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Abstract Computational micromagnetics is widley used for the design and
development of magnetic devices. The theoretical background of these sim-
ulations is the continuum theory of micromagnetism. It treats magntization
processes on a significant length scale which is small enough to resolve mag-
netic domain walls and large enough to replace atomic spins by a continuous
function of position. The continuous expression for the micromagnetic energy
terms are either derived from their atomistic counterpart or result from sym-
metry arguments. The equilibrium conditions for the magnetization and the
equation of motion are introduced. The focus of the discussion lies on the ba-
sic building blocks of micromagnetic solvers. Numerical examples illustrate
the micromagnetic concepts. An open source simulation environment was
used to address the ground state thin film magnetic element, intial magneti-
zation curves, stess-driven switching of magnetic storage elements, the grain
size dependence of coercivity of permanent magnets, and damped oscillations
in magnetization dynamics.
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1 Introduction

Computer simulations are an essential tool for product design in modern so-
ciety. This is also true for magnetic materials and their applications. The de-
sign of magnetic data storage systems such as hard discs devices [1, 2, 3, 4, 5]
and random access memories [6, 7] relies heavily on computer simulations.
Similarly, the computer models assist the development of magnetic sensors
[8, 9] as used as biosensors or position and speed sensors in automotive ap-
plications [10]. Computer simulations give guidance for the advance of high
performance permanent magnet materials [11, 12, 13] and devices. In storage
and sensor applications the selection of magnetic materials, the geometry of
the magnetically active layers, and the layout of current lines are key design
question that can be answered by computations. In addition to the intrin-
sic magnetic properties, the microstructure including grain size, grain shape,
and grain boundary phases is decisive for the magnetŠs performance. Com-
puter simulations can quantify the influence of microstructural features on
the remanence and the coercive field of permanent magnets.

The characteristic length scale of the above mentioned computer models is
in the range of nanometers to micrometers. The length scale is too big for a
description by spin polarized density functional theory. Efficient simulations
by atomistic spin dynamics [14] are possible for nano-scale devices only. On
the other hand, macroscopic simulations using Maxwell’Šs equations hide
the magnetization processes that are relevant for the specific functions of
the material or device under consideration. Micromagnetism is a continuum
theory that describes magnetization processes on significant length scales
that is

• large enough to replace discrete atomic spins by a continuous function of
position (the magnetization), but

• small enough to resolve the transition of the magnetization between mag-
netic domains

For most ferromagnetic materials this length scale is in the range of a few
nanometers to micrometers for most ferromagnetic materials. The first aspect
leads to a mathematical formulation which makes it possible to simulate ma-
terials and devices in reasonable time. Instead of billions of atomic spins, only
millions of finite element have to be taken into account. The second aspect
keeps all relevant physics so that the influence of structure and geometry on
the formation of reversed domains and the motion of domain walls can be
computed.

The theory of micromagnetism was developed well before the advance of
modern computing technology. Key properties of magnetic materials can be
understood by analytic or semi-analytic solutions of the underlying equations.
However, the future use of powerful computers for the calculation of magnetic
properties by solving the micromagnetic equations numerically was already
proposed by Brown [15] in the late 1950s. The purpose of micromagnetics is
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the calculation of the magnetization distribution as function of the applied
field or the applied current taking into account the structure of the material
and the mutual interactions between the different magnetic parts of a device.

2 Micromagnetic basics

The key assumption of micromagnetism is that the spin direction changes
only by a small angle from one lattice point to the next [16]. The direction
angles of the spins can be approximated by a continuous function of position.
Then the state of a ferromagnet can be described by the continuous vector
field, the magnetization M(x). The magnetization is the magnetic moment
per unit volume. The direction of M(x) varies continuously with the coor-
dinates x, y, and z. Here we introduced the position vector x = (x, y, z)T.
Starting from the Heisenberg model [17, 18] which describes a ferromagnet
by interacting spins associated with each atom, the micromagnetic equations
can be derived whereby several assumptions are made:

1. Micromagnetism is a quasi-classical theory. The spin operators of the
Heisenberg model are replaced by classical vectors.

2. The length of the magnetization vector is a constant that is uniform over
the ferromagnetic body and only depends on temperature.

3. The temperature is constant in time and in space.
4. The Gibbs free energy of the ferromagnetic is expressed in terms of the

direction cosines of the magnetization.
5. The energy terms are derived either by the transition from an atomistic

model to a continuum model or phenomenologically.

In classical micromagnetism the magnetization can only rotate. A change
of the length of M is forbidden. Thus, a ferromagnet is in thermodynamic
equilibrium, when the torque on the magnetic moment MdV in any volume
element dV is zero. The torque on the magnetic moment MdV caused by a
magnetic field H is

T = μ0MdV ×H, (1)

where μ0 is the permeability of vacuum (μ0 = 4π×10−7 Tm/A). The equilib-
rium condition (1) follows from the direct variation of the Gibbs free energy.
If only the Zeeman energy of the magnet in an external field is considered,
H is the external field, Hext. In general additional energy terms will be rel-
evant. Then H has to be replaced by the effective field, Heff. Each energy
term contributes to the effective field.

In the Sect. 3 we will derive continuum expressions for the various con-
tributions to the Gibbs free energy functional using the direction cosines of
the magnetization as unknown functions. In Sect. 5 we show how the equilib-
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rium condition can be obtained by direct variation of the Gibbs free energy
functional.

3 Magnetic Gibbs free energy

We describe the state of the magnet in terms of the magnetization M(x). In
the following we will show how the continuous vector field M(x) is related
to the magnetic moments located at the atom positions of the magnet.

3.1 Spin, magnetic moment, and magnetization

The local magnetic moment of an atom or ion at position xi is associated
with the spin angular momentum, ~S,

μ(xi) = −g
|e|
2m
~S(xi) = −gμBS(xi). (2)

Here e is the charge of the electron, m is the electron mass, and g is the Landé
factor. The Landé factor is g ≈ 2 for metal systems with quenched orbital
moment. The constant μB = 9.274 × 10−24 Am2 = 9.274 × 10−24 J/T is the
Bohr magneton. The constant ~ is the reduced Planck constant, ~ = h/(2π),
where h is the Planck constant. The magnetization of a magnetic material
with with N atoms per unit volume is

M = Nμ. (3)

The magnetic moment is often given in Bohr magnetons per atom or Bohr
magnetons per formula unit. The the magnetization is

M = Nfuμfu, (4)

where μfu is the magnetic moment per formula unit and Nfu is the number
of formula units per unit volume.

The length of the magnetization vector is assumed to be a function of
temperature only and does not depend on the strength of the magnetic field:

|M| =Ms(T ) =Ms (5)

where Ms is the saturation magnetization. In classical micromagntism the
temperature, T, is assumed to be constant over the ferromagnetic body and
independent of time t. Therefore Ms is fixed and time evolution of the mag-
netization vector can be expressed in terms of the unit vector m = M/|M|
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M(x, t) = m(x, t)Ms. (6)

The saturation magnetization of a material is frequently given as ţμ0Ms in
units of Tesla.

Example: The saturation magnetization is an input parameter for micro-
magnetic simulations. In a multiscale simulation approach of the hysteresis
properties of a magnetic materials it may be derived from the ab inito cal-
culation of magnetic moment per formula unit. In NdFe11TiN the calculated
magnetic moment per formula unit is 26.84 ţμB per formula unit [19]. The
computed lattice constants were a = 8.537 × 10−10 m, b = 8.618 × 10−10 m,
and c = 4.880 × 10−10 m [19] which give a volume of the unit cell of
v = 359.0 × 10−30 m3. There are two formula units per unit cell and
Nfu = 2/v = 5.571× 1027. With (4) and (5) the saturation magnetization of
NdFe11TiN is Ms = 1.387× 106 A/m (μ0Ms = 1.743 T).

3.2 Exchange energy

The exchange energy is of quantum mechanical nature. The energy of two
ferromagnetic electrons depends on the relative orientation of their spins.
When the two spins are parallel, the energy is lower than the energy of the
antiparallel state. Qualitatively this behavior can be explained by the Pauli
exclusion principle and the electrostatic Coulomb interaction. Owing to the
Pauli exclusion principle two electrons can only be at the same place if they
have opposite spins. If the spins are parallel the electrons tend to move apart
which lowers the electrostatic energy. The corresponding gain in energy can
be large enough so that the parallel state is preferred.

