.
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0 A Little Linear Algebra

A vector of length n (or dimension n) is a list of n numbers, x = (x1, x2, . . . xn). The
numbers xi are the components of the vector. We write also x = (xi) or x = (xi)i=1,...n.

The product of a number α and a vector x is again a vector, namely

αx = (αx1, αx2, . . . αxn)

i.e. all components of x are multiplied by α.

Let x = (x1, . . . xn) and y = (y1, . . . yn) be two vectors of the same length. The sum of x
and y is the vector

x+ y = (x1 + y1, x2 + y2, . . . xn + yn)

The scalar product x.y is not a vector, but a number (a scalar), namely

x.y = x1y1 + x2y2 + . . . xnyn

A vector x can be written as a row vector

x = (x1, x2, . . . xn)

or as a column vector

x =


x1

x2

. . .

xn


An (m × n)-matrix A = (aij) = (aij)i=1,...m; j=1,...n (or a matrix of dimension (m × n)) is
a rectangular array of numbers with m rows and n columns of the form

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . .

am1 am2 . . . amn


The i-th row of the matrix A is the n-dimensional row vector

ai = (ai1, ai1, . . . ain)
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and the j-th column of A is the m-dimensional column vector

aj =


a1j

a2j

. . .

amj


A row (resp. column) vector can be considered as a matrix with only one row (resp. one
column). The transpose AT of an (m× n)-matrix A = (aij) is obtained by interchanging
rows and columns, i.e. the elements in the first row of A form the first column of AT, the
elements in the second row of A form the second column of AT, etc. The transpose of a
row vector is a column vector, and the transpose of a column vector is a row vector. An
(m × n)-matrix is square if m = n, i.e. it has the same number of rows and columns. In
this case we say that A is a square matrix of dimension n.

Like vectors, matrices can be multiplied with numbers componentwise, i.e. αA is the
matrix whose components are αaij. Two matrices of the same dimension can also be
added componentwise. If B = (bij) is a matrix of the same dimension as A = (aij), then
A+B is the matrix with components aij + bij, for i = 1, . . .m and j = 1, . . . n.

Matrix multiplication is more complicated. If A = (aij) is an (m×n)-matrix, and B = (bjk)
is an (n× p)-matrix, then the rows of A have the same length n as the columns of B, and
the product C = A.B is defined as follows.

C = (cik) is an (m× p)-matrix, and the element

cik = ai1b1k + ai2b2k + · · ·+ ainbnk

is the scalar product of the i-th row of A with the k-th column of B, for i = 1, . . .m and
k = 1, . . . p.

See the examples below for more explanantion.

The n-dimensional unit matrix is the (n× n)-matrix

I = In =


1 0 . . . 0

0 1 . . . 0

. . . . . . . . .

0 0 . . . 1


Its rows and columns are unit vectors. It is easy to see that A.I = I.A = A for every
square matrix A of the same dimension as I. If A is a square matrix, then it can be
multiplied with itself. We write A2 = A.A, A3 = A.A.A, etc. We define A0 = I (when
the dimension is clear from the context, we write simply I instaed of In). Two square
matrices A, B of the same dimension can always be multiplied, but AB 6= BA in general,
i.e. matrix multiplication is nor commutative (see the example below).
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Inverse Matrix.

A square matrix A is invertible if there exists a (square) matrix B such that A.B = I.
This matrix is called the inverse of A and is denoted by B = A−1. Not every square
matrix has an inverse, but if the inverse of A exists, then we have also BA = AB = I.
That is AA−1 = A−1A = I.

A matrix is invertible if and only if its row vectors (equivalently column vectors) are
linearly independent. This is the case if (and only if) the determinant det(A) = |A| of
the matrix is not zero. I cannot explain these concepts here, but will show below how to
find the inverse of (2× 2)- and (3× 3)-matrices.

To find the inverse of a (2× 2)-matrix A, write now

A =

(
α β

γ δ

)

The determinant of A is

det(A) =

∣∣∣∣∣ α β

γ δ

∣∣∣∣∣ = αδ − βγ (0.1)

If this determinant is not zero, the inverse of A is

A−1 =
1

αδ − βγ

(
δ −β
−γ α

)
(0.2)

(α and δ change places, β and γ change sign). To check formula (0.2), observe that

AA−1 =

(
α β

γ δ

)
.

1

αδ − βγ

(
δ −β
−γ α

)
=

1

αδ − βγ

(
αδ − βγ −αβ + βα

γδ − δγ −γβ + δα

)
=

(
1 0

0 1

)
= I

To find the inverse of a (3× 3)-matrix A, write

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


Denote by Aij the 2×2-matrix obtained from A be crossing out the i-th row and the j-th
column, and write bij = det(Aij) = |Aij|.
For example if i = 2, j = 1 we cross out row 2 and column 1:
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A =


a11xx a12 a13

a21xx a22xx a23xx

a31xx a32 a33

 and obtain: b21 = |A21| =

∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣ = a12a33 − a13a32

Compute all these bij and write down the matrix B = (bij):

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33


By a well-known theorem (Laplace expansion) the determinant of A is given by, for any
i = 1, 2, 3:

det(A) =
3∑
j=1

(−1)i+jaijbij (0.3)

For example, for i = 1 (we get the same result for i = 2 or i = 3):

det(A) = a11b11 − a12b12 + a13b13 (0.4)

(a term aijbij gets a negative sign if i+ j is odd).

Finally, define the matrix

C =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 =


b11 −b21 b31

−b12 b22 −b32
b13 −b23 b33

 (0.5)

C is obtained from B by forming the transpose BT and changing the sign of bij if i + j
is odd. The matrix C is known as the adjugate (or adjoint) matrix of A, denoted by
C = adj(A). It is ’almost’ the inverse of A. Multiplying A and C gives

A.C = det(A).I

so that the inverse of A is given by

A−1 =
1

det(A)
C (0.6)



M. Nermuth, Linear Model. Sec. 0: A little Linear Algebra 9

Linear Equations.

A system of n linear equations in n variables x1, . . . xn is of the form
a11x1 + a12x2 + . . . a1nxn = b1

a21x1 + a12x2 + . . . a2nxn = b2

. . .

an1x1 + an2x2 + . . . annxn = bn

where the coefficients aij, bj are given and the xi are unknown.

Using the matrix notation explained above, this system of equations can be written as a
single linear vector equation of the form

Ax = b (0.7)

where A is a square matrix, and x and b are column vectors:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . .

an1 an2 . . . ann

 , x =


x1

x2

. . .

xn

 , b =


b1

b2

. . .

bn


If the coefficient matrix A is invertible, we can multiply this equation from the left by the
inverse A−1 and obtain the solution

A−
1

Ax = I.x = x = A−1b

That is, solving systems of linear equations is the same as finding inverse matrices.

Equation (0.7) is written in terms of column vectors. This is the usual form. But one can
also write a system of linear equations in terms of row vectors. Denote the variables now
by p1, . . . pn, and consider the system of linear equations

p1a11 + p2a21 + . . . pnan1 = c1

p1a12 + p2a22 + . . . pnan2 = c2

. . .

p1a1n + p2a2n + . . . pnann = cn

where again aij and ci are given coefficients. Using matrix notation this system can also
be written as a single vector equation of the form

pA = c (0.8)
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where A = (aij) is a square matrix as before, and p = (p1, . . . pn) and c = (c1, . . . cn) are
row vectors. Now the solution can be found by multiplying equation (0.8) by A−1 from
the right:

pAA−1 = pI = p = cA−1

In the course, we will usually denote prices by row vectors, and quantities by column
vectors, and encounter linear equations in both forms (0.7) and (0.8).
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Examples.

n = 2.

Let A, B and I be (2 × 2)-matrices, p a row vector (a (1 × 2)-matrix), and x a column
vector (a (2× 1)-matrix), as follows.

A =

(
0 1

4 2

)
, B =

(
5 3

−1 6

)
, I =

(
1 0

0 1

)
, p =

(
7 3

)
, x =

(
8

11

)
Here I is the 2-dimensional unit matrix. Then

p.A = (7, 3).

(
0 1

4 2

)
= (7× 0 + 3× 4, 7× 1 + 3× 2) = (12, 13)

A.x =

(
0 1

4 2

)
.

(
8

11

)
=

(
0× 8 + 1× 11

4× 8 + 2× 11

)
=

(
11

54

)
It also is easy to see that I.x = x and p.I = p for all column vectors x and row vectors p.
The product of two matrices is

A.B =

(
0 1

4 2

)
.

(
5 3

−1 6

)
=

(
−1 6

18 24

)
=

(
c11 c12

c21 c22

)
= (cij) = C

where cij is the scalar product of the ith row vector of A with the j-th column vector
of B, i.e.

c11 = 0× 5 + 1× (−1) = −1, c12 = 0× 3 + 1× 6 = 6

c21 = 4× 5 + 2× (−1) = 18, c22 = 4× 3 + 2× 6 = 24

In the same way one can check that

BA =

(
5 3

−1 6

)
.

(
0 1

4 2

)
=

(
12 11

24 11

)
6= AB

Note that AB 6= BA. Matrix multiplication is not commutative in general. It is also easy
to see that A.I = I.A = A always.

To find the inverse of the matrix

A =

(
α β

γ δ

)
=

(
0 1

4 2

)
compute first the determinant αδ − βγ = 0− 4 = −4 and use (0.2) to obtain

A−1 =
1

−4

(
2 −1

−4 0

)
=

(
−1/2 1/4

1 0

)



M. Nermuth, Linear Model. Sec. 0: A little Linear Algebra 12

n = 3.

Consider the (3× 3)-matrix A:

A = (aij) =


0 3 −1

2 1 4

−2 5 0


Put bij = det(Aij), where Aij is the (2 × 2)-matrix obtained from A by crossing out the
i-th row and the j-th column. Then b11 = 1×0−4×5 = −20, b12 = 2×0−4× (−2) = 8,
etc. This gives the matrix B:

B = (bij) =


−20 8 12

5 −2 6

13 2 −6


The determinant of A is, using (0.3) with i = 1:

det(A) = a11b11 − a12b12 + a13b13 = 0× (−20)− 3× 8 + (−1)× 12 = −36

We get the same result for i = 2:

det(A) = −a21b21 + a22b22 − a23b23 = −2× 5 + 1× (−2)− 4× 6 = −36

To find the inverse of A, compute the adjugate matrix C, using (0.5):

adj(A) = C =


b11 −b21 b31

−b12 b22 −b32
b13 −b23 b33

 =


−20 −5 13

−8 −2 −2

12 −6 −6


This gives

A.C =


0 3 −1

2 1 4

−2 5 0



−20 −5 13

−8 −2 −2

12 −6 −6

 =


−24− 12 −6 + 6 −6 + 6

−40− 8 + 48 −10− 2− 24 26− 2− 24

40− 40 10− 10 −26− 10

 =

=


−36 0 0

0 −36 0

0 0 −36

 = (−36).


1 0 0

0 1 0

0 0 1

 = det(A).I
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Therefore the inverse of A is given by

A−1 =
1

det(A)
.C =

1

−36


−20 −5 13

−8 −2 −2

12 −6 −6

 =
1

36


20 5 −13

8 2 2

−12 6 6
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Lecture 1

1 The Technology

We consider a closed economy with n = 1 produced goods, labeled i = 1, . . . n, and one
non-produced primary factor i = 0, called labor. We write N = {1, 2, . . . n}. There is
exactly one production process for each produced good, with constant returns to scale,
and without joint production. Processes are numbered such that process j produces
good j, for j ∈ N . Labor is not scarce. There is a common period of production (the
“year”) for all processes. Inputs (material inputs and labor) are invested in one period,
and the output (the “harvest”) becomes available in the next period. It can then be used
for consumption or investment in this period.

The quantity of each good is measured in certain units. The dimension of these units
must be suitable for the good in question (e.g. weight for butter, volume for petrol, time
for the amount of work), but the units can otherwise be chosen arbitrarily. The quantity
of butter can be measured in kilograms or pounds, petrol in litres or gallons, work in
hours or days, and so on. We assume that for each good a suitable unit has been chosen,
so that their amounts are well-specified numbers.

A technology is given by a pair (a0, A), where a0 = 0 is an n-vector of labor input
coefficients and A = 0 is an (n× n)-input coefficient matrix:

a0 = (a01, a02, . . . , a0n), A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . .

an1 an2 . . . ann


The coefficient aij = 0 is the amount of good i needed to produce one unit of good j, for
i = 0, 1, . . . n and j = 1, . . . n. Process j ∈ N , operated at unit intensity level, transforms
the inputs a0j, a1j,. . . , anj into one unit of good j. Each process has constant returns to
scale, i.e. to produce α = 0 units of good j, we need the inputs αaij (i = 0, 1, . . . , n).

We will assume throughout that the technology satisfies the following assumption:

Assumption 1. The technology (a0, A) is such that

(a) for every production process j ∈ N there is i ∈ {0, 1, . . . n} with aij > 0, i.e. every
production process needs some input

(b) at least one process needs labor, i.e. a0j > 0 for some j ∈ N .
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Condition (a) says that there is no free production. Without condition (b), labor would
play no role at all in the economy and there would be no reason to include it in our model
in the first place. Thus a0 is not a zero vector, but note that A may be a zero matrix,
under Ass. 1.

A commodity bundle d = (di) contains di = 0 units of good i, for i ∈ N . It is also referred
to as a “composite commodity” or a “basket of commodities”. “One unit of good j”
corresponds to a commodity bundle d = ej which contains one unit of good j and nothing
else. Commodity bundles are written as column vectors:

d =


d1

d2

. . .

dn

 , ej =



0

· · ·
1

· · ·
0


The vector ej (one unit of good j) has 1 in the j-th position and zeros elsewhere.
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2 The Price System

The determination of the (relative) prices of all commodities (the “Value Problem”) is
one of the oldest and most fundamental problems in Economic Theory. We will see that
in our Linear Model this problem has a very simple and elegant solution. We begin by
determining prices under the assumption of zero profits (price = cost).

We denote the price of (one unit of) good i by pi. The price of labor p0 is the wage, and
p = (p1, . . . , pn) is the price vector. The pair (p0, p) = (p0, p1, . . . pn) is the price system.
For a commodity bundle d, the scalar product pd =

∑
i pidi is the value of d at prices p.

Prices are expressed in some arbitrary unit of account. Multiplying all prices by a positive
constant k > 0 gives an equivalent price system (p′0, p

′) = (kp0, kp). Only relative prices
pi/pj have economic meaning, and these are independent of the choice of unit of account.
A good i is the numéraire if its price is one, pi = 1. A commodity bundle d is the
numéraire if pd = 1.

How should the prices be determined? A classical idea is that the price (or value) of a
commodity should be equal to its cost of production (i.e. profits are zero). The cost of
production of one unit of good j is the cost of the required inputs a0j, a1j, . . . anj, so the
price pj should satisfy the equation

pj = p0a0j + p1a1j + p2a2j + · · ·+ pnanj for j = 1, 2, . . . n (2.1)

This is a system of n linear equations in the n + 1 unknowns p0, p1, . . . , pn. In matrix
notation, it takes the form

p = p0a0 + pA (2.2)

Equation (2.2) is the Zero-Profit Price Equation. It is a system of linear equations written
in terms of row vectors, i.e. p, a0, and pA are all row vectors:

p = (p1, p2, . . . , pn), a0 = (a01, a02, . . . , a0n), pA = (pa1, pa2, . . . , pan)

where paj = [pA]j =
∑n

i=1 piaij = p1a1j + p2a2j + · · ·+ pnanj, for j = 1, 2, . . . n.

We can rewrite the price equation as

p0a0 = p− pA = p(I − A)

and obtain the solution
p = p0a0(I − A)−1 (2.3)

provided the matrix I −A is invertible. Note that we can choose p0 > 0 arbitrarily. This
is so because the price equation has one degree of freedom, and determines the prices
(p0, p) only up to multiplication by a constant factor, i.e. up to the choice of numéraire,
as it should be.
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Example 2.1.

Let n = 2 and the technology (a0, A) be given by

a0 = (a01, a02) = (1, 0.5), A =

(
a11 a12

a21 a22

)
=

(
0.2 0.1

7 0

)

That is, to produce one unit of good 1 we need a11 = 0.2 units of good 1, a21 = 7 units of
good 2, and a01 = 1 units of labor. Similarly for good 2, with ai2 instead of ai1 (i = 0, 1, 2).

The Price Equation p = p0a0 + pA takes the form:

p1 = p0a01 + p1a11 + p2a21 = p0 + 0.2p1 + 7p2

p2 = p0a02 + p1a12 + p2a22 = 0.5p0 + 0.1p1 + 0p2

These equations determine (p0, p1, p2) only up to a common factor. It is easy to check
that (p0, p1, p2) = (1, 45, 5) is a solution. But any multiple of this is also a solution. For
example we could take (p0, p1, p2) = (3, 135, 15). The general solution is (p0, p1, p2) =
(p0, 45p0, 5p0), where p0 > 0 is an arbitrary positive number.

If p0 = 1, labor is the numéraire, i.e. p1 = 45 means that one unit of good 1 is worth
45 hours of work, and p2 = 5 means that one unit of good 2 is worth 5 hours of work (all
prices are expressed relative to the numéraire).

Alternatively, we can use formula (2.3)

p = p0a0(I − A)−1.

We have

I − A =

(
0.8 −0.1

−7 1

)
with determinant det(I − A) = 0.8− 0.7 = 0.1 = 1/10. therefore, by (0.2):

(I − A)−1 = 10

(
1 0.1

7 0.8

)
=

(
10 1

70 8

)

and by (2.3), with p0 = 1:

p = (p1, p2) = (1, 0.5)

(
10 1

70 8

)
= (10 + 35, 1 + 4) = (45, 5)

the same as above.
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Lecture 2

3 The Quantity System.

Let (a0, A) be a technology. We denote by ai = (ai1, ai2, . . . ain) the i-th row of A, and by
aj = (a1j, a2j, . . . anj)

T the j-th column of A.

The (gross) output of the economy is represented by a nonnegative column vector x = (xj),
where xj = 0 is the (gross) output of good j, for j = 1, . . . n. The required inputs can be
found as follows. To produce one unit of good j. the input quantities aij (i = 0, 1, . . . n)
are needed. To produce xj units of good j. the input quantities aijxj (i = 0, 1, . . . n) are
needed (constant returns to scale). Thus process j transforms the input vector ajxj =
(a1jxj, a2jxj, . . . , anjxj)

T into xj units of output of good j, using the amount of labor
a0jxj. The total amount of good i needed as input for the output x is

yi =
n∑
j=1

aijxj = aix for i = 1, 2, . . . n (3.1)

The (column) vector of material inputs y = (y1, . . . yn)T is then given by

y =
n∑
j=1

ajxj = Ax (3.2)

and the required amount of labor is

L =
n∑
j=1

a0jxj = a0x (3.3)

The net output of good i is

di = xi − yi (i = 1, . . . n) (3.4)

and the total net output (or net product) is given by the vector d = (d1, . . . dn)T = x−y =
x− Ax. Equivalently, we can write

x = Ax+ d (3.5)

Equation (3.5) is the Quantity Equation. It is a system of linear equations written in
terms of column vectors, i.e. x, d, and y = Ax are all column vectors:

x =


x1

x2

. . .

xn

 , d =


d1

d2

. . .

dn

 , y =


y1

y2

. . .

yn

 =


a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn

. . .

an1x1 + · · ·+ annxn

 = Ax (3.6)
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The part of the economy producing good j is called sector j or industry j. Given a
nonnegative vector x = 0, we say that sector j is active if xj > 0. The gross output vector
x is also called the activity vector (or intensity vector). Given the technology (a0, A), the
vector x describes the economic activities in our model completely; it is also referred to
as a production plan. A production plan x = 0 is feasible (or sustainable) if the output is
not less than the input, i.e. if x = Ax.

