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Abstract. Localization operators have been object of study in quantum me-
chanics, in PDE and signal analysis recently. In engineering, a natural language
is given by time-frequency analysis. Arguing from this point of view, we shall
present the theory of these operators developed so far. Namely, regularity prop-
erties, composition formulae and their multilinear extension shall be highlighted.
Time-frequency analysis will provide tools, techniques and function spaces. In
particular, we shall use modulation spaces, which allow “optimal” results in terms
of regularity properties for localization operators acting on L2(Rd).
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1. Introduction and Definitions

The name “localization operators” goes back to 1988, when I. Daubechies [17]
first used these operators as a mathematical tool to localize a signal on the time-
frequency plane. Localization operators with Gaussian windows were already
known in physics: they were introduced as a quantization rule by Berezin [4]
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in 1971 and called anti-Wick operators. Since their first appearance, they have
been extensively studied as an important mathematical tool in signal analysis and
other applications (see [18, 37, 44] and references therein). Beyond signal analysis
and the anti-Wick quantization procedure [4, 38], we recall their employment as
approximation of pseudodifferential operators (“wave packets”) [16, 27]. Besides,
in other branches of mathematics, localization operators are also named Toeplitz
operators (see, e.g., [19]) or short-time Fourier transform multipliers [25].

The objective of this chapter is to report on recent progress on localization
operators and to present the state-of-the-art. We complement the “First survey of
Gabor multipliers” [25] by Feichtinger and Nowak. Since the appearance of their
survey our understanding of localization operators has expanded considerably, and
many open questions have since been resolved satisfactorily.

The very definition of localization operators is carried out by time-frequency
tools and representations, see for example [28]. Indeed, we consider the linear
operators of translation and modulation (so-called time-frequency shifts) given by

(1) Txf(t) = f(t− x) and Mωf(t) = e2πiωtf(t) .

These occur in the following time-frequency representation. Let g be a non-zero
window function in the Schwartz class S(Rd), then the short-time Fourier transform
(STFT) of a signal f ∈ L2(Rd) with respect to the window g is given by

(2) Vgf(x, ω) = 〈f, MωTxg〉 =

∫
Rd

f(t) g(t− x) e−2πiωt dt .

We have Vgf ∈ L2(R2d). This definition can be extended to every pair of dual
topological vector spaces, whose duality, denoted by 〈·, ·〉, extends the inner product
on L2(Rd). For instance, it may be suited to the framework of distributions and
ultra-distributions.

Just few words to explain the meaning of the previous “time-frequency” repre-
sentation. If f(t) represents a signal varying in time, its Fourier transform f̂(ω)
shows the distribution of its frequency ω, without any additional information about
“when” these frequencies appear. To overcome this problem, one may choose a
non-negative window function g well localized around the origin. Then, the infor-
mation of the signal f at the instant x can be obtained by shifting the window g
till the instant x under consideration, and by computing the Fourier transform of
the product f(x)g(t− x), that localizes f around the instant time x.

Once the analysis of the signal f is terminated, we can reconstruct the original
signal f by a suitable inversion procedure. Namely, the reproducing formula related
to the STFT, for every pairs of windows ϕ1, ϕ2 ∈ S(Rd) with 〈ϕ1, ϕ2〉 6= 0, reads
as follows

(3)

∫
R2d

Vϕ1f(x, ω)MωTxϕ2 dxdω = 〈ϕ2, ϕ1〉f .

The function ϕ1 is called the analysis window, because the STFT Vϕ1f gives the
time-frequency distribution of the signal f , whereas the window ϕ2 permits to
come back to the original f and, consequently, is called the synthesis window.
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The signal analysis often requires to highlight some features of the time-frequency
distribution of f . This is achieved by first multiplying the STFT Vϕ1f by a suitable

function a(x, ω) and secondly by constructing f̃ from the product the product
aVϕ2f . In other words, we recover a filtered version of the original signal f which
we denote by Aϕ1,ϕ2

a . This intuition motivates the definition of time-frequency
localization operators.

Definition 1.1. The localization operator Aϕ1,ϕ2
a with symbol a ∈ S(R2d) and win-

dows ϕ1, ϕ2 ∈ S(Rd) is defined to be

(4) Aϕ1,ϕ2
a f(t) =

∫
R2d

a(x, ω)Vϕ1f(x, ω)MωTxϕ2(t) dxdω , f ∈ L2(Rd).

The preceding definition makes sense also if we assume a ∈ L∞(R2d), see below.
In particular, if a = χΩ for some compact set Ω ⊆ R2d and ϕ1 = ϕ2, then Aϕ1,ϕ2

a is
interpreted as the part of f that “lives on the set Ω” in the time-frequency plane.
This is why Aϕ1,ϕ2

a is called a localization operator.
Often it is more convenient to interpret the definition of Aϕ1,ϕ2

a in a weak sense,
then (4) can be recast as

(5) 〈Aϕ1,ϕ2
a f, g〉 = 〈aVϕ1f, Vϕ2g〉 = 〈a, Vϕ1f Vϕ2g〉, f, g ∈ S(Rd) .

If we enlarge the class of symbols to the tempered distributions, i.e., we take
a ∈ S ′(R2d) whereas ϕ1, ϕ2 ∈ S(Rd), then (4) is a well-defined continuous operator
from S(Rd) to S ′(Rd). The previous assertion can be proven directly using the weak
definition. For every window ϕ1 ∈ S(Rd) the STFT Vϕ1 is a continuous mapping
from S(Rd) into S(R2d) (see, e.g., [28, Theorem 11.2.5]). Since also Vϕ2g ∈ S(R2d),

the brackets 〈a, Vϕ1f Vϕ2g〉 are well-defined in the duality between S ′(R2d) and
S(R2d). Consequently, the left-hand side of (5) can be interpreted in the duality
between S ′(Rd) and S(Rd) and shows that Aϕ1,ϕ2

a is a continuous operator from
S(Rd) to S ′(Rd). The continuity of the mapping Aϕ1,ϕ2

a is achieved by using the
continuity of both the STFT and the brackets 〈·, ·〉. Similar arguments can be
applied for tempered ultra-distributions, as we are going to see later on.

If ϕ1(t) = ϕ2(t) = e−πt2 , then Aa = Aϕ1,ϕ2
a is the classical anti-Wick operator

and the mapping a → Aϕ1,ϕ2
a is interpreted as a quantization rule [4, 38, 44].

Note that the time-frequency shifts (x, ω, τ) 7→ τTxMω, (x, ω) ∈ R2d, |τ | = 1,
define the Schrödinger representation of the Heisenberg group; for a deeper under-
standing of localization operators it is therefore natural to use the mathematical
tools associated to harmonic analysis and time-frequency shifts, see [27, 28] and
the next Section 2.

Localization operators can be viewed as a multilinear mapping

(6) (a, ϕ1, ϕ2) 7→ Aϕ1,ϕ2
a ,

acting on products of symbol and window spaces. The dependence of the localiza-
tion operator Aϕ1,ϕ2

a on all three parameters has been widely studied in different
functional frameworks. The start was given by subspaces of the tempered distribu-
tions. The basic subspace is L2(Rd), but many other Banach and Hilbert spaces,
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as well as topological vector spaces, have been considered. We mention Lp spaces
[6, 44], potential and Sobolev spaces [7], modulation spaces [10, 25, 35, 42, 43] and
Gelfand-Shilov spaces [15] (the last ones in the ultra-distribution environment) as
samples of spaces either for choosing symbol and windows or for defining the action
of the related localization operator. The outcomes are manifold. The continuity of
the mapping in (6) can be expressed by an inequality of the form

(7) ‖Aϕ1,ϕ2
a ‖op ≤ C‖a‖B1 ‖ϕ1‖B2 ‖ϕ2‖B3 ,

where B1, B2, B3 are suitable spaces of symbols and windows. For example, if
a ∈ L∞(Rd) and ϕ1, ϕ2 ∈ L2(Rd), then

‖Aϕ1,ϕ2
a ‖B(L2) = sup

‖f‖L2=1

sup
‖g‖L2=1

|〈Aϕ1,ϕ2
a f, g〉|

= sup
‖f‖L2=1

sup
‖g‖L2=1

|〈a, Vϕ1f Vϕ2g〉|

≤ sup
‖f‖L2=1

sup
‖g‖L2=1

‖a‖L∞‖Vϕ1f Vϕ2g‖L1

≤ sup
‖f‖L2=1

sup
‖g‖L2=1

‖a‖L∞‖Vϕ1f‖L2‖Vϕ2g‖L2

= ‖a‖L∞‖ϕ1‖L2‖ϕ2‖L2 ,

where the last inequality is achieved by using the orthogonality relations for the
STFT

‖Vϕf‖L2(R2d) = ‖ϕ‖L2(Rd)‖f‖L2(Rd), ∀ϕ, f ∈ L2(Rd).