The exchange energy, Eij , between two localized spins is [18]

Eij = −2JijSi ∙ Sj , (7)

where Jij is the exchange integral between atoms i and j, and ~Ji is the
angular momentum of the spin at atom i. For cubic metals and hexagonal
closed packed metals with ideal c over a ratio there holds Jij = J . Treating
the exchange energy for a large number of coupled spins, we regard Eij as
a classical potential energy and replace Si by a classical vector. Let mi be
the unit vector in direction −Si. Then mi is the unit vector of the magnetic
moment at atom i. If ϕij is the angle between the vectors mi and mj the
exchange energy is

Eij = −2JS2 cos(ϕij), (8)

where S = |Si| = |Sj | is the spin quantum number.
Now, we introduce a continuous unit vector m(x), and assume that the

angle ϕij between the vectors mi and mj is small. We set m(xi) = mi and
expand m around xi
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Fig. 1 Nearest neighbors of spin i for the calculation of the exchange energy in a simple
cubic lattice.

m(xi + aj) =m(xi)+

∂m
∂x
aj +

∂m
∂y
bj +
∂m
∂z
cj+

1
2

(
∂2m
∂x2
a2
j +
∂2m
∂y2
b2j +
∂2m
∂z2
c2j

)

+ . . . .

(9)

Here aj = (aj , bj , cj)T is the vector connecting points xi and xj = xi + aj .
We can replace cos(ϕij) by cos(ϕij) = m(xi) ∙m(xj) in (8). Summing up
over the six nearest neighbors of a spin in a simple cubic lattice gives (see
Fig. 1) the exchange energy of the unit cell. The vectors aj take the val-
ues (±a, 0, 0)T, (0,±a, 0)T, (0, 0,±a)T. For every vector a there is the corre-
sponding vector −a. Thus the linear terms in the variable a in (9) vanish in
the summation. The constant term, m ∙m = 1, plays no role for the variation
of the energy and will be neglected. The exchange energy of a unit cell in a
simple cubic lattice is

6∑

j=1

Eij = − JS2
6∑

j=1

(

mi ∙
∂2mi
∂x2
a2
j + mi ∙

∂2mi
∂y2
b2j + mi ∙

∂2mi
∂z2
c2j

)

=− 2JS2a2

(

mi ∙
∂2mi
∂x2

+ mi ∙
∂2mi
∂y2

+ mi ∙
∂2mi
∂z2

) (10)

To get the exchange energy of the crystal we sum over all atoms i and divide
by 2 to avoid counting each pair of atoms twice. We also use the relations

m ∙
∂2m
∂x2

= −

(
∂m
∂x

)2

, (11)

which follows from differentiating m ∙m = 1 twice with respect to x.
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Eex =
JS2

a

∑

i

a3

[(
∂mi
∂x

)2

+

(
∂mi
∂y

)2

+

(
∂mi
∂z

)2
]

(12)

The sum in (12) is over the unit cells of the crystal with volume V . In the
continuum limit we replace the sum with an integral. The exchange energy
is

Eex =
∫

V

A

[(
∂mi
∂x

)2

+

(
∂mi
∂y

)2

+

(
∂mi
∂z

)2
]

dV. (13)

Expanding and rearranging the terms in the bracket and introducing the
nabla operator, ∇, we obtain

Eex =
∫

V

A
[
(∇mx)

2 + (∇my)
2 + (∇mz)

2
]
dV. (14)

In equations (13) and (14) we introduced the exchange constant

A =
JS2

a
n. (15)

In cubic lattices n is the number of atoms per unit cell (n = 1, 2, and
4 for simple cube, body centered cubic, and face centered cubic lattices,
respectively). In a hexagonal closed packed structures n is the ideal nearest
neighbor distance (n = 2

√
2). The number N of atoms per unit volume is

n/a3. At non-zero temperature the exchange constant may be expressed in
terms of the saturation magnetization, Ms(T ). Formally we replace S by its
thermal average. Using equations (2) and (3), we rewrite

A(T ) =
J [Ms(T )]2

(NgμB)2a
n. (16)

The calculation of the exchange constant by (15) requires a value for the ex-
change integral, J . Experimentally, one can measure a quantity that strongly
depends on J such as the Curie temperature, TC, the temperature dependence
of the saturation magnetization, Ms(T ), or the spin wave stiffness parame-
ter, in order to determine J. According to the molecular field theory [20] the
exchange integral is related to the Curie temperature given by

J =
3
2
kBTC

S(S + 1)
1
z

or A =
3
2
kBTCS

a(S + 1)
n

z
. (17)

The second equation follows from the first one by replacing J with the relation
(15). Here z is the number of nearest neighbors (z = 6, 8, 12, and 12 for simple
cubic, body centered cubic, face centered cubic, and hexagonal closed packed
lattices, respectively) and kB =1.3807×10−23 J/K is Boltzmann’s constant.
The use of (17) together with (15) underestimates the exchange constant
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by more than a factor of 2 [21]. Alternatively one can use the temperature
dependence of the magnetization as arising from the spin wave theory

Ms(T ) =Ms(0)(1− CT 3/2). (18)

Equation (18) is valid for low temperatures. From the measured temperature
dependence Ms(T ) the constant C can be determined. Then the exchange
integral [21, 22] and the exchange constant can be calculated from C as
follows

J =

(
0.0587
nSC

)2/3
kB
2S

or A =

(
0.0587
n2S2C

)2/3
kB
2a
. (19)

This method was used by Talagala and co-workers [23]. They measured the
temperature dependence of the saturation magnetization in NiCo films to de-
termine the exchange constant as function of the Co content. The exchange
constant can also be evaluated from the spin wave dispersion relation (see
Chapter Spin Waves) which can be measured by inelastic neutron scattering,
ferromagnetic resonance, or Brillouin light scattering [24]. The exchange in-
tegral [22] and the exchange constant are related to the spin wave stiffness
constant, D, via the following relations

J =
D

2
1
Sa2

or A =
D

2
NS (20)

For the evaluation of the exchange constant we can use S = Ms(0)/(NgμB)
[25] for the spin quantum number in equations (17), (19), and (20). This gives
the relation between the exchange constant, A, and the spin wave stiffness
constant, D,

A =
DMs(0)

2gμB
, (21)

when applied to (20). Using neutron Brillouin scattering Ono and co-workers
[26] measured the spin wave dispersion in a polycrystalline Nd2Fe14B magnet,
in order to determine its exchange constant.

Ferromagnetic exchange interactions keep the magnetization uniform. De-
pending on the sample geometry external fields may lead to a locally confined
non-uniform magnetization. Probing the magnetization twist experimentally
and comparing the result with a the computed equilibrium magnetic state (see
Sect. 5) is an alternative method to determine the exchange constant. The
measured data is fitted to the theoretical model whereby the exchange con-
stant is a free parameter. Smith and co-workers [27] measured the anisotropic
magnetoresistance to probe the fanning of the magnetization in a thin permal-
loy film from which its exchange constant was calculated. Eyrich and co-
workes [24] measured the field dependent magnetization, M(H), of a trilayer
structure in which two ferromagnetic films are coupled antiferromagnetically.
The M(H) curve probes the magnetization twist within the two ferromag-
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nets. Using this method the exchange constant of Co alloyed with various
other elements was measured [24].

The interplay between the effects of ferromagnetic exchange coupling, mag-
netostatic interactions, and the magnetocrystalline anisotropy leads to the
formation of domain patterns (for details on domain structures see Chapter
Domains). With magnetic imaging techniques the domain width, the orien-
tation of the magnetization, and the domain wall width can be measured.
These values can be also calculated using a micromagnetic model of the do-
main structure. By comparing the predicted values for the domain width
with measured data Livingston [28, 29] estimated the exchange constant of
the hard magnetic materials SmCo5 and Nd2Fe14B. This method can be im-
proved by comparing more than one predicted quantity with measured data.
Newnham and co-workes [30] measured the domain width, the orientation
of the magnetization in the domain, and the domain wall width in foils of
Nd2Fe14B. By comparing the measured values with the theoretical predic-
tions they estimated the exchange constant of Nd2Fe14B.

Input for micromagnetic simulations: The high temperature behavior of
permanent magnets is of outmost importance for the applications of per-
manent magnets in the hybrid or electric vehicles. For computation of
the coercive field by micromagnetic simulations the exchange constant is
needed as input parameter. Values for A(T ) may be obtained from the room
temperature value of A(300 K) and Ms(T ). Applying (16) gives A(T ) =
A(300 K)× [Ms(T )/Ms(300 K)]2.