In the Quantity equation (3.5) we could also start with an exogenous final demand d (for
consumption, say), and ask if we can find gross output levels x which give this d as net
output? This question is the Planning Problem. Given the technology matrix A and the
final demand vector d, the Quantity Equation can be written

x− Ax = (I − A)x = d

This is a system of n linear equations in the n unknowns x1, . . . .xn. The solution is

x = (I − A)−1d (3.7)

provided the matrix I − A is invertible. The required amount of labor (the “number of
workers”) is then

L = L(d) = a0x = a0(I − A)−1d (3.8)

Stationary State.

The quantity equation (3.5) can be interpreted as follows. Consider a primitive society
(a prehistoric village), without social classes and without organized markets. Production
and consumption are regulated by custom and tradition, without money and prices. At
the beginning of the year, the gross output x (the harvest from the last year) is available.
The output x is split in two parts: Ax is used as input for production (seed corn), the
rest (the net output) d = x − Ax is consumed. The amount of labor is L(d) = a0x. All
members of society contribute equally to the work effort, and are entitled to an equal share
of the net output. The output produced from the inputs Ax and a0x is again x, available
in the following year. This output is again used for consumption d and investment Ax,
and the amount of labor is again L = a0x. The economy continues in this way indefinitely.
The amounts produced and consumed of all commodities are the same in all periods. We
are in a stationary state.

Remark. The amount L = a0x is the amount of labor required per period to enjoy net
output d per period, in a stationary state. This is one of several possible definitions of
the concept of “labor value” of the commodity bundle d. It is known as the synchronous
labor value V s(d) of d. See Sec. 7.
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Prices and Quantities.

For a given technology let the quantities x, d and L satisfy the quantity equations x =
Ax + d and L = a0x, and let the prices (p0, p) satisfy the price equation p = p0a0 + pA.
If we multiply the quantity equation (from the left) by p, we get

px = pAx+ pd

and if we multiply the price equation (from the right) by x, we get

px = p0a0x+ pAx

Therefore pd = p0a0x. Since a0x = L is the required amount of labor (the “number of
workers”), p0a0x0 = p0L is the sum of all wages. Thus we have proved the following
important result:

Theorem 3.1. If prices satisfy the zero-profit condition p = p0a0 + pA, then the value of
the net output d = x− Ax is equal to the sum of all wages:

pd = p0L(d), where L(d) = a0x = a0(I − A)−1d

The workers’ aggregate income is sufficient to buy the entire net output. The Theorem
is no longer true when the rate of profit is not zero (see Sec. 12).

The Theorem implies pd = L(d) for p0 = 1, i.e.

Corollary 3.2. When we choose labor as the numéraire, p0 = 1, then the value pd of
a commodity bundle d is equal to the amount of labor L(d) required to produce it. In
particular, the price pi of good i is equal to the amount of labor L(ei) required to produce
one unit of good i.

For p0 = 1, commodity prices are equal to labor values.

The technology (a0, A) and the data contained in x and d give a complete description of
the working of the economy. The flows of goods and money between the sectors can be
described in the form of a Linear Flow Diagram, a Circular Flow Diagram, or an Input-
Output Table (see Example 3.3 and Sec. 4 below). Input-Output Analysis was pioneered
by Wassily Leontief. The matrix (I−A)−1 is known as the “Leontief Inverse” in his honor.
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Example 3.3.

Let n = 2 and the technology (a0, A) be given by

a0 = (a01, a02) = (1, 0.5), A =

(
a11 a12

a21 a22

)
=

(
0.2 0.1

7 0

)

This is the same technology as in Example 2.1. There we considered the prices; let us
now look at the quantity system.

Consider the following Planning Problem. The Planner wants to produce the net output

d =

(
10

20

)

to satisfy some external demand (e.g. for consumption). What are the required gross
output levels x = (x1, x2)

T ? The Quantity Equation x = d+ Ax takes the form

x1 = d1 + a11x1 + a12x2 = 10 + 0.2x1 + 0.1x2

x2 = d2 + a21x1 + a22x2 = 20 + 7x1 + 0x2

By equation (3.7) the solution is

x = (I − A)−1d =

(
10 1

70 8

)(
10

20

)
=

(
10× 10 + 1× 20

70× 10 + 8× 20

)
=

(
120

860

)

where the inverse matrix (I−A)−1 is the same as in Example 2.1. It is easy to check that

x =

(
x1

x2

)
=

(
120

860

)

is indeed a solution of the two equations above.

The required inputs are

y =

(
y1

y2

)
= Ax =

(
0.2 0.1

7 0

)(
120

860

)
=

(
24 + 86

840 + 0

)
=

(
110

840

)

and the required amount of labor is

L = V s(d) = a0x = (1, 0.5)

(
120

860

)
= 120 + 430 = 550
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The net output x− y is indeed equal to the desired net output d:

d = x− y = x− Ax =

(
120

860

)
−

(
110

840

)
=

(
10

20

)
so that our Planning Problem is solved.

The values for x, y, d just computed describe a stationary state of the economy, in the
sense that production and consumption at these levels can be sustained indefinitely. Note
that labor is supplied exogenously, in whatever amounts are needed, since by assumption
labor is not scarce (the “reserve army”).

The flows of goods and labor in the stationary state can be seen in the following Linear
Flow Diagram:

x1 = 120
↗
↘

d1 = 10

y1 = a1x = 110
↗
↘

a11x1 = 24

a12x2 = 86

x2 = 860
↗
↘

d2 = 20

y2 = a2x = 840
↗
↘

a21x1 = 840

a22x2 = 0

L = y0 = a0x = 550
↗
↘

a01x1 = 120

a02x2 = 430

In any given period, the gross output x1 = 120 of good 1 (inherited from the previous
period) is split in two parts: the amount d1 = 10 is used for consumption, and the rest,
y1 = 110 is used as input for production. Of these 110 units of good 1, a11x1 = 24 units
serve as input for sector 1, and a12x2 = 86 units serve as input for sector 2. Similarly for
the gross output x2 = 860 of good 2: d2 = 20 units are consumed, and the rest is invested:
all 840 units in sector 1, since sector 2 needs no input from itself (a22 = 0). These inputs,
together with L = 550 units of labor (a01x1 = 120 in sector 1 and a02x2 = 430 in sector 2)
are exactly sufficient to produce the same gross output x = (120, 860)T again, so that the
game repeats itself in the next period. In this stationary state, society consumes 10 units
of good 1, 20 units of good 2, and expends L(d) = 550 units of labor in each period.
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Let us also look at the prices. The price equation p = p0a0 + pA takes the form:

p1 = p0a01 + p1a11 + p2a21 = p0 + 0.2p1 + 7p2

p2 = p0a02 + p1a12 + p2a22 = 0.5p0 + 0.1p1 + 0p2

This system of equations has the solution p = (p1, p2) = (45p0, 5p0) (cf. Example 2.1).

Thus the value of the stationary state consumption d = (10, 20) is pd = p0(45× 10 + 5×
20) = p0(450 + 100) = 550p0. This is the same as the total wage bill, namely p0 times the
amount L(d) = 550 of labor needed to sustain the consumption d, in a stationary state.
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4 Input - Output Tables, Circular Flow

The economic activities in our model can be summarized concisely in an Input-Output
Table or graphically in a Circular Flow Diagram, as shown in the following Example.

Example 4.1.

There are two produced goods, good 1 is wheat and good 2 is horses. Labor is good 0.
The technology (a0, A) is given by

a0 = (a01, a02) = (6, 6), A =

(
a11 a12

a21 a22

)
=

1

10

(
1 4

3 2

)

It is easy to see that

I − A =
1

10

(
9 −4

−3 8

)
and (I − A)−1 =

1

6

(
8 4

3 9

)

The price equation p = p0a0 + pA has the solution p = p0a0(I − A)−1, i.e. with p0 = 1:

p = (6.6).
1

6

(
8 4

3 9

)
= (1, 1).

(
8 4

3 9

)
= (11, 13) (4.1)

There are L = 1710 workers, each supplying one unit of labor. Each worker consumes a
certain consumption bundle c = (c1, c2)

T and has the budget constraint

pc = p1c1 + p2c2 = 11c1 + 13c2 = p0 = 1

Assume that the optimal consumption bundle under this budget constraint, given the
workers’ preferences, is

c =

(
c1

c2

)
=

(
4/57

1/57

)
=

1

57

(
4

1

)
This satisfies the budget constraint because pc = (11 × 4 + 13 × 1)/57 = 1. The total
consumption demand of the workers is thus

d = c.L =
1710

57

(
4

1

)
= 30.

(
4

1

)
=

(
120

30

)
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The gross output vector x required to produce the net output d is given by

x = (I − A)−1d =
1

6

(
8 4

3 9

)
.

(
120

30

)
=

(
180

105

)
(4.2)

The required labor for this gross output is

a0x = (6, 6).

(
180

105

)
= 6× 180 + 6× 105 = 1710

i.e. the firms’ labor demand a0x is equal to the households’ labor supply L = 1710.

The flows between the sectors are now given as follows, for i, j = 1, 2: The households
(sector 0) supply the amount of labor a0jxj to sector j, and consume the amounts di of
good i. Sector i delivers the amount aijxj of good i to sector j. Sector j pays piaijxj
dollars for this delivery.

These commodity flows and money flows can be summarized in an Input-Output Table,
as shown on the next page.

Remark. The tables shown below are similar to, but not quite the same as the actual
Input-Output tables compiled by statistical offices for various countries.

First, in Input-Output analysis, as pioneered by W. Leontief, one considers a specific
period, e.g. a year, and studies the commodity and money flows that take place between
the various sectors of the economy within the given year. That is, the inputs Ax are
supplied out of the current gross output x, the remaining part of x covering the final
demand d in the same year. Production lags are not explicitly taken into account. This
’simultaneous’ interpretation of Input-Output tables explains also the term ”circular flow”
(as opposed to the ’linear flow’ in Example 3.3).

Moreover, whereas in our theoretical model each sector produces only one good, the ’sec-
tors’ in applied input-output analysis are semi-aggregated units, like mining, construction,
certain parts of agriculture, etc., each producing many different goods. Thus in practice,
only the money flows (aggregated sales and purchases) between sectors are available.
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The Input-Output Table in terms of commodity flows.

The entry Dij in cell (i, j) is the amount of good i delivered to sector j (i, j = 0, 1, 2).

Households corn horses sum

Dij j = 0 j = 1 j = 2

households i = 0 0 a01x1 = 1080 a02x2 = 630 L = a0x = 1710

corn i = 1 d1 = 120 a11x1 = 18 a12x2 = 42 x1 = 180

horses i = 2 d2 = 30 a21x1 = 54 a22x2 = 21 x2 = 105

(4.3)

The row sum in row i is xi because di + ai1x1 + ai2x2 = xi by the quantity equation.

The input-output table in terms of money flows.

The entry Mij in cell (i, j) is the payment of sector j to sector i in dollars. In our example,
the prices are p0 = 1, p = (p1, p2) = (11, 13). Multiplying the entries in table 4.3 with the
appropriate prices gives the money flows:

Households corn horses sum

Mij j = 0 j = 1 j = 2

households i = 0 0 p0a01x1 = 1080 p0a02x2 = 630 p0a0x = 1710

corn i = 1 p1d1 = 1320 p1a11x1 = 198 p1a12x2 = 462 p1x1 = 1980

horses i = 2 p2d2 = 390 p2a21x1 = 702 p2a22x2 = 273 p2x2 = 1365

sum pd = 1710 p1x1 = 1980 p2x2 = 1365

(4.4)
The column sum in column j is pjxj because pj = p0a0j+p1a1j+p2a2j by the price equation
(zero profit condition).) The row sum in row i is pixi because di + ai1x1 + ai2x2 = xi by
the quantity equation.

The row sums in Table (4.4) show the total income or revenue of the sector, and the
column sums show the total expenditure or cost of the sector. For each sector, revenue
equals cost. The total income of the households, p0L = 1710 = pd is the national income
(net national product).

The information contained in this Table can also be summarized in a circular flow diagram:
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The Circular Flow Diagram.

Figure 1: The arrows show the commodity flows between the sectors. The amount of
good i delivered from sector i ∈ {0, 1, 2} to sector j ∈ {1, 2} is aijxj The amount of
good i ∈ {1, 2} delivered from sector i to sector 0 (the households) is di These amounts
are shown in black. The red entries (in italics) are the values of these deliveries, at prices
p0 = 1, p = (11, 13).
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Lecture 3

5 Productivity

Let a technology (a0, A) be given. We have determined the commodity prices p =
(p1, . . . , pn) so that they satisfy the zero-profit price equation p = p0a0 + pA, where
p0 > 0 can be chosen arbitrarily. Given a final demand vector d = 0, we have deter-
mined the gross output levels x = (x1, . . . , xn)T so that they satisfy the quantity equation
x = Ax+ d.

To be economically meaningful, the prices pi and the quantities xi must be nonnegative,
for all i = 1, . . . , n. When will this be the case?

As a first step, observe that the price equation can be written

p(I − A) = p0a0

and the quantity equation can be written

(I − A)x = d

If the Leontief matrix I − A is invertible, these equations have the unique solution

p = p0a0(I − A)−1

and
x = (I − A)−1d

The matrix I − A is known as the Leontief matrix. The matrix (I − A)−1 is known
as the Leontief inverse of A. We say that a matrix is nonnegatively invertible if it is
invertible and the inverse is nonnegative.

Lemma 5.1. The quantity equation x = Ax+d has a unique, nonnegative solution x = 0
for every nonnegative final demand d = 0 if and only if the matrix I −A is nonnegatively
invertible.

Proof of Lemma 5.1.

The Leontief inverse (I − A)−1 is a square (n × n)-matrix. Denote its (ij)-th element
by mij so that (I − A)−1 = M = [mij]. The solution of the quantity equation is then
x = Md or, explicitly,

xi = mi1d1 +mi2d2 + · · ·+mindn (i = 1, . . . n) (∗)
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By assumption, d = 0, i.e. dj = 0 for all j. Therefore xi is certainly nonnegative if all
coefficientsmij are nonnegative, i.e. if the matrix (I−A)−1 = M is nonnegative. Moreover,
if we want to be sure that the output levels xi are nonnegative for every possible final
demand vector d = 0, all coefficients mij must be nonnegative.

To see this, assume that some mk` < 0 is negative. Choose d = e` (the `-th unit vector).
Clearly this d is nonnegative, and (∗) implies

xk = mk1.0 + · · ·+mkl.1 + · · ·+mkn.0 = mk` < 0

so that x contains a negative element xk.

�

We conclude that the quantity equation x = Ax+d has a unique, economically meaningful
(i.e. nonnegative) solution x for every final demand d = 0 if and only if the matrix
M = (I − A)−1 is nonnegative. Clearly, in this case, the solution p = p0a0(I − A)−1 of
the price equation is also nonnegative, since a0 = 0.

Thus our analysis makes economic sense if and only if the matrix I −A is nonnegatively
invertible. When is this the case?

The fundamental theorem (Th. 5.2) below says that this is the case if and only if the
technology is productive in the sense of the following definition.

Definition 1. The matrix A (or the technology represented by it) is productive if it can
produce a strictly positive net output vector d, i.e. there exists an activity vector x = 0
such that x− Ax = d > 0.

We also say that the technology (a0, A) is productive if its input coefficient matrix A is
productive. Productivity means that we can organize production so that the output xi
is bigger than the input yi = aix = [Ax]i, for all goods i ∈ N . Productivity is certainly
a necessary condition for the (technical) viability of the system. The following Theorem
characterizes productive technologies. It is basic for all that follows.

Theorem 5.2. (Productive Technologies). Let A = 0 be a square matrix. The
matrix A is productive if and only if the matrix I−A is invertible and the inverse (I−A)−1

is nonnegative. This holds if and only if the infinite series
∑∞

t=0A
t converges. Moreover,

in this case, the sum is equal to (I − A)−1:

(I − A)−1 =
∞∑
t=0

At = I + A+ A2 + A3 + · · · (5.1)

Thus the technology A is productive if and only if I−A is nonnegatively invertible. Note
that productivity depends only on the matrix A, not on the labor input vector a0.

Proof of Th. 5.2. The Theorem is an immediate consequence of two lemmas, which are
stated and proved in the Appendix. First, the matrix M = I−A satisfies the assumptions
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of Lemma 19.3. Therefore I − A is nonnegatively invertible if and only if there is x = 0
with (I − A)x > 0, i.e. A is productive. Second, by Lemma 19.1, I − A is nonnegatively
invertible if and only if the sum I + A + A2 + A3 + · · · converges; and in this case
formula (5.1) holds.

�

Th. 5.2 implies the following:

Theorem 5.3. Assume that the technology (a0, A) is productive. Then

(a) The quantity equation x = Ax + d has a unique nonnegative solution x for every
d = 0. The solution is given by x = (I − A)−1d

(b) The price equation p = p0a0 + pA has a unique nonnegative solution p for every
p0 > 0. The solution is given by p = p0a0(I − A)−1

In fact, these unique nonnegative solutions exist if and only if the technology is productive.
Moreover. to be fully satisfactory from the economic viewpoint, the required amount of
labor should be positive for every d 	 0, and the prices pi of all commodities should also
be positive (not just nonnegative). In the next section we show that this is the case if
and only if labor is indispensable for production (see Def. 3 and Th. 6.3).

Note also that A is productive if and only if the transpose AT is productive, because
formula (5.1) holds for A if and only if it holds for AT. This gives the following Corollary:

Corollary 5.4. A nonnegative matrix A is productive if and only if there is p = 0 such
that p > pA.

That is, we can find prices such that the value of the output is larger than the value of
the inputs (excluding labor)), in every sector, pj > p1a1j + p2a2j + . . . pnanj, for all j ∈ N .
In this case we also say that the technology is profitable. The amount

pj − [p1a1j + p2a2j + . . . pnanj]

is the value added in sector j (per unit of output). Profitability means that there exist
prices for which the value added is positive in all sectors, so that a surplus is left for paying
wages and profits. This is certainly a necessary condition for the (economic) viability of
the system.

Proof of Cor. 5.4. As already noted, A is productive if and only if AT is productive. By
Def. 1 this means that there is a column vector x = 0 such that x > ATx. Transposing
this gives the equivalent formula xT > xTA. If we define the row vector p = xT this gives
p > pA, as asserted.

�
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We have already seen some productive technologies in the previous sections, for example
the following (Example 2.1 and 3.3)

a0 = (a01, a02) = (1, 0.5), A =

(
a11 a12

a21 a22

)
=

(
0.2 0.1

7 0

)

It is not always easy to see if a technology is productive or not. The technology below in
Ex. 5.5 is similar to the one above, but not productive.

Example 5.5. An unproductive technology.

Let the technology (b0, B) be given by

b0 = (1, 0.5), B =

(
0.1 0.2

5 0

)
.

We consider again the desired net output d = (10, 20)T and try to solve the corresponding
Planning Problem, as in Example 2.1.

The Quantity Equation x = d+Bx takes the form

x1 = 10 + 0.1x1 + 0.2x2

x2 = 20 + 5x1 + 0x2

It is easy to check that this system of equations has the unique solution x =

(
−140

−680

)
.

