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Abstract

We investigate pseudodifferential operators on arbitrary locally compact
abelian groups. As symbol classes for the Kohn-Nirenberg calculus we intro-
duce a version of Sjöstrand’s class. Pseudodifferential operators with such
symbols form a Banach algebra that is closed under inversion. Since “hard
analysis” techniques are not available on locally compact abelian groups,
a new time-frequency approach is used with the emphasis on modulation
spaces, Gabor frames, and Banach algebras of matrices. Sjöstrand’s original
results are thus understood as a phenomenon of abstract harmonic analy-
sis rather than “hard analysis” and are proved in their natural context and
generality.

1 Introduction

Pseudodifferential operators are a generalization of partial differential operators,
and the subject is usually treated with the arsenal of “hard analysis”, such as
differentiation and decomposition techniques, commutators etc. In this paper we
develop a new theory for pseudodifferential operators on general locally compact
groups instead of on Rd. Our main goal is to show the validity of three subtle
results of J. Sjöstrand [36, 37] on a Banach algebra of pseudodifferential operators
in the new context of locally compact abelian groups. This is not a mere general-
ization, because the formulation and extension of Sjöstrand’s results requires the
development of completely new methods in which “hard analysis” is replaced by
phase-space (time-frequency) analysis.

To put the issues into a bigger context, recall Wiener’s Lemma: it states that
a periodic function f which has an absolutely summable Fourier series and which
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vanishes nowhere has an inverse f−1 which also has an absolutely summable Fourier
series [42].

This result can also be stated in the following way. Assume the sequence {ak}k∈Z
satisfies

∑
k∈Z |ak| < ∞. Let A be a biinfinite Toeplitz matrix with entries Ak,l =

ak−l for k, l ∈ Z. If A is invertible on `2(Z) then its inverse B := A−1 has entries
Bk,l = bk−l which satisfy

∑
k∈Z |bk| < ∞. In this context f(t) =

∑
k∈Z ake

2πikt is
called the symbol of A.

An intriguing generalization is due to Bochner and Philips [4] who have shown
that Wiener’s Lemma remains true if the ak belong to a non-commutative Banach
algebra instead of to C.

In recent years several remarkable extensions of Wiener’s Lemma have been
published. Using results from [4], Gohberg, Kaashoek, and Woerdeman [15], and
independently Baskakov [1] proved the following result. Consider the Banach alge-
bra C of matrices A with norm

‖A‖C :=
∑
k∈Zd

sup
i−j=k

|Ai,j| <∞. (1)

If A ∈ C is invertible in `2(Zd) then its inverse A−1 also belongs to C.
Another Wiener-type theorem, this time in the context of pseudodifferential

operators, is due to Sjöstrand [37]. His striking result goes as follows. Let g ∈
S(R2d) be a compactly supported C∞-function satisfying the property

∑
k∈Z2d g(t−

k) = 1 for all t ∈ R2d. Then a symbol σ ∈ S ′(R2d) belongs to M∞,1(R2d) – the
Sjöstrand class – if ∫

R2d

sup
k∈Z2d

|(σ · g(.− k))∧(ζ)| dζ <∞. (2)

Now letKσ be a pseudodifferential operator with (Weyl or Kohn-Nirenberg) symbol
σ ∈M∞,1(R2d). (On Rd, Kσ is usually written as σ(x,D) or σ(x,D)w). Sjöstrand
proved thatM∞,1 is an algebra with respect to the composition of pseudodifferential
operators. Furthermore, if Kσ is invertible on L2(Rd), then K−1

σ = Kτ for some τ ∈
M∞,1(R2d). This is the Wiener property of M∞,1(R2d). These results had a deep
influence on recent work on new symbol classes for pseudodifferential operators, as
exemplified in the work of Boulkhemair [5], Lerner [27], and Toft [40].