3.3 Magnetostatics

We now consider the energy of the magnet in an external field produced by
stationary currents and the energy of the magnet in the field produced by the
magnetization of the magnet. The latter field is called demagnetizing field.
In micromagnetics these fields can be are treated statically if eddy currents
are neglected. In magnetostatics we have no time dependent quantities. In
the presence of a stationary magnetic current Maxwell’s equations reduce to
[31]

∇×H = j (22)

∇ ∙B = 0 (23)

Here B is the magnetic induction or magnetic flux density, H is the magnetic
field, and j is the current density. The charge density fulfills ∇ ∙ j = 0 which
expresses the conservation of electric charge. We now have the freedom to
split the magnetic field into its solenoidal and nonrotational part

H = Hext + Hdemag. (24)
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By definition we have

∇ ∙Hext = 0, (25)

∇×Hdemag = 0. (26)

Using (22) and (24) we see that the external field, Hext, results from the
current density (Ampere’s law)

∇×Hext = j. (27)

On a macroscopic length scale the relation between the magnetic induction
and the magnetic field is expressed by

B = μH, (28)

where μ is the permeability of the material. Equation (28) is used in magneto-
static field solvers [32] for the design of magnetic circuits. In these simulations
the permeability describes the response of the material to the magnetic field.
Micromagnetics describes the material on a much finer length scale. In micro-
magnetics we compute the local distribution of the magnetization as function
of the magnetic field. This is the response of the system to (an external) field.
Indeed, the permeability can be derived from micromagnetic simulations [33].
For the calculation of the demagnetizing field, we can treat the magnetization
as fixed function of space. Instead of (28) we use

B = μ0 (H + M) . (29)

The energy of the magnet in the external field, Hext, is the Zeeman energy.
The energy of the magnet in the demagnetizing field, Hdemag, is called mag-
netostatic energy.

3.4 Zeeman energy

The energy of a magnetic dipole moment, μ, in an external magnetic induc-
tion Bext is −μ ∙Bext. We use Bext = μ0Hext and sum over all local magnetic
moments at positions xi of the ferromagnet. The sum,

Eext = −μ0

∑

i

μi ∙Hext, (30)

is the interaction energy of the magnet with the external field. To obtain
the Zeeman energy in a continuum model we introduce the magnetization
M = Nμ, define the volume per atom, Vi = 1/N , and replace the sum with
an integral. We obtain
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Eext = −μ0

∑

i

(M ∙Hext)Vi → −μ0

∫

V

(M ∙Hext)dV. (31)

Using (6) we express the Zeeman energy in terms of the unit vector of the
magnetization

Eext = −
∫

V

μ0Ms(m ∙Hext)dV. (32)

3.5 Magnetostatic energy

The magnetostatic energy is also called dipolar interaction energy. In a crys-
tal each moment creates a dipole field and each moment is exposed to the
magnetic field created by all other dipoles. Therefore magnetostatic interac-
tions are long range. The magnetostatic energy cannot be represented as a
volume integral over the magnet of an energy density dependent on only local
quantities.

3.5.1 Demagnetizing field as sum of dipolar fields

The total magnetic field at point xi, which is created by all the other magnetic
dipoles, is the sum over the dipole fields from all moments μj = μ(xj)

Hdip(xi) =
1

4π

∑

j 6=i

[

3
(μj ∙ rij)rij
r5ij

−
μj
r3ij

]

. (33)

Fig. 2 Computation of the total magnetostatic field at point atom i. The near field
is evaluated by a direct sum over all dipoles in the small sphere. The atomic moments
outside the sphere are replaced by a continuous magnetization which produces the far
field acting on i.
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The vectors rij = xi − xj connect the source points with the field point.
The distance between a source point and a field point is rij = |rij |. In order
to obtain a continuum expression for the field we split the sum (33) in two
parts. The contribution to the field from moments that a far from xi will
not depend strongly on their exact position at the atomic level. Therefore we
can describe them by a continuous magnetization and replace the sum with
an integral. For moments μj which are located within a small sphere with
radius R around xi we keep the sum. Thus we split the dipole field into two
parts [34]:

Hdip(xi) = Hnear + Hdemag. (34)

Here

Hnear(xi) =
1

4π

∑

rij<R

[

3
(μj ∙ rij)rij
r5ij

−
μj
r3ij

]

(35)

is the contribution of the sum of the dipoles within the sphere (see Fig.
2). For the dipoles outside the sphere we use a continuum approximation.
Introducing the magnetic dipole element MdV ′, we can replace the sum in
(33) with an integral for rij ≥ R

Hdemag(x) =
1

4π

∫

V *

[

3
(M(x′) ∙ (x− x′)) (x− x′)

|x− x′|5
−

M(x′)
|x− x′|3

]

dV ′. (36)

The integral excludes the small sphere. The integral is over V *, the volume
of the magnet without a small sphere around the field point x.

The sum in (35) is the contribution of the dipoles inside the sphere to the
total magnetostatic field. The corresponding energy term is local. It can be
expressed as an integral of an energy density that depends only on local quan-
tities [34]. The term depends on the symmetry of the lattice and has the same
form as the crystalline anisotropy. Therefore it is included in the anisotropy
energy. When the anisotropy constants in (58) are determined experimentally,
they already include the contribution owing to dipolar interactions.

3.5.2 Magnetic scalar potential

The demagnetizing field is nonrotational. Therefore we can write the demag-
netizing field as gradient of a scalar potential

Hdemag = −∇U. (37)

Applying −∇ to

U(x) = −
1

4π

∫

V *
M(x′) ∙

x− x′

|x− x′|3
dV ′. (38)
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gives (36). In computational micromagnetics it is beneficial to work with
effective magnetic volume charges, ρm = −∇′ ∙M(x′), and effective magnetic
surface charges, σm = M(x′) ∙ n. Using

x− x′

|x− x′|3
= −∇

1
|x− x′|

and ∇
1

|x− x′|
= −∇′

1
|x− x′|

(39)

we obtain

U(x) =
1

4π

∫

V *
M(x′) ∙ ∇′

1
|x− x′|

dV ′. (40)

Now we shift the ∇′ operator from 1/|x− x′| to M. We use

∇′ ∙
M(x′)
|x− x′|

=
∇′ ∙M(x′)
|x− x′|

+ M(x′) ∙ ∇′
1

|x− x′|
, (41)

apply Gauss’Ä theorem, and obtain [31]

U(x) =
1

4π

∫

V *

ρm(x′)
|x− x′|

dV ′ +
1

4π

∮

∂V *

σm(x′)
|x− x′|

dS′. (42)

3.5.3 Magnetostatic energy

For computing the magnetostatic energy there is no need to take into account
(35). The near field is already included in the crystal anisotropy energy. We
now compute the energy of each magnetic moment μi in the field Hdemag(xi)
from the surrounding magnetization. Summing the energy of all over all atoms
we get the magnetostatic energy of the magnet

Edemag = −
μ0

2

∑

i

μi ∙Hdemag(xi). (43)

The factor 1/2 avoids counting each pair of atoms twice. Similar to the pro-
cedure for the exchange and Zeeman energy we replace the sum with an
integral

Edemag = −
μ0

2

∫

V

M ∙Hdemag = −
1
2

∫

V

μ0Ms (m ∙Hdemag) dV. (44)

Alternatively, the magnetostatic energy can be expressed in terms of a mag-
netic scalar potential and effective magnetic charges. We start from (44),
replace Hdemag by −∇U , and apply GaussÄ’ theorem on ∇∙ (MU) to obtain

Edemag =
μ0

2

∫

V

ρm UdV +
μ0

2

∮

∂V

σm UdS. (45)
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Equation (45) is widely used in numerical micromagnetics. Its direct vari-
ation (see Sect. 5) with respect to M gives the cell averaged demagnetizing
field. This method was introduced in numerical micromagnetics by LaBonte
[35] and Schabes and Aharoni [36]. For discretization with piecewise constant
magnetization only the surface integrals remain.

In a uniformly magnetized spheroid the demagnetizing field is antiparallel
to the magnetization. The demagnetizing field is

Hdemag = −NM, (46)

where N is the demagnetizing factor. For a sphere the demagnetizing factor
is 1/3. Using (44) we find

Edemag =
μ0

2
NM2

s V (47)

for the magnetostatic energy of a uniformly magnetized sphereoid with vol-
ume V . In a cuboid or polyhedral particle the demagnetizing field is nonuni-
form. However we still can apply (47) when we use a volume averaged de-
magnetizing factor which is obtained from a volume averaged demagnetizing
field. Interestingly the volume averaged demagnetizing factor for a cube is
1/3 the same value as for the sphere. For a general rectangular prism Aha-
roni [37] calculated the volume averaged demagnetizing factor. A convenient
calculation tool for the demagnetizing factor, which uses Aharoni’s equation,
is given on the Magpar website [38]. A simple approximate equation for the
demagnetizing factor of a square prism with dimensions l × l × pl is [39]

N =
1

2p+ 1
, (48)

where p is the aspect ratio and N is the demagnetizing factor along the edge
with length pl.