These negative activity levels are economically meaningless. The net output d = (10, 20)T

cannot be produced with the technology B. Another way to look at this is as follows. The
Quantity Equation d = x− Bx implies −d = −x− B(−x), or d′ = x′ − Bx′, where x′ =
−x = (140, 680)T is a positive activity vector, but the net output d′ = −d = (−10,−20)T is
negative. Suppose we have inherited the output quantities x′ from the previous period. To
produce the same amounts again in the current period, the inputs y′ = Bx′ = (150, 700)T

would be required. But this is more (in both components) than the available amounts
x′ = (140, 680)T, so that the production x′ cannot be sustained in a stationary state.

The Price Equation p = b0 + pB (with p0 = 1) takes the form

p1 = = 1 + 0.1p1 + 5p2

p2 = = 0.5 + 0.2p1 + 0p2

Its unique solution is p = (p1, p2) = (−35,−6.5). These negative values are also eco-
nomically meaningless. Thus the matrix B, although superficially not so different from
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the matrix A in Example 3.3, does not represent an economically viable technology. By
Th. 5.3, B is not productive.

Remark. We may also observe that (I −A)−1 is nonnegative, but (I −B)−1 has negative
elements:

(I − A)−1 =

(
10 1

70 8

)
and (I −B)−1 =

(
−10 −2

−50 −9

)
Therefore the matrix A is productive, but B is not, by Th. 5.2.
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6 Dated Inputs

One of the most useful results in the fundamental Th. 5.2 is formula (5.1). In its light,
the solutions of the quantity and price equations (3.7) and (3.8) can be understood in
terms of “dated inputs” as follows.

Let d = 0 be an arbitrary commodity bundle. To obtain output d in the next period,
we need the amount of labor `0(d) = a0d and the vector Ad of inputs of the other goods
(the “means of production”) in the current period t = 0 (these are the direct inputs).
The inputs Ad were produced in the previous period, using labor `1(d) = a0Ad and
physical inputs A.Ad = A2d. The inputs A2d were produced two periods ago, using
labor `2(d) = a0A

2d and physical inputs A.A2d = A3d. The inputs A3d were produced
three periods ago, using labor `3(d) = a0A

3d, and so on (these are the indirect inputs).
The intertemporal structure of production is shown in the following Diagram (periods are
counted backwards).

The Intertemporal Diagram.

d ←−
↖

`0(d)

t = 0

Ad ←−
↖

`1(d)

t = 1

A2d ←−
↖

`2(d)

t = 2

A3d ←−
↖

`3(d)

t = 3

· · ·

· · ·

(6.1)

Definition 2. Let d = 0 be a commodity bundle. The vectors Ad,A2d,A3d, . . . are the
dated inputs for d. The dated labor inputs are given by

`t(d) = a0A
td t = 0, 1, 2, . . . (6.2)

Definition 3. The production of a commodity bundle d requires labor if at least one of the
dated labor inputs `0(d), `1(d), `2(d), . . . is positive. Labor is indispensable for production
if every nonzero bundle d 	 0 requires labor.

Indispensability of labor means that the production of every good requires labor at some
stage, now or in the past, but not necessarily at all stages.

Assume now that A is productive. Using formula (5.1), the solutions (3.7) and (3.8) of
the quantity equation x = Ax+ d can be written as follows.

x = (I − A)−1d = (
∞∑
t=0

At)d = d+ Ad+ A2d+ A3d+ . . . (6.3)
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L(d) = a0(I − A)−1d = a0(
∞∑
t=0

At)d =
∞∑
t=0

`t(d) = `0(d) + `1(d) + `2(d) + . . . (6.4)

Thus the gross output x needed to obtain the net output d is equal to the sum of d plus
all current and past inputs Atd. The total amount of labor L(d) needed to obtain the net
output d is equal to the sum

∑∞
t=0 `t(d) of all current and past labor inputs.

We say that a commodity bundle d 	 0 is produced by labor alone if Ad = 0. Clearly this
implies Atd = 0 for all t = 1, i.e. the production of d requires no material inputs at all,
neither directly nor indirectly. It also implies `t(d) = a0A

td = 0 for t = 1, so that the
only input needed for d is the direct labor L(d) = `0(d) = a0d.

Note that Def. 2 and Def. 3 make sense whether or not A is productive. When the
technology is not productive, the infinite sum `0(d)+`1(d)+`2(d)+ . . . does not converge,
but the dated labors `t(d) can still be computed.

Lemma 6.1. Assume that A is productive. Then labor is indispensable if and only if
a0(I − A)−1 > 0.

Proof of Lemma 6.1. By Def. 3 and equation (6.4), labor is indispensable if and only if
a0(I − A)−1d > 0 for every d 	 0. This is the case if and only if a0(I − A)−1 > 0.

�

Lemma 6.2. Assume that A is productive and let (p0, p) be a solution of the price equa-
tion. Then the value pd of a commodity bundle d is equal to the sum of all wage costs:

pd =
∞∑
t=0

p0`t(d)

Proof of Lemma 6.2. Clear because

pd = p0a0(I − A)−1d = p0a0

∞∑
t=0

Atd =
∞∑
t=0

p0a0A
td =

∞∑
t=0

p0`t(d)

�

This allows us to understand the price of a commodity in a very intuitive way.
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Th. 5.3 and the above formulas imply immediately:

Theorem 6.3. Assume that the technology (a0, A) is productive. Let L(d) be the required
amount of labor for a commodity bundle d and let p = (p1, . . . pn) be a solution of the price
equation p = p0a0 + pA with p0 > 0. Then

(a) The required amount of labor L(d) is positive for every nonzero final demand d 	 0
if and only if labor is indispensable for production.

(b) All prices pi (i = 1, . . . n) are positive if and only if labor is indispensable for pro-
duction.

Proof of Th. 6.3. We have L(d) = a0(I − A)−1d and this is positive for all d 	 0 if and
only if a0(I − A)−1 is positive.

Moreover, all prices pi are positive if and only if pd > 0 for every d 	 0. Since pd =
p0a0(I − A)−1d this is also the case if and only if a0(I − A)−1 is positive.

�

This brings our theory of the Linear Model of Production to a preliminary conclusion:
a stationary state quantity system and a zero-profit price system make perfect economic
sense in this model if and only if the technology is productive and labor is indispensable
for production. Both are very reasonable requirements, and the resulting theory is quite
satisfactory. Its mathematical base is Th. 5.2.

Approximation of x and L(d) by sums of dated inputs.

When A is productive, the infinite series
∑∞

t=0A
t is equal to (I − A)−1, by (5.1). This

means that the partial sums ST =
∑T

t=0A
t converge to (I − A)−1:

ST =
T∑
t=0

At → (I − A)−1 for T →∞

Therefore the partial sums of the dated input vectors converge to x = (I − A)−1d:

T∑
t=0

Atd → (I − A)−1d = x for T →∞

and the partial sums of the dated labor inputs
∑T

t=0 `t(d) =
∑T

t=0 a0A
td converge to

L(d) = a0(I − A)−1d:

T∑
t=0

`t(d) =
T∑
t=0

a0A
td → a0(I − A)−1d = a0x = L(d) for T →∞
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Therefore we can approximate x and L(d) by computing these partial sums. If A is
a large matrix, direct computation of the Leontief inverse (I − A)−1 may be difficult,
but computation of the succesive powers of A, i.e. of I, A,A2, A3, A4, ..., and their sums∑T

t=0A
t is relatively easy.

Example 6.4. (Same technology as Example 4.1)

There are two produced goods, good 1 is wheat and good 2 is horses. Labor is good 0.
The technology (a0, A) is given by

a0 = (a01, a02) = (6, 6), A =

(
a11 a12

a21 a22

)
=

1

10

(
1 4

3 2

)

We have already seen in Ex. 4.1 that

I − A =
1

10

(
9 −4

−3 8

)
and (I − A)−1 =

1

6

(
8 4

3 9

)

The price equation p = p0a0 + pA has the solution p = p0a0(I − A)−1, i.e. with p0 = 1:

p = (6.6).
1

6

(
8 4

3 9

)
= (1, 1).

(
8 4

3 9

)
= (11, 13) (6.5)

Let the final demand be

d =

(
120

30

)
The gross output vector x required to produce the net output d is given by

x = (I − A)−1d =
1

6

(
8 4

3 9

)
.

(
120

30

)
=

(
180

105

)
(6.6)

The required labor for this gross output is

L(d) = a0x = (6, 6).

(
180

105

)
= 6× 180 + 6× 105 = 1710

The following pages show how these values can be approximated by dated inputs.

The tables contain, for t = 0, 1, 2, . . . , 10:

the powers At of A: I, A,A2, . . . , A10
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the cumulative sums
∑t

i=0A
i (converging to (I − A)−1)

the dated inputs d,Ad,A2d, . . . , A10d

the cumulative sums of these,
∑t

i=0A
id (converging to x)

the dated labor inputs `t(d) = a0A
td

the cumulative sums of these,
∑t

i=0 `i(d) =
∑t

i=0 a0A
id (converging to L(d))
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7 Labor Values

Definition in Terms of Embodied Labor.

This approach is based on the classical idea that all the labor that has gone into the
production of a commodity is somehow contained (or embodied) in it. If a good is produced
from labor alone, the amount of direct labor needed is embodied in the product and is its
labor value. If the production of a good requires also other inputs, the labor embodied
in the other inputs is passed on to the output, and also becomes embodied in the final
product. The embodied labor value V e of a commodity is then defined as the total amount
of labor embodied in it. This total amount is equal to the sum of the direct labor needed
to produce the commodity, plus the indirect labor embodied in the various inputs.

To formalize these ideas, denote by vi = 0 the embodied labor value of one unit of good i,
and write v = (v1, . . . vn) for the (row) vector of these values. Then a0j is the direct labor,
and viaij is the labor embodied in aij units of input i (i = 1, . . . n). The embodied labor
value vj of (one unit of) good j is the sum of the direct labor a0j and the amounts of
labor embodied in the other inputs (indirect labor):

vj = a0j + v1a1j + v2a2j + · · · vnanj for j = 1, 2, . . . n (7.1)

This is a system of n linear equations in the n unknowns v1, . . . , vn. In matrix notation,
it takes the form

v = a0 + vA (7.2)

This is the Value Equation. The embodied labor values vi of the n commodities are given
implicitly by the solution of this equation. Equation (7.2) is the same as the zero-profit
price equation p = p0a0 + pA with p0 = 1. Therefore the solution is also the same,

v = a0(I − A)−1 (7.3)

Seen in this light, the embodied labor values are merely a re-interpretation of the zero-
profit price equation, with labor as the numéraire.

The embodied labor value V e(d) of a commodity bundle d = 0 is then the sum of the
labors embodied in its components di, i.e.

V e(d) =
n∑
i=1

vidi = vd = a0(I − A)−1d (7.4)

This is the definition of Labor Values in terms of embodied labor.
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Synchronous Definition.

The interpretation of the quantity equation as describing a stationary state leads to the
following definition of labor values:

The synchronous Labor Value V s(d) of a commodity bundle d is the amount of labor
required per period to enjoy net output d per period, in a stationary state.

As explained in Sec. 3, it is equal to the required amount of labor L(d) (see 3.8), i.e.

V s(d) = L(d) = a0(I − A)−1d (7.5)

This is known as the “synchronous” definition of labor values, because it refers to an
amount of labor that is supplied in the same period (synchronously) as the consumption d.

By (7.4) and (7.5) the embodied value V e(d) of a commodity bundle d is equal to its
synchronous labor value V s(d):

V e(d) = vd = a0(I − A)−1d = L(d) = V s(d) (7.6)

In particular, the amount of labor required to produce one unit of good i is given by
V s(ei) = L(ei) = vei = vi, because “one unit of good i” is represented by the commodity
bundle d = ei (the i-th unit vector).
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Historical Definition of Labor Values.

The concept of dated inputs leads to the third definition of labor values:

The historical labor value V h(d) of a commodity bundle d = 0 is defined as the total
amount of labor that was expended in the past, directly and indirectly, to produce d.

It is the sum of all dated labor inputs:

V h(d) =
∞∑
t=0

`t(d) (7.7)

This definition in terms of dated labor inputs is known as the historical definition of labor
values because it refers to labor inputs in past periods.

If A is productive, we have by (6.4)

V h(d) =
∞∑
t=0

`t(d) =
∞∑
t=0

a0A
td = a0[

∞∑
t=0

At]d = a0(I − A)−1d (7.8)

That is, the infinite sum of dated labor inputs
∑∞

t=0 `t(d) converges and is equal to a0(I−
A)−1d, so that V h(d) is well-defined and nonnegative for every d = 0. Clearly, the labor
value V h(d) of a commodity bundle d 	 0 is positive if and only if the production of d
requires labor. Clearly

V h(d) = a0(I − A)−1d = V s(d) = V e(d) (7.9)

i.e. The historical definition gives the same labor values as the other definitions.

Prices and Labor Values.

The special price system (p0, p) = (1, v) = (1, v1, . . . vn) is a solution of the price equation
in which the prices of all commodities are numerically equal to their labor values (and
labor serves as numéraire). More generally, any solution (p0, p) of the price equation (2.3)
satisfies

p = p0a0(I − A)−1 = p0v (7.10)

i.e., if the interest rate is zero, then the commodity prices p = p0v are proportional to
labor values v (with factor of proportionality p0 > 0). The “Labor Theory of Value”
holds. The price equation (2.2) and the value equation (7.2) are really the same equation,
and we will use the two terms interchangeably.
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Lecture 4

8 Expansion

To study economic growth and positive profit rates, we need some more information on the
technology matrix A. Given a technology matrix A = (aij), consider the new technology
B = (bij) = αA, for α > 0. It is obtained from A by multiplying all coeffients of A by
the number α, so that bij = αaij for all i, j. When is B = αA productive? Intuitively,
one should expect that αA is productive for α sufficiently small, but that αA ceases to be
productive if α becomes too large. This intuition is correct, as the following result shows.

Theorem 8.1. . Let A = 0 be a square matrix. Then there is a positive number α∗ = α̂(A)
(possibly α∗ =∞) such that the technology αA is productive if and only if 0 5 α < α∗.

If the technology αA is productive, then there is an activity vector x > 0 such that
x > αAx. This condition means that the output xi is more than α-times the input
yi = (Ax)i for all goods i ∈ N , i.e. all sectors of the economy expand with a factor
greater than α. This is possible if and only if α < α∗. We call α∗ = α̂(A) the (economic)
expansion factor for the technology A. It provides an upper bound for the growth rates
which the economy can sustain simultaneously in all sectors (see Sec. 13). Clearly, A = 0
is productive if and only if α̂(A) > 1. The expansion factor is also an upper bound for
the profit rates the economy can sustain (in all sectors simultaneously), see Sec. 9.

Proof of Theorem 8.1.

Define the set M = M(A) = {α = 0 |αA is productive} and put α∗ = supM . By
Definition 1

α ∈M ⇔ ∃x 	 0 with x > αAx (∗)

Clearly 0 ∈ M . Further, by (∗), if α ∈ M then α + ε ∈ M for ε > 0 sufficiently small.
Therefore α∗ > 0 and α∗ 6∈ M . Clearly, if α ∈ M and β < α, then β ∈ M . Therefore M
is a half-open interval of the form M = [0, α∗) and the Theorem is proved.

�

Corollary 8.2. Let A = 0 be a square matrix with expansion factor α∗. Then

(a) If x 5 βAx, x 	 0, then β = α∗

(b) If x = βAx, x > 0, then β = α∗

(c) If x = βAx, x 6= 0, then |β| = α∗ and α∗ <∞
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Proof of Cor. 8.2.

Proof of (a). The assumption means that (I − βA)x 5 0, x 	 0, and β > 0. If β were
less than α∗, the matrix I − βA would be productive, and (I − βA)−1 = 0. This implies
x = (I − βA)−1(I − βA)x 5 0, contradicting x 	 0. Therefore β = α∗.

Proof of (b). By (a) we have β = α∗. If β were greater than α∗, we would have x =
βAx > α∗Ax and α∗A would be productive, a contradiction. Therefore β = α∗.

Proof of (c). Write x+ = (|x1|, . . . , |xn|). Then x = βAx implies x+ 5 |β|Ax+, where
x+ 	 0 and |β| > 0. By (a) this implies |β| = α∗.

�

8.1 The Frobenius-Perron Theorem

Let us recall some important concepts from Linear Algebra.

Definition 4. Let A be a square (n × n)-matrix (not necessarily nonnegative). If the
number λ and the (column) vector x satisfy

Ax = λx, x 6= 0 (8.1)

we say that λ is an eigenvalue of A and x is a (right) eigenvector of A, associated with λ
(a left eigenvector is a row vector p 6= 0 with pA = λp).

Equation (8.1) can be written (λI − A)x = 0. This has a nonzero solution x 6= 0 if and
only if the matrix (λI−A) is not invertible, i.e. if and only if λ satisfies the characteristic
equation

det(λI − A) = 0 (8.2)

This is an algebraic equation of degree n in λ. It has n roots λ1, . . . λn (not necessarily
distinct, possibly complex). These are the eigenvalues of the matrix A.

The so-called Perron-Frobenius Theorem states that a nonnegative matrix A has a
special nonnegative eigenvalue λ∗, known as the dominant eigenvalue (or the Frobenius
eigenvalue). This λ∗ is the inverse of the expansion factor, λ∗ = 1/α∗. It is the greatest
eigenvalue of A in absolute value (hence “dominant”), and has associated nonnegative
left and right eigenvectors.

Theorem 8.3. (Perron-Frobenius I) Let A = 0 be a square matrix with expansion factor
α∗ = α̂(A), and define λ∗ = λ(A) = 1/α∗ (where 1/∞ = 0). Then

(a) λ∗ is a nonnegative eigenvalue of A.

(b) There exist nonnegative right and left eigenvectors of A, associated with λ∗.

(c) λ∗ is the largest eigenvalue in absolute value: λ∗ = |µ| for every eigenvalue µ of A.
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Proof of Th.8.3. See Th. 19.4 in the Appendix. �

Corollary 8.4. Assume A 	 0. If A has a positive eigenvector, then it is associated with
λ∗, and λ∗ > 0.

Proof of Cor. 8.4.

Assume Ax = µx, x > 0. Since A 	 0, this implies µ > 0 , so that x = βAx where
β = 1/µ. By Cor. 8.2 this implies β = α∗ = 1/λ∗. Hence µ = λ∗.

�

The number λ∗ is called the dominant eigenvalue of A. Since λ∗ = 1/α∗, a technology A
is productive if and only if λ(A) < 1.

Clearly, when λ∗ > 0 (equivalently α∗ <∞), then a column vector x [resp. a row vector p]
is an eigenvector associated with the dominant eigenvalue if and only if x = α∗Ax [resp.
p = α∗pA].

Computation of the expansion factor.

Let A = 0 be a nonnegative (n × n)-matrix. Write down the characteristic equation
det(λI − A) = 0. This is an algebraic equation of degree n in λ. The dominant eigen-
value λ∗ of A is the largest nonnegative root of this equation (by Th. 8.3 it has at least
one nonnegative root). The expansion factor is given by α∗ = 1/λ∗, where α∗ = ∞ if
λ∗ = 0. Alternatively, one can consider the equation det(I − αA) = 0. The expansion
factor α∗ is the smallest positive root of this equation. If it has no positive root,1 then
α∗ =∞.

1One can show that in this case det(I −αA) = 1 is constant, independently of α, so that the equation
det(I − αA) = 0 has no solution at all (in particular no positive solution).



M. Nermuth, Linear Model. Sec. 8: Expansion 47

Example 8.5.