At first glance there is no relation between the two results on the matrix algebra
C and the symbol class M∞,1. However, on inspection of Sjöstrand’s proof, which
is in the realm of “hard analysis”, one sees that he uses the Wiener property of the
Gohberg-Baskakov matrix algebra C as a tool. In fact, he found an independent
proof of their result, again using a “hard analysis” approach with commutators and
decomposition methods. On the other hand, Gohberg et al. and Baskakov use a
“natural” approach in the context of harmonic analysis and prove their result with
classical methods from Fourier analysis.

One of the main insights of this paper is the observation that both results are
a manifestation of a more general result, namely a Wiener property for a certain
class of pseudodifferential operators on locally compact abelian (LCA) groups.
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The main results of this paper can be summarized as follows:
(i) For every LCA group G with dual group Ĝ we introduce a symbol class

M∞,1(G × Ĝ). When G = Rd, this class reduces to the Sjöstrand class, for G = Zd,
this class coincides with the matrix algebra C defined in (1).

(ii) We show that M∞,1(G×Ĝ) is a Banach algebra under a twisted product that
corresponds to the composition of the corresponding pseudodifferential operators.

(iii) We show that the Wiener property for the general Sjöstrand classM∞,1(G×
Ĝ), i.e., if σ ∈ M∞,1(G × Ĝ) and the pseudodifferential operator Kσ is invertible
on L2(G), then the inverse operator K−1

σ = Kτ possesses again a symbol τ ∈
M∞,1(G × Ĝ).

(iv) We consider weighted versions of M∞,1(G × Ĝ) and characterize those
weights for which the Wiener property holds.

The extension of Sjöstrand’s original results to LCA groups is of interest for
both theoretical and practical reasons.
(a) Sjöstrand’s proof is based on commutator estimates and decomposition tech-
niques (“hard analysis”). Such techniques are not available on general LCA groups,
and it is by no means clear whether and how such a generalization is actually pos-
sible.
(b) Proofs presented in a setting of LCA groups show in some sense “what is re-
ally going on”. The derivations are stripped off of lengthy analytic estimates and
replaced by a time-frequency (phase space) approach based on the ideas from [19].
Admittedly our approach requires more conceptual effort.
(c) Sjöstrand’s class and its weighted versions as well as the nonstationary Wiener
algebra have turned out to be very useful in applications, in particular in the
modeling of operators and transmission pulses in connection with mobile commu-
nications, cf. [39]. The multidimensional setting is potentially useful in applications
such as spatially varying image or video (de)blurring. Furthermore, the numerical
implementation of pseudodifferential operators requires a discrete finite setting, it
is thus useful to know that the almost diagonalization properties are preserved
under appropriate discretization.

(d) Pseudodifferential operators on the p-adic groups Qp occur often in the
construction of a p-adic quantum theory [33, 22, 41]. Our result hold in particular
for operators on Qp and provide a new type of a symbolic calculus.

The paper is organized as follows. In Section 2 we develop time-frequency
methods on locally compact abelian groups. This section is somewhat lengthy, but
we feel it necessary to explain the main concepts of time-frequency analysis, such
as amalgam spaces, modulation spaces, Gabor frames, and matrix algebras. (By
contrast, in a paper on standard pseudodifferential operators it would suffice to
refer to the expositions of Hörmander [24] or Stein [38].) In Section 3 we explain
the main formalism of pseudodifferential operators on locally compact groups. Sec-
tion 4 contains the key result about the almost diagonalization of pseudodifferential
operators in the Sjöstrand class, and in Section 5 we formulate and prove our main
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results, the Banach algebra property and the Wiener property of Sjöstrand’s class
on locally compact abelian groups. In the final Section 6 we discuss special groups
and show that the matrix algebra of Gohberg and Baskakov and Sjöstrand’s symbol
class are examples of the same phenomenon.

2 Tools from Time-Frequency Analysis

We first present the main concepts for time-frequency analysis on locally compact
abelian (LCA) groups. The constructions of time-frequency analysis are well-known
for Rd and available in textbook form [17, 10]. It is less well known that time-
frequency analysis works similarly on LCA groups. For some contributions in this
directions, we refer to [9, 16].