3.5.4 Magnetostatic boundary value problem

Equation (42) is the solution of the magnetostatic boundary value problem,
which can be derived from Maxwell’s equations as follows. From (23) and
(29) the following equation holds for the demagnetizing field

∇ ∙Hdemag = −∇ ∙M. (49)

Plugging (37) into (49) we obtain a partial differential equation for the scalar
potential

∇2U = ∇ ∙M. (50)

Equation (50) holds inside the magnet. Outside the magnet M = 0 and we
have
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∇2U = 0. (51)

At the magnetŠs boundary the following interface conditions [31] hold

U (in) = U (out), (52)
(
∇U (in) −∇U (out)

)
∙ n = M ∙ n, (53)

where n denotes the surface normal. The first condition follows from the
continuity of the component of H parallel to the surface (or ∇×H = 0). The
second condition follows from the continuity of the component of B normal
to the surface (or ∇ ∙ B = 0). Assuming that the scalar potential is regular
at infinity,

U(x) ≤ C
1
|x|

for |x| large enough and constant C > 0 (54)

the solution of equations (50) to (53) is given by (42). Formally the integrals
in (42) are over the volume, V *, and the surface, ∂V *, of the magnet without
a small sphere surrounding the field point. The transition from V *→ V adds
a term the term −M/3 to the field and thus shifts the energy by a constant
which is proportional to M2

s . This is usually done in micromagnetics [34].
The above set of equations for the magnetic scalar potential can also be

derived from a variational principle. Brown [16] introduced an approximate
expression

E′demag = μ0

∫

V

M ∙ ∇U ′dV −
μ0

2

∫
(∇U ′)2dV (55)

for the magnetostatic energy, Edemag. For any magnetization distribution
M(x) the following equation holds

Edemag(M) ≥ E′demag(M, U ′), (56)

where U ′ is arbitrary function which is continuous in space and regular at
infinity [16]. A proof of (56) is given by Asselin and Thiele [40]. If maximized
the functional E′demag makes U ′ equal to the magnetic scalar potential owing
to M. Then the equal sign holds and E′demag reduces to the usual magneto-
static energy Edemag. Equation (55) is used in finite element micromagnetics
for the computation of the magnetic scalar potential. The Euler-Lagrange
equation of (55) with respect to U ′ gives the magnetostatic boundary value
problem (50) to (53) [40].

3.5.5 Examples

Magnetostatic energy in micromagnetic software: For physicists and software
engineers developing micromagnetic software there are several options to im-
plement magnetostatic field computation. The choice depends on the dis-
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Fig. 3 Computed magnetization patterns for a soft magnetic square elememt (K1 = 0,

μ0Ms = 1 T, A = 10 pJ/m, mesh size h = 0.56
√
A/(μ0M2

s ) = 2 nm) as function of
element size L. The dimensions are L×L×6 nm3. The system was relaxed multiple times
from an initial state with random magnetization. The lowest energy states are the leaf
state, the C-state, and the vortex state for L = 80 nm, L = 150 nm, and L = 200 nm,
respectively. For each state the relative contributions of the exchange energy and the
magnetostatic energy to the total energy are given.

cretization scheme, the numerical methods used, and the hardware. Finite
difference solvers including OOMMF [41], MuMax3 [42], and FIDIMAG [43]
use (45) to compute the magnetostatic energy and the cell averaged demag-
netizing field. For piecewise constant magnetization only the surface inte-
grals over the surfaces of the computational cells remain. MicroMagnum [44]
uses (42) to evaluate the magnetic scalar potential. The demagnetizing field
is computed from the potential by a finite difference approximation. This
method shows a higher speed up on Graphics Processor Units [45] though its
accuracy is slightly less. Finite element solvers compute the magnetic scalar
potential and build its gradient. Magpar [46], Nmag [47], and magnum.fe
[48] solve the partial differential equations (50) to (53). FastMag [49], a finite
element solver, directly integrates (42). Finite difference solvers apply the
Fast Fourier Transforms for the efficient evaluation of the involved convolu-
tions. Finite element solvers often use hierarchical clustering techniques for
the evaluation of integrals.

Magnetic state of nano-elements: From (45) we see that the magnetostatic
energy tends to zero if the effective magnetic charges vanish. This is known
as pole avoidance principle [34]. In large samples where the magnetostatic
energy dominates over the exchange energy the lowest energy configurations
are such that ∇∙M in the volume and M ∙n on the surface tend to zero. The
magnetization is aligned parallel to the boundary and may show a vortex.
These patterns are known as flux closure states. In small samples the expense
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of exchange energy for the formation of a closure state is too high. As a
compromise the magnetization bends towards the surface near the edges of
the sample. Depending on the size the leaf state [50] or the C-state [51] or the
vortex state have the lowest energy. Fig. 3 shows the different magnetization
patterns that can form in thin film square elements. The results show that
with increasing element size the relative contribution of the magnetostatic
energy, Fdemag/(Fex +Fdemag) decreases. All micromagnetic examples in this
chapter are simulated using FIDIMAG [43]. Code snippets for each example
are given in the appendix.

3.6 Crystal anisotropy energy

The magnetic properties of a ferromagnetic crystal are anisotropic. Depend-
ing on the orientation of the magnetic field with respect to the symmetry axes
of the crystal the M(H) curve reaches the saturation magnetization, Ms, at
low or high field values. Thus easy directions in which saturation is reached in
a low field and hard directions in which high saturation requires a high field
are defined. Fig 4 shows the magnetization curve of a uniaxial material with
strong crystal anisotropy in the easy and hard direction. The initial state is a
two domain state with the magnetization of the domains parallel to the easy
axis. The snap shots of the magnetic states show that domain wall motion
occurs along the easy axis and rotation of the magnetization occurs along the
hard axis.

The crystal anisotropy energy is the work done by the external field to
move the magnetization away from a direction parallel to the easy axis. The
functional form of the energy term can be obtained phenomäenologically.
The energy density, eani(m), is expanded in a power series in terms of the
direction cosines of the magnetization. Crystal symmetry is used to decrease
the number of coefficients. The series is truncated after the first two non-
constant terms.

3.6.1 Cubic anisotropy

Let a,b, and c be the unit vectors along the axes of a cubic crystal. The
crystal anisotropy energy density of a cubic crystal is

eani(m) =K0+

K1
[
(a ∙m)2(b ∙m)2 + (b ∙m)2(c ∙m)2 + (c ∙m)2(a ∙m)2

]
+

K2
[
(a ∙m)2(b ∙m)2(c ∙m)2

]
+ . . . .

(57)
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The anisotropy constants K0, K1, and K2 are a function of temperature. The
first term is independent of m and thus can be dropped since only the change
of the energy with respect to the direction of the magnetization is of interest.

3.6.2 Uniaxial anisotropy

In hexagonal or tetragonaöl crystals the crystal anisotropy energy density
is usually expressed in terms of of sin θ, where θ is the angle between the
c-axis and the magnetization. The crystal anisotropy energy of a hexagonal
or tetragonal crystal is

eani(m) = K0 +K1 sin2(θ) +K2 sin4(θ) + . . . . (58)

In numerical micromagnetics it is often more convenient to use

e′ani(m) = −K1(c ∙m)2 + . . . . (59)

as expression for a unixial crystal anisotropy energy density. Here we used
the identity sin2(θ) = 1− (c ∙m)2, dropped two constant terms, namely K0

and K1, and truncated the series. When keeping only the terms which are
quadratic in m, the crystal anisotropy energy can be discretized as quadratic
form involving only a geometry dependent matrix.

The crystalline anisotropy energy is

Eani =
∫

V

eani(m)dV, (60)

whereby the integral is over the volume, V , of the magnetic body.

3.6.3 Anisotropy field

An important material parameter, which is commonly used, is the anisotropy
field, HK. The anisotropy field is a fictitious field that mimics the effect of
the crystalline anisotropy. If the magnetization vector rotates out of the easy
axis the crystalline anisotropy creates a torque that brings M back into the
easy direction. The anisotropy field is parallel to the easy direction and its
magnitude is such that for deviations from the easy axis the torque on M is
the same as the torque by the crystalline anisotropy. If the energy depends
on the angle, θ, of the magnetization with respect to an axis, the torque, T,
on the magnetization is the derivative of the energy density, e, with respect
to the angle [20]

T =
∂e

∂θ
. (61)
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Fig. 4 Initial magnetization curves with the field applied in the easy direction (dashed
line) and the hard direction (solid line) computed for a uniaxial hard magnetic material
(Nd2Fe14B at room temperature: K1 = 4.9 MJ/m3, μ0Ms = 1.61 T, A = 8 pJ/m,

the mesh size is h = 0.86
√
A/K1 = 1.1 nm). The magnetization component parallel

to the field direction is plotted as a function of the external field. The field is given in
units of HK. The sample shape is thin platelet with the easy axis in the plane of the
film. The sample dimensions are 200× 200× 10 nm3. The insets show snap shots of the
magnetization configuration along the curves. The initial state is the two domain state
shown at the lower left of the figure.