Consider the technology (a0, A) introduced in Example 4.1:

a0 = (a01, a02) = (6, 6), A =

(
a11 a12

a21 a22

)
=

1

10

(
1 4

3 2

)

The determinant of the matrix λI − A is

det(λI −A) =

∣∣∣∣∣ λ− 1
10

− 4
10

− 3
10

λ− 2
10

∣∣∣∣∣ = (λ− 1

10
) (λ− 2

10
)− 4

10
.

3

10
= λ2 − 3

10
λ+

2

100
− 12

100

This gives the characteristic equation

λ2 − 3

10
λ− 1

10
= 0

with solution

λ12 =
3

20
±
√

9

400
+

40

400
=

3

20
± 7

20

The two roots are λ1 = 10
20

= 1
2
, and λ2 = − 4

20
= −1

5
. These are the eigenvalues of A. The

dominant eigenvalue is λ(A) = λ1 = 1/2, which is nonnegative and the largest eigenvalue
in absolute value. Therefore α∗ = α̂(A) = 1/λ(A) = 2.

By Theorem 8.1, the technology αA is productive if and only if 0 5 α < 2. By Th. 5.2
the technology αA is productive if and only if (I − αA)−1 exists and is nonnegative. To
check this, let us compute (I − αA)−1. We have

I − αA =

(
1− .1α −.4α
−.3α 1− .2α

)
=

1

10

(
10− α −4α

−3α 10− 2α

)

The inverse is

(I − αA)−1 =
1

10− 3α− α2

(
10− 2α 4α

3α 10− α

)
For 0 5 α < 2 the term 10− 3α− α2 is positive and (I−αA)−1 exists and is nonnegative.
For α = 2 the term 10− 3α− α2 is zero and (I−αA)−1 does not exist. For α > 2 the term
10− 3α− α2 negative, so that the inverse (I − αA)−1 exists, but has negative elements.
For α < 0 the matrix αA is not a technology matrix. Thus αA is a productive technology
if and only if 0 5 α < α∗ = 2, as it must be.
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Example 8.6. A technology with α∗ =∞.

Let the technology (a0, A) be given by

a0 = (a01, a02) = (1, 1), A =

(
a11 a12

a21 a22

)
=

(
0 1

0 0

)

Good 1 is produced from labor alone. Process 2 needs labor and good 1 as inputs. The
determinant of the matrix λI − A is

det(λI − A) =

∣∣∣∣∣ λ −1

0 λ

∣∣∣∣∣ = λ2

This gives the characteristic equation λ2 = 0 with unique solution λ = 0. The dominant
eigenvalue is λ∗ = 0, which is nonnegative and the largest eigenvalue in absolute value.
Therefore α∗ =∞. The matrix

I − αA =

(
1 −α
0 1

)
has the inverse (I − αA)−1 =

(
1 α

0 1

)

which is well-defined and nonnegative for every α with 0 5 α < ∞. Note also that
det(I − αA) = 1 for all α, so that the equation det(I − αA) = 0 has no solution.



M. Nermuth, Linear Model. Sec. 9: Prices of Production 49

9 Prices of Production

We have already determined the prices in our Linear Model of Production for the case
that the rate of profit is zero. Let us now consider the general case. The key assumption
is that the rate of profit is the same in all sectors. This assumption can be justified as
follows. Since capitalists want to maximize the return on their capital, they will invest
their money only in those sectors where the rate of profit is highest. The rate of profit
must therefore be the same in all sectors.

We denote this uniform profit rate (or interest rate) by r and write ρ = 1 + r for the
interest factor or profit factor. We want to find a price system such that the profit factor
is uniform and equal to a given number ρ in all sectors.

That the rate of profit is r means that the price of one unit of good j is equal to (1 + r)–
times the costs of its inputs, i.e. we obtain the price equations (with ρ = 1 + r):

pj = ρ[p0a0j + p1a1j + · · ·+ pnanj] for j = 1, . . . , n (9.1)

or, in matrix notation:
p = ρ[p0a0 + pA] (9.2)

Equation (9.2) is the (general) Price Equation. Clearly, if (p0, p) satisfies equation (9.2),
then so does every multiple (kp0, kp), for k > 0. The price equation (9.2) can determine
the prices only up to a constant factor (up to the choice of numéraire).

To understand this price equation better, let us define the fictitious technology (b0, B) =
(ρa0, ρA) in which all input coefficients of the original technology are multiplied by the
factor ρ. Then (9.2) becomes

p = p0b0 + pB (9.3)

This equation is nothing other than the price equation (2.2) for the fictitious technology
(b0, B) = (ρa0, ρA). That is, prices for a nonzero interest rate r can be understood as zero-
profit prices for a fictitious technology in which all input coefficients have been multiplied
by the factor ρ = 1 + r. For example, if r = 0.05 = 5%, all inputs are larger by five
percent in the fictitious technology than in the original one.

We know from Th. 5.3 and Th. 6.3 that the equation (9.3) has a unique nonnegative
solution p for every p0 > 0 if B is productive and that all prices are positive (p > 0) if
and only if labor is indispensable for the technology (b0, B). When are these conditions
satisfied? First, we have

Lemma 9.1. Let ρ > 0 be a positive number. Then labor is indispensable for the fic-
titious technology (b0, B) = (ρa0, ρA) if and only if it is indispensable for the original
technology (a0, A).
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Proof of Lemma 9.1. Denote by `At (d) [resp. `Bt (d)] the dated labor inputs for the tech-
nology (a0, A) [resp. (b0, B)]. Then, by (6.2)

`Bt (d) = b0B
td = ρa0(ρA)td = ρt+1a0A

td = ρt+1`At (d)

Since ρt+1 > 0 for every t = 0, 1, 2, . . . , we have `Bt (d) > 0 if and only if `At (d) > 0. By
Def. 3 this proves the asssertion.

�

Second, we know from Theorem 8.1 that B = ρA is productive if and only if 0 < ρ < α̂(A),
where α̂(A) is the expansion factor defined in Sec. 8.

We can now apply Ths. 5.3 and 6.3 to the fictitious technology (b0, B) = (ρa0, ρA) and
obtain:

Theorem 9.2. (Production Prices) Let (a0, A) be a technology with expansion factor
α̂(A) > 0. Then the price equation

p = ρ(p0a0 + pA) (9.4)

has a unique, nonnegative solution p = 0 for every p0 > 0 if ρ satisfies 0 < ρ < α̂(A). In
this case, the solution is given by

p = ρp0a0[I − ρA]−1 (9.5)

where p0 > 0 can be chosen arbitrarily. All prices are positive (p > 0) if and only if labor
is indispensable for the technology (a0, A).

Proof of Theorem 9.2. W.l.o.g. put p0 = 1. The price equation (9.4) can be written as
p = p0b0 + pB, where (b0, B) = (ρa0, ρA). By Theorem 8.1 B = ρA is productive if and
only if 0 5 ρ < α̂(A). By Lemma 9.1, labor is indispensable for (b0, B) if and only if it is
so for (a0, A). The assertion now follows immediately from Ths. 5.3 an 6.3.

�

The prices given by Th. 9.2 are known as the prices of production implied by (or associated
with) the profit factor ρ (or the profit rate r).

The prices (p0, p1, . . . pn), are determined only up to a positive factor, but of course relative
prices pi/pj are uniquely determined by ρ, independently of the choice of the numéraire.

This “classical” price theory is objective in the sense that it does not refer to subjective
data like utility or preferences, in contrast to the “neoclassical” theory. The prices (p0, p)
are independent of demand. They depend only on the conditions of production, i.e. the
technology (a0, A), and on the profit factor ρ (resp. the profit rate r).2

2The actual level of the rate of profit (or interest) is taken as exogenous here. One can think of it
as reflecting the relative strength of the the social classes (capitalists and workers). Of course, from a
General Equilibrium point of view it would also be endogenously determined and depend on subjective
factors like time preferences.
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We say that the economy can sustain the profit rate r (or the profit factor ρ = 1 + r) if
we can find positive prices (p0, p) = (p0, p1, . . . pn) such that, at these prices, the profit
rate is uniform and equal to r in all sectors. The theorem shows that, implicit in the
technology A, there is an upper bound for the admissible profit factors: ρ must be less
than the expansion factor α̂(A).

The lower bound for the profit factor is zero, but note that for 0 < ρ < 1 the interest
rate r = ρ− 1 is negative and production is not profitable. If α̂(A) 5 1, the technology A
is not productive and the interest rate is necessarily negative. This case is included in our
formal analysis, but of course the economically relevant case is α̂(A) > 1 and ρ = 1 (i.e.
r = 0).

Corollary 9.3. Let (a0, A) be a technology for which labor is indispensable. Then

(a) The price equations have solutions for nonnegative interest rates if and only if the
technology A is productive.

(b) If the interest rate is zero, prices are proportional to labor values: p = p0v

Proof of Cor. 9.3.

A nonnegative interest rate r means that ρ = 1 + r = 1. This is possible if and only if
α̂(A) > 1, i.e. A is productive. This proves (a). If ρ = 1 the prices are p = p0a0[I−A]−1 =
p0v, by (9.5) and (7.3). This is (b). �

Remark. The assumption of a uniform rate of profit is a long-run equilibrium condition in
the following sense. If the rate of profit is higher in some sectors than in others, capital
will flow from the less profitable sectors to the more profitable ones, and the output of the
more profitable sectors will increase relative to the output of the less profitable ones. This
change in supply will lead to a fall in the prices of the more profitable sectors relative to
the prices of the less profitable ones, until the rate of profit is the same in all sectors, prices
do no longer change, and capitalists have no incentive to switch their investments from
one sector to another. The process of price adjustment leading to this kind of equilibrium
is not modeled in our theory. It is assumed to have taken place already, so to speak.
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10 Prices and dated labor costs

We say that the Labor Theory of Value holds (in the strict sense), if prices are proportional
to labor values. By Cor. 9.3, this is the case if the profit rate r is zero (ρ = 1 + r = 1),
but we will see later that it is not true in general for positive rates of profit. As the profit
rate rises, the prices of all commodities rise relative to the wage (Th. 10.2), but some
prices may rise faster than others, so that the relative prices of goods can no longer be
explained by their labor values. See also the example in Section 11.

Even though the production prices with a positive rate of profit are not proportional to
labor values, the price pd of a commodity bundle d can still be understood in terms of
dated labor costs (cf. Sec. 6):

Theorem 10.1. (Prices and Dated Labor Costs) Let (p0, p) be a system of production
prices in an economy with interest factor ρ < α̂(A), as in Th. 9.2. Then the value pd
of a commodity bundle d is equal to the sum of all past labor costs, compounded with the
interest factor ρ:

pd =
∞∑
t=0

ρt+1p0`t(d) (10.1)

where `t(d) = a0A
td is the dated labor input t periods ago, as defined in Def. 2.

Proof. Since ρA is productive, we have

[I − ρA]−1 =
∞∑
t=0

ρtAt

and the price equation gives

pd = p0ρa0
∑

ρtAtd =
∑

ρt+1p0a0A
td =

∞∑
t=0

ρt+1p0`t(d)

This is equation (10.1) �

The right-hand side of this equation is the present value of the stream of past labor costs
(p0`0(d), p0`1(d), p0`2(d), . . . ), computed for the interest factor ρ. This takes account of
the fact that production takes time and the labor input `t(d) is needed (t + 1) periods
before the output d becomes available. In the context of an intertemporal price system
with interest rate r, the price equation (9.2) is in fact a zero-profit condition. Of course
the formula (10.1) coincides with the labor value V h(d) =

∑∞
t=0 `t(d) for ρ = 1 and p0 = 1.

Equation 10.1 shows also that the price pd of a commodity bundle d is positive if and
only if d needs labor, i.e. at least one dated labor input `t(d) is positive; and the price pd
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is higher than the labor value vd times the wage p0, for r > 0 (of course pd = p0vd for
r = 0).

It also shows that all prices increase relative to the wage if the interest factor increases
(cf. Th. 10.2 below).

To make the dependence of the prices on ρ explicit, choose an arbitrary numéraire and
denote by p0(ρ), p(ρ) = (p1(ρ), . . . pn(ρ)) a system of production prices associated with
the profit factor ρ. By (9.5)

p(ρ) = p0(ρ)ρa0[I − ρA]−1 for 0 < ρ < α̂(A) (10.2)

Note that pi(ρ)/p0(ρ) is the price of good i relative to the wage.

Theorem 10.2. (Monotonicity) Let (a0, A) be a technology with expansion factor α̂(A)
and assume that labor is indispensable. Then for each good i ∈ N , the price of i relative
to the wage, pi(ρ)/p0(ρ), is strictly increasing in ρ, for 0 < ρ < α̂(A).

Proof of Th. 10.2. W.l.o.g. put p0(ρ) ≡ 1, so that pi(ρ) = pi(ρ)/p0(ρ) is the price of
good i relative to the wage. By (10.1), the price of an arbitrary commodity bundle d 	 0
is (with p0 = 1)

p(ρ)d =
∞∑
t=0

ρt+1`t(d)

In this sum, each term ρt+1 is strictly increasing in ρ because t+1 = 1. Therefore ρt+1`t(d)
is strictly incraesing in ρ, provided `t(d) is positive. Since labor is indispensable, at least
one such term is positive, for every nonzero d 	 0. Therefore the price p(ρ)d of d increases
strictly in ρ, for every d 	 0. This implies the assertion, since pi(ρ) = p(ρ)ei is the price
of the nonzero bundle d = ei, which contains one unit of good i and nothing else.

�
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The Transformation Problem.

The connection between the system of labor values and the price system is known as the
“transformation problem” in the Marxist literature. Motivated by the belief that labor
values were in some sense more fundamental than market prices, or that “values determine
prices”, some authors tried to explain the latter as deviations from the former, and sought
a formula which would “transform” labor values into competitive prices.

Our analysis shows that both labor values and production prices are determined directly
by the technological coefficients in (a0, A) and the profit factor ρ. Both can be understood
and interpreted in terms of these data. To deduce prices from labor values via some
“transformation algorithm” is unnecessary and misleading. If the interest rate is zero,
prices are proportional to labor values (Cor. 9.3), but labor values do not help us to
understand the behavior of production prices for other interest rates. Prices are not
“transformed labor values”.3

Having said this, Th. 10.1 can shed some light on the relation between labor values and
production prices. Labor values are the simple sum of all past (dated) labor inputs; prices
are also a sum of dated labor inputs (or wage costs), but these are compounded at the
interest rate r. Since ρ t increases with t (for ρ > 1), this gives higher weight to dated
labor inputs in the distant past. Therefore, the prices (unlike labor values) depend not
only on the total amount of labor, but also on the intertemporal distribution of the various
dated labor inputs (see Sec. 11).

The ’labor theory of value’ holds only in a special case, namely when the intertemporal
distribution of dated labor inputs is the same for all commodities. In Marxist terminol-
ogy,this means that the ’organic composition’ of capital is the same in all sectors (see
Sec. 18).

3This is expressed succinctly in Samuelson’s famous eraser algorithm: �... better descriptive words
than “the transformation problem” would be provided by “the problem of comparing and contrasting the
mutually-exclusive alternatives of ‘values’ and ‘prices’.” For when you cut through the maze of algebra
and come to understand what is going on, you discover that the “transformation algorithm” is precisely
of the following form: “Contemplate two alternative and discordant systems. Write down one. Now
transform by taking an eraser and rubbing it out. Then fill in the other one. Voila! You have completed
your transformation algorithm.”� (Samuelson (1971)).
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10.1 Example

Example 10.3.

Consider again the technology (a0, A) introduced in Example 4.1:

a0 = (a01, a02) = (6, 6), A =

(
a11 a12

a21 a22

)
=

1

10

(
1 4

3 2

)

We have shown in Example 8.5 that the expansion factor of A is α∗ = α̂(A) = 2.

By Th. 9.2, the price equation p = ρ[p0a0 + pA] has a unique positive solution p > 0 for
every p0 > 0, provided 0 < ρ < α̂(A), i.e. for 0 < ρ < 2. The value ρ∗ = 2 is an upper
bound for the profit rates which the technology can sustain.

The price equations, written out explicitly, are

p1 = ρ[6p0 + .1p1 + .3p2]

p2 = ρ[6p0 + .4p1 + .2p2]

or equivalently

10p1 = ρ [60p0 + p1 + 3p2] (10.3)

10p2 = ρ [60p0 + 4p1 + 2p2] (10.4)

The following table gives the solutions of this system of equations for various values
of ρ = 1 + r, with p0 = 1:

r ρ = 1 + r p1 p2 p2/p1

0% 1 11 13 1.18

1/9 = 11% 10/9 13.63 16.36 1.20

1/4 = 25% 5/4 18 22 1.22

2/3 = 66% 5/3 52.5 67.5 1.28

(10.5)

We know already from Ex. 4.1 that for ρ = 1 this system has the solution p1 = 11p0,
p2 = 13p0. These and the other numbers can easily be checked by substituting them in
the equations above. We see that both p1 and p2 increase (relative to the wage) when ρ
increases, as it must be by Th. 10.2.

Moreover, in this example, the price p2/p1 of good 2 relative to good 1 increases also
monotonically with ρ. This monotonic behavior of relative prices is not a general feature,
see Ex. 11.1 below.
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We can also use equation (9.5) to find the general solution for the prices p(ρ). We have

p = p0ρa0(I − ρA)−1 (0 < ρ < α∗ = 2)

This gives

det(I − ρA) =

∣∣∣∣∣ 1− .1ρ −.4ρ
−.3ρ 1− .2ρ

∣∣∣∣∣ = (1− .1ρ)(1− .2ρ)− .12ρ2 = 1− .3ρ− .1ρ2

and

(I − ρA)−1 =
1

1− .3ρ− .1ρ2

(
1− .2ρ .4ρ

.3ρ 1− .1ρ

)
=

1

10− 3ρ− ρ2

(
10− 2ρ 4ρ

3ρ 10− ρ

)

Therefore

p = (p1, p2) = p0
ρ

10− 3ρ− ρ2
(6, 6)

(
10− 2ρ 4ρ

3ρ 10− ρ

)
= p0

6ρ

10− 3ρ− ρ2
(10+ρ, 10+3ρ)

so that

p1(ρ) = p0(ρ)
6ρ

10− 3ρ− ρ2
(10 + ρ), p2(ρ) = p0(ρ)

6ρ

10− 3ρ− ρ2
(10 + 3ρ)

The entries in Table 10.5 can easily be verified by putting p0 = 1 and substituting various
values of ρ in these equations. For example, for ρ = 5/4, we get

p1(5/4) =
30/4

10− 15/4− 25/16
(10 + 5/4) =

120

75
× 45

4
= 18, p2(5/4) =

120

75
× 55

4
= 22

Note that
p2(ρ)

p1(ρ)
=

10 + 3ρ

10 + ρ
= 1 +

2ρ

10 + ρ
= 1 +

2

1 + 10/ρ

is increasing in ρ because 10/ρ decreases in ρ.

Fig. 5 shows these prices as functions of ρ, normalized so that the wage satisfies p0(ρ) =
1/ρ, for all ρ. This normalization has no fixed numéraire whose price is always equal to
one, but it produces a nice picture in which one can see clearly how the wage decreases
relative to all commodity prices when the interest factor increases. Relative prices (the
only economically meaningful quantities) are unaffected by the normalization, of course.
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Figure 5: The graph shows the prices p0(ρ), p1(ρ), p2(ρ), for varying ρ. Prices are nor-
malized such that p0(ρ) = 1/ρ.