In the following we focus on the details (weight functions on LCA groups,
spaces of test functions) that require special attention. Whenever a result can be
formulated and proved as on Rd, we will only formulate the result and refer to the
proof on Rd.

Locally Compact Abelian Groups. Let G be a locally compact abelian group.
We assume that G satisfies the second countability axiom and is metrizable which
is equivalent to the assumption that L2(G) is a separable Hilbert space [23]. The
elements of G will be denoted by italics x, y, u, . . . and the group operation is
written additively as x + y. The dual group Ĝ is the set of characters on G. We
usually denote characters by Greek letters ξ, η, ω, . . . . The action of a character
ξ ∈ Ĝ on an element x ∈ G is denoted by 〈ξ, x〉. Clearly the action of −ξ on x is
then given by 〈−ξ, x〉 = 〈ξ, x〉 where the overline denotes complex conjugation.

The phase-space or time-frequency plane is G × Ĝ, its elements are denoted by

boldface letters x,y,u, . . . . By Pontrjagin’s duality theorem [31]
̂̂G is isomorphic

to G, henceforth we will identify
̂̂G with G. Consequently the dual group of G × Ĝ

is Ĝ × G. We denote its elements by boldface Greek letters ξ,ω, . . . . Consistent
with the previously introduced convention we also write e.g. x = (x, ξ) ∈ G × Ĝ
and ξ = (ξ, x) ∈ Ĝ × G.

By the structure theorem for locally compact abelian groups, G is isomorphic
to a direct product G ' Rd × G0, where the LCA group G0 contains a compact
open subgroup K [31, 23]. Furthermore, if G0 contains the compact open subgroup

K, then Ĝ0 contains the compact open subgroup K⊥, cf. Example 4.4.9 in [31] or
Lemma 6.2.3 in [16].

The “time-frequency plane” (phase space) of G is G × Ĝ. As a consequence of

the structure theorem, the phase-space is G × Ĝ ' R2d × (G0 × Ĝ0), and G0 × Ĝ0

contains the compact-open group K ×K⊥.
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The Fourier transform of a function f on G is is defined by [31]

Ff(ω) = f̂(ξ) =

∫
G

f(x)〈ξ, x〉 dx, for ξ ∈ Ĝ. (3)

By Plancherel’s Theorem F is unitary from L2(G) onto L2(Ĝ) [31].

Time-Frequency Analysis. For a function f on G, x, y ∈ G, and ξ ∈ Ĝ, we
define the operators of translation Tx and modulation Mξ by

Tyf(x) = f(x− y), Mξf(x) = 〈ξ, x〉f(x). (4)

The operators Tx,Mξ satisfy the commutation relations

TxMξ = 〈ξ, x〉MξTx. (5)

The time-frequency shift operator π(x) on G × Ĝ is defined by π(x) = MξTx,x =

(x, ξ) ∈ G × Ĝ.
Given an appropriate function (“window”) g, the short-time Fourier transform

(STFT) of f ∈ L2(G) is defined by

Vgf(x, ξ) =

∫
G

f(y)g(y − x)〈ξ, y〉dy, (x, ξ) ∈ G × Ĝ. (6)

We note that

Vgf(u, ω) = 〈f,MωTug〉 = 〈f̂ , TωM−uĝ〉 = Vĝf̂(ω,−u)〈ω, u〉. (7)

Furthermore, for f, g ∈ L2(G) there holds

VMηTygMξTxf(u, ω) = T(x−y,ξ−η)Vgf(u, ω)〈ω − ξ, x〉〈η, u− x〉 , (8)

which follows from the definition of the STFT and the commutation relations (5).
We will also make use of the following formula concerning the Fourier transform

of a product of STFTs, which follows from an easy computation (carried out in [32]
and in [21])

(Vg1f1Vg2f2)
∧ (ξ, x) = (Vf2f1Vg2g1)(−x, ξ) . (9)

Weight Functions.

Definition 2.1 (a) A non-negative function v on G × Ĝ is called an admissible
weight if it satisfies the following properties:

(i) v is continuous, even in each coordinate, and normalized such that v(0) = 1.