Thus for this particular choice of symbol classes and window spaces we obtain the
L2 boundedness. The previous easy proof gives just a flavour of the boundedness
results for localization operators, we shall see that the symbol class L∞ can be en-
larged significantly. Even a tempered distribution like δ may give the boundedness
of the corresponding localization operator. Apart from continuity, estimates of the
type (7) also supply Hilbert-Schmidt, Trace class and Schatten class properties for
Aϕ1,ϕ2

a [11, 15].
Among the many function/(ultra-)distribution spaces employed, modulation spaces

reveal to be the optimal choice for handling localization operators, see Section 3
below. As special case we mention Feichtinger’s algebra M1(Rd) defined by the
norm

‖f‖M1 := ‖Vgf‖L1(R2d)

for some (hence all) non-zero g ∈ S(Rd) [23, 28]. Its dual space M∞(R2d) is a very
useful subspace of tempered distributions and possesses the norm

‖f‖M∞ := sup
(x,ω)∈R2d

|Vgf(x, ω)| .

With these spaces the estimate (7) reads as follows:

Theorem 1.2. If a ∈ M∞(R2d), and ϕ1, ϕ2 ∈ M1(Rd), then Aϕ1,ϕ2
a is bounded on

L2(Rd), with operator norm at most

‖Aϕ1,ϕ2
a ‖B(L2) ≤ C‖a‖M∞‖ϕ1‖M1‖ϕ2‖M1 .
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The striking fact is the converse of the preceding result [10].

Theorem 1.3. If Aϕ1,ϕ2
a is bounded on L2(Rd) uniformly with respect to all win-

dows ϕ1, ϕ2 ∈ M1, i.e., if there exists a constant C > 0 depending only on the
symbol a such that, for all ϕ1, ϕ2 ∈ S(Rd),

(8) ‖Aϕ1,ϕ2
a ‖B(L2) ≤ C‖ϕ1‖M1 ‖ϕ2‖M1 ,

then a ∈ M∞.

Similar statements hold true for Schatten class properties [11] and for weighted
ultra-distributional modulation spaces [15]. A recent result in the study of lo-
calization operators [26] reveals the optimality of modulation spaces even for the
compactness property. These topics shall be detailed in Sections 4 and 5.

In Section 6 we shall treat the composition of localization operators. Whereas the
product of two pseudodifferential operators is again a pseudodifferential operator,
in general the composition of two localization operators is no longer a localization
operator. This additional difficulty has captured the interest of several authors,
generating some remarkable ideas. An exact product formula for localization op-
erators, obtained in [20], shall be presented. Notice, however, that it works only
under very restrictive conditions and is unstable. In another direction, many au-
thors have made resort to asymptotic expansions that realize the composition of
two localization operators as a sum of localization operators and a controllable re-
mainder [1, 14, 33, 40]. These contributions are mainly motivated by applications
to PDEs and energy estimates, and therefore use smooth symbols defined by dif-
ferentiability properties, such as the traditional Hörmander or Shubin classes, and
Gaussian windows. In the context of time-frequency analysis, where modulation
spaces can be employed, much rougher symbols and more general window func-
tions are allowed to be used for localization operators. Consequently, the product
formula in [14] has been extended to rougher spaces of symbols in [12], as we are
going to show.

In the end (Section 7), we shall present a new framework for localization opera-
tors. Namely, the study of multilinear pseudodifferential operators [2, 3] motivates
the definition of multilinear localization operators. For them, we shall present
the sufficient and necessary boundedness properties together with connection with
Kohn-Nirenberg operators [13].

Notation. We define t2 = t · t, for t ∈ Rd, and xy = x · y is the scalar product
on Rd.

The Schwartz class is denoted by S(Rd), the space of tempered distributions by
S ′(Rd). We use the brackets 〈f, g〉 to denote the extension to S(Rd)×S ′(Rd) of the

inner product 〈f, g〉 =
∫

f(t)g(t)dt on L2(Rd). The Fourier transform is normalized

to be f̂(ω) = Ff(ω) =
∫

f(t)e−2πitωdt, the involution g∗ is g∗(t) = g(−t).
The singular values {sk(L)}∞k=1 of a compact operator L ∈ B(L2(Rd)) are the

eigenvalues of the positive self-adjoint operator
√

L∗L. Equivalently, for every k ∈
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N, the singular value {sk(L)} is given by

sk(L) = inf{‖L− T‖L2 : T ∈ B(L2(Rd)) and dim Im (T ) ≤ k}.

For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators whose
singular values lie in lp. For consistency, we define S∞ := B(L2(Rd)) to be the space
of bounded operators on L2(Rd). In particular, S2 is the space of Hilbert-Schmidt
operators, and S1 is the space of trace class operators.

Throughout the paper, we shall use the notation A . B to indicate A ≤ cB for
a suitable constant c > 0, whereas A � B if A ≤ cB and B ≤ kA, for suitable
c, k > 0.

2. Time-Frequency Methods

First we summarize some concepts and tools of time-frequency analysis, for an
extended exposition we refer to the textbooks [27, 28].

The time-frequency representations required for localization operators and the
Weyl calculus are the short-time Fourier transform and the Wigner distribution.

The short-time Fourier transform (STFT) is defined in (2). The cross-Wigner
distribution W (f, g) of f, g ∈ L2(Rd) is given by

(9) W (f, g)(x, ω) =

∫
f(x +

t

2
)g(x− t

2
)e−2πiωt dt.

The quadratic expression Wf = W (f, f) is usually called the Wigner distribution
of f .

Both the STFT Vgf and the Wigner distribution W (f, g) are defined for f, g in
many possible pairs of Banach spaces. For instance, they both map L2(Rd)×L2(Rd)
into L2(R2d) and S(Rd)× S(Rd) into S(R2d). Furthermore, they can be extended
to a map from S ′(Rd)× S ′(Rd) into S ′(R2d).

For a non-zero g ∈ L2(Rd), we write V ∗
g for the adjoint of Vg, given by

〈V ∗
g F, f〉 = 〈F, Vgf〉, f ∈ L2(Rd), F ∈ L2(R2d).

In particular, for F ∈ S(R2d), g ∈ S(Rd), we have

(10) V ∗
g F (t) =

∫
R2d

F (x, ω)MωTxg(t) dx dω ∈ S(Rd).

Take f ∈ S(Rd) and set F = Vgf , then

(11) f(t) =
1

‖g‖2
L2

∫
R2d

Vgf(x, ω)MωTxg(t) dx dω ∈ S(Rd) =
1

‖g‖2
L2

V ∗
g Vgf(t).

We refer to [28, Proposition 11.3.2] for a detailed treatment of the adjoint operator.

Representation of localization operators as Weyl/Kohn-Nirenberg oper-
ators. Let W (g, f) be the cross-Wigner distribution as defined in (9). Then the
Weyl operator Lσ of symbol σ ∈ S ′(R2d) is defined by

(12) 〈Lσf, g〉 = 〈σ, W (g, f)〉, f, g ∈ S(Rd).
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Every linear continuous operator from S(Rd) to S ′(Rd) can be represented as a
Weyl operator, and a calculation in [7, 27, 38] reveals that

(13) Aϕ1,ϕ2
a = La∗W (ϕ2,ϕ1),

so the (Weyl) symbol of Aϕ1,ϕ2
a is given by

(14) σ = a ∗W (ϕ2, ϕ1) .