11 Reswitching

In this section we show by means of an example how production prices change with the
profit factor. In particular we see that all commoditiy price rise relative to the wage. But
this rise is not uniform in general. It may happen that the price of good 1 increases faster
than the price of good 2 in certain ranges of the profit factor ρ, but that the opposite
happens in other ranges. It is even possible that good 1 is worth more than good 2 for low
values of ρ, worth more for intermediate values, and worth less again for for high values
of ρ. This leads to a phenomeneon known as “reswitching”, see Sec. 11.1.

Example 11.1. Prices of Production.

Consider the following technology, with n = 3 goods.

a0 = (1, 0, 5), A =


0 5 0

0 0 1/5

0 0 0

 . Note that A2 =


0 0 1

0 0 0

0 0 0

 and At = 0 for t = 3

That is, good 1 needs one unit of labor as input (and nothing else), good 2 needs five
units of good 1 as input (and nothing else), and good 3 needs 0.2 units of good 2 and
5 units of labor as inputs. Labor is indispensable in this technology. One can show that
α̂(A) =∞.
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This example is so simple that it is easy to solve the price equations (9.1) directly. We
have

pj = ρ [p0a0j + p1a1j + p2a2j + p3a3j] (j = 1, 2, 3)

This gives:

p1(ρ) = ρp0

p2(ρ) = ρ5p1 = ρp05ρ

p3(ρ) = ρ[5p0 + 0.2p2) = ρp0(5 + ρ2)

 (11.1)

If we choose good 1 as numéraire (i.e. if we divide all prices by ρp0) we obtain

p0(ρ) = 1/ρ, p1(ρ) = pe1 = 1, p2(ρ) = pe2 = 5ρ, p3(ρ) = pe3 = 5 + ρ2

It is easy to see that all commodity prices increase strictly relative to the wage, i.e.
pi(ρ)/p0(ρ) increases strictly in ρ for i = 1, 2, 3, as it must be by Th. 10.2. Also, p2 and
p3 increase monotonically relative to p1.

But the relative price of goods 2 and 3 does not change in a monotonic way.

Figure 6 shows that the price p3(ρ) of good 3 is higher than p2(ρ) for low interest rates,
then falls below p2(ρ) as ρ increases, but becomes higher than p2(ρ) again if ρ increases
even more.

1 2 3 4
ρ

5

10

15

20

25

pi

p2(ρ) = 5ρ

p3(ρ) = 5+ρ2

p3(ρ)-p2(ρ)

Figure 6: The graph shows the prices p2(ρ), p3(ρ), and the difference p3(ρ) − p2(ρ), for
varying ρ (with good 1 as numéraire). The difference is zero at ρ1 = (5 −

√
5)/2 =

1.381966, and again at ρ2 = (5 +
√

5)/2 = 3.618034. For ρ < ρ1 and for ρ > ρ2 good 3 is
worth more than good 2, but for ρ1 < ρ < ρ2 good 2 is more expensive.
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To understand this, recall that by (10.1) the price pd of a commodity bundle d is the
present value of the stream of all past wage costs p0`t(d), for t = 0, 1, 2, . . . , compounded
with the interest factor ρ, i.e. in our case

pd = ρp0[`0(d) + ρ`1(d) + ρ2`2(d) + 0] (11.2)

The dated labor inputs `t(d) = a0A
td for a bundle d = (d1, d2, d3)

T are given by

`0(d) = a0d = d1+5d3, `1(d) = a0Ad = 5d2, `2(d) = a0A
2d = d3, `t(d) = a0A

td = 0 t = 3

(this is easy to see because a0 = (1, 0, 5), a0A = (0, 5, 0), and a0A
2 = (0, 0, 1)). Therefore

the dated labor inputs for the unit bundles e1, e2, e3 are:

`t(d) = a0A
td t = 0 t = 1 t = 2 t = 3

d = e1 1 0 0 0

d = e2 0 5 0 0

d = e3 5 0 1 0

(11.3)

By (11.2) this implies

p1(ρ) = pe1 = ρp0(1 + 0.ρ+ 0.ρ2)

p2(ρ) = pe2 = ρp0(0 + 5.ρ+ 0.ρ2)

p3(ρ) = pe3 = ρp0(5 + 0.ρ+ 1.ρ2)


These are of course the same prices as in (11.1). Dividing them by the common factor
ρp0 gives the prices shown in Figure 6.

The sequence of dated labor inputs for good 3 is (5, 0, 1, 0, . . . ), and the sequence of dated
labor inputs for good 2 is (0, 5, 0, 0, . . . ). Good 3 needs more total labor (5+1=6 units)
than good 2 (5 units), but the distribution of the dated labor inputs is different: good 3
needs 5 units in the current period, and 1 unit two periods ago (the “distant past”).
Good 2 needs no labor in the current period, and 5 units one period ago (the “not so
distant past”). Therefore the labor value of good 1 is higher, v1 = 5 + 1 = 7 > v2 = 5.
These correspond also to the prices for ρ = 1. As the interest rate rises, the five units in
the past period for good 2 gain more weight (multiplied with ρ) so that good 2 becomes
more expensive than good 3. But eventually, as the interest rate rises even further, the
single unit of labor in the distant past for good 3 (multiplied with ρ2) overtakes everything
and good 3 becomes more expensive again.

In other words, the price of a commodity depends not only on the total amount of labor
needed for its production, as in the simple Labor Theory of Value, but also on the in-
tertemporal distribution of the various labor inputs. Labor expended in the past is not
the same as labor expended in the current period.
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11.1 Choice of Technique and Reswitching

Up to now, we have always assumed that there is exactly one production process for
each produced good. In order to discuss the phenomenon known as “reswitching”, we
need a more general model which allows for choice of technique. This means that there
may be more than one method to produce a certain commodity, and firms producing this
commodity must choose between these methods. We will not aim for full generality, but
explain the problem by means of a simple example.

Consider again the 3-good technology introduced in Example 11.1, but assume now that
there is a fourth good, for which two methods of production are available. To produce
one unit of good 4, process 4A needs one unit of good 2 and proces 4B needs one unit of
good 3. In addition, both processes require one unit of labor. No process needs good 4
as an input. The two technologies (a0, A) and (b0, B) are given by

a0 = (1, 0, 5, 1) b0 = (1, 0, 5, 1)

A =


0 5 0 0

0 0 1/5 1

0 0 0 0

0 0 0 0

 B =


0 5 0 0

0 0 1/5 0

0 0 0 1

0 0 0 0

 .

One can show that α̂(A) = α̂(B) =∞, so that procduction prices are well-defined for all
positive profit factors. The price equations are now

pj = ρ [p0a0j + p1a1j + p2a2j + p3a3j + p4a04] (j = 1, 2, 3, 4)

For the first three goods this gives the same prices as in example 11.1 for both technologies,
viz. (with p0 = 1):

p1(ρ) = ρ

p2(ρ) = 5ρ2

p3(ρ) = 5ρ+ ρ3

and the price of good 4 is given by

pA4 (ρ) = ρ(1 + p2(ρ)) = ρ+ 5ρ3

pB4 (ρ) = ρ(1 + p3(ρ)) = ρ+ 5ρ2 + ρ4
(11.4)

in technology A resp. B.

Until now, an equilibrium was simply a price system (ρ, p0, p) in which all sectors have the
same profit rate. Since each sector had only one production process, this meant that all
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processes have the same rate of profit. If there are several processes to produce the same
good, there are more processes than goods, and it is not possible in general to find prices
such that all processes generate the same profit factor (more equations than unknowns).
Therefore we must modify our definition of equilibrium. Let a profit factor ρ be given.
We say that (ρ, p0, p) is an equilibrium price system if the following two conditions hold,
at the prices (p0, p):

(a) for each commodity j ∈ N , there is one process which has exactly the profit factor ρ

(b) no process has a higher profit factor than ρ

The interpretation is that the n processes in (a) are active and form a technology in the
sense of Sec. 1, as before. Prices satisfy the price equations (9.2) for this technology. All
processes in (a) have the same profit rate (the “going rate of profit”). Since the profit
rates of the processes in (b) are lower than (or at most equal to) the going rate, firms have
no incentive to adopt these processes, and the processes in (b) are inactive. Therefore the
technology given by the processes in (a) is also known as the optimal technique given ρ.

Returning to our example, it is clear from (11.4) that pA4 (ρ) < pB4 (ρ) if and only if
p2(ρ) < p3(ρ). As shown in Fig. 6 this is the case if ρ < ρ1 = 1.38 (“ρ is small”) or
ρ > ρ2 = 3.61 (“ρ is large”) For intermediate values of ρ, 1.38 < ρ < 3.61, the opposite is
the case, pA4 (ρ) > pB4 (ρ).

Suppose now ρ < ρ1 is small, technology A is in use, and the price of good 4 is pA4 (ρ). In
this situation, the processes (1, 2, 3, 4A) have the same profit rate ρ, but the profit rate
for process 4B is lower, because its unit cost 1+p3(ρ) is higher than the unit cost 1+p2(ρ)
in process 4A. Therefore process 4B will not be used. The optimal technology is A. Group
(a) consists of the processes (1, 2, 3, 4A) and group (b) contains only process 4B. The
same is true if ρ > ρ2 is large.

However, if ρ lies in the intermediate range between ρ1 and ρ2, the production cost
of process 4B is lower than that of process 4A, so that technology A is no longer an
equilibrium, because the firms in sector 4 would have an incentive to switch to process 4B.
The equilibrium is now given by technology B, and the price of good 4 is pB4 (ρ). The active
processes in group (a) are now( 1, 2, 3, 4B), all with the same profit factor, and group
(b) consists of process 4A, which has a lower profit factor.

For ρ = ρ1 = 1.38 and again for ρ = ρ2 = 3.61 the two processes 4A and 4B are equally
profitable, so that the firms in sector 4 are indifferent between them. At these points
(the switch-points), the optimal technique is not unique (but the equilibrium prices are
unique). The firms in sector 4 may use either process 4A or 4B (or even a mixture of the
two).

Thus it is possible that a technique A which is optimal for low interest rates ceases to be
optimal for higher interest rates, but becomes optimal again for even higher rates.

This phenomenon, that the optimal technique switches from A to B at some interest rate,
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and then switches back to A again at a even higher interest rate, is known as Reswitching.

The possibility of reswitching was pointed out by Sraffa (1960). It came as a surprise to
many economists who thought that a rise in the interest rate was equivalent to a rise in
the ‘price of capital’ and would always induce a move to less capital intensive production
methods, so that a technique which was once abandoned because the interest rate was
too high could never come back at an even higher interest rate.

The example shows that this intuition is not correct. It is not possible in general to rank
production processes as more or less “capital intensive” when “capital” consists of many
different goods.
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12 Profits and Wages

An important feature of the Linear Model of Production is that there is a strict conflict
of interest between the social classes (capitalists and workers): higher profit rates imply
lower wages (lower consumption for the workers) and vice versa.

To see this, choose an arbitrary numéraire and denote by p0(ρ), p(ρ) = p0ρa0(I − ρA)−1

the production prices associated with the profit factor ρ = 1 + r, for 0 < ρ < α̂(A).
Assume that labor is indispensable, so that all prices are positive.

The number p0(ρ) is the nominal wage. As such, it has no economic significance. To get
an idea of what the wage is “really” worth, we must specify some commodity bundle d (a
“basket of goods”), and ask how many units of this bundle (how many baskets) a worker
can buy with his wage, at the prices p(ρ). This amount is given by

wd = wd(ρ) =
p0(ρ)

p(ρ)d
(12.1)

The amount wd = wd(ρ) is the real wage, in terms of the basket d. The real wage depends
on the the profit factor ρ, because the prices depend on ρ, but it is independent of the
choice of numeraire. If the profit factor is ρ, a worker can buy wd(ρ) units of the basket d
with his wage. In particular, if d is chosen as numéraire, so that p(ρ)d = 1, then the
nominal wage is equal to the real wage, wd(ρ) = p0(ρ).

The function wd associates a wage wd(ρ) with every profit factor ρ. The graph of this
function is the wage - profit curve for the basket d.

Th. 10.2 implies immediately:

Lemma 12.1. For every commodity bundle d, the real wage wd(ρ) is a strictly decreasing
function of the profit factor ρ.

Thus higher profit rates mean lower wages and vice versa. This feature may explain
the popularity of the Linear Model (as opposed to other models of General Equilibrium)
among left-wing economists.

Remark. The wage-profit curve relates a pure number (the profit rate resp. the profit
factor) with a “wage” whose numerical value makes sense only after a numeraire bundle d
has been chosen. Thus, for a given technology (a0, A) there are really infinitely many wage-
profit curves, one for each possible numeraire d. All these curves are downward-sloping,
but the concrete shape depends on the choice of numeraire. To speak of the wage-profit
curve, without specifying the numeraire, as is sometimes done in the literature, is thus
somewhat dubious from a conceptual point of view.
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Example 12.2. Wage-Profit curves.

Recall from (11.1) that in the 3-good economy of Example 11.1, the prices were given by

p1(ρ) = ρp0

p2(ρ) = ρp05ρ

p3(ρ) = ρp0(5 + ρ2)


Therefore the real wage in terms of commodity i (i.e. in terms of the bundle ei) is given
by wi(ρ) := wei(ρ) = p0/pi(ρ). This is the number of units of good i a worker can buy
with his wage.

w1(ρ) = 1/ρ

w2(ρ) = 1/(5ρ2)

w3(ρ) = 1/(5ρ+ ρ3)


Figure 7 shows the wage-profit curves for the bundles e1 = (1, 0, 0)T and e2 = (0, 1, 0)T

1 2 3 4 5
ρ

0.5

1.0

1.5

2.0

wd(ρ)

wd1
(ρ) = 1

ρ

wd2
(ρ) = 1

5ρ2

Figure 7: The commodity bundle di represents “one unit of good i, for i = 1, 2. The
dashed line is the wage in terms of good 1, and the solid line is the wage in terms of
good 2, for varying values of the profit factor ρ.
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Stationary State with Positive Profits.

Consider now a quantity system in a stationary state as in Sec. 3:

x = Ax+ d, L(d) = a0x (12.2)

where d is the net output, x is the gross output, y = Ax is the vector of material inputs,
and L(d) = a0x is the required amount of labor, all per period.

We saw in Sec. 3 that the value of the net output is equal to the sum of all wages if the
rate of profit is zero (Th. 3.1). Assume now that the rate of profit r is positive, so that
prices are given by the price equation

p = ρ(p0a0 + pA) (12.3)

where ρ = 1 + r is the profit factor, and p0 > 0 can be chosen arbitrarily.

If we multiply the quantity equation (12.2) by p (from the left), we get

px = pAx+ pd (12.4)

and if we multiply the price equation (12.3) by x (from the right), we get (using ρ = 1+r)

px = p0a0x+ pAx+ r(p0a0x+ pAx) (12.5)

Here px is the value of the gross output, p0a0x = p0L(d) = W is the sum of all wages (the
income of the workers), pAx is the total cost of the material inputs, and p0a0x + pAx is
the total investment of the capitalists, i.e. the money advanced at the beginning of the
period to pay the wages and buy the means of production. At the end of the production
period the capitalists receive the total revenue px. They use it to replace the means of
production and advance the wages for the next period. This costs p0a0x+pAx and leaves
px − (p0a0x + pAx) = r(p0a0x + pAx) = Π as profit (“r percent of total investment”).
This is the income of the capitalists. The equations 12.4 and 12.5 imply

pd = p0a0x+ r(p0a0x+ pAx) = W + Π (12.6)

The value pd of the net output (the national income) is equal to the sum of wages and
profits. If r > 0, then Π > 0, hence p0a0x < pd, i.e. the workers can no longer buy the
entire net output, but only a part of it, and the rest goes to the capitalists. Assuming for
the moment that both workers and capitalists spend their income on consumption, the
net output is split in two parts:

d = da + ds (12.7)

where da is the consumption of the workers, and ds is the consumption of the capitalists.
Both satisfy their respective budget constraints, i.e.

pda = W = p0a0x, and pds = Π = r(p0a0x+ pAx)

so that pd = p0a0x+ r(p0a0x+ pAx), as it must be.

Equation (12.6) implies immediately:
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Theorem 12.3. If the profit rate r is positive, then the value of the net output d = x−Ax
exceeds the sum of all wages:

pd > p0L, where L = a0x

The aggregate income of the workers is no longer sufficient to buy the entire net output.
This should be compared to Th. 3.1.

Remark. If the profit rate r is negative, the revenue px is not enough to replace the
means of production of production Ax and pay the wages p0a0x. The consumption of the
workers during the period is more than the net output. A stationary state with constant
activity levels x as described by equation 12.2 is not possible. It is possible, though, to
have a shrinking economy, in which the output and the number of workers shrink from
one period to the next.
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13 Growth

So far we have only considered stationary states. Let us now look at economic growth. As
explained in Sec. 1, there is a common period of production (the “year”) for all processes.
Inputs (material inputs and labor) are invested in the beginning or during one period.
The corresponding output (the “harvest”) becomes available only at the end of the period,
and can then be used for consumption or investment in the next period.

In a stationary state the quantities consumed and produced of all commodities are the
same in all periods, so that there is no need to indicate in the notation to which period
a certain amount of a good belongs.

But when the quantities produced and consumed may vary over time, it is necessary to
recognize that ’a ton of wheat this year’ is not the same as ’a ton of wheat next year’,
or, more generally, that goods available in different periods are different economic goods,
even when they are physically identical.

To deal with such situations, we introduce the following notation.

There is an infinite sequence of periods, indexed t = 0, 1, 2, 3, . . . . The technology (a0, A)
is the same in all periods, but the production plan may vary. We denote by x(t) = 0 the
vector of goods available at the start of period t. For t = 0, this is an initial endowment,
for t = 1 it is the gross output produced in the previous period. It can be used in period t
for consumption or investment, i.e. we have

x(t) = y(t) + d(t) (t = 0, 1, 2, . . . ) (13.1)

where y(t) = 0 is the total amount of goods invested as inputs for production, and d(t) = 0
is the total consumption (of capitalists and workers) in period t. These are column vectors

x(t) =


x1(t)

x2(t)

. . .

xn(t)

 , y(t) =


y1(t)

y2(t)

. . .

yn(t)

 , d(t) =


d1(t)

d2(t)

. . .

dn(t)

 (13.2)

where xi(t) is the total amount of good i available at the start of period t, for i ∈ N .
Similarly yi(t) and d(t) represent the total amounts of good i contained in y(t) resp. d(t).

The development of the economy over time is described by a sequence of production plans

x̃ = [x(0), x(1), x(2), . . . ], with x(t) = 0 for t = 0, 1, 2, . . .

Such a sequence is a feasible path (or feasible development) if

x(t) = Ax(t+ 1) ∀t = 0 (13.3)
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i.e. if the output produced in any period is enough to supply the inputs needed in the
following period (otherwise production could not continue).

For a feasible development x̃ = (xi(t))t=0,1,2,... we define

y(t) = Ax(t+ 1), d(t) = x(t)− Ax(t+ 1) (t = 0) (13.4)

and obtain from (13.1)

x(t) = Ax(t+ 1) + d(t) (t = 0, 1, 2, . . . ) (13.5)

This is the General Quantity Equation. The required number of workers in period t is the
total amount of labor needed to produce x(t+ 1):

L(t) = a0x(t+ 1) (13.6)

We will not study feasible paths in general, but focus on the following special case.