Let θ be a small angular deviation of M from the easy direction. The energy
density of the magnetization in the anisotropy field is

eK = −μ0MsHK cos(θ) (62)

the associated torque is

TK = μ0MsHK sin(θ) ≈ μ0MsHKθ. (63)

For the crystalline anisotropy energy density

eani = K1 sin2(θ) (64)

the torque towards the easy axis is

Tani = 2K1 sin(θ) cos(θ) = K1 sin(2θ) ≈ 2K1θ. (65)

From the definition of the anisotropy field, namely TK = Tani, we get

HK =
2K1

μ0Ms
(66)



20 Lukas Exl, Dieter Suess and Thomas Schrefl

Anisotropy field, easy and hard axis loops: K1 and – depending on the ma-
terial to be studied – K2 are input parameters for micromagnetic simulation.
The anisotropy constants can be measured by fitting a calculated magne-
tization curve to experimental data. Fig. 4 shows the magnetization curves
of a uniaxial material computed by micromagnetic simulations. For simplic-
ity we neglected K2 and described the crystalline anisotropy with (59). The
M(H) along the hard direction is almost a straight line until saturation where
M(H) =Ms. Saturation is reached when H = HK.

The above numerical result can be found theoretically. A field is applied
perpendicular to the easy direction. The torque created by the field, tends
to increase the angle, θ, between the magnetization and the easy axis. The
torque asserted by the crystalline anisotropy returns the magnetization to-
wards the easy direction. We set the total torque to zero to get the equilibrium
condition

−μ0MsH cos(θ) + 2K1 sin(θ) cos(θ) = 0

The value of H that makes M parallel to the field is reached when sin(θ) =
1. This gives H = 2K1/(μ0Ms). If higher anisotropy constants are taken
into account the field that brings M into the hard axis is H = (2K1 +
4K2)/(μ0Ms).

3.7 Magnetoelastic and magnetostrictive energy terms

When the atom positions of a magnet are changed relative to each other the
crystalline anisotropy varies. Owing to magnetoelastic coupling a deformation
produced by an external stress makes certain directions to be energetically
more favorable. Reversely, the magnet will deform in order to minimize its
total free energy when magnetized in certain direction.

3.7.1 Spontaneous magnetostrictive deformation

Most generally the spontaneous magnetostrictive deformation is expressed by
the symmetric tensor strain ε0ij as

ε0ij =
∑

kl

λijklαkαl, (67)

where λijkl is the tensor of magnetostriction constants. Measurements of the
relative change of length along certain directions owing to saturation of the
crystal in direction α = (α1, α2, α3) gives the magnetostriction constants.
For a cubic material the following relation holds
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ε0ii =
3
2
λ100

(

α2
i −

1
3

)

(68)

ε0ij =
3
2
λ111αiαj for i 6= j. (69)

The magnetostriction constants λ100 and λ111 are defined as follows: λ100 is
the relative change in length measured along [100] owing to saturation of the
crystal in [100]; similarly λ111 is the relative change in length measured along
[111] owing to saturation of the crystal in [111]. The term with 1/3 in (68)
results from the definition of the spontaneous deformation with respect to a
demagnetized state with the averages 〈α2

i 〉 = 1/3 and 〈αiαj〉 = 0.

3.7.2 Magnetoelastic coupling energy

All energy terms discussed in the previous sections can depend on defor-
mations. The most important change of energy with strain arises from the
crystal anisotropy energy. Thus the crystal anisotropy energy is a function of
the magnetization and the deformation of the lattice. We express the mag-
netization direction in terms of the direction cosines of the magnetization
α1 = a ∙m, α2 = b ∙m, and α3 = c ∙m (a, b, and c are the unit lattice
vectors) and the deformation in terms of the symmetric strain tensor εij to
obtain

eani = eani(αi, εij). (70)

A Taylor expansion of (70)

eani = eani(αi, 0) +
∑

ij

∂eani(αi, 0)
∂εij

εij (71)

gives the change of the energy density owing to the strain εij . Owing to sym-
metry the expansion coefficients ∂eani(αi, 0)/∂εij do not dependent on the
sign of the magnetization vector and thus are proportional to αiαj . The sec-
ond term on the right hand side of (71) is the change of the crystal anisotropy
energy density with deformation. This term is the magnetoelastic coupling
energy density. Using

∑
ij Bijklαiαj as expansion coefficients we obtain

eme =
∑

ij

∑

kl

Bijklαiαjεkl, (72)

where Bijkl is the tensor of the magnetoelastic coupling constants. For cubic
symmetry the magnetoelastic coupling energy density is

eme,cubic = B1(ε11α
2
1+ε22α

2
2+ε33α

2
3)+2B2(ε23α2α3+ε13α1α3+ε12α1α2)+. . .

(73)
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with the magnetoelastic coupling constants B1 = B1111 and B2 = B2323.
Equation 72 describes change of the energy density owing to the interaction of
magnetization direction and deformation. The magnetoelastic coupling con-
stants can be derived from the ab-initio computation of the crystal anisotropy
energy as function of strain [52]. Experimentally the magnetoelastic coupling
constants can be obtained from the measured magnetostriction constants.

When magnetized in a certain direction the magnet tends to deform in a
way that minimizes the sum of the magnetoelastic energy density, eme, and
of the elastic energy density of the crystal, eel. The elastic energy density is
a quadratic function of the strain

eel =
1
2

∑

ij

∑

kl

cijklεijεkl, (74)

where cijkl is the elastic stiffness tensor. For cubic crystals the elastic energy
is

eel,cubic =
1
2
c1111(ε211 + ε222 + ε233)+

c1122(ε11ε22 + ε22ε33 + ε33ε11)+

2c2323(ε212 + ε223 + ε231).

(75)

Minimizing eme + eel with respect to εij under fixed αi gives the equilibrium
strain or spontaneous magnetostrictive deformation

ε0ij = ε0ij(Bijkl, cijkl). (76)

in terms of the magnetoelastic coupling constants and the elastic stiffness
constants. Comparison of the coefficents in (76) and the experimental relation
(67) allows to express the magnetoelastic coupling coefficients in terms of
the elastic stiffness constants and the magnetostriction constants. For cubic
symmetry the magnetoelastic coupling constants are

B1 = −
3
2
λ100(c1111 − c1122) (77)

B2 = −3λ111c1212. (78)

3.7.3 External stress

A mechanical stress of nonmagnetic origin will have an effect on the magne-
tization owing to a change of magnetoelastic coupling energy. The magnetoe-
lastic coupling energy density owing to an external stress σext is [53]

eme = −
∑

ij

σext
ij ε

0
ij (79)



Micromagnetism 23

For cubic symmetry this gives [20]

eme,cubic =−
3
2
λ100(σ11α

2
1 + σ22α

2
1 + σ33α

2
2)

− 3λ111(σ12α1α2 + σ23α2α3 + σ31α3α1)
(80)

The above results can be derived from the strain induced by the external
stress which is

εext
ij =

∑

kl

sijklσ
ext
kl , (81)

where sijkl is the compliance tensor. Inserting (81) into (72) gives the mag-
netoelastic energy density owing to external stress. For an isotropic material,
for example an amorphous alloy, we have only a single magnetostriction con-
stant λs = λ100 = λ111. For a stress σ along an axis of a unit vector a the
magnetoelastic coupling energy reduces to

eme,isotropic = −
3
2
λsσ(a ∙α)2. (82)

This is equation has a similar form as that for the uniaxial anisotropy energy
density (59) with an anisotropy constant Kme = 3λsσ/2.

Fig. 5 Simulation of the stress-driven switching of a CoFeB nanoelement (Ku =
1.32 kJ/m3, μ0Ms = 1.29 T, A = 15 pJ/m, λs = 3 × 10−5, mesh size h =

0.59
√
A/(μ0M2

s ) = 2 nm, the magnetostrictive self energy is neglected). The sample is
a thin film element with dimensions 120 × 120× 2 nm3. The system switches from 0 to
1 by a compressive stress (−0.164 GPa) and from 1 to 0 by a tensile stress (0.164 GPa).
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3.7.4 Magnetostrictive self energy

A nonuniform magnetization causes a nonuniform spontaneous deformation
owing to (67). As a consequence different parts of the magnet do not fit
together. To compensate this misfit an additional elastic deformation, εel

ij ,
will occur. The associated magnetostrictive self energy density is

emagstr =
1
2

∑

ij

∑

kl

cijklε
el
ijε

el
kl. (83)

To compute εel
ij we have to solve an elasticity problem. The total strain,

εij = εel
ij + ε0ij ,SS (84)

can be derived from a displacement field, u = (u1, u2, u3), according to [54]

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)

. (85)

We start from a hypothetically undeformed, nonmagnetic nonmagnetic body.
If magnetism is switched on ε0ij causes a stress which we treat as virtual body
forces. Once these forces are known the displacement field can be calculated
as usual by linear elasticity theory. The situation is similar to magnetostatics
where the demagnetizing field is calculated from effective magnetic charges.
The procedure is a follows [55]. First we compute the the spontaneous magne-
tostrictive strain for a given magnetization distribution with (67) or in case of
cubic symmetry with (68) and (69). Then we apply Hooke’s law to compute
the stress

