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This note is about work in progress. Complete details
and more will be given in [3]. If G is a discrete group, the
algebra CD(G) of convolution dominated operators on
l2(G) is canonically isomorphic to a twisted L1-algebra
l1(G, l∞(G), T ). Using this, we show that CD(G) is
spectral in the algebra of all bounded operators, if G
is amenable and rigidly symmetric. For G commutative,
this result is known (see [1], [6]), for G noncommutative
discrete it appears to be new.

Let G be a discrete group. For x ∈ G we denote by λ(x) the operator
of left translation on l1(G) and on l2(G), i.e. λ(x)f (y) = f(x−1y) for
f ∈ l1(G) or f ∈ l2(G), x, y ∈ G. By B(l2(G)) we denote the algebra
of bounded operators on l2(G).

For an operator A : l2(G) → l2(G) let A(x, y) =< Aδy, δx >, x, y ∈
G be its matrix, where < , > is the scalar product of the Hilbert space
l2(G).

Definition 1. The operator A is called convolution dominated if there
exists some a ∈ l1(G) such that

|A(x, y)| ≤ a(xy−1), ∀x, y ∈ G.

We define its norm as

‖A ‖1 := inf{‖ a ‖l1 : a ∈ l1(G), |A(x, y)| ≤ a(xy−1) ∀x, y ∈ G}.

We remark that A ∈ B(l2(G)) is convolution dominated if the supre-
mum norms of the side diagonals of its matrix are summable, i.e. if∑

z∈G

sup
{x,y: xy−1=z}

|A(x, y)| < ∞.

Moreover this quantity just equals its norm ‖A ‖1.
Since l1(G) is a convolution algebra it follows that the space of sub-

convolutive operators is an algebra under composition of operators.
Moreover it is not hard to see that it becomes a Banach ∗-algebra
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(containing an identity) with respect to the usual involution of opera-
tors in B(l2(G)). We denote this Banach ∗-algebra by CD(G).

l∞(G) is a C∗-algebra (really a von Neumann algebra) with respect
to pointwise multiplication and complex conjugation as involution. It
is isometrically represented as multiplication operators on l2(G):

Dmf(x) = m(x)f(x), where x ∈ G, f ∈ l2(G), m ∈ l∞(G).

We have the covariance relation λ(x−1)Dmλ(x) = DT−1
x m, where

Tx : l∞(G) → l∞(G) denotes the C∗ automorphism of the algebra
l∞(G) given by left translation Txn(z) = n(x−1z), n ∈ l∞(G), so
from λ : G → B(l2(G)) and D : l∞(G) → B(l2(G)) we obtain a
representation R of the twisted L1-algebra, in the sense of Leptin[7,
8, 9]: L = l1((G), l∞(G), T ), on l2(G). An element f ∈ L may be
uniquely written as

f =
∑
z∈G

mzδz,

where mz = f(z) ∈ l∞(G). The representation R : l1(G, l∞(G), T ) →
B(l2(G)) is given by the prescription

Rf =
∑

z

Dmz
z .

Now it is not hard to see:

Proposition 2. The map R : l1(G, l∞(G), T ) → CD(G) is an iso-
metric ∗-isomorphism.

Recall that a Banach algebra A with involution is called symmetric if
every positive element has its spectrum contained in the non-negative
reals, i. e. sp(a∗a) ⊂ [0,∞) ∀a ∈ A. Accordingly, a locally compact
group G is called symmetric if its convolution algebra L1(G) is sym-
metric. Various classes of groups are known to be symmetric, e. g.
Abelian locally compact groups, compact groups, finite extensions of
discrete nilpotent groups, compactly generated groups of polynomial
growth.

Leptin and Poguntke[10] showed that the groups of the first three
classes satisfy the stronger property of rigid symmetry. Namely for any
C∗-algebra C the projective tensor product L1(G)⊗̂C is symmetric.
Later Poguntke [11] showed that all nilpotent locally compact groups
are rigidly symmetric.

Define a map

Q : l1(G, l∞(G), T ) → l1(G)⊗̂B(l2(G))
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by

f =
∑

v

mvδv 7→
∑

v

δv ⊗Dmv
v .

Proposition 3. The above defined map Q is an isometric ∗-isomor-
phism of l1(G, l∞(G), T ) onto a closed subalgebra of l1(G)⊗̂B(l2(G)).

Since symmetry passes to closed subalgebras we have

Corollary 4. Let G be a discrete rigidly symmetric group then
l1(G, l∞(G), T ) and CD(G) are symmetric Banach ∗-algebras.

Recall that by D : m 7→ Dm the C∗-algebra l∞(G) is faithfully
represented by multiplication operators on l2(G). On the Hilbert space
l2(G, l2(G)), the D-regular representation λD of L = l1(G, l∞, T ) is
defined (see [9, §3]) by

λD(f)ξ(x) =
∑

y

DTyf(xy)ξ(y−1), where ξ ∈ l2(G, l2(G)), f ∈ L.

On the other hand we see that R : L → CD(G) ⊂ B(l2(G)) is a
∗-representation of L on l2(G). Call this representation the canoni-
cal representation of L. We identify l2(G, l2(G)) with l2(G × G) and
define a multiple of the canonical representation by letting the opera-
tors R(f) =

∑
y λ(y) ◦Df(y), f ∈ L, act in the first coordinate of the

l2(G × G)-functions only. The unitary operator Sξ(x, z) = ξ(xz, z),
where ξ ∈ l2(G×G) actually intertwines these two representations, so
we have

Proposition 5. The D-regular representation of L is equivalent to a
multiple of the canonical representation.

Corollary 6. Let G be an amenable discrete group, then the greatest
C∗ norm on L equals the operator norm on CD(G).

Proof. It follows from [9, Satz 6] of Leptin that for the representation
D of l∞(G) the D-regular representation λD defines the greatest C∗

norm on L. Denoting ‖ . ‖∗ the greatest C∗ norm we have for f ∈ L:

‖ f ‖∗ = ‖λD(f) ‖ = ‖R(f) ‖B(l2(G)),

where the last equality follows from Proposition 5. �

For an element a of a normed algebra A we denote by rA(a) its
spectral radius.

Proposition 7. Let G be a discrete, amenable, and rigidly symmetric
group. Then for f ∈ L

rL(f ∗f) = rCD(G)(R(f)∗Rf) = ‖R(f) ‖2
B(L2(G)).
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Proof. By Corollary 4 we know that L and CD(G) are symmetric. By a
theorem of Pták [12] it follows that ‖ f ‖2

∗ = rL(f ∗f) = rCD(G)(R(f)∗R(f))
(see e.g. [2, §41 Corollary 8]). Corollary 6 now proves the asser-
tion. �

Theorem 8. Let G be a discrete, amenable, and rigidly symmetric
group. If f ∈ L is such that R(f) ∈ CD(G) has an inverse in B(l2(G))
then f−1 exists in L and R(f−1) = R(f)−1 is in CD(G).

Proof. If f ∈ L is hermitian, i.e. f = f ∗, then

rL(f)2 = rL(f ∗f) = ‖R(f) ‖2
B(L2(G)).

We apply Hulanickis Lemma [5, Prop. 2.5] and obtain that

spL(f) = spB(l2(G))(R(f)), ∀f = f ∗ ∈ L.

The Lemma [4, 3.7]now implies

spL(f) = spB(l2(G))(R(f)), ∀f ∈ L.

�
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