Definition 5. A feasible path x̃ = (x(t))t=0,1,... is a balanced growth path with growth
factor γ > 0 (growth rate g = γ − 1) if all quantities increase by the factor γ from one
period to the next, i.e. if

x(t+ 1) = γx(t) (t = 0, 1, 2, . . . ) (13.7)

For example, if the growth rate g is two percent (g = 0.02), then the growth factor is
γ = 1 + g = 1.02, and all sectors grow at the rate of 2 percent per annum. In a balanced
growth path the only thing that changes from one period to the next is the scale of
production, but the technology and the structure of the economy (the relative sizes of
the various sectors) remain the same. Every period is like every other, except possibly
for a change of scale. We say that the economy is in a semi-stationary state, and refer to
balanced growth also as semi-stationary growth. The special case of no growth (g = 0 or
γ = 1) corresponds to the ’stationary state’ introduced in Sec. 3.

First we note that if x(t) grows with factor γ, then so do all the other quantities,
y(t), d(t), L(t). Indeed, suppose that x̃ = (x(t) is a balanced growth path with growth
factor γ > 0. Equation (13.7) implies, for all t = 0, 1, 2, . . . :

x(t) = γx(t− 1) = γ2x(t− 2) = γ3x(t− 3) = · · · = γtx(0)

Therefore
y(t) = Ax(t+ 1) = γtAx(1) = γty(0)

and
d(t) = x(t)− y(t) = γt[x(0)− y(0)] = γtd(0)
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and also
L(t) = a0x(t+ 1) = γta0x(1) = γtL(0)

Define x = x(0), y = y(0), d = d(0), L = L(0). Then

x(t) = γtx, y(t) = γty, d(t) = γtd, L(t) = γtL (t = 0, 1, 2, . . . ) (13.8)

The quantity equation (13.5) now takes the form

γtx = γt+1Ax+ γtd

or, dividing by γt

x = γAx+ d (13.9)

This is the Growth Equation. It is the same as x(0) = Ax(1) + d(0). This is the quantity
equation (13.5) with t = 0, for the path x(t) = γtx. Also, since L(t) = a0x(t+ 1)

L = γa0x (13.10)

The growth equation implies

Lemma 13.1. A sequence x̃ = (x(t))t=0,1,2,... is a balanced growth path with growth fac-
tor γ > 0 if and only if it is of the form x(t) = γtx, where x = 0 satisfies the growth
equation x = γAx+ d, for some nonnegative vector d = 0.

Proof of Lemma 13.1.

The “only if” part follows from the analysis above.

Conversely, if x = 0 and x = γAx + d for some d = 0, then x(t) = (γtx) is balanced by
definition, and feasible because x(t)− Ax(t+ 1) = γt(x− γAx) = γtd = 0 for all t.

�

Therefore γ is a possible growth factor of the technology (a0, A), given d, if and only if
equation (13.9) has a nonnegative solution x = 0. The vector d specifies the structure of
exogenous demand (consumption) in all periods, because d(t) = γtd is proportional to d
for all t. Let us first consider growth factors which are feasible for arbitrary nonnegative d.

Theorem 13.2. Let (a0, A) be a technology with expansion factor α̂(A). Then a num-
ber γ > 0 is a possible growth factor of this technology, for all d = 0, if and only if
0 < γ < α̂(A).

Proof of Th. 13.2. The growth equation can be written (I − γA)x = d, with solution

x = (I − γA)−1d (13.11)

This solution exists and is nonnegative for arbitrary d if and only if the matrix I − γA
is nonnegatively invertible, i.e. (by Th.5.2) if and only if the matrix γA is productive.
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By Th. 8.1 this is the case if and only if γ < α̂(A). The theorem now follows from
Lemma 13.1.

�

The expansion factor α̂(A) of the technology is an upper bound for the possible growth
factors of the economy. Note that this is the same as the upper bound for the possible
profit factors in Th. 9.2.

Profits and Growth

Let (a0, A) be a technology with expansion factor α∗ = α̂(A). Let γ be a growth factor,and
ρ a profit factor, with 0 < γ, ρ < α∗. Which values of γ and ρ are compatible with each
other in a semi-stationary state?

Let x and d be a semipositive solution of the growth equation

x = γAx+ d (13.12)

and consider the balanced growth path x̃ = (x(t)) = (γtx). Then d(t) = γtd is total
consumption in period t, and x(t) = Ax(t+ 1) + d(t) for all t = 0, 1, 2, . . . . As in Sec. 12,
let us split d in two parts, d = da + ds, where da is the workers’ and ds is the capitalists’
consumption, and assume that these terms also grow with factor γ, so that da(t) = γtda

[resp. ds(t) = γtds] is the workers’ [resp. the capitalists’] consumption in period t. The
growth equation takes the form

x = γAx+ da + ds (13.13)

The prices (p0, p) are the same in each period and are given by the price equation

p = ρ(p0a0 + pA) (13.14)

We assume that labor is indispensable for production, so that all prices are positive.
Equations (13.13) and (13.14) imply

px = γpAx+ pda + pds (13.15)

and
px = ρ(p0a0x+ pAx) (13.16)

so that
γpAx+ pda + pds = ρ(p0a0x+ pAx) (13.17)

If we want growth, then only a part of current income can be used for consumption, and
the other part must be saved to finance growth (to buy the additional inputs needed).
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Assume first that workers do not save, and capitalists do not consume. This means that
the workers’ consumption is equal to total consumption, da = d, and ds = 0, i.e. the
capitalists save all their profits to finance growth.

The workers’ budget constraint is p0L(t) = p0a0x(t + 1) = pda(t) = pd(t), for all t, or,
since ds = 0,

γp0a0x = pd = pda + pds

By (13.17) this implies γpAx+ γp0a0x = ρ(p0a0x+ pAx), hence

γ = ρ ⇔ g = r

If the capitalists spend all their profits for accumulation, then the growth rate g is equal
to the profit rate r.

Given r, this maximizes growth, but it results in a semi-stationary state in which the
capitalists never get to consume anything. If we think of the capitalists as individuals
who derive also utility from consumption, like the workers, this scenario is not plausible.

Let us assume therefore that, along our semistationary path, the total consumption con-
tains also some consumption of the capitalists, i.e. ds 	 0. Workers still spend their entire
income on consumption, subject to the budget constraint p0L(t) = pda(t) or γp0a0x = pda.

Equation (13.17) Then takes the form

γpAx+ γp0a0x+ pds = ρ(p0a0x+ pAx)

This implies
pds = (ρ− γ)(p0a0x+ pAx))

If ds 	 0, this implies
γ < ρ

More precisely, in period t, the firms have invested

z(t) = p0L(t) + py(t) = p0a0x(t+ 1)) + pAx(t+ 1)

dollars. This investment results in the total output x(t+ 1) at the end of period t, giving
the firms the revenue px(t+ 1). Using (13.16) this revenue is equal to

px(t+ 1) = (1 + r)z(t) = z(t) + r.z(t) = z(t) + g.z(t) + (r − g)z(t)

dollars. This money is used in period t+1 as follows: The first term z(t) is used to replace
the inputs y(t) and re-hire the workers L(t) who were employed in period t. The second
term r.z(t) is the profit. It is split in two parts: the amount g.z(t) is saved and used to
finance growth: it is invested to buy additional inputs gy(t) and hire additional workers
gL(t). This gives y(t + 1) = (1 + g)y(t) and labor L(t + 1) = (1 + g)L(t). The second
part of the profit, (r− g).z(t), is used for the capitalists consumption ds(t+ t). It is easy
to check that the quantity equation and all budget constraints are satisfied along such a
balanced path. Summing up, we have proved:
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Theorem 13.3. Consider a balanced growth path with growth factor γ and profit factor ρ.
The rate of profit is an upper bound for the rate of growth. The two are equal if and only
if the capitalists spend their entire profits on accumulation, otherwise the growth rate is
smaller.

Remark. In this scenario, workers do not save at all, and the capitalists save a constant
fraction s of their income (of profits), namely

s =
g.z(t)

r.z(t)
=
g

r

This is in line with the so-called classical savings assumption: “ Under this assumption all
income accruing to labour is spent immediately on consumption goods - the only source
of saving is profits. And ... the amount of profit saved is a constant fraction of the total”
(Bliss (1975), p. 123).

In our exposition, we have started with a given growth rate and profit rate, and adjusted
the savings rate s accordingly. One can also take the capitalists’ savings rate and the
rate of profit as given, and derive the growth rate g = s.r from this. Obviously g < r for
s < 1, and g = r for s = 1.

One can also show that such a balanced growth path is a General Equilibrium in the sense
of Arrow-Debreu, for suitably specified endowments and preferences. In this equilibrium,
the capitalists own the initial endowment x(0) and their rate of time preference is such
that a semi-stationary consumption path is optimal. We do not pursue this matter here.

Autarkic Subsystems.

Remark. Higher growth factors may be possible for certain subgroups of sectors. A
matrix A is decomposable if it there exists a nonempty subgroup J $ N of sectors which
needs no inputs from the other sectors:

aij = 0 for i 6∈ J , j ∈ J (13.18)

Such a set J is called autarkic. An autarkic group of sectors forms a subeconomy which
can operate independently of the other sectors. In this case, only the sectors in J are
active, and all other sectors are inactive (xi = 0 and hence also di = 0 for i 6∈ J). Such a
subeconomy cannot produce a positive output of all goods, but it can have higher growth
factors than the whole economy, see Example 13.4.

Considering autarkic subeconomies makes sense mainly if one wants to maximize growth
per se, given the technology, in a purely technocratic manner, without regard for demand
conditions, as in the von Neumann model. But it is problematic if one also considers
demand. After all, the restriction to a subset of sectors makes sense only if nobody wants
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to consume the goods produced by the other sectors. But if this is so, why include these
other sectors in the description of the economy in the first place?

One can study such cases by applying our theory to the various autarkic subgroups,
considered as independent economies, but we will not pursue this here. We only indicate
the possibility by the following simple example.

Example 13.4. An autarkic subset with growth factor higher than α̂(A).

In this example with two goods, sector 1 needs no input from the other sector, so that
the J = {1} is an autarkic subset. We will see that sector 1 alone can have higher growth
rates than α̂(A), but only if sector 2 is inactive.

Let (a0, A) be given by

a0 = (1, 1), A =

(
2/10 1/10

0 3/10

)

The characteristic equation is det(λI − A) = (λ − 2/10)(λ − 3/10) = 0 with solutions
λ1 = 2/10 and λ2 = 3/10. The dominant eigenvalue is λ∗ = 3/10 and the expansion
factor is α∗ = 1/λ∗ = 10/3. Therefore growth with factor γ is possible for all γ < 10/3.

For example, if γ = 2, the matrix I − γA is nonnegatively invertible:

(I − γA)−1 =

(
5/3 5/6

0 5/2

)

and the quantity equation x = γ(Ax+ d) has the nonnegative solution x = (I − γA)−1γd
for every d = 0. If we choose d = (4, 1)T, this gives x = (15, 5)T. We can check that the
growth equation x = 2.(Ax+ d) is satisfied by observing that

Ax+ d =

(
2/10 1/10

0 3/10

)
.

(
15

5

)
+

(
4

1

)
=

(
15/2

5/2

)
=

1

2

(
15

5

)
=

1

γ
x

If we put x(t) = 2tx for t = 0, 1, 2, . . . , we obtain a balanced growth path with d(t) = 2td,
so that both goods are consumed in positive amounts in all periods.

On the other hand, when γ > α∗ = 10/3, the matrix I − γA is no longer nonnegatively
invertible, and the growth equation has no nonnegative solution in general. But it may
have a solution if some sectors are inactive. Along such a growth path, not all goods can
be consumed in positive amounts.

To see this, consider the growth equation (13.9) for our example:

x1 = γ(.2x1 + .1x2 + d1)

x2 = γ(0.3x2 + d2)
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For γ > α∗ = 10/3, the only nonnegative solution of the second equation is x2 = 0, d2 = 0.
Therefore sector 2 must be inactive. For sector 1 this implies

x1 = γ(.2x1 + d1) ⇔ x1 =
1

1− .2γ
d1

This has a nonnegative solution for positive d1 if and only if γ < 5. For example, we can
choose γ = 4, d = (1, 0)T, x = (20, 0)T. This satisfies the growth equation x = 4.(Ax+ d)
because

Ax+ d =

(
2/10 1/10

0 3/10

)
.

(
20

0

)
+

(
1

0

)
=

(
5

0

)
=

1

4

(
20

0

)
=

1

γ
x

The autarkic subsystem J = {1} consisting only of sector 1 grows with factor γ = 4 > α∗,
but the rest of the economy is inactive.
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Lecture 5 MARX

In this Lecture we explain some basic concepts of Marxist Economic Theory in the frame-
work of our Linear Model of Production. For a justification of this approach and references
to Marx, see Morishima (1973) and Morishima (1974).

We assume here that the technology (a0, A) is productive and all sectors need labor
directly, i.e. a0 > 0. This ensures that all labor values are positive and concepts like the
organic composition of capital (see below) are always well-defined. From the Marxian
point of view, this assumption is certainly no restriction.

14 The Rate of Exploitation

Consider a quantity system describing a stationary state (“simple reproduction” in Marx)
as in Sec. 3:

x = Ax+ d, L = L(d) = a0x

Here x = (I − A)−1d is the gross output vector, y = Ax is the vector of inputs, d is the
net output vector, and L = L(d) = a0x = a0(I − A)−1d is the required amount of labor.
We assume that one worker supplies one unit of labor, so that L(d) is the “number of
workers” needed to produce d. Recall that L(d) = vd is the labor value of the commodity
bundle d, where v = a0(I − A)−1 is the solution of the value equation v = a0 + vA.

Assume that the workers consume only a part da of the total net output d, leaving the
surplus product ds = d− da for the capitalists. This gives a quantity system of the form:

x = Ax+ da + ds (14.1)

where d = da+ds is the net output vector, da is the aggregate consumption of the workers,
and ds is the surplus product (which goes to the capitalists). We have seen in Sec. 12
that such a situation can arise in a stationary state when the rate of profit is positive, but
here we simply consider the quantity system 14.1, without production prices. We assume
that both da and ds are non-zero. This ensures that the various concepts introduced
below (rate of exploitation, organic composition of capital, etc.) are always well-defined.
Consideration of the limiting cases da = 0 or ds = 0 is not difficult, but left to the
interested reader.

Following Marx, we can think of total labor L = a0x = vd = vda + vds as being split
in two parts: L = La + Ls, where La = vda is the necessary labor, and Ls = vds is
the surplus labor. The necessary labor La is the amount of labor needed to produce the
workers’ consumption da, i.e. the amount of time the workers work for themselves, or the
amount of paid labor. The surplus labor Ls is the amount of time the workers work for
the capitalists, or the amount of unpaid labor.
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Marx defined the rate of exploitation ε (“Mehrwertrate”) as the ratio of surplus labor to
necessary labor:

ε =
Ls

La
=
vds

vda
(14.2)

It is also possible to define the rate of exploitation in per capita terms. Total labor is
L = vd and the per capita consumption c of the workers is given by c = da 1

L
, so that

da = cL = ca0x, ds = d− da (14.3)

This implies La = vda = vcL and Ls = vds = vd− vda = L− vcL = (1− vc)L. We write
v0 = vc for the labor value of a worker’s consumption. This is the wage in terms of labor
values. Note that v0 > 0 because v > 0 and c = da 1

L
	 0. Thus (14.2) can also be written

ε =
Ls

La
=

1− vc
vc

=
1− v0
v0

(14.4)

To understand this ’per capita’ characterization of the rate of exploitation note that,
by definition, a single worker supplies one unit of labor, and consumes the commodity
bundle c. The labor value v0 = vc is the amount of time needed to produce c. In other
words, v0 = vc is the amount of labor needed to (re-)produce one unit of labor power (the
“labor value of labor”). If vc is less than one unit of labor, the worker works more than
would be necessary to produce his own means of subsistence. Thus vc is the necessary
labor and the rest 1 − vc is the surplus labor per worker. Workers are exploited if ε > 0
(or, equivalently Ls > 0 or vc < 1).

In the classical literature, the per capita consumption c is is usually taken as given and
interpreted as some kind of subsistence consumption. The bundle c contains the goods a
worker needs to survive and be able to work. The bare biological needs of a worker cer-
tainly provide a lower bound for c, but it may also be the case that c reflects some socially
acceptable minimum standard of living. Whatever the case may be, we do not discuss
here what determines c, but will simply explore the implications of different possible per
capita consumptions.

Note on terminology. The classical economists use the word social product for the excess
of outputs over inputs, i.e. for the net product d = x − Ax. The workers’ consump-
tion da = ca0x is also called necessary consumption (reflecting the idea of a ’subsistence’
consumption). What is left of the social product after subtracting the necessary consump-
tion is the surplus product

ds = x− Ax− ca0x = x− (Ax+ ca0x) (14.5)

The surplus product is also known as the “classical net product” or “produit net”. The
labor value vds of the surplus product is the surplus value (“Mehrwert”). The social
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product is divided between the classes: the necessary consumption serves to feed the
workers, and the surplus is at the disposal of the capitalists. Of course c must be such
that a surplus remains after feeding the workers, i.e. c must not be too large. In Sec. 15
we show that a positive surplus exists if and only if vc < 1. In the following discussion,
we will always assume that this is the case.

Remark. The Marxian concept of “exploitation” as defined here means simply that the
workers do not consume the entire net output, i.e. the economy produces a surplus over
and above the workers’ immediate consumption needs. This surplus can be used for
the capitalists’ personal consumption of luxury goods, or it can be used productively as
investment to achieve economic growth (to feed a growing population, for example). Thus
whether exploitation in the sense of (14.2) is a good or a bad thing, may depend on what
the surplus is used for.

Exploitation and Profits.

What is the relation between the rate of exploitation ε and the rate of profits r? Denote
by c = 0 the per capita consumption of the workers.

By definition, ε = (1− vc)/vc. Note that the labor value vc of c is positive because v > 0
by indispensability of labor.

Let ρ = 1 + r be a profit factor with 0 < ρ < α̂(A), and let (p0, p) be associated positive
prices. These prices are unique up to multiplication by a scalar and satisfy the price
equation

p = ρ[p0a0 + pA] (14.6)

Given these prices (or given the profit rate r), a bundle c = 0 is a feasible per capita
consumption for the workers if it satisfies the budget constraint pc = p0.

In principle, both ε and r can be positive or negative. The following analysis covers both
cases, but the economically relevant case is probably the one where these numbers are
positive.

Theorem 14.1. [Fundamental Marxian Theorem 1] Let (p0, p) be production prices
associated with the profit factor ρ = 1 + r, where 0 < ρ < α̂(A), and let c 	 0 be a feasible
per capita consumption for these prices, pc = p0. Let ε = (1 − vc)/vc be the rate of
exploitation. Then

(a) if Ac = 0 (c is produced by labor alone), then ε = r

(b) if Ac 	 0 (c requires some material inputs), then

ε > r for r > 0

ε = r for r = 0

ε < r for r < 0
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In particular, the rate of profit is positive if and only if the rate of exploitation is positive.
This observation was called the “Fundamental Marxian Theorem” by Morishima: “This
result ... may be claimed as the Fundamental Marxian Theorem, because it asserts that
the exploitation of labourers by capitalists is necessary and sufficient for the existence of a
price-wage set yielding positive profits or, in other words, for the possibility of conserving
the capitalist economy (Morishima (1973), p. 53).