σ0
ij =

∑

kl

cijklε
0
kl (86)

owing to the spontaneous magnetostrictive strain. The stress is interpreted
as virtual body force

fi = −
∑

j

∂

∂xj
σ0
ij . (87)

The forces enter the condition for mechanical equilibrium

∑

j

∂

∂xj
σij = fi with σij =

∑

kl

cijklεkl. (88)

Equations (85) to (88) lead to a systems of partial differential equations
for the displacement field u(x). This is an auxiliary problem similar to the
magnetostatic boundary value problem (see Sect. 3.5.4) which as to be solved
for a given magnetization distribution.
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Based on the above discussion we can identify two contributions to the
total magnetic Gibbs free energy: The magnetoelastic coupling energy with
an external stress

Eme = −
∫

V

∑

ij

σext
ij ε

0
ijdV (89)

and the magnetostrictive self energy

Emagstr =
1
2

∫

V

∑

ij

∑

kl

cijkl(εij − ε
0
ij)(εkl − ε

0
kl)dV. (90)

Artificial multiferroics: The magnetoelastic coupling becomes important in
artificial multiferroic structures where ferromagnetic and piezoelectric ele-
ments are combined to achieve a voltage controlled manipulation of the mag-
netic state [56]. For example piezoelectric elements can create a strain on
a magnetic tunnel junction of about 10−3 causing the magnetization to ro-
tate by 90 degrees [57]. Breaking the symmetry by a stress induced uniax-
ial anisotropy the deterministic switching between two metastable states in
square nano-element is possible as shown in Fig. (5).

4 Characteristic length scales

To obtain a qualitative understanding of equilibrium states it is helpful to
consider the relative weight of the different energy terms towards the total
Gibbs free energy. As shown in Fig. 3 the relative importance of the different
energy terms changes with the size of the magnetic sample. We can see this
most easily when we write the total Gibbs free energy

Etot = Eex + Eext + Edemag + Eani + Eme + Emagstr, (91)

in dimensionless form. From the relative weight of the energy contributions
in dimensionless form we will derive characteristic length scales which will
provide useful insight into possible magnetization processes depending on the
magnet’s size.

Let us assume that Ms is constant over the magnetic body (conditions
2 and 3 in Sect. 2). We introduce the external and demagnetizing field in
dimensionless form hext = Hext/Ms and hdemag = Hdemag/Ms and rescale
the length x̃ = x/L, where L is the sample extension. Let us choose L so that
L3 = V . We also normalize the Gibbs free energy Ẽtot = Etot/(μ0M

2
s V ).

The normalization factor, μ0M
2
s V , is proportional to the magnetostatic self

energy of fully magnetized sample. The energy contributions in dimensionless
form are
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Ẽex =
∫

Ṽ

l2ex

L2

[(
∇̃mx

)2
+
(
∇̃my

)2
+
(
∇̃mz

)2
]

dṼ , (92)

Ẽext = −
∫

Ṽ

m ∙ hextdṼ , (93)

Ẽdemag = −
1
2

∫

Ṽ

m ∙ hdemagdṼ , (94)

Ẽani = −
∫

Ṽ

K1

μ0M2
s

(c ∙m)2dṼ , (95)

where Ṽ is the domain after transformation of the length. Further, we as-
sumed uniaxial magnetic anisotropy, and neglected magnetoelastic coupling
and magnetostriction. The constant lex in (92) is defined in the following
section.

4.1 Exchange length

In (92) we introduced the exchange length

lex =

√
A

μ0M2
s
. (96)

It describe the relative importance of the exchange energy with respect to the
magnetostatic energy. Inspecting the factor (lex/L)2 in front of the brackets
in (92), we see that the exchange energy contribution increases with de-
creasing sample size L. The smaller the sample the higher is the expense
of exchange energy for non uniform magnetization. Therefore small samples
show a uniform magnetization. If the magnetization remains parallel during
switching the Stoner-Wohlfarth [58] model can be applied. In the literature
the exchange length is either defined by (96) [59] or by l′ex =

√
2A/(μ0M2

s )
[60].

4.2 Critical diameter for uniform rotation

In a sphere the magnetization reverses uniformly if its diameter is below
D ≤ Dcrit = 10.2lex [59]. During uniform rotation of the magnetization the
exchange energy is zero and the magnetostatic energy remains constant. It is
possible to lower the magnetostatic energy during reversal by magnetization
curling. Then the magnetization becomes nonuniform at the expense of ex-
change energy. The total energy will be smaller than for uniform rotation if
the sphere diameter, D, is larger than Dcrit. Nonuniform reversal decreases
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Fig. 6 Computed grain size dependence of the coercive field of a perfect Nd2Fe14B cube
at room temperature (K1 = 4.9 MJ/m3, μ0Ms = 1.61 T, A = 8 pJ/m, the mesh size is

h = 0.86
√
A/K1 = 1.1 nm, the external field is applied at an angle of 10−4 rad with

respect to the easy axis). The sample dimensions are L × L × L nm3. Left: Switching
field as function of L in units of HK. The squares give the switching field of the cube.
The dashed line is the theoretical switching field of a sphere with the same volume. A
switching field smaller than HK indicates nonuniform reversal. Right: Snap shots of the
magnetic states during switching for L = 10 nm and L = 80 nm.

the switching field as compared to uniform rotation. The switching fields of
a sphere are [59]

Hc =
2K1

μ0Ms
for D ≤ Dcrit. (97)

Hc =
2K1

μ0Ms
−

1
3
Ms +

34.66A
μ0MsD2

for D > Dcrit. (98)

In cuboids and particles with polyhedral shape the nonuniform demagnetizing
field causes a twist of the magnetization near edges or corners [61]. As a
consequence nonuniform reversal occurs for particle sizes smaller than Dcrit.
The interplay between exchange energy and magnetostatic energy also causes
a size dependence of the switching field [62, 63].

Grain size dependence of the coercive field. The coercive field of permanent
magnets decreases with increasing grain size. This can be explained by the
different scaling of the energy terms [63, 64]. The smaller the magnet the more
dominant is the exchange term. Thus it costs more energy to form a domain
wall. To achieve magnetization reversal the Zeeman energy of the reversed
magnetization in the nucleus needs to be higher. This can be accomplished by
a larger external field. Fig. 6 shows the switching field a Nd2Fe14B cube as a
function of its edge length. In addition we give the theoretical switching field
for a sphere with the same volume according to (97) and (98). Magnetization
reversal occurs by nucleation and expansion of reversed domains unless the
hard magnetic cube is smaller than 6lex.
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4.3 Wall parameter

The square root of the ratio of the exchange length and the prefactor of
the crystal anisotropy energy gives another critical length. The Bloch wall
parameter

δ0 =

√
A

K
(99)

denotes the relative importance of the exchange energy versus crystalline
anisotropy energy. It determines the width of the transition of the magne-
tization between two magnetic domains. In a Bloch wall the magnetization
rotates in a way so that no magnetic volume charges are created. The mutual
competition between exchange and anisotropy determines the domain wall
width: Minimizing the exchange energy which favors wide transition regions
whereas minimizing the crystal anisotropy energy favors narrow transition
regions. In a bulk uniaxial material the wall width is δB = πδ0.

4.3.1 Single domain size

With increasing particle the prefactor (lex/L)2 for the exchange energy in
(92) becomes smaller. A large particle can break up into magnetic domains
because the expense of exchange energy is smaller than the gain in mag-
netostatic energy. In addition to the exchange energy the transition of the
magnetization in the domain wall also increases the crystal anisotropy en-
ergy. The wall energy per unit area is 4

√
AK1. The energy of uniformly

magnetized cube is its magnetostatic energy, Edemag1 = μ0M
2
s L

3/6. In the
two domain state the magnetostatic energy is roughly one half of this value,
Edemag2 = μ0M

2
s L

3/12. The energy of the wall is Ewall2 = 4
√
AK1L

2. Equat-
ing the energy of the single domain state, Edemag1, with the energy of the
two domain state, Edemag2 +Ewall2, and solving for L gives the single domain
size of a cube

LSD ≈
48
√
AK1

μ0M2
s
. (100)

The above equation simply means that the energy of a ferromagnetic cube
with an a size L > LSD is lower in a the two domain state than in the
uniformly magnetized state. A thermally demagnetized sample with L > LSD

most likely will be in a multidomain state.
We have to keep in mind that the magnetic state of a magnet depends

on its history and whether local or global minima can be accessed over the
energy barriers that separate the different minima. The following situations
may arise:

(1) A particle in its thermally demagnetized state is multidomain although
L < LSD [65]. When cooling from the Curie temperature a particle with
L < LSD may end up in a multidomain state. Although the single domain



Micromagnetism 29

state has a lower energy it cannot be accessed because it is separated from
the multidomain state by a high energy barrier. This behavior is observed in
small Nd2Fe14B particles [65].