To get boundedness results for a localization operator, it is sometimes convenient
to write it in a different pseudodifferential form. Consider the Kohn-Nirenberg form
of a pseudodifferential operator, given by

(15) Tτf(x) =

∫
Rd

τ(x, ω)f̂(ω)e2πixω dω, f ∈ S(Rd),

where τ is a measurable function, or even a tempered distribution on R2d.
If we define the rotation operator U acting on a function F on R2d by

(16) UF (x, ω) = F (ω,−x), ∀ (x, ω) ∈ R2d,

then, the identity of operators below holds [13]:

(17) Aϕ1,ϕ2
a = Tτ ,

with the Kohn-Nirenberg symbol τ given by

(18) τ = a ∗ UF(Vϕ1ϕ2)

The expression UF(Vϕ1ϕ2) is usually called the Rihaczek distribution.

3. Function Spaces

Gelfand-Shilov spaces. The Gelfand-Shilov spaces were introduced by Gelfand
and Shilov in [30]. They have been applied by many authors in different contexts,
see, e.g. [9, 32, 34, 41]. For the sake of completeness, we recall their definition and
properties in more generality than required.

Definition 3.1. Let α, β ∈ Rd
+, and assume A1, . . . , Ad, B1, . . . , Bd > 0. Then the

Gelfand-Shilov space Sα,B
β,A = Sα,B

β,A (Rd) is defined by

Sα,B
β,A = {f ∈ C∞(Rd) | (∃C > 0) ‖xp∂qf‖L∞ ≤ CAp(p!)βBq(q!)α, ∀p, q ∈ Nd

0}.
We then consider projective and inductive limits denoted by

Σα
β = proj lim

A>0,B>0
Sα,B

β,A ; Sα
β := ind lim

A>0,B>0
Sα,B

β,A .

For a comprehensive treatment of Gelfand-Shilov spaces we refer to [30]. We
limit ourselves to those features that will be useful for our study.

Proposition 3.2. The next statements are equivalent [15, 30, 31]:
(i) f ∈ Sα

β (Rd).

(ii) f ∈ C∞(Rd) and there exist real constants h > 0, k > 0 such that:

(19) ‖feh|x|1/β‖L∞ < ∞ and ‖Ffek|ω|1/α‖L∞ < ∞,
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where |x|1/β = |x1|1/β1 + · · ·+ |xd|1/βd, |ω|1/α = |ω1|1/α1 + · · ·+ |ωd|1/αd.

(iii) f ∈ C∞(Rd) and there exists C > 0, h > 0 such that

(20) ‖(∂qf)eh|x|1/β‖L∞ ≤ C |q|+1(q!)α, ∀q ∈ Nd
0.

Gelfand-Shilov spaces enjoy the following embeddings:
(i) For α, β ≥ 0 [30],

(21) Σα
β ↪→ Sα

β ↪→ S.

(ii) For every 0 ≤ α1 < α2 and 0 ≤ β1 < β2 [15],

(22) Sα1
β1

↪→ Σα2
β2

.

Furthermore, Sα
β is not trivial if and only if α + β > 1 or α + β = 1 and αβ > 0.

The spaces Σα
α with α ≥ 1/2 are studied by Pilipović [34]. In particular, the case

α = 1/2 yields Σ
1/2
1/2 = ∅.

The Fourier transform F is a topological isomorphism between Sβ
α and Sα

β

(F(Sβ
α) = Sα

β ) and extends to a continuous linear transform from (Sβ
α)′ onto (Sα

β )′.
If α ≥ 1/2, then F(Sα

α) = Sα
α . The Gelfand-Shilov spaces are invariant under

time-frequency shifts:

(23) Tx(Sβ
α) = Sβ

α and Mω(Sβ
α) = Sβ

α ,

and similarly to the Σα
β .

Therefore the spaces Sα
α are a family of Fourier transform and time-frequency

shift invariant spaces which are contained in the Schwartz class S. Among these

Sα
α the smallest non-trivial Gelfand-Shilov space is given by S1/2

1/2 . A basic example

is given by f(x) = e−πx2 ∈ S1/2
1/2 (Rd).

Another useful characterization of the space Sα
α involves the STFT: f ∈ Sα

α (Rd)
if and only if Vgf ∈ Sα

α (R2d) (see [32, Proposition 3.12] and reference therein). We

will use the case α = 1/2: for a non-zero window g ∈ S1/2
1/2 we have

(24) Vgf ∈ S1/2
1/2 (R2d) ⇔ f ∈ S1/2

1/2 (Rd).

The strong duals of Gelfand-Shilov classes Sα
β and Σα

β are spaces of tempered
ultra-distributions of Roumieu and Beurling type and will be denoted by (Sα

β )′ and
(Σα

β)′, respectively.

Modulation Spaces. The modulation space norms traditionally measure the joint
time-frequency distribution of f ∈ S ′, we refer, for instance, to [21], [28, Ch. 11-13]
and the original literature quoted there for various properties and applications. In
that setting it is sufficient to observe modulation spaces with weights which admit
at most polynomial growth at infinity. However the study of ultra-distributions
requires a more general approach that includes the weights of exponential growth.

Weight Functions. In the sequel v will always be a continuous, positive, even,
submultiplicative function (submultiplicative weight), i.e., v(0) = 1, v(z) = v(−z),
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and v(z1 + z2) ≤ v(z1)v(z2), for all z, z1, z2 ∈ R2d. Moreover, v is assumed to be
even in each group of coordinates, that is, v(±x,±ω) = v(x, ω), for all (x, ω) ∈ R2d

and all choices of signs. Submultiplicativity implies that v(z) is dominated by an
exponential function, i.e.

(25) ∃C, k > 0 such that v(z) ≤ Cek|z|, z ∈ R2d.

For example, every weight of the form v(z) = ea|z|b(1 + |z|)s logr(e + |z|) for
parameters a, r, s ≥ 0, 0 ≤ b ≤ 1 satisfies the above conditions.

Associated to every submultiplicative weight we consider the class of so-called
v-moderate weights Mv. A positive, even weight function m on R2d belongs to Mv

if it satisfies the condition

m(z1 + z2) ≤ Cv(z1)m(z2) ∀z1, z2 ∈ R2d .

We note that this definition implies that 1
v

. m . v, m 6= 0 everywhere, and that
1/m ∈Mv.

For the investigation of localization operators the weights mostly used are defined
by

vs(z) = vs(x, ω) = 〈z〉s = (1 + x2 + ω2)s/2, z = (x, ω) ∈ R2d(26)

ws(z) = ws(x, ω) = es|(x,ω)|, z = (x, ω) ∈ R2d ,(27)

τs(z) = τs(x, ω) = 〈ω〉s(28)

µs(z) = µs(x, ω) = es|ω| .(29)

Definition 3.3. Let m be a weight in Mv, and g a non-zero window function in

S1/2
1/2 . For 1 ≤ p, q ≤ ∞ and f ∈ S1/2

1/2 we define the modulation space norm (on

S1/2
1/2) by

‖f‖Mp,q
m

= ‖Vgf‖Lp,q
m

=

(∫
Rd

(∫
Rd

|Vgf(x, ω)|pm(x, ω)p dx

)q/p

dω

)1/q

,

(with obvious changes if either p = ∞ or q = ∞). If p, q < ∞, the modulation

space Mp,q
m is the norm completion of S1/2

1/2 in the Mp,q
m -norm. If p = ∞ or q = ∞,

then Mp,q
m is the completion of S1/2

1/2 in the weak∗ topology. If p = q, Mp
m := Mp,p

m ,

and, if m ≡ 1, then Mp,q and Mp stand for Mp,q
m and Mp,p

m , respectively.

Notice that:
(i) If f, g ∈ S1/2

1/2 (Rd), the above integral is convergent thanks to (19) and (24).