Proof of Th. 14.1. W.l.o.g. let p0 = 1. Then pc = p0 = 1 and the price equation (14.6)
implies

1 = pc = ρa0c+ ρpAc

Similarly, the value equation v = a0 + vA implies

ρvc = ρa0c+ ρvAc

Therefore
1− ρvc = ρ(p− v)Ac

By definition, 1 = (1 + ε)vc. Therefore

(1 + ε)vc− (1 + r)vc = (ε− r)vc = ρ(p− v)Ac (∗)

If Ac = 0 this implies r = ε, independently of r. This proves assertion (a).

If Ac 	 0, recall that p = v for r = 0 by (7.10) (since p0 = 1). Therefore, by Th. 10.2,
p − v > 0 for r > 0, and p − v < 0 for r < 0. Assertion (b) then follows immediately
from (∗).

�
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15 The Augmented Input Matrix

Consider the quantity equation

x = Ax+ d, L = a0x (15.1)

and denote by c the per capita consumption of the workers. Then the total consumption
of the workers is da = c.L = ca0x, and ds = d − da is the surplus. Assume that ds > 0.
This implies

x = Ax+ da + ds = Ax+ ca0x+ ds = (A+ ca0)x+ ds (15.2)

The matrix A + ca0 is the augmented input coefficient matrix. Its (ij)-th element is
aij + cia0j. This is the amount of good i needed to produce one unit of good j, including
the workers’ consumption. Indeed, to produce one unit of good j, we need the direct
input aij of good i, and a0j units of labor. One unit of labor (one worker) consumes ci
units of good i, so that a0j workers consume cia0j units of good i. Therefore aij + cia0j is
the total amount of good i needed to produce one unit of good j, including the workers’
consumption of good i. It is as if the capitalists, instead of paying the workers a money
wage, gave them their consumption goods directly (like food for the cattle).

The augmented matrix A+ca0 can be considered as another technology matrix, including
the food for the workers. The economy can produce a positive surplus ds > 0 over and
above the workers’ subsistence needs, if and only if the equation

x = (A+ ca0)x+ ds

has a nonnegative solution x 	 0. This is the case if and only if the augmented matrix is
productive, i.e. the inverse [I − (A + ca0)]

−1 exists and is nonnegative. In this case, the
solution is

x = [I − (A+ ca0)]
−1ds

This is analogous to equation (3.7) in Sec. 3.

The following Lemma says that the augmented matrix is productive if and only if the
labor value vc of the workers’ per capita consumption c is less than one, i.e. if and only
if the rate of exploitation ε = (1− vc)/vc is positive.

Lemma 15.1. Assume that A is productive. Then A + ca0 is productive if and only if
vc < 1.

Proof of Lemma 15.1.

Let vc < 1. Then there is c′ > c with vc′ < 1. Let x = 0 such that x = Ax+c′. This implies
V (c′) = a0x = vc′ < 1. Therefore x = Ax + c′ > Ax + c′a0x > Ax + ca0x = (A + ca0)x,
i.e. A+ ca0 is productive.
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Conversely, assume that A + ca0 is productive. Then there is x = 0 such that x =
(A + ca0)x + d = Ax + ca0x + d with d > 0, i.e. a0x = v(ca0x + d) = vca0x + vd with
vd > 0. This implies vc < 1. �

By Def. 1 and Cor. 5.4 the augmented matrix A + ca0 is productive if and only if the
following two equivalent conditions are satisfied:

(a) There exists x 	 0 such that x > (A+ ca0)x

(b) There exists p 	 0 such that p > p(A+ ca0)

Condition (a) means that there is a growth factor γ = 1+g > 1 such that x > γ(A+ca0)x,
i.e. the output is more than γ-times the input (including the workers’ consumption). The
economy can grow with a positive growth rate g, even if it provides consumption c for the
workers.

Condition (b) means that there is a profit factor ρ = 1 + r > 1 such that p > ρp(A+ ca0),
i.e. the value of the output is more than ρ-times the costs (including wages). The economy
can sustain a positive profit rate r, even if it pays a wage that allows the workers to
consume c.

By Lemma 15.1 both conditions are satisfied if and only if vc < 1. Therefore exploitation
is necessary and sufficient not only for positive profits, but also for positive growth. This
gives the following “generalized” Marxian Theorem:

Theorem 15.2. [Generalized Fundamental Marxian Theorem]

Both positive growth and positive profits are possible if and only if the rate of exploitation
is positive.
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16 Constant and Variable Capital, etc.

We proceed to define some further Marxian concepts.

Following Marx, we use labor values, not production prices, to evaluate all goods. Com-
modity prices are given by their labor values, v = (v1, . . . , vn). The wage in terms of labor
values is v0 = vc, i.e. it is the labor value of a worker’s consumption.

Nota bene. The system (v0, v) = (v0, v1, . . . , vn) with v0 < 1 is NOT a production price
system in the sense of Th. 9.2! There we have seen (Cor. 9.3) that commodity prices coin-
cide with labor values, p = v if the profit rate is zero and labor is chosen as the numéraire
(p0 = 1). This gives the production price system (p0, p) = (1, v) = (1, v1, . . . , vn), where
the wage is equal to one, the rate of profit is the same (zero) in all sectors, and workers
are not exploited. In the present context, commodity prices equal labor values, but the
wage (in terms of labor value) is less than one. If we use the Marxian “price system”
(v0, v1, . . . vn), with v0 < 1, then workers are exploited, all sectors make positive profits,
and the rate of profit is not uniform, but different in different sectors (see below).

Formula (14.4) implies
v0 + εv0 = v0(1 + ε) = 1 (16.1)

Using this, the labor value equation (7.2) can be written

v = vA+ a0 = vA+ v0a0 + εv0a0 (16.2)

or, componentwise
vj = vaj + v0a0j + εv0a0j (16.3)

The quantity Kj = vaj = v1a1j + v2a2j + . . . vnanj is called the constant capital (per unit
of output) in sector j. It is the cost (in terms of labor values) of the physical inputs.

The quantity Vj = Vj(c) = v0a0j is called the variable capital (per unit of output) in
sector j. It represents the wage cost (again in terms of labor values). Note that Vj > 0
for all j because v > 0 and a0 > 0 by assumption.

The quantity Sj = Sj(c) = εVj = εv0a0j is the surplus value (per unit of output) in
sector j. By (16.3) the value of good j is the sum of these quantities:

vj = Kj + Vj + Sj (16.4)

We write K = (K1, . . . Kn) = vA for the vector of constant capitals, V = V (c) =
(V1, . . . Vn) = v0a0 for the vector of variable capitals, and S = S(c) = (S1, . . . Sn) = εV =
εv0a0 for the vector of surplus values, so that V + S = a0 by (16.1), and

v = K + V + S (16.5)
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By definition, the rate of exploitation ε = Sj/Vj is the same in all sectors.

Following Marx, we define the organic composition of capital in sector j as the ratio of
constant to variable capital, i.e. by qj = Kj/Vj.

We also define the profit rate in sector j by πj = Sj/(Kj + Vj).

The profit (per unit of output) in sector j is revenue minus cost, i.e. vj − (Kj + Vj) = Sj.
The profit rate πj is this profit divided by the cost. Equivalently, we can write

vj = (1 + πj)[(v1a1j + . . . vnanj) + v0a0j] ∀j (16.6)

The “Marxian” profit rate πj is defined in terms of labor values, and should not be confused
with the “normal” profit rate r, which is defined in terms of production prices. When
there is no exploitation and workers consume the entire net output (v0 = 1 or equivalently
ds = 0), all profit rates are the same, namely πj = 0 for all j, and (16.6) coincides with the
value equation (7.2). But when there is exploitation (v0 < 1), as we assume in this section,
the profit rates πj defined by (16.6) will be positive and, in general, different for different
sectors (see Sec. 17). We have seen in the previous section that equalization of profit
rates across all sectors requires a different price system, namely the production prices of
Theorem 9.2, not the labor values used in (16.6). The relationship between production
prices and labor values (the so-called transformation problem) has caused some confusion
in the Marxist literature. See also the remarks at the end of Sec. 10.

Remark. We have defined constant and variable capital and surplus value per unit of
output. Marx originally defined these concepts with reference to actual output, i.e. he
used Kjxj, Vjxj, Sjxj instead of Kj, Vj, Sj. This gives the same organic compositions
and profit rates, of course.

We can also define aggregate versions of these concepts: Kx =
∑

jKjxj is aggregate
constant capital, V x =

∑
j Vjxj is aggregate variable capital, and Sx = εV x is the

aggregate surplus value (Mehrwert). From (16.5) we get vx = Kx + V x + Sx for the
value of the gross output. Note also that Kx = vAx, V x = La = vda, and Sx = Ls = vds.

Clearly, the rate of exploitation is given by ε = Sx/V x. The aggregate (or average)
organic composition of capital is the ratio q̄(x) = Kx/V x, and the aggregate (or average)
rate of profit is the ratio π̄(x) = Sx/(Kx + V x). Unlike the sectoral quantities qj, πj,
which depend only on the technology (a0, A) and the wage v0, the aggregate quantities
q̄(x), π̄ depend also on the activity vector x.
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Remark. Given the per-capita consumption c of the workers, the following quantities
are determined:

• the wage v0 by v0 = vc

• the rate of exploitation ε by ε = (1− v0)/v0

• the variable capital Vj by Vj = v0a0j for ∀j

• the organic composition qj by qj = vaj/(v0a0j) for ∀j

• the (Marxian) profit rate πj by vj = (1 + πj)[va
j + v0aoj] for ∀j

Clearly, any other consumption c′ with vc′ = vc gives the same values for v0, ε, Vj, qj, πj.

Conversely, any one of the quantities v0, ε, Vj, qj, πj (any j) determines all the others
uniquely, by the formulae given above. All these numbers contain the same information.

Remark on Terminology. The distinction between “constant” and “variable” capital refers
to the different roles played by material inputs and labor in the creation of “value” in
Marxist theory. When the inputs a0j, a1j, . . . anj are transformed into one unit of good j
in the process of production, the (embodied) labor value of the output vj = a0j + v1a1j +
. . . vnanj = a0j +Kj (recall equation (16.3)) is larger than the value of the inputs Vj +Kj

(the sum of constant and variable capital), because Vj = v0a0j < a0j if workers are
exploited (v0 < 1). The interpretation is that the value contained in the material inputs,
namely the constant capital Kj = v1a1j + · · · + vnanj, is simply passed on to the output
without change (remaining “constant”), but the value of the labor input, namely the
variable capital Vj = v0a0, increases in the process of production (is “variable”) and
contributes more than Vj, namely a0j, to the value of the output. Labor (and only labor)
creates value. Note also that this Marxian terminology has nothing to do with the common
distinction between “fixed” and “circulating” capital. Fixed capital refers to means of
production that last for several periods, like buildings and machinery. Circulating capital
refers to means of production that are used up in one period. In our model, there is only
circulating capital. To take proper account of fixed capital, one would have to introduce
joint production.
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17 An Extended Example

The following example illustrates the concepts introduced in the preceding sections.

Example 17.1.

Let (a0, A) be the already familiar technology from examples 4.1 and 10.3:

a0 = (a01, a02) = (6, 6), A =

(
a11 a12

a21 a22

)
=

1

10

(
1 4

3 2

)
Then

I − A =
1

10

(
9 −4

−3 8

)
and (I − A)−1 =

1

6

(
8 4

3 9

)
We know also from Ex. 8.5 that λ(A) = 1/2 and α∗ = α̂(A) = 2.

Labor values v = (v1, v2) are given by

v = a0(I − A)−1 = (6, 6).
1

6

(
8 4

3 9

)
= (11, 13)

Now consider the price equation

p = ρ[p0a0 + pA] (0 < ρ < α∗ = 2)

and assume ρ = 1 + r = 5/4, so that the profit rate is r = 1/4. Put p0 = 1. This gives
the prices (see Ex. 10.3)

p = (p1, p2) = ρa0[I − ρA]−1 = (18, 22)

Let c 	 0 be a per capita consumption bundle which satisfies the workers’ budget con-
straint pc = p0 = 1, e.g.

c =

(
c1

c2

)
=

(
1/18

0

)
, pc = (18, 22)

(
1/18

0

)
= 18× 1

18
+ 0 = 1 = p0

Then

ca0 =

(
c1

c2

)
(a01, a02) =

(
c1a01 c1a02

c2a01 c2a02

)
=

(
1/3 1/3

0 0

)
and the augmented matrix is

A+ ca0 =
1

10

(
1 4

3 2

)
+

(
1/3 1/3

0 0

)
=

1

30

(
13 22

9 6

)
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This gives

I − (A+ ca0) =
1

30

(
17 −22

−9 24

)
, det[I − (A+ ca0)] =

7

30

and the Leontief inverse of the augmented matrix

[I − (A+ ca0)]
−1 =

1

7

(
24 22

9 17

)

This is nonnegative, so the augmented matrix is productive.

Since pc = p0, the price equation implies

p = ρ[p0a0 + pA] = ρ[pca0 + pA] = ρp[A+ ca0]

i.e. the price vector is a left eigenvector of the augmented matrix (associated with the
eigenvalue 1/ρ = 4/5). We can check this:

ρp[A+ca0] =
5

4
(18, 22)

1

30

(
13 22

9 6

)
=

1

24
(18×13+22×9, 18×22+22×6) = (18, 22) = p

as it must be.

The labor value of the workers’ consumption and the rate of exploitation are

v0 = vc = (11, 13)

(
1/18

0

)
=

11

18
, ε =

1− vc
vc

=
7

11
= 0.6363

By Lemma 15.1 this shows again that the augmented matrix is productive, i.e. it can
produce a positive surplus ds (in fact, any positive surplus, given enough labor). For
example, choose

ds =

(
ds1

ds2

)
=

(
25

30

)
and consider the “augmented” quantity equation

x = (A+ ca0)x+ ds

The solution is

x = [I − (A+ ca0)]
−1ds =

1

7

(
24 22

9 17

)(
25

30

)
=

(
180

105

)
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and the required amount of labor (the number of workers) is (cf. Ex. 6.4)

L = a0x = (6, 6)

(
180

105

)
= 1710

The workers’ total consumption is

da = cL =

(
1/18

0

)
× 1710 =

(
95

0

)

The material inputs are

Ax =
1

10

(
1 4

3 2

)(
180

105

)
=

(
60

75

)

One can check that x = Ax+ da + ds:(
180

105

)
=

(
60

75

)
+

(
95

0

)
+

(
25

30

)

The total income of the workers is p0L = 1710. The value of their total consumption is
the same:

pda = (18, 22)

(
95

0

)
= 1710

The total investment of the capitalists consists of the cost pAx of the aggregate inputs
and the advanced wages p0L, i.e. it is

p(A+ ca0)x = pAx+ pca0x = pAx+ p0L = (18, 22)

(
60

75

)
+ 1710 = 2730 + 1710 = 4440

The total profit is r × this amount, i.e.

rp(A+ ca0)x =
1

4
× 4440 = 1110

This is equal to the value of the surplus ds:

pds = (18, 22)

(
25

30

)
= 1110
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Finally, necessary labor La and surplus labor Ls in this economy are

La = vda = (11, 13)

(
95

0

)
= 1045, Ls = vds = (11, 13)

(
25

30

)
= 665

with La + Ls = 1045 + 665 = 1710 = L. The rate of exploitation, as defined as the ratio
of these quantities, is

ε =
Ls

La
=

665

1045
=

7

11
= 0.6363

the same as (1− vc)/vc before.

Using the labor values, one can also compute various other “Marxian” quantities for this
example: the vector of constant capitals K = (K1, K2) = vA, the vector of variable
capitals V = (V1, V2) = v0a0, the vector of surpuses S = (S1, S2) = εV (all per capita),
the organic compositions qj = Kj/Vj and the “Marxian” profit rates πj = Sj/(Kj + Vj)
for the two sectors j = 1, 2.

This gives, with v0 = 11
18

, ε = 7
11

, and v = (v1, v2) = (11, 13):

K = (K1, K2) = vA = (11, 13)
1

10

(
1 4

3 2

)
=

1

10
(50, 70) = (5, 7)

V = (V1, V2) = v0a0 =
11

18
(6, 6) = (

11

3
,
11

3
)

S = (S1, S2) = εV =
7

11
(
11

3
,
11

3
) = (

7

3
,
7

3
)

One can check that K + V + S = v:

(5, 7) + (
11

3
,
11

3
) + (

7

3
,
7

3
) = (5, 7) + (6, 6) = (11, 13) = (v1, v2)

The organic compositions qj = Kj/Vj in the two sectors are

q1 =
K1

V1
=

5

11/3
=

15

11
= 1.3636, q2 =

K2

V2
=

7

11/3
=

21

11
= 1.9090

and the Marxian profit rates πj = Sj/(Kj + Vj) are

π1 =
S1

K1 + V1
=

7/3

5 + 11/3
=

7

26
= 0.2692, π2 =

S2

K2 + V2
=

7/3

7 + 11/3
=

7

32
= 0.2187

Note that the organic composition of capital is different in the two sectors, q1 6= q2. The
Marxian profit rates are also different, π1 6= π2. This may be compared with the uniform
profit rate r = 1/4 = 0.25 in the price system.
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The total amounts of constant capital, variable capital and surplus value in sector j are
given by the per capita amounts times xj, i.e. by KjxJ , Vjxj, and Sjxj; and the total
(labor) value of the output is vjxj.

This gives, with x = (x1, x2)
T = (180, 105)T:

v1x1 = 11×180 = 1980, K1x1 = 5×180 = 900, V1x1 =
11

3
×180 = 660, S1x1 =

7

3
×180 = 420

v2x2 = 13×105 = 1365, K2x2 = 7×105 = 735, V2x2 =
11

3
×105 = 385, S2x2 =

7

3
×105 = 245

One can check that

v1x1 = 1980 = 900 + 660 + 420 = K1x1 + V1x1 + S1x1

and
v2x2 = 1365 = 735 + 385 + 245 = K2x2 + V2x2 + S2x2

Clearly, these total values give the same organic compositions and profit rates as the per
capita values, e.g.

π2 =
S2x2

K2x2 + V2x2
=

245

735 + 385
=

245

1120
=

7× 35

32× 35
=

7

32

Finally, we compute the aggregate (economy - wide) values. The aggregegate constant
capital is

K̄ = Kx = K1x1 +K2x2 = 900 + 735 = 1635

It is the same as the value of all inputs

vAx = (11, 13)

(
60

75

)
= 660 + 975 = 1635

The aggregate variable capital is

V̄ = V x = V1x1 + V2x2 = 660 + 385 = 1045

This is the same as the necessary labor:

La = vda = vcL = v0L =
11

18
× 1710 = 1045

The aggregate surplus value (Mehrwert) is

S̄ = Sx = S1x1 + S2x2 = 420 + 245 = 665
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This is the same as the surplus labor:

Ls = vds = εLa =
7

11
× 1045 = 665

The total value of the output is the sum of these terms:

K̄+V̄+S̄ = 1635+1045+665 = 3345 = 1980+1365 = v1x1+v2x2 = vx = vAx+vd = vAx+vda+vds

The aggregate (or average) composition of capital is

q̄ =
K̄

V̄
=

165

1045
= 1.56459

and the average rate of profit is

π̄ =
S̄

K̄ + V̄
=

665

1635 + 1045
=

665

2680
= 0.2481

Unlike the sectoral quantities qj, πj these aggregate quantities depend on the activity
vector x.

The rate of profit and the rate of exploitation.