(ii) v is submultiplicative, i.e., v(x + y) ≤ v(x)v(y), x,y ∈ G × Ĝ.
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(iii) v satisfies the Gelfand-Raikov-Shilov (GRS) condition [14]

lim
n→∞

v(nx)
1
n = 1 for all x ∈ G × Ĝ. (10)

(b) Let v be an admissible weight. The class of v-moderate weights is

Mv =
{
m ≥ 0 : sup

x∈G×bG
m(x + y)

m(x)
≤ Cv(y), ∀y ∈ G × Ĝ

}
. (11)

Examples: The standard weight functions on G are of the form

m(x) = eaρ(x)
b

(1 + ρ(x))s ,

where ρ(x) = d(x, 0) for some left-invariant metric d on G. Such a weight is
submultiplicative, when a, s ≥ 0 and 0 ≤ b ≤ 1, and m satisfies the GRS-condition,
if and only if 0 ≤ b < 1. If a, s ∈ R are arbitrary, then m is e|a|ρ(x)

b
(1 + ρ(x))|s|-

moderate.

Test Functions. For the treatment of weights of super-polynomial growth the
standard space of test functions, the Schwartz-Bruhat space [30], is not suitable.
We therefore introduce a space of special test functions, its construction is based on
the structure theorem. Let K be a compact-open subgroup of G0, let ϕ(x1, x2) =
e−πx

2
1χK(x2) = ϕ1(x1)ϕ2(x2) for x = (x1, x2) ∈ Rd × G0 and

SC(G) = span{π(x)ϕ : x ∈ G × Ĝ} ⊆ L2(G)

be the linear space of all finite linear combinations of time-frequency shifts of the
“Gaussian” ϕ = ϕ1 ⊗ ϕ2. Then

Vϕϕ(x, ξ) = Vϕ1ϕ1(x1, ξ1)Vϕ2ϕ2(x2, ξ2) = e−π(x2
1+ξ21)/2Vϕ2ϕ2(x2, ξ2) ,

where x1, ξ1 ∈ Rd and (x2, ξ2) ∈ G0× Ĝ0. Using the calculation on p. 228 of [16] we
find that

Vϕ2ϕ2(x2, ξ2) = 〈χK,Mξ2Tx2χK〉

=

{
0 if x2 6∈ K
(χK · χx2K)∧ (ξ2) = χ̂K (ξ2) = c(K)χK⊥(ξ2) if x2 ∈ K .

Hence Vϕ2ϕ2 = c(K)χK ⊗ χK⊥ , where c(K) > 0 is a constant depending on K, and
the support of Vϕ2ϕ2 is thus compact. Since a submultiplicative weight v on Rd

grows at most exponentially [6, Lemma VIII.1.4], we find that∫ ∫
G×bG |Vϕϕ(x, ξ)|v(x, ξ) dxdξ ≤ (12)

≤
∫

R2d

e−π(x2
1+ξ21)/2 v(x1, 0, ξ1, 0) dx1dξ1

∫
G0×cG0

χK(x2)χK⊥(ξ2) v(0, x2, 0, ξ2) dx2dξ2 <∞ .
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Consequently, Vϕϕ and hence every function in SC is integrable with respect to
arbitrary moderate weight functions.

Modulation Spaces. Let m be a weight function. We define the Mp,q
m -norm of

f ∈ SC(G) to be

‖f‖Mp,q
m

:= ‖Vϕf m‖Lp,q =

(∫
bG
(∫

G
|Vϕf(x, ξ)|pm(x, ξ)p dx

)q/p

dξ

)1/q

. (13)

Analogous to [19] we define the modulation space Mp,q
m (G) as the completion of

the space SC(G) with respect to the Mp,q
m -norm, when p, q < ∞ and the weak∗-

completion if pq = ∞. If p = q we also write Mp
m instead of Mp,p

m . If m ≥ 1, then
Mp,q

m is a subspace of M∞ which in turn is a particular subspace of the space of
tempered distributions S ′ on G.