Namely, the constant h in (19) guarantees ‖Vgfeh|·|2‖L∞ < ∞ and, for m ∈ Mv,
we have∫

Rd

(∫
Rd

|Vgf(x, ω)|pm(x, ω)p dx

)q/p

dω

≤ C ‖(Vgf)eh|·|2‖L∞

∫
Rd

(∫
Rd

|m(x, ω)|pe−hp|(x,ω)|2 dx

)q/p

dω < ∞ .
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(ii) By definition, Mp,q
m is a Banach space. Besides, it is proven for the sub-

exponential case in [21] and for the exponential one in [15] that their definition
does not depend on the choice of the window g, that can be enlarged to the mod-
ulation algebra M1

v .
(iii) For m ∈ Mv of at most polynomial growth, Mp,q

m ⊂ S ′ and the definition 3.3
reads as [10, 28]:

Mp,q
m (Rd) = {f ∈ S ′(Rd) : Vgf ∈ Lp,q

m (R2d)}.
(iv) For every weight m ∈ Mv, Mp,q

m is the subspace of ultra-distribution (Σ1
1)
′

defined in [15, Definition 2.1].
(iv) If m belongs to Mv and fulfills the GRS-condition limn→∞ v(nz)1/n = 1, for
all z ∈ R2d, the definition of modulation spaces is the same as in [12] (because the

“space of special windows” SC is a subset of S1/2
1/2 ).

(v) For related constructions of modulation spaces, involving the theory of coorbit
spaces, we refer to [22, 24].

The class of modulation spaces contains the following well-known function spaces:
Weighted L2-spaces: M2

〈x〉s(Rd) = L2
s(Rd) = {f : f(x)〈x〉s ∈ L2(Rd)}, s ∈ R.

Sobolev spaces: M2
〈ω〉s(Rd) = Hs(Rd) = {f : f̂(ω)〈ω〉s ∈ L2(Rd)}, s ∈ R.

Shubin-Sobolev spaces [38, 7]: M2
〈(x,ω)〉s(Rd) = L2

s(Rd) ∩Hs(Rd) = Qs(Rd).

Feichtinger’s algebra: M1(Rd) = S0(Rd).
The characterization of the Schwartz class of tempered distributions is given

in [31]: we have S(Rd) =
⋂

s≥0 M1
〈·〉s(Rd) and S ′(Rd) =

⋃
s≥0 M∞

1/〈·〉s(Rd). A similar
characterization for Gelfand-Shilov spaces and tempered ultra-distributions was ob-
tained in [15, Proposition 2.3]: Let 1 ≤ p, q ≤ ∞, and let ws be given by (27), then,

S1
1 =

⋂
s≥0

Mp,q
ws

, (S1
1 )′ =

⋃
s≥0

Mp,q
1/ws

.(30)

Σ1
1 =

⋃
s>0

Mp,q
ws

, (Σ1
1)
′ =

⋂
s>0

Mp,q
1/ws

.(31)

Potential spaces. For s ∈ R the Bessel kernel is

(32) Gs = F−1{(1 + | · |2)−s/2},
and the potential space [5] is defined by

W p
s = Gs ∗ Lp(Rd) = {f ∈ S ′, f = Gs ∗ g, g ∈ Lp}

with norm ‖f‖W p
s

= ‖g‖Lp .
For comparison we list the following embeddings between potential and modu-

lation spaces [10].

Lemma 3.1. We have
(i) If p1 ≤ p2 and q1 ≤ q2, then Mp1,q1

m ↪→ Mp2,q2
m .

(ii) For 1 ≤ p ≤ ∞ and s ∈ R
W p

s (Rd) ↪→ Mp,∞
τs

(Rd).
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Consequently, Lp ⊆ Mp,∞, and in particular, L∞ ⊆ M∞. But M∞ contains all
bounded measures on Rd and other tempered distributions. For instance, the point
measure δ belongs to M∞, because for g ∈ S we have

|Vgδ(x, ω)| = |〈δ,MωTxg〉| = |ḡ(−x)| ≤ ‖g‖L∞ , ∀(x, ω) ∈ R2d.

Convolution Relations and Wigner Estimates. In view of the relation be-
tween the multiplier a and the Weyl symbol (14), we need to understand the con-
volution relations between modulation spaces and some properties of the Wigner
distribution.

We first state a convolution relation for modulation spaces proven in [10], in the
style of Young’s theorem. Let v be an arbitrary submultiplicative weight on R2d

and m a v-moderate weight. We write m1(x) = m(x, 0) and m2(ω) = m(0, ω) for
the restrictions to Rd × {0} and {0} × Rd, and likewise for v.

Proposition 3.4. Let ν(ω) > 0 be an arbitrary weight function on Rd and
1 ≤ p, q, r, s, t ≤ ∞. If

1

p
+

1

q
− 1 =

1

r
, and

1

t
+

1

t′
= 1 ,

then

(33) Mp,st
m1⊗ν(Rd) ∗M q,st′

v1⊗v2ν−1(Rd) ↪→ M r,s
m (Rd)

with norm inequality ‖f ∗ h‖Mr,s
m

. ‖f‖Mp,st
m1⊗ν

‖h‖
Mq,st′

v1⊗v2ν−1
.

REMARKS: 1. Despite the large number of indices, the statement of this propo-
sition has some intuitive meaning: a function f ∈ Mp,q behaves like f ∈ Lp and
f̂ ∈ Lq; so the parameters related to the x-variable behave like those in Young’s
theorem for convolution, whereas the parameters related to ω behave like Hölder’s
inequality for pointwise multiplication.

2. A special case of Proposition 3.4 with a different proof is contained in [42].

The modulation space norm of a cross-Wigner distribution may be controlled by
the window norms, as taken from [10, 15].

Proposition 3.5. Let 1 ≤ p ≤ ∞ and s ≥ 0.
i) If ϕ1 ∈ M1

vs
(Rd) and ϕ2 ∈ Mp

vs
(Rd), then W (ϕ2, ϕ1) ∈ M1,p

τs
(R2d), with

(34) ‖W (ϕ2, ϕ1)‖M1,p
τs

. ‖ϕ1‖M1
vs
‖ϕ2‖Mp

vs
.

ii) If ϕ1 ∈ M1
ws

(Rd) and ϕ2 ∈ Mp
ws

(Rd), then W (ϕ2, ϕ1) ∈ M1,p
µs

(R2d) with

(35) ‖W (ϕ2, ϕ1)‖M1,p
µs

. ‖ϕ1‖M1
ws
‖ϕ2‖Mp

ws
.

4. Regularity Results

In this section, we first give general sufficient conditions for boundedness and
Schatten classes of localization operators. Then we treat ultra-distributions with
compact support as symbols, and finally we shall state a compactness result.
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4.1. Sufficient Conditions for Boundedness and Schatten Class. Using the
tools of time-frequency analysis in Section 3, we can now obtain the properties of
localization operators with symbols in modulation spaces, by reducing the problem
to the corresponding one for the Weyl calculus.

First, we recall a boundedness and trace class result for the Weyl operators in
terms of modulation spaces.

Theorem 4.1. (i) If σ ∈ M∞,1(R2d), then Lσ is bounded on Mp,q(Rd), 1 ≤ p, q ≤
∞, with a uniform estimate ‖Lσ‖S∞ . ‖σ‖M∞,1 for the operator norm. In partic-
ular, Lσ is bounded on L2(Rd).

(ii) If σ ∈ M1(R2d), then Lσ ∈ S1 and ‖Lσ‖S1 . ‖σ‖M1.
(iii) If 1 ≤ p ≤ 2 and σ ∈ Mp(R2d), then Lσ ∈ Sp and ‖Lσ‖Sp . ‖σ‖Mp.

(iv) If 2 ≤ p ≤ ∞ and σ ∈ Mp,p′(R2d), then Lσ ∈ Sp and ‖Lσ‖Sp . ‖σ‖Mp,p′ .

One of many proofs of (i) can be found in [28, Thm. 14.5.2], the L2-boundedness
was first discovered by Sjöstrand [39]. The trace class property (ii) is proved in [29],
whereas (iii) and (iv) follow by interpolation from the first two statements, since
[M1, M2]θ = Mp for 1 ≤ p ≤ 2, and [M∞,1, M2,2]θ = Mp,p′ for 2 ≤ p ≤ ∞.