We have chosen the bundle c = (1/18, 0)T arbitrarily, under the constraint that pc = 1.
We could also choose another bundle c′ which satisfies pc′ = 1. The profit rate r = 1/4
and the prices p = (18, 22) would not be affected by this, but the rate of exploitation
will change. For example, if we choose c′ = (0, c2)

T, then pc = (18, 22)(0, c2)
T = 1 implies

c′ = (0, 1/22)T. The labor value of this is v0 = vc′ = (11, 13)(0, 1/22)T = 13/22. Therefore

ε′ = (1− vc′)/vc′ = 9/13 = 0.6923

Given the profit rate r = 1/4, a worker can choose to consume any combination c =
(c1, c2)

T of the two goods which satisfies the budget constraint pc = 18c1 + 22c2 = p0 = 1.
If he consumes only good 1, the rate of ecploitation is ε = 7/11 = 0.63. If he consumes
only good 2, the rate of exploitation is ε′ = 9/13 = 0.69, and he seems to be “more
exploited”. The reason for this is that the price of good 2 rises faster than the price of
good 1 when the profit factor increases. Thus there is no (1 − 1)-relationship between
profit rates and rates of exploitation. The latter depend also on the composition of the
workers’ consumption bundle.
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18 Constant Relative Prices

The Marxian belief that labor values were in some sense more fundamental than market
prices has led Marxist economists to look for cases where the latter are equal or at least
proportional to the former. One may say that the Labor Theory of Value holds in the
strict sense when prices are proportional to labor values.

We have seen that this true when the rate of profit is zero, but not in general. As the
rate of profit increases, the prices of all goods increase relative to the wage, but some
prices increase faster, and others more slowly. It is even possible that a good is more
expensive than another for low interest rates, becomes cheaper than the other as the
interest rate increases, and becomes more expensive again if the interest rate increases
further (reswitching). Thus there is no hope to explain the relative prices of goods in
terms of labor values, when the profit rate is not zero, at least in general.

But there is a special type of technology in which the commoditiy prices are always
proportional to their labor values, independently of the profit rate. We will now show
that such technologies are characterized by the property that the organic composition of
capital is the same in all sectors.

Let (a0, A) be a productive technology for which labor is indispensable. Denote by α∗ =
α̂(A) the expansion factor and by λ∗ = 1/α∗ the dominant eigenvalue of A. Recall that
two vectors x and y are proportional, written x ∼ y, if there is a number k 6= 0 with
y = k.x.

Consider the value equation
v = a0 + vA (18.1)

and the price equation
p = ρ(p0a0 + pA) (0 < ρ < α∗) (18.2)

The value equation has a unique positive solution v > 0. For ρ ∈ (0, α∗), denote by
(p0(ρ), p(ρ)) a positive solution of the price equation. Such a solution exists by Th. 9.2,
and is unique up to multiplication by a constant.

Case 1. Simple Commodity Production: A = 0.

Consider first the trivial case where all goods are produced by direct labor alone (Marx’
“simple commodity production”). This means a0 > 0 and A = 0. Clearly λ∗ = 0, α∗ =∞,
and the price equation (18.2) becomes

p(ρ) = ρ p0(ρ)a0 for all ρ > 0

Commodity prices are always proportional to direct labor inputs, p(ρ) ∼ a0 for all ρ > 0,
these coincide with labor values, v = p(1) = a0, and relative prices do not change with ρ.
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The organic composition of capital qj = Kj/Vj is zero in all sectors, because there is no
constant capital, Kj = vaj = 0 for all j. Note also that

a0A = λ∗a0 = 0 (18.3)

i.e. a0 is a (left) eigenvector of A associated with the dominant eigenvalue (which is zero
in this case).

Case 2. The General Case: A 	 0.

Consider next the general case where A is not zero. The organic composition of capital
in sector j is qj = Kj/Vj. It is the same in all sectors if qj = q for all j, i.e. if K = qV for
some number q, or, equivalently, if K ∼ V .

We begin with a simple observation.

Lemma 18.1. Let (a0, A) be a productive technology with A 	 0 and a0 > 0, and let
λ∗ = 1/α∗ < 1 be the dominant eigenvalue of A. Then the following conditions are
equivalent:

(a) the organic composition of capital is the same in all sectors, K = qV

(b) vA ∼ a0

(c) a0A ∼ a0

Moreover, in this case, a0A = λ∗a0, vA = λ∗v, and a0 = (1− λ∗)v.

Proof of Lemma 18.1.

To prove (a) ↔ (b), recall that qj = Kj/Vj, where Kj = vaj and Vj = v0a0j for some
positive number v0. Therefore K = (K1, . . . Kn) = vA, and V = (V1, . . . Vn) = v0a0. If
qj = q for all j, we have K = qV or, equivalently, vA = qv0a0, i.e. vA ∼ a0.

To prove (b) → (c), assume that a0 ∼ vA. The value equation v = a0 + vA implies then
v ∼ a0 ∼ vA. By Cor. 8.4 v ∼ vA and v > 0 imply vA = λ∗v. Since a0 ∼ v, this implies
also a0A = λ∗a0.

To prove (c)→ (b), assume that a0A = λa0 for some λ. Define w = 1
1−λa0. Then

a0 + wA = a0 +
1

1− λ
a0A = a0 +

1

1− λ
λa0 =

1

1− λ
a0 = w

i.e. w satisfies the value equation.Therefore v = w = 1
1−λa0 or, equivalently, a0 = (1−λ)v.

The value equation now implies v = (1 − λ)v + vA or λv = vA. By Cor. 8.4, λ = λ∗.
Since a0 ∼ v, this implies also a0A = λ∗a0.

�
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Lemma 18.1 says that the organic composition of capital is the same in all sectors if and
only if the labor input vector a0 is proportional to the vector a0A. This property of the
technology (a0, A) can be checked easily (simply by computing a0A), without recourse to
labor values. The proof of Th. 18.2 below shows that in this case the commodity prices p
are proportional to the direct labor inputs a0, for all profit rates (in particular for ρ = 1,
i.e. labor values v are also proportional to a0).

In the Marxist literature, this simple result is usually presented in terms of labor values
and the organic composition of capital, and we follow this tradition in the formulation of
Th. 18.2 below.

Theorem 18.2. Let (a0, A) be a productive technology with A 	 0 and assume that
a0 > 0. Let α∗ be the expansion factor and λ∗ = 1/α∗ be the dominant eigenvalue of the
matrix A. Denote by (p0(ρ), p(ρ)) production prices associated with the profit factor ρ.
The following conditions are equivalent:

(a) p(ρ) ∼ v for 0 < ρ < α∗, i.e. commodity prices are proportional to labor values for
all profit rates.

(b) The organic composition of capital is the same in all sectors.

Moreover, in this case, a solution of the price equation is given by

p0 = p0(ρ) = 1− ρλ∗, p = p(ρ) = ρa0 (18.4)

Proof of Th. 18.2.

To show that (a) implies (b), let (p0, p) be a positive solution of the price equation, for
some ρ 6= 1. and assume that p ∼ v. Then p = kv for some k > 0 and the value and price
equations imply

ka0 + kvA = kv = ρ(p0a0 + kvA)

Therefore (k − ρp0)a0 = k(ρ − 1)vA, with ρ − 1 6= 0, so that a0 ∼ vA. By Lemma 18.1
this implies (b).

Conversely, assume that the organic composition is the same in all sectors. By Lemma 18.1
this implies that a0A = λA where λ = λ∗ is the dominant eigenvalue of A. We have
0 < λ < 1 because A is productive (α∗ > 1). Now define (p0, p) by

p0 = p0(ρ) = 1− ρλ, p = p(ρ) = ρa0

We claim that these prices satisfy the price equation (18.2). Indeed, substituting it
in (18.2) gives

ρa0 = ρ[(1− ρλ)a0 + ρa0A] = ρ[(1− ρλ)a0 + ρλa0] = ρa0
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so that (p0(ρ), p(ρ)) = (1 − ρλ, ρa0) is a solution of (18.2), for all ρ ∈ (0, α∗). Clearly
p(ρ) = ρa0 ∼ a0 ∼ v. Since the prices are unique up to a positive multiple, every solution
of the price equation satisfies p ∼ v, i.e. (a) holds.

�

Th. 18.2 and its proof show that the following conditions are all equivalent:

p ∼ v ⇔ v ∼ a0 ⇔ v ∼ vA ⇔ a0 ∼ a0A ⇔ p ∼ pA ⇔ a0 ∼ vA (18.5)

The first two conditions say that commodity prices p are proportional to labor values v,
which are in turn proportional to direct labor inputs a0. The next three conditions say
that v, a0 and p are left eigenvectors of the matrix A; and the last condition says that
the organic composition of capital is the same in all sectors.

Moreover, if any one of these conditions holds, the eigenvectors a0, v and p are associated
with the dominant eigenvalue λ = 1/α∗ of A (by Cor. 8.4):

a0A = λa0, vA = λv, pA = λp (18.6)

(in particular, (18.3) holds also in the general case). The value equation then gives
v = a0 + λv or

a0 = (1− λ)v (18.7)

The prices given in (18.4) are normalized such that they take a particularly simple form:
As ρ increases from 0 to α∗ = 1/λ, the wage p0(ρ) = 1− ρλ falls from 1 to zero, and the
commodity prices pj(ρ) = ρa0j increase linearly with ρ, for all j ∈ N .

The commodity prices relative to the wage (i.e. the prices if labor is the numéraire) are

p(ρ)

p0(ρ)
=

ρ

1− ρλ
a0 =

ρ

1− ρ/α∗
a0 (18.8)

As ρ increases from 0 to α∗, these prices increase from 0 to infinity. For ρ = 1 they
coincide with the labor values:

p(1)

p0(1)
=

1

1− λ
a0 = v

Connection with dated labor inputs.

We have seen in Sec. 11 that the “reason” for the irregular behavior of commodity prices
as the profit rate increases lies in the uneven distribution of the dated labor inputs for
different goods. But if the proportionaliy condition (18.5) holds, this cannot happen: if
a0A = λa0, the dated labor inputs `t(d) = a0A

td take a particularly simple form. To see
this, we note first that (18.3) implies

a0A = λa0, a0A
2 = λa0A = λ2a0, . . . a0A

t = λta0, . . .
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so that `t(d) = λta0d. The sequence of dated labor inputs

(`0(d), `1(d), `2(d), . . . ) = (1, λ, λ2, . . . ) a0d

is proportional to the sequence (1, λ, λ2, . . . ) for every commodity bundle d. Therefore the
dated labor inputs for all periods and for all commodities are always proportional to each
other, and a change in the profit factor ρ affects the price of every commodity bundle in
the same way. Relative commodity prices do not change with ρ. In terms of dated labor
inputs, the production conditions for all commodities are the same. Such a technology is
of course a very special case, and one cannot expect to find it in reality. It is mainly of
theoretical interest.

Example 18.3.

Example 17.1 had the property that the relative price of the two commodities changes
with the profit rate. For ρ = 1 we had p1/p2 = 11/13 = 0.8461, and for ρ = 5/4 we had
p1/p2 = 18/22 = 0.8181. The reason for this is that the organic composition of capital
was different in the two sectors.

Let us now change the technology such that the organic composition is the same in both
sectors. To this end, consider again the familiar matrix

A =

(
a11 a12

a21 a22

)
=

1

10

(
1 4

3 2

)
but assume that the labor input vector is now

a0 = (6, 8)

(instead of (6, 6) as before). Then the matrices I − A and (I − A)−1 and the expansion
factor α∗ = α̂(A) = 2 and the dominant eigenvalue λ∗ = 1/α∗ = 1/2 remain the same as
in Ex. 17.1. But labor values and prices change.

Labor values v = (v1, v2) are now given by

v = a0(I − A)−1 = (6, 8).
1

6

(
8 4

3 9

)
= (12, 16) =

1

1− λ∗
a0 = 2× (6, 8)

This implies that

vA = (12, 16)
1

10

(
1 4

3 2

)
=

1

10
(12 + 48, 48 + 32) = (6, 8) ∼ a0 = (6, 8)

i.e. the organic composition is the same in both sectors.
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By (18.8), and if we put p0 = 1, the prices p = (p1, p2) are given by

p = (p1, p2) =
ρ

1− ρλ∗
a0 =

ρ

1− ρ/2
(6, 8) (0 < ρ < 2 = α∗)

For ρ = 1 this gives p = 1
1−1/2(6, 8) = (12, 16), i.e. the labor values. For ρ = 5/4 this gives

p = (p1, p2) =
5/4

1− 5/8
(6, 8) =

10

3
(6, 8) = (

60

3
,
80

3
) = (20, 26.66)

We can check this by substituting it in the price equation p = ρ(p0a0 + pA) (with p0 = 1
and ρ = 5/4):

ρ(p0a0 + pA) =
5

4
[(6, 8) + (

60

3
,
80

3
)

1

10

(
1 4

3 2

)
] =

5

4
[(6, 8) +

1

3
(30, 40)] = (20, 80/3) = p

So commodity prices are proportional to labor values (and to a0).

0.5 1.0 1.5 2.0
ρ

5

10

15

pi (ρ)

p0(ρ) = 1-0.5ρ

p1(ρ) = 6ρ

p2(ρ) = 8ρ

Figure 8: Prices pi(ρ) in Example 18.3 (constant organic composition of capital), normal-
ized as in (18.4).



M. Nermuth, Linear Model. Sec. 19: Appendix 96

19 Appendix

Lemma 19.1. (Geometric Series) Let A be a nonnegative square matrix. Then the fol-
lowing statements are equivalent:

(a) the matrix (I − A) is invertible and (I − A)−1 is nonnegative

(b) the infinite sum
∑∞

t=0A
t = I + A+ A2 + A3 + · · · is convergent

(c) lim
t→∞

At = 0

Moreover, if any of the above conditions is satisfied, then

(I − A)−1 =
∞∑
t=0

At (19.1)

Formula (19.1) generalizes the well-known formula for the sum of the geometric series

1 + a+ a2 + a3 + · · · = 1/(1− a) = (1− a)−1 for 0 5 a < 1 (19.2)

to nonnegative matrices.

Proof of Lemma 19.1.

Define the partial sums Ms =
∑s

t=0A
t for s = 0, 1, 2, . . . . This implies

(I − A)Ms = Ms(I − A) = I − As+1 5 I ∀s (∗)

Assume (a), i.e. (I−A)−1 is nonnegative. Multiplying (∗) by (I−A)−1 givesMs 5 (I−A)−1

for all s, i.e. the sequence (Ms) is bounded above. It is also increasing, hence convergent,
Ms →M =

∑∞
t=0A

t. Therefore (a)→ (b).

The implication (b)→ (c) is trivial.

By passing to the limit in (∗) we get M = (I − A)−1. This proves the formula (19.1).

Now assume (c), i.e. At → 0. Then, for all s sufficiently large, the (n×n)-matrix I−As+1

is invertible. Therefore, by (∗), the matrices I − A and Ms are also invertible, and (∗)
implies

Ms = (I − A)−1(I − As+1)

For s→∞ the right-hand side converges to (I − A)−1, hence (I − A)−1 = lims→∞Ms is
nonnegative. Therefore (c)→ (a).

�
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Corollary 19.2. Let A = B = 0 be two productive matrices. Then

(I − A)−1 = (I −B)−1

Proof of Cor. 19.2.

Immediate from (19.1): assume A = B. Then At = Bt for t = 0, 1, 2, . . . and

(I − A)−1 = I + A+ A2 + · · · = I +B +B2 + · · · = (I −B)−1

�

Lemma 19.3. (Inversion Lemma.) Let M = [mij] be a square matrix, with mij 5 0 for
i 6= j. Then M is nonnegatively invertible if and only if Mx̄ > 0 for some nonnegative
vector x̄ = 0.

Proof of Lemma 19.3.

If M is nonnegatively invertible, M−1 = 0, choose some d > 0 and put x̄ = M−1d. Then
x̄ = 0 and Mx̄ = d > 0.

To show the converse, we proceed in three steps.

Step 1. First we show that if M satisfies the hypothesis of the Theorem, then Mx = 0
implies x = 0. Let x̄ = 0 and Mx̄ > 0. For each i, we have

[Mx̄]i = miix̄i +
∑
j 6=i

mijx̄j > 0, hence mii > 0 and x̄i > 0, hence x̄ > 0 (∗)

where the first implication follows from the assumption that mij 5 0 for j 6= i. Now
assume that Mx = 0, but xi < 0 for some i. Choose the smallest number ϑ such that
x′ = x+ ϑx̄ = 0. Then ϑ > 0 and x′k = 0 for some k. Moreover, Mx′ = Mx+ ϑMx̄ > 0,
hence x′ > 0 by (∗), a contradiction. Therefore Mx = 0 implies x = 0. This proves
Step 1.

Step 2. Next we show that M is invertible. It suffices to show that Mx = 0 implies x = 0.
By Step 1, Mx = 0 implies x = 0. It also implies −Mx = 0, hence, again by Step 1,
−x = 0. Therefore x = 0 and M−1 exists.

Step 3. It remains to show that M−1 is nonnegative. Choose an arbitrary y = 0 and
put x = M−1y. Then Mx = y = 0, hence x = 0, again by Step 1. Thus y = 0 implies
M−1y = 0. Choosing for y the unit vectors, y = ej, shows that M−1 = 0.

�
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Theorem 19.4. (Perron-Frobenius) Let A = 0 be a square matrix with expansion factor
α∗ = α̂(A), and let λ∗ = 1/α∗. Then

(a) The number λ∗ is a nonnegative eigenvalue of A.

(b) There exist nonnegative right and left eigenvectors of A, associated with λ∗.

(c) λ∗ is the largest eigenvalue in absolute value: λ∗ = |µ| for every eigenvalue µ of A.

Proof of Th. 19.4.

If A = 0 is a zero matrix, then α̂(A) = ∞ and Ax = 0 for every x. The only eigenvalue
is λ̂ = 0 and every nonzero x is an eigenvector. Assume now A 	 0.

Put α∗ = α̂(A) and λ∗ = 1/α∗ = λ̂(A). To prove (a) and (b), choose some c > 0. For
every positive α < α∗, there is x(α) > 0 such that

(I − αA)x(α) = c (∗)

because αA is productive for α < α∗. By Cor. 19.2, every component of x(α) = (I−αA)−1c
is (weakly) monotonically increasing in α, and so is the sum σ(α) =

∑n
i=1 xi(α). If α

increases towards α∗, therefore either x(α) → x∗ converges or σ(α) → ∞. Assume first
that α∗ <∞. If x(α) converged, passing to the limit in (∗) would give (I−α∗A)x∗ = c > 0,
i.e. α∗A would be productive, contradicting the definition of α∗. Therefore σ(α) → ∞.
Define y(α) = x(α)/σ(α). Then y(α) ∈ ∆ for all α and by passing to a subsequence if
necessary we may assume that y(α) converges to some x̂ ∈ ∆ for α → α∗. Dividing (∗)
by σ(α) gives

(I − αA)y(α) = c/σ(α)

and passing to the limit for α→ α∗ gives (I − α∗A)x̂ = 0, or Ax̂ = λ∗x̂.

Assume now α∗ = ∞ (i.e. λ∗ = 0). Then certainly ασ(α) → ∞. Dividing (∗) by this
gives

(
1

α
I − A)y(α) =

c

σ(α)

Passing to the limit for α→ α∗ gives Ax̂ = 0 = λ∗x̂. Applying the same reasoning to AT

proves the assertion for a left eigenvector p̂. This proves (a) and (b).

To prove (c), let Ax = µx. If µ = 0 then |µ| 5 λ∗ trivially. If µ 6= 0, this implies x = βAx
with β = 1/µ. By Cor. 8.2, this implies |β| = α∗ or, equivalently, |µ| = 1/|β| 5 1/α∗ = λ∗.

�
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