(2) An initially saturated cube with L > LSD will not break up into
domains spontaneously if its anisotropy field is larger than the demagnetizing
field. The sample will remain in an almost uniform state until a reversed
domain is nucleated.

(3) Magnetization reversal of a cube with L < LSD will be non-uniform.
Switching occurs by the nucleation and expansion of a reversed domain for a
particle size down to about 5lex. For example in Nd2Fe14B the single domain
limit is LSD ≈ 146 nm, the exchange length is lex = 1.97 nm. The simulation
presented in Fig. 6 shows the transition from uniform to nonuniform reversal
which occurs at L ≈ 6lex.

4.4 Mesh size in micromagnetic simulations

The required minimum mesh size in micromagnetic simulations depends on
the process that should be described by the simulations. Here a few examples:

(1) For computing the switching field of a magnetic particle we need to
describe the formation of a reversed nucleus. A reversed nucleus is formed
near edges or corners where the demagnetizing field is high. We have to resolve
the rotations of the magnetization that eventually form the reversed nucleus.
The required minimum mesh size has to be smaller than the exchange length
[60].

(2) For the simulation of domain wall motion the transition of the mag-
netization between the domains needs to be resolved. A failure to do so will
lead to an artificial pinning of the domain wall on the computational grid
[66]. In hard magnetic materials the required minimum mesh size has to be
smaller than the Bloch wall parameter.

(3) In soft magnetic elements with vanishing crystal or stress induced an-
sisotropy the magnetization varies continuously [67]. The smooth transitions
of the magnetization transitions can be resolved with a grid size larger than
the exchange length. Care has to be taken if vortices play a role in the mag-
netization process to be studied. Then artificial pinning of vortex cores on
the computational grid [66] has to be avoided.

5 Brown’s micromagnetic equation

In the following we will derive the equilibrium equations for the magneti-
zation. The total Gibbs free energy of a magnet is a functional of m(x).
To compute an equilibrium state we have to find the function m(x) that
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minimizes Etot taking into account |m(x)| = 1. In addition the boundary
conditions

∇mx ∙ n = 0, ∇my ∙ n = 0, and ∇mz ∙ n = 0 (101)

hold, where n is the surface normal. The boundary conditions follow from (11)
and the respective equations for y and z and applying Green’s first identity
to each term of (14). The boundary conditions (101) can also be understood
intuitively [15]. To be in equilibrium a magnetic moment at the surface has
to be parallel with its neighbor inside when there is no surface anisotropy.
Otherwise there is an exchange torque on the surface spin.

Most problems in micromagnetics can only be solved numerically. Instead
of solving the Euler-Lagrange equation that results from the variation of (91)
numerically we directly solve the variational problem. Direct methods [68, 69]
represent the unknown function by a set of discrete variables. The minimiza-
tion of the energy with respect to these variables gives an approximate so-
lution to the variational problem. Two well-known techniques are the Euler
method and the Ritz method. Both are used in numerical micromagnetics.

5.1 Euler method: Finite differences

In finite difference micromagnetics the solution m(x) is sampled on points
(xi, yj , zk) so that mijk = m(xi, yj , zk). On a regular grid with spacing h the
positions of the grid points are xi = x0 + ih, yj = x0 + jh, and zk = x0 + kh.
The points (xi, yj , zk) are the cell centers of the computational grid. The
magnetization is assumed to be constant within each cell. To obtain an ap-
proximation of the energy functional we replace the integral by a sum over
all grid points, m(x) by mijk, and the spatial derivatives of m(x) with the
finite difference quotients. The approximated söolution values mijk are the
unknowns of an algebraic minimization problem. The indices i, j, and k run
from 1 to the number of grid points Nx, Ny, Nz in x, y, and z direction, re-
spectively. In the following we will derive the equilibrium equations whereby
for simplicity we will not take into account the magnetoealstic coupling en-
ergy and the magnetostrictive self energy.

We can approximate the exchange energy (14) on the finite difference grid
as [70]

Eex ≈ h
3
∑

ijk

Aijk

[(
mx,i+1jk −mx,ijk

h

)2

+ . . .

]

, (102)

where we introduced the notation Aijk = A(xi, yj , zk). The bracket on the
right hand side of (102) contains 9 terms. We explicitly give only the first
term. The other 8 terms are of similar form. Similarly, we can approximate
the Zeeman energy (32)
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Eext ≈ −μ0h
3
∑

ijk

Ms,ijk(mijk ∙Hext,ijk). (103)

To approximate the magnetostatic energy we use (42) and (45). Replacing
the integrals with sums over the computational cell we obtain

Edemag ≈
μ0

8π

∑

ijk

∑

i′j′k′

Ms,ijkMs,i′j′k′

∮

∂Vijk

∮

∂Vi′j′k′

(mijk ∙ n)(mi′j′k′ ∙ n′)
|x− x′|

dSdS′.

(104)
The volume integrals in (42) and (45) vanish when we assume that m(x)
is constant within each computational cell ijk. The magnetostatic energy is
often expressed in terms of the demagnetizing tensor Nijk,i′j′k′

Edemag ≈
μ0

2
h3
∑

ijk

∑

i′j′k′

Ms,ijkm
T
ijkNijk,i′j′k′mi′j′k′Ms,i′j′k′ (105)

We approximate the anisotropy energy (60) by

Eani ≈ h
3
∑

ijk

eani(mijk). (106)

The total energy is now a function of the unknowns mijk. The constraint (5)
is approximated by

|mijk| = 1 (107)

where ijk runs over all computational cells. We obtain the equilibrium equa-
tions from differentiation

∂

∂mijk



Etot(. . . ,mijk, . . . ) +
∑

ijk

Lijk
2

(mijk ∙mijk − 1)



 = 0. (108)

In the brackets we added a Lagrange function to take care of the constraints
(107). Lijk are Lagrange multipliers. From (108) we obtain the following set
of equations for the unknowns mijk

− 2Aijkh
3

[
mi−1jk − 2mijk + mi+1jk

h2
+ . . .

]

− μ0Ms,ijkh
3Hext,ijk

+ μ0Ms,ijkh
3
∑

i′j′k′

Nijk,i′j′k′mi′j′kÄ′Ms,i′j′k′

+ h3 ∂eani

∂mijk
= −Lijkmijk.

(109)

The term in brackets is the Laplacian discretized on a regular grid. First
order equilibrium conditions require also zero derivative with respect to the
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Lagrange multipliers. This gives back the constraints (107). It is convenient
to collect all terms with the dimensions of A/m to the effective field

Heff,ijk = Hex,ijk + Hext,ijk + Hdemag,ijk + Hani,ijk. (110)

The exchange field, the magnetostatic field, and the anisotropy field at the
computational cell ijk are

Hex,ijk =
2Aijk
μ0Ms,ijk

[
mi−1jk − 2mijk + mi+1jk

h2
+ . . .

]

(111)

Hdemag,ijk = −
∑

i′j′k′

Nijk,i′j′k′mi′j′k′Ms,i′j′k′ (112)

Hani,ijk = −
1

μ0Ms,ijk

∂eani

∂mijk
, (113)

respectively. The evaluation of the exchange field (111) requires values of mijk
outside the index range [1, Nx]× [1, Ny]× [1, Nz]. These values are obtained
by mirroring the values of the surface cell at the boundary. This method
of evaluating the exchange field takes into account the boundary conditions
(101).

Using the effective field we can rewrite the equilibrium equations

μ0Ms,ijkh
3Heff,ijk = Lijkmijk. (114)

Equation (114) states that the effective field is parallel to the magnetization
at each computational cell. Instead of (114) we can also write

μ0Ms,ijkh
3mijk ×Heff,ijk = 0. (115)

The expression Ms,ijkh
3mijk is the magnetic moment of computational cell

ijk. Comparision with (1) shows that in equilibrium the torque for each small
volume element h3 (or computational cell) has to be zero. The constraints
(107) also have to be fulfilled in equilibrium.

5.2 Ritz method: Finite elements

Within the framework of the Ritz method the solution is assumed to depend
on a few adjustable parameters. The minimization of the total Gibbs free
energy with respect to these parameters gives an approximate solution [15,
16].