Based on the Thm. 4.1 and Prop. 3.4, we present the most general boundedness
results for localization operators obtained so far. We detail the polynomial weight
case, the exponential one is stated and proved by replacing the weight vs by ws

and τs by µs (see [15, Theorem 3.2])

Theorem 4.2. Let s ≥ 0, a ∈ M∞
1/τs

(R2d), ϕ1, ϕ2 ∈ M1
vs

(Rd). Then Aϕ1,ϕ2
a is

bounded on Mp,q(Rd) for all 1 ≤ p, q ≤ ∞, and the operator norm satisfies the
uniform estimate

‖Aϕ1,ϕ2
a ‖S∞ . ‖a‖M∞

1/τs
‖ϕ1‖M1

vs
‖ϕ2‖M1

vs
.

Proof. See [10, Theorem 3.2]. To highlight the role of time-frequency analysis, we
sketch the proof. An appropriate convolution relation is employed to show that
the Weyl symbol a ∗W (ϕ2, ϕ1) of Aϕ1,ϕ2

a is in M∞,1. Namely, if ϕ1, ϕ2 ∈ M1
vs

(Rd),
then by (34) we have W (ϕ2, ϕ1) ∈ M1

τs
(R2d). Applying Proposition 3.4 in the form

M∞
1/τs

∗M1
τs
⊆ M∞,1, we obtain that the Weyl symbol σ = a ∗W (ϕ2, ϕ1) ∈ M∞,1.

The result now follows from Theorem 4.1 (i).

REMARK: To compare Theorem 4.2 to existing results, we recall that the standard
condition for Aϕ1,ϕ2

a to be bounded is a ∈ L∞(R2d), see [44]. A more subtle result of
Feichtinger and Nowak [25] shows that the condition a in the Wiener amalgam space
W (M, L∞) is sufficient for boundedness. Since we have the proper embeddings
L∞ ⊂ W (M, L∞) ⊂ M∞ ⊂ M∞

1/τs
for s ≥ 0, Theorem 4.2 appears as a significant

improvement. A special case of Theorem 4.2 follows also from Toft’s work [43].

Since τs(z, ζ) = 〈ζ〉s depends only on the frequency variable, the condition
a ∈ M∞

1/τs
describes the admissible roughness of a, while in some sense a remains

bounded in z. On the other hand, if we allow the symbol a to grow in both time and
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frequency by choosing the “full” weight vs = 〈(z, ζ)〉s, then we obtain a negative
result [10, Proposition 3.3]:

Proposition 4.3. For any s > 0 there exist symbols a ∈ M∞
1/vs

(R2d) and windows

ϕ1, ϕ2 ∈ S(Rd) such that Aϕ1,ϕ2
a is unbounded on L2(Rd).

These results demonstrate that bounded symbols with negative smoothness may
still yield bounded localization operators, provided that the roughness of a is com-
pensated by a suitable time-frequency localization of the windows. On the other
hand, a smooth unbounded symbol cannot, in general, yield a bounded operator.

The Schatten class properties of localization operators with symbols in modula-
tion spaces are achieved accordingly. Combining Proposition 3.4 with Theorem 4.1,
almost optimal conditions for Aϕ1,ϕ2

a ∈ Sp are derived in [10, 15]. Again, we state
the earliest result for weights of polynomial growth [10, Theorem 3.4].

Theorem 4.4. (i) If 1 ≤ p ≤ 2, then the mapping (a, ϕ1, ϕ2) 7→ Aϕ1,ϕ2
a is bounded

from Mp,∞
1/τs

(R2d)×M1
vs

(Rd)×Mp
vs

(Rd) into Sp, in other words,

‖Aϕ1,ϕ2
a ‖Sp . ‖a‖Mp,∞

1/τs
‖ϕ1‖M1

vs
‖ϕ2‖Mp

vs
.

(ii) If 2 ≤ p ≤ ∞, then the mapping (a, ϕ1, ϕ2) 7→ Aϕ1,ϕ2
a is bounded from Mp,∞

1/τs
×

M1
vs
×Mp′

vs
into Sp, and

‖Aϕ1,ϕ2
a ‖Sp . ‖a‖Mp,∞

1/τs
‖ϕ1‖M1

vs
‖ϕ2‖Mp′

vs
.

Using the embeddings W p
−s ↪→ Mp,∞

1/τs
(Lemma 3.1) and M1

vs
↪→ Mp

vs
, one obtains

a slightly weaker statement for symbols in potential spaces. This result was already
derived in [7, Thm. 4.7].

Corollary 4.5. Let a ∈ W p
−s(R2d) for some s ≥ 0, 1 ≤ p ≤ ∞, and ϕ1, ϕ2 ∈

M1
vs

(Rd). Then

‖Aϕ1,ϕ2
a ‖Sp . ‖a‖W p

−s
‖ϕ1‖M1

vs
‖ϕ2‖M1

vs
.

REMARK: By using other convolution relations provided by Proposition 3.4,
interpolation and embedding properties of modulation spaces, one may derive many
variations of Theorem 4.4. We only mention two small modifications that might
be of interest.

(a) If a ∈ M1,p
1/τs

and ϕ1 ∈ M1
vs

, ϕ2 ∈ Mp′
vs

, then Aϕ1,ϕ2
a is of trace class, because

M1,p
1/τs

∗M1,p′
τs

⊆ M1. Comparing to Theorem 4.4(i), we see that this result allows us

to use a window ϕ2 with less time-frequency concentration, however, at the price
of a slightly smaller symbol class.

(b) If (a, ϕ1, ϕ2) ∈ Mp,∞
1/τs

×M q
vs
×M r

vs
, where 1/q +1/r− 1 = 1/p and 1 ≤ p ≤ 2,

then Aϕ1,ϕ2
a ∈ Sp. To see this, we observe that Theorem 4.4(i) also holds with

the role of the windows reversed, i.e., for (ϕ1, ϕ2) ∈ Mp
vs
× M1

vs
. The result then

follows from the interpolation property [M1
vs
×Mp

vs
, Mp

vs
×M1

vs
]θ = M q

vs
×M r

vs
with

1/q + 1/r − 1 = 1/p.
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4.2. Ultra-Distributions with Compact Support as Symbols. As an appli-
cation we present the result shown in [15, Section 4], in terms of ultra-distributions
with compact support, denoted by E ′t, t > 1. Recall the embeddings:

E ′t ⊂ (St
t )
′ ⊂ (Σt

t)
′, t > 1.

We skip the precise definition of E ′t, which can be found in many places, see e.g. [36,
Definition 1.5.5] and subsequent anisotropic generalization. The following struc-
ture theorem, obtained by a slight generalization of [36, Theorem 1.5.6] to the
anisotropic case, will be sufficient for our purposes.

Theorem 4.6. Let t ∈ Rd, t > 1, i.e. t = (t1, . . . , td), with t1 > 1, . . . , td > 1.
Every u ∈ E ′t can be represented as

(36) u =
∑
α∈Nd

0

∂αµα,

where µα is a measure satisfying

(37)

∫
K

|dµα| ≤ Cεε
|α|(α!)−t,

for every ε > 0 and a suitable compact set K ⊂ Rd, independent of α.

Using the preceding characterization, the STFT of an ultra-distribution with com-
pact support is estimated as follows. [15, Proposition 4.2].

Proposition 4.7. Let t ∈ Rd, t > 1, and a ∈ E ′t(Rd). Then its STFT with respect
to any window g ∈ Σ1

1 satisfies the estimate

|Vga(x, ω)| . e−h|x|et|2πω|1/t

,

for every h > 0, cf. (19) and below for the vectorial notation.

The STFT estimate given in Proposition 4.7, is the key of the following trace
class result for localization operators:

Corollary 4.8. Let t ∈ Rd, t > 1. If a ∈ E ′t(R2d) and ϕ1, ϕ2 ∈ S1
1 (Rd), then Aϕ1,ϕ2

a

is a trace class operator.