In the sequel we will distinguish between modulation spaces on G and on G×Ĝ.
The space M1

v (G) will serve as “window space” and can be considered a space
of test functions. Pseudodifferential operators will act on the modulation spaces
Mp,q

M (G).

Modulation spaces on G × Ĝ will be used as symbol classes. In particular,
M∞,1

v (G × Ĝ) is the appropriate generalization of Sjöstrand’s class to LCA groups.
If we take the norm completion of SC in the M∞,1

v -norm, we obtain a class of
symbols that leads to compact operators, see [3].

We will use the following standard properties of modulation spaces.

Proposition 2.2 (Duality) (i) Let 1 ≤ p, q < ∞ and p′ = p
p−1

be the conjugate

index. Then the dual space of Mp,q
m (G) is the modulation space Mp′,q′

1/m (G).

(ii) M1
m is the dual space of M0,0

1/m := closM∞,∞
1/m

(SC) (the closure of the test func-

tions with respect to the M∞-norm), likewise M∞,1
m (G) is the dual of closM1,∞

1/m
(SC)

(See [3]).
(iii) If f ∈ M∞,1

m (G) and g ∈ M1,∞
1/m, then 〈f, g〉 :=

∫
G×bG Vϕf(x)Vϕg(x) dx is

well-defined and satisfies

|〈f, g〉| ≤ C‖f‖M∞,1
m (G) ‖g‖M1,∞

1/m
. (14)

Lemma 2.3 If g ∈ M1
v and m ∈ Mv, then ‖Vgf m‖Lp,q is an equivalent norm on

Mp,q
m [17, Ch. 11].

Amalgam Spaces. A lattice Λ of G is a discrete subgroup such that G/Λ is
compact. Then there exists a relatively compact set U ⊆ G, a fundamental domain
for Λ, such that

⋃
λ∈Λ(λ+ U) = G and (λ+ U) ∩ (µ+ U) = ∅ for λ 6= µ ∈ Λ.

If G does not have a lattice, as is the case for p-adic groups, we resort to
the following construction. Recall the structure theorem G ' Rd × G0, where G0

possesses the compact-open subgroup K. Now choose an invertible, real-valued
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d × d-matrix A, and a set of coset representatives D of G0/K in G0, and let U =
A[0, 1)d × K. Then G =

⋃
λ∈Λ(λ + U) is a partition of G. We call the discrete set

Λ := AZd ×D a quasi-lattice with fundamental domain U .
Consequently a quasi-lattice in the time-frequency plane G × Ĝ will have the

form Λ = Λ1 × Λ2 := (ARd × D1) × (BRd × D2) ' AR2d × D1 × D2 (where
A,B are d × d invertible matrices) with fundamental domain U = U1 × U2 =
(A[0, 1)d ×K)× (B[0, 1)d ×K⊥).

Using this construction, we can now define amalgam spaces on G × Ĝ, see [12]
and [7] for a detailed theory.

Definition 2.4 Let Λ be a quasi-lattice of G×Ĝ and U a relatively compact funda-
mental domain of Λ in G × Ĝ. Let m be a weight function on G × Ĝ. A continuous
function F on G×Ĝ belongs to the amalgam space W (C, `p,qm )(G×Ĝ) if the sequence
{a(l)}l∈Λ with

a(l) = a(l, λ) = sup
(u,η)∈U

|F (u+ l, η + λ)| (15)

belongs to `p,qm (Λ), that is
( ∑

λ∈Λ2

( ∑
l∈Λ1

a(l, λ)pm(l, λ)p
)q/p)1/q

< ∞, with the

usual modifications if p q = ∞.

We note that the definition of the amalgam spaces is independent of the quasi-
lattice Λ and the fundamental domain U , and different choices for Λ lead to equiv-
alent norms [12].

Among others, amalgam spaces occur in time-frequency analysis in the descrip-
tion of the fine local properties of the STFT.

Theorem 2.5 Assume that g ∈ M1
v (G), f ∈ Mp,q

m (G) for 1 ≤ p, q ≤ ∞, and

m a v-moderate weight. Then Vgf is in W (C, `p,qm )(G × Ĝ). In particular, Vgg ∈
W (C, `1v)(G × Ĝ).