Most finite element solvers for micromagnetics use a magnetic scalar po-
tential for the computation of the magnetostatic energy. This goes back
to Brown [16] who introduced an expression for the magnetostatic energy,
E′demag(m, U ′), in terms of the scalar potential for the computation of equi-
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librium magnetic states using the Ritz method. We replace Edemag(m) with
E′demag(m, U ′), as introduced in (55), in the expression for for the total en-
ergy. The vector m(x) is expanded by means of basis functions ϕi with local
support around node xi

mfe(x) =
∑

i

ϕi(x)mi. (116)

Similarly, we expand the magnetic scalar potential

U fe(x) = U ′(x) =
∑

i

ϕi(x)Ui. (117)

The index i runs over all nodes of the finite element mesh. The expansion
coefficients mi and Ui are the nodal values of the unit magnetization vector
and the magnetic scalar potential respectively. We assume that the constraint
|m| = 1 is fulfilled only at the nodes of the finite element mesh. We introduce
a Lagrange function; Li are the Lagrange multipliers at the nodes of the finite
element mesh. By differentiation with respect to mi, Ui, and Li, we obtain
the equilibrium conditions

∂

∂mi

[

Etot(. . . ,mi, Ui . . . ) +
∑

i

Li
2

(mi ∙mi − 1)

]

= 0, (118)

∂

∂Ui

[

Etot(. . . ,mi, Ui . . . ) +
∑

i

Li
2

(mi ∙mi − 1)

]

= 0, (119)

∂

∂Li

[

Etot(. . . ,mi, Ui . . . ) +
∑

i

Li
2

(mi ∙mi − 1)

]

= 0. (120)

From (118) we obtain the following set of equations for the unknowns mi

2
∑

j

∫

V

A∇ϕi∇ϕjdVmj

−
∫

V

μ0MsHextϕidV

+
∫

V

μ0Ms∇UϕidV

+
∫

V

∂eani(
∑
j ϕjmj)

∂mi
dV = −Limi.

(121)

Equation (119) is the discretized form of the partial differential equation (50)
for the magnetic scalar potential. Equation (120) gives back the constraint
|m| = 1.



34 Lukas Exl, Dieter Suess and Thomas Schrefl

In the following we assume that Hext and Hdemag = −∇U are constant
over the support of basis function ϕi. Then we can introduce the effective
field at the nodes of the finite element mesh

Heff,i = −
2
μ0M

∑

j

∫

V

A∇ϕi∇ϕjdVmj

+ Hext + Hdemag −
1
μ0M

∫

V

∂eani

∂mi
dV,

(122)

whereM =
∫
V
MsϕidV . SSThe equilibrium equations are

μ0MHeff,i = Limi. (123)

We can write the equilibrium conditions in terms of a cross product of the
magnetic moment,Mmi, and the effective field at node i

μ0Mmi ×Heff,i = 0. (124)

The system is in equilibrium if the torque equals zero and the constraint
|mi| = 1 is fulfilled on all nodes of the finite element mesh.

Instead of a Lagrange function for keeping the constraint |m| = 1 project
methods [71] are commonly used in fast micromagnetic solvers [72]. In the
iterative scheme for solving (124) the search direction dk+1

i is projected onto
a plane perpendicular to mki . After each iteration k the vector mk+1

i is nor-
malized.

6 Magnetization dynamics

Brown’s equations describes the conditions for equilibrium. In many applica-
tions the response of the system to a time varying external field is important.
The equations by Landau-Lifshitz [73] or Gilbert [74] describes the time evo-
lution of the magnetization. The Gilbert equation in Landau-Lifshitz form

∂m
∂t

= −
|γ|μ0

1 + α2
m×Heff −

|γ|μ0α

1 + α2
m× (m×Heff) (125)

is widely used in numerical micromagnetics. Here |γ| = 1.76086×1011s−1T−1

is the gyromagnetic ratio and α is the Gilbert damping constant. In (125) the
unit vector of the magnetization and the effective field at the grid point of a
finite difference grid or finite element mesh may be used for m and Heff. The
first term of (125) describes the precession of the magnetization around the
effective field. The last term of (125) describes the damping. The double cross
product gives the motion of the magnetization towards the effective field.
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Fig. 7 Switching of a thin film nano-element by a short field pulse in the (-1,-1,-1)
direction for α = 0.06 (top row) and α = 0.02 (bottom row). (K1 = 0, μ0Ms = 1 T,

A = 10 pJ/m, mesh size h = 0.56
√
A/(μ0M2

s ) = 2 nm). The sample dimensions
are 100 × 20 × 2 nm3. The sample is originally magnetized in the +x direction. Left:
Magnetization as function of time. The thin doted line gives the field pulse, Hext(t).
Once the field is switched off damped oscillations occur which are clearly seen in My(t).
The bold grey line is a fit to the envelope of the magnetization component parallel to
the short axis. Right: Transient magnetic states. The numbers correspond to the black
dots in the plot of My(t) on the left.

The interplay between the precession and the damping term leads to
damped oscillations of the magnetization around its equilibrium state. In the
limiting case of small deviations from equilibrium and uniform magnetization
the amplitude of the oscillations decay as [75]

a(t) = Ce−t/t0 . (126)

For small damping the oscillations decay time is [75]

t0 =
2

αγμ0Ms
. (127)

Switching of a magnetic nano-elements. Small thin film nano-elements are key
building blocks of magnetic sensor and storage applications. By application
of a short field pulse a thin film nano-element can be switched. After reversal
the system relaxes to its equilibrium state by damped oscillations. Fig. 7
shows the switching dynamics of a NiFe film with a length of 100 nm, a
width of 20 nm, and a thickness of 2 nm. In equilibrium the magnetization
is parallel to the long axis of the particle (x axis). A Gaussian field pulse
(dotted line in Fig. 7) is applied in the (-1,-1,-1) direction. After the field is
switched off the magnetization oscillates towards the long axis of the film.
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From of fit to the envelope of the magnetization component, My(t), parallel
to the short axes we derived the characteristic decay times of the oscillation
which are t0 ≈ 0.613 ns and t0 ≈ 0.204 ns for a damping constant of α = 0.02
and α = 0.06, respectively. According to (127) the difference between the two
relaxations times is a factor or 3, given by the ratio of the damping constants.

Acknowledgements The authors the Austrian Science Fund (FWF) under gant No.
F4112 SFB ViCoM for financial support.

Appendix

The intrinsic material properties listed in Table 1 are taken from [76]. The
exchange lengths and the wall parameter are calculated as follows: lex =√
A/(μ0M2

s ), δ0 =
√
A/|K1|.

Table 1 Intrinsic magnetic properties and characteristic lengths of selected magnetic
materials.

Material TC(K) μ0Ms(T) A(pJ/m) K1(kJ/m3) lex(nm) δ0(nm)
Fe 1044 2.15 22 48 2.4 21
Co 1360 1.82 31 410 3.4 8.7
Ni 628 0.61 8 −5 5.2 40
Ni0.8Fe0.2 843 1.04 10 −1 3.4 100
CoPt 840 1.01 10 4900 3.5 1.4
Nd2Fe14B 588 1.61 8 4900 2.0 1.3
SmCo5 1020 1.08 12 17 200 3.6 0.8
Sm2Co17 1190 1.25 16 4200 3.6 2.0
Fe3O4 860 0.6 7 −13 4.9 23

The examples given in Figures 3 to 7 were computed using the micro-
magnetic simulation environment FIDIMAG [43]. FIDIMAG solves finite
difference micromagnetic problems using a Python interface. The reader is
encouraged to run computer experiments for further exploration of micro-
magnetism. In the following we illustrate the use of the Python interface for
simulating the switching dynamics of a magnetic nano-element (see Fig. 7).
The function relax system computes the initial magnetic state. The function
apply field computes the response of the magnetization under the influence
of a time varying external field.

import numpy as np
from fidimag.micro import Sim
from fidimag.common import CuboidMesh
from fidimag.micro import UniformExchange , Demag
from fidimag.micro import TimeZeeman

mu0 = 4 * np.pi * 1e-7
A = 1.0e-11
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Ms = 1./mu0

def relax_system(mesh):
sim = Sim(mesh , name=’relax’)
sim.set_tols(rtol=1e-10, atol=1e-10)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = Ms
sim.do_precession = False
sim.set_m ((0.577350269 , 0.577350269 , 0.577350269) )

sim.add(UniformExchange(A=A))
sim.add(Demag())

sim.relax()
np.save(’m0.npy’, sim.spin )

def apply_field(mesh):
sim = Sim(mesh , name=’dyn’)
sim.set_tols(rtol=1e-10, atol=1e-10)
sim.alpha = 0.02
sim.gamma = 2.211e5
sim.Ms = Ms
sim.set_m(np.load(’m0.npy’))

sim.add(UniformExchange(A=A))
sim.add(Demag())

sigma = 0.1e-9
def gaussian_fun(t):

return np.exp(-0.5 * ((t-3* sigma) / sigma)**2)

mT = 0.001 / mu0
zeeman = TimeZeeman ([-100 * mT, -100 * mT, -100 * mT], time_fun =

gaussian_fun , name=’H’)
sim.add(zeeman , save_field=True )
sim.relax(dt=1.e-12, max_steps =10000 )

if __name__ == ’__main__ ’:
mesh = CuboidMesh(nx=50, ny=10, nz=1, dx=2, dy=2, dz=2, unit_length =1 e

-9)
relax_system(mesh )
apply_field(mesh )
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