Proof. See [15, Corollary 4.3]; for sake of clarity we sketch the proof. If ϕ1, ϕ2 ∈
S1

1 (Rd), the characterization in (30) with p = q = 1 implies that ϕ1, ϕ2 ∈ M1
wε

(Rd)
for some (all) ε > 0. Since, for |ω| > Cε (where Cε is a suitable positive constant
depending on ε) we can write

t · |2πω|1/t =
d∑

i=1

ti|2πωi|1/ti ≤ ε|ω| ,

then the estimate of Proposition 4.7 gives a ∈ M1,∞
1/µε

(R2d). Finally, since ϕ1, ϕ2 ∈
M1

wε
(Rd) and a ∈ M1,∞

1/µε
(R2d), Theorem 4.4 (i), written for the case p = 1 with τs

replaced by µs, and vs by ws, implies that the operator Aϕ1,ϕ2
a is trace class.

REMARK: Similar results show that tempered distributions with compact sup-
port give trace class operators, see [10, Corollary 3.7].
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4.3. Compactness of Localization Operators. Localization operators with sym-
bols and windows in the Schwartz class are compact [7]. If we define by M0 the
closed subspace of M∞, consisting of all f ∈ S ′ such that its STFT Vgf (with
respect to a non-zero Schwartz window g) vanishes at infinity, it is easy to show
that localization operators with symbols in M0 and Schwartz windows are com-
pact. Namely, let a ∈ M0(R2d) and g ∈ S(R2d), for simplicity normalized to be
‖g‖L2 = 1; consider then Vga . The Schwartz class is dense in M0, hence there
exists a sequence Fn of Schwartz functions on R4d that converge to Vga in the L∞-
norm. Define the sequence an := V ∗

g Fn, n ∈ N, where V ∗
g is the adjoint operator

defined in (10). Then an ∈ S(R2d) and an → a in the M∞-norm, since by (11)

‖a− an‖M∞ = ‖Vga− VgV
∗
g Fn‖L∞ = ‖Vga− Fn‖L∞ → 0,

for n →∞. From Theorem 4.2 we have

‖Aϕ1,ϕ2
an

− Aϕ1,ϕ2
a ‖B(L2) = ‖Aϕ1,ϕ2

(an−a)‖B(L2) ≤ C‖a− an‖M∞‖ϕ1‖M1‖ϕ2‖M1 → 0.

Since compact operators are a closed subspace of the space of all bounded operators
B(L2), then the localization operator Aϕ1,ϕ2

a is compact.
The symbol class M0(R2d) is not optimal as the next simple example shows.

Consider a = δ 6∈ M0(R2d). Since Vgδ(z, ζ) = ḡ(z), it does not tend to zero when
z ∈ R2d is fixed and |ζ| goes to infinity. Hence δ 6∈ M0(R2d). However Aϕ1,ϕ2

δ is
a trace class operator for every ϕ1, ϕ2 ∈ S(Rd), in fact, a rank-one operator, and
therefore it is compact.

The example just mentioned has been the inspiration for the following compact-
ness result [26, Proposition 3.6.]:

Proposition 4.9. Let g ∈ S(R2d) be given and a ∈ M∞(R2d). If ϕ1, ϕ2 ∈ S(Rd)
and

(38) lim
|z|→∞

sup
|ζ|≤R

|Vga(z, ζ)| = 0, ∀R > 0,

then Aϕ1,ϕ2
a is a compact operator.

5. Necessary Conditions

In this section we show that the sufficient conditions obtained so far are es-
sentially optimal. This investigation requires different techniques and we limit
ourselves to state the main results. A first attempt is done in Theorems 4.3, 4.4 of
[10], where a converse for bounded and Hilbert-Schmidt operators is obtained for
modulation spaces with polynomial weights:

Theorem 5.1. i) Let a ∈ S ′(R2d) and fix s ≥ 0. If there exists a constant C =
C(a) > 0 depending only on a such that

‖Aϕ1,ϕ2
a ‖S∞ ≤ C ‖ϕ1‖M1

vs
‖ϕ2‖M1

vs

for all ϕ1, ϕ2 ∈ S(Rd), then a ∈ M∞
1/τs

.



16 ELENA CORDERO, KARLHEINZ GRÖCHENIG AND LUIGI RODINO

ii) Let a ∈ S ′(R2d). If there exists a constant C = C(a) > 0 depending only on a
such that

‖Aϕ1,ϕ2
a ‖S2 ≤ C ‖ϕ1‖M1‖ϕ2‖M1

for all ϕ1, ϕ2 ∈ S(Rd), then a ∈ M2,∞.

Next, an extension for the boundedness necessary condition is given in [15, Theorem
3.3]:

Theorem 5.2. Let a ∈ (Σ1
1)
′(R2d) and fix s ≥ 0. If there exists a constant C =

C(a) > 0 depending only on a such that

‖Aϕ1,ϕ2
a ‖S∞ ≤ C ‖ϕ1‖M1

ws
‖ϕ2‖M1

ws

for all ϕ1, ϕ2 ∈ Σ1
1(Rd), then a ∈ M∞

1/µs
.

Necessary conditions for localization operators belonging to the Schatten class
Sp have been obtained for unweighted modulation spaces in [11]:

Theorem 5.3. Let a ∈ S ′(R2d) and 1 ≤ p ≤ ∞. Assume that Aϕ1,ϕ2
a ∈ Sp for all

windows ϕ1, ϕ2 ∈ S(Rd) and that there exists a constant B > 0 depending only on
the symbol a such that

‖Aϕ1,ϕ2
a ‖Sp ≤ B ‖ϕ1‖M1 ‖ϕ2‖M1 , ∀ϕ1, ϕ2 ∈ S(Rd) ,

then a ∈ Mp,∞.

The techniques employed for the converse results are thoroughly different from
the techniques for the sufficient conditions. Gabor frames and equivalent norms
for modulation spaces are some of the crucial ingredients in the proofs. For the
sake of completeness, we shall sketch the main features. First, by using the Gabor
frame of the form

{MβnTαkΦ}k,n∈Z2d , 0 < α, β < 1,

with the Gaussian window Φ(x, ω) = 2−d e−π(x2+ω2), the Mp,∞(R2d)-norm of a can
be expressed by the equivalent norms

(39) ‖a‖Mp,∞(R2d) � ‖〈a, MβnTαkΦ〉n,k∈Z2d‖`p,∞(Z4d).

Then one relates the action of the localization operator on certain time-frequency
shift of the Gaussian ϕ to the Gabor coefficients, and for a diligent choice of (x, ξ)
and (u, η) one obtains that 〈Aϕ1,ϕ2

a MξTxϕ, MηTuϕ〉 = 〈a, MβnTαkΦ〉. The result is
then obtained by using (39).

In view of the sufficient Schatten class results known so far, it is left as an exercise
to show that the necessary conditions for the Schatten class can also be formulated
for weighted modulation spaces.

We end up with the compactness necessary result of [26, Theorem 3.15].

Theorem 5.4. Let a ∈ M∞(R2d) and g ∈ S(R2d) be given. Then, the following
conditions are equivalent:
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(a) The localization operator Aϕ1,ϕ2
a : L2(Rd) → L2(Rd) is compact for every pair

ϕ1, ϕ2 ∈ S(Rd).

(b) The symbol a satisfies condition (38).

6. Composition Formula

Given two localization operators, we want to compute their product and develop
a symbolic calculus. It would be useful to express it in terms of localization oper-
ators. We shall present two different product formulae. The first one is an exact
formula that expresses the composition of two localization operators again as a
localization operator. However, the formula holds only for Gaussian windows and
very special symbols. The second formula is much more general, but in this case
the product of two localization operators is a sum of localization operators plus
a remainder term, which can be expressed in either the Weyl or integral operator
form.

6.1. Exact Product. We reformulate the result of [20] in the notation of [27, 28].

We consider the window functions ϕ1(t) = ϕ2(t) = ϕ(t) = 2d/4e−πt2 , t ∈ Rd.
In this case, the Wigner distribution of the Gaussian ϕ is a Gaussian as well:
W (ϕ, ϕ)(z) = 2d/2e−2πz2

, z ∈ R2d. According to (14) the Weyl symbol σ of the

operator Aϕ,ϕ
a is σ(ζ) = 2d/2(a∗e−2πz2

)(ζ), z, ζ ∈ R2d. We first recall the well-known
composition of Weyl transforms from [27, Chp. 3.2] and then make the transition
to localization operators. Let [·, ·] be the standard symplectic form on R2d defined
by

[(z1, z2), (ζ1, ζ2)] = z1ζ2 − z2ζ1, with z = (z1, z2), ζ = (ζ1, ζ2) ,

and let the twisted convolution \ on R2d be given by

(40) F\G(ζ) =

∫∫
R2d

F (z) G(ζ − z)eπi[z,ζ] dz .

Then the composition of two Weyl transforms with symbols σ and τ can be written
formally as

(41) LσLτ = LF−1(σ̂\τ̂) .

For any f, g ∈ S(R2d), we define the \[ product by

(42) f\[g(ζ) =

∫∫
R2d

f(z)g(z − ζ)eπ(zζ+i[z,ζ]) e−πz2

dz .

Then the product of localization operators is given by the following formula.

Theorem 6.1. Let a, b ∈ S(R2d). If there exists a symbol c ∈ S ′(R2d) such that

(43) ĉ = 2−d/2â \[ b̂,

then we have

Aϕ,ϕ
a Aϕ,ϕ

b = Aϕ,ϕ
c .
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The proof is a straightforward consequence of relations (40) and (42). Indeed,
one rewrites Aϕ,ϕ

a Aϕ,ϕ
b in the Weyl form and uses relation (40) for the Weyl product.

The result is the Weyl operator Lµ, where the Fourier transform of µ is given by

µ̂(ζ) = [F(a ∗W (ϕ, ϕ)) \F(b ∗W (ϕ, ϕ))](ζ)

= 2−d

∫∫
R2d

â(z)b̂(z − ζ)e−(π/2)z2

e−(π/2)(ζ−z)2eπi[z,ζ] dz

= 2−de−(π/2)ζ2

∫∫
R2d

â(z)b̂(z − ζ)eπ(zζ+i[z,ζ]) e−πz2

dz.

Hence, we have

µ̂(ζ) = ĉ(ζ)(2−d/2e−(π/2)ζ2

) = F(c ∗W (ϕ, ϕ))(ζ),

where ĉ is given by relation (43).

6.2. Asymptotic Product. A second approach to the composition of two local-
ization operators derives asymptotic expansions [1, 14, 33, 40, 12]. These realize
the product as a sum of localization operators plus a controllable remainder. Most
of these expansions were motivated by PDEs and energy estimates, and therefore
use smooth symbols that are defined by differentiability properties, such as the
Hörmander or Shubin classes. For applications in quantum mechanics and sig-
nal analysis, alternative notions of smoothness — “smoothness in phase-space” or
quantitative measures of “time-frequency concentration” — have turned out to be
useful. This point of view is pursued in [12], and we shall present the corresponding
results.

The starting point is the following composition formula for two localization op-
erators derived in [14]:

(44) Aϕ1,ϕ2
a Aϕ3,ϕ4

b =
N−1∑
|α|=0

(−1)|α|

α!
AΦα,ϕ2

a∂αb + EN .

The essence of this formula is that the product of two localization operators can
be written as a sum of localization operators with suitably defined, new windows
Φα and a remainder term EN , which is “small”.

In the spirit of the classical symbolic calculus, this formula was derived in [14,
Thm. 1.1] for smooth symbols belonging to some Shubin class Sm(R2d) and for
windows in the Schwartz class S(Rd).

In [12] the validity of (44) is established on the modulation spaces. The inno-
vative features of this extension are highlighted below. Since the results are very
technical, we do not give the detailed statements and proofs, but refer the reader
to [12].

(i) Rough symbols. While in (44) the symbol b must be N -times differentiable,
the symbol a only needs to be locally bounded. The classical results in symbolic
calculus require both symbols to be smooth.

(ii) Growth conditions on symbols. The symbolic calculus in (44) can handle
symbols with ultra-rapid growth (as long as it is compensated by a decay of b or

vice versa). For instance, a may grow subexponentially as a(z) ∼ eα|z|β for α > 0
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and 0 < β < 1. This goes far beyond the usual polynomial growth and decay
conditions.

(iii) General window classes. A precise description of the admissible windows

ϕj in (44) is provided. Usually only the Gaussian e−πx2
or Schwartz functions are

considered as windows.
(iv) Size of the remainder term. Norm estimates for the size of the remainder

term EN are derived. They depend explicitly on the symbols a, b and the windows
ϕj.

(v) The Fredholm Property of Localization Operators. By choosing N = 1, ϕ1 =
ϕ2 = ϕ with ‖ϕ‖2 = 1, a(z) 6= 0 for all z ∈ R2d, and b = 1/a, the composition
formula (44) yields the following important special case:

(45) Aϕ,ϕ
a Aϕ,ϕ

1/a = Aϕ,ϕ
1 + R = I + R .

Under the following conditions on a:

(i) |a| � 1/m (in particular, a ∈ L∞
m (R2d),) where m ∈Mv,

(ii) (∂ja)m ∈ L∞ and vanishes at infinity for j = 1, . . . , 2d;

the remainder R is shown to be compact, and as a consequence, Aϕ,ϕ
a is a Fredholm

operator between the two modulation spaces Mp,q and Mp,q
m (with different weights).

This result works even for ultra-rapidly growing symbols such as a(z) = eα|z|β for
α > 0 and 0 < β < 1. For comparison, the reduction of localization operators to
standard pseudodifferential calculus requires elliptic or hypo-elliptic symbols, and
the proof of the Fredholm property works only under severe restrictions, see [8].

7. Multilinear Localization Operators

Multilinear localization operators are introduced in [13]; they not only generalize
the linear case but also yield a subclass of multilinear pseudodifferential operators.
To understand their meaning, one can think of localizing m-fold products of func-
tions. For the sake of clarity, we shall first introduce the bilinear case and show
how the construction arises naturally from the framework of reproducing formulae
and linear localization operators. The general case can be treated similarly.
Bilinear localization operators. Let f1, f2 ∈ S(Rd), then the tensor product
(f1⊗f2)(x1, x2) = f1(x1)f2(x2) is a function in S(R2d). Given four window functions
ϕi ∈ S(Rd), i = 1, . . . , 4, with 〈ϕ1, ϕ3〉 = 〈ϕ2, ϕ4〉 = 1, the usual reproducing
formula for the functions f1, f2 stated in (3) reads as follows:

(46) f1 =

∫
R2d

Vϕ1f1(z1, ζ1) Mζ1Tz1ϕ3 dζ1 dz1.

(47) f2 =

∫
R2d

Vϕ2f2(z2, ζ2) Mζ2Tz2ϕ4 dζ2 dz2.

The product of both sides of equalities (46) and (47) yields
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(f1 ⊗ f2)(x1, x2) =

∫
R2d

∫
R2d

Vϕ1f1(z1, ζ1)Vϕ2f2(z2, ζ2)Mζ1Tz1ϕ3(x1)Mζ2Tz2ϕ4(x2)dζdz

=

∫
R4d

Vϕ1⊗ϕ2(f1 ⊗ f2)(z, ζ) MζTz(ϕ3 ⊗ ϕ4)(x1, x2) dζ dz

with z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d.
The previous reproducing formula for the function f1⊗f2 can be localized in the

time-frequency plane yielding a localization operator Aϕ1⊗ϕ2,ϕ3⊗ϕ4
a with symbol a

(defined on R4d) and windows ϕ1⊗ϕ2, ϕ3⊗ϕ4. Formally, the action of the operator
on the function f1 ⊗ f2 is given by

Aϕ1⊗ϕ2,ϕ3⊗ϕ4
a (f1 ⊗ f2)(x1, x2)

=

∫
R4d

a(z, ζ)Vϕ1f1(z1, ζ1)Vϕ2f2(z2, ζ2)Mζ1Tz1ϕ3(x1)Mζ2Tz2ϕ4(x2)dzdζ.

For any symbol a ∈ S ′(R4d), and window functions ϕj on S(Rd), the operator
Aϕ1⊗ϕ2,ϕ3⊗ϕ4

a can be seen as a bilinear mapping from the 2-fold product of Schwartz
spaces S(Rd)×S(Rd) into the space S ′(R2d) of tempered distributions. Moreover,
if we restrict now our attention to a smoother symbol a ∈ S(R4d), we obtain a
multilinear mapping from S(Rd)× S(Rd) into S(R2d).

In [13] the boundedness properties of the trace of Aϕ1⊗ϕ2,ϕ3⊗ϕ4
a on the diagonal

x1 = x2 are studied. This restriction leads to a new kind of localization operator.

Definition 7.1. Let f1, f2 ∈ S(Rd). Given a symbol a ∈ S ′(R4d) and window
functions ϕi ∈ S(Rd), with i = 1, . . . , 4, the bilinear localization operator Aa is
given by
(48)

Aa(f1, f2)(x) =

∫
R4d

a(z, ζ) Vϕ1f1(z1, ζ1) Vϕ2f2(z2, ζ2) Mζ1Tz1ϕ3(x) Mζ2Tz2ϕ4(x) dz dζ,

where x ∈ Rd.

Notice that if the symbol a ∈ S ′(R4d) then the corresponding operator Aa maps
S(Rd)× S(Rd) into S ′(Rd).

In order to give a weak definition of the bilinear localization operator Aa, we first
introduce the following time-frequency representation. For ϕ3, ϕ4 ∈ S(Rd) \ {0},
z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d, we define Vϕ3,ϕ4 by

(49) Vϕ3,ϕ4g(z, ζ) =

∫
Rd

g(t) Mζ1Tz1ϕ3(t)Mζ2Tz2ϕ4(t) dt, g ∈ S(Rd).

Thus, for f1, f2, g ∈ S(Rd) the weak definition of (48) is given by

(50) 〈Aa(f1, f2), g〉 = 〈a, Vϕ1⊗ϕ2(f1 ⊗ f2)Vϕ3,ϕ4g〉.

Multilinear localization operators. Without any further work — just some
extra notation — it is straightforward to generalize the above definition of multilin-
ear localization operators and relate it to a multilinear pseudodifferential operator.
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Thus we are led to make the following definition. Fix m ∈ N. For every sym-
bol a ∈ S ′(R2md) and windows ϕi, i = 1, . . . , 2m, in the Schwartz class S(Rd),
we introduce the analysis, synthesis window functions φ1, φ2 : Rmd → C, defined
respectively as tensor products of the m analysis, and m synthesis windows, i.e.,

(51) φ1(t1, . . . , tm) := ϕ1(t1) · · ·ϕm(tm),

and

(52) φ2(t1, . . . , tm) := ϕm+1(t1) · · ·ϕ2m(tm).

Let R be the trace mapping that assigns to each function defined on Rmd a
function defined on Rd by the following formula:

(53) RF (t) := F|{t1=t2=···=tm=t}(t1, . . . , tm) = F (t, . . . , t),

for any t ∈ Rd.

Definition 7.2. The multilinear localization operator Aa with symbol a ∈ S ′(R2md)
and windows ϕj ∈ S(Rd), j = 1, . . . , 2m is the multilinear mapping defined on the
m-fold product of S(Rd) into S ′(Rd) by

Aa(
−→
f )(x) : =

∫
R2md

a(z, ζ) VNm
j=1 ϕj

(
⊗m

j=1fj

)
(z, ζ)

m∏
j=1

Mζj
Tzj

ϕm+j(x) dζ dz

=

∫
R2md

a(z, ζ) Vφ1

(
⊗m

j=1fj

)
(z, ζ) RMζTzφ2(x) dζ dz,(54)

where (z, ζ) ∈ Rmd × Rmd, x ∈ Rd, and
−→
f = (f1, . . . , fm) ∈ S(Rd)× · · · × S(Rd).

If m = 1 we are back to the linear localization operator Aϕ1,ϕ2
a , whereas the case

m = 2 gives the bilinear localization operator introduced in (48).
One of the results of [13] is related to the boundedness properties of multilinear

localization operators on products of modulations spaces. To this end, these oper-
ators are represented as bilinear (or, in general, as multilinear) pseudodifferential
operators and known results on boundedness of multilinear pseudodifferential op-
erators on products of modulation spaces ([2, 3]) lead to boundedness results of
these multilinear localization operators. In analogy to the linear case, it is worth
detailing their connection with multilinear pseudodifferential operators.

Proposition 7.3. Let a ∈ S ′(R2md) and ϕj ∈ S(Rd), j = 1, . . . , 2m. Then the
multilinear localization operator Aa is the multilinear pseudodifferential operator Tτ

defined on
−→
f = (fj)

m
j=1 ∈ S(Rd)× . . .× S(Rd) by

(55) Aa(
−→
f )(x) = Tτ (

−→
f )(x) :=

∫
Rmd

τ(x, ξ)
m∏

j=1

f̂j(ξj) e2πix
Pm

j=1 ξj dξ .

The symbol τ is given as

(56) τ(x, ξ) = a ∗ Φ(X, ξ)
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with x ∈ Rd , X = (x, . . . , x), ξ = (ξ1, . . . , ξm) ∈ Rmd, and

(57) Φ(z, ξ) =
m∏

j=1

UF(Vϕj
ϕj+m)(zj, ξj),

for z = (z1, . . . , zm) ∈ Rmd.

According to what happens for linear localization operators, we shall provide
both sufficient and necessary conditions for boundedness on products of modulation
spaces.

Theorem 7.4. (a) Sufficient conditions. Let m ∈ N, a symbol a ∈ M∞(R2md),
and window functions ϕj ∈ M1(Rd), j = 1, . . . , 2m, be given. Then the m-
linear localization operator Aa defined by (54) extends to a bounded operator from
Mp1,q1(Rd)× · · · ×Mpm,qm(Rd) into Mp0,q0(Rd), when

1

p1

+ · · ·+ 1

pm

=
1

p0

,
1

q1

+ · · ·+ 1

qm

= m− 1 +
1

q0

,

and 1 ≤ pj, qj ≤ ∞, for j = 0, . . . ,m. Moreover, we have the following norm
estimate

(58) ‖Aa‖ ≤ C‖a‖M∞(R2md)

2m∏
i=1

‖ϕi‖M1(Rd),

where the positive constant C is independent of a and of ϕj, j = 1, . . . , 2m.
(b) Necessary conditions. Let m ∈ N, and a ∈ S ′(R2md) be given. Assume that
(i) the m-linear localization operator Aa is bounded from Mp1,q1(Rd)×· · ·×Mpm,qm(Rd)
into Mp0,q0(Rd), where

1

p1

+ · · ·+ 1

pm

=
1

p0

,
1

q1

+ · · ·+ 1

qm

= m− 1 +
1

q0

,

and 1 ≤ pj, qj ≤ ∞, for j = 0, . . . ,m, and moreover that
(ii) Aa satisfies the following norm estimate

(59) ‖Aa‖ ≤ C(a)
2m∏
i=1

‖ϕi‖M1(Rd), ∀ϕi ∈ S(Rd), i = 1, . . . , 2m,

with a positive constant C(a) depending only on a. Then the symbol a belongs
necessarily to M∞(R2md).

An application of this theory is that it provides symbols for multilinear bounded
Kohn-Nirenberg operators. Two steps are needed to construct symbols in M∞,1:
first, suitable windows ϕi, i = 1, . . . , d are chosen for computing the function Φ
defined in (57). Secondly, symbols a are provided explicitly, the convolution with
Φ in (56) is computed, yielding the Kohn-Nirenberg symbols τ desired. We refer
to [13, Section 7] for concrete examples.
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