Proof: The statement is a special case of [8, Lemma 7.2, Thm. 8.1] (use the

representation (x, ξ, τ) → τTxMξ on L2(G) of the Heisenberg-type group G×Ĝ×T).
A direct proof for Rd is given in [17, Thm. 12.2.1].

As an important consequence, we formulate this result for the general Sjöstrand
class M∞,1

v (G × Ĝ), where v is an admissible weight on Ĝ × G. Note that VΦσ is a

function on (G × Ĝ)× (Ĝ × G).

Corollary 2.6 Let Λ̃ be a quasi-lattice in Ĝ × G with fundamental domain Ũ . If
Φ ∈M1

1⊗v(G × Ĝ) and σ ∈M∞,1
v (G × Ĝ), then the sequence

h(λ) := sup
η∈Ũ

sup
x∈G×bG |VΦσ(x,λ + η)|

is in `1v(Λ̃).

8



Gabor Frames. We assume familiarity with Gabor frames and refer to [17], Ch. 5

and 7, for details. Given a quasi-lattice Λ ⊂ G × Ĝ and a window g ∈ L2(G) the
associated Gabor system {gm,µ}(m,µ)∈Λ consists of functions of the form

gm,µ = MµTmg, (m,µ) ∈ Λ. (16)

The analysis operator or coefficient operator Cg : L2(G) 7→ `2(Λ) is defined as

Cgf = {〈f,MµTmg〉}(m,µ)∈Λ. (17)

The adjoint operator, which is also known as synthesis operator, can be expressed
as

C∗
g{cm,µ}(m,µ)∈Λ =

∑
(m,µ)∈Λ

cm,µMµTmg for {cm,µ}(m,µ)∈Λ ∈ `2(Λ). (18)

Associated to a Gabor system is the Gabor frame operator S defined as

Sf =
∑

(m,µ)∈Λ

〈f,MµTmg〉MµTmg = C∗
gCgf . (19)

We say that {MµTmg}(m,µ)∈Λ with g ∈ L2(G) is a Gabor frame for L2(G) if S is
invertible on L2(G). Equivalently there exist constants A,B > 0 such that

A‖f‖2
2 ≤

∑
(m,µ)∈Λ

|〈f,MµTmg〉|2 = 〈Sf, f〉 ≤ B‖f‖2
2, for all f ∈ L2(G). (20)

A Gabor system {MµTmg}(m,µ)∈Λ is called a tight Gabor frame if A = B in (20).
In this case S is just (a multiple of) the identity operator on L2(G).

For our purposes we need tight Gabor frames generated by a window g ∈M1
v (G).

The existence and construction of Gabor frames are well understood on Rd, but our
knowledge of explicit Gabor frames on LCA groups is thin. Therefore the following
existence theorem may be of independent interest.

Theorem 2.7 Let v be an admissible weight on G×Ĝ satisfying the GRS-condition,
and let Λ := αI × D be a quasi-lattice in G × Ĝ with α < 1 and D a set of
representatives of G/K×Ĝ0/K⊥. Then there exists a g ∈M1

v (G), such that {π(λ)g :
λ ∈ Λ} is a tight Gabor frame for L2(G).

Proof: According to the structure theorem we distinguish several cases.
Case I: G = Rd. We choose Λ = αZ2d for α < 1 and the Gaussian ϕ(t) = e−πt·t.

It follows from the main result in [28, 35] that {MµTmϕ}(m,µ)∈Λ is a Gabor frame
for L2(Rd) with ϕ ∈ M1

v (G). To this Gabor frame we apply Cor. 4.5 of [20]: Let
v be an admissible weight satisfying the GRS-condition. If {MµTmg}(m,µ)∈Λ is a
Gabor frame for L2(Rd) with g ∈ M1

v (Rd) and associated frame operator S, then
{MµTmS

−1/2g : (m,µ) ∈ Λ} is a tight frame and the window γ◦ = S−1/2g also
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belongs to M1
v (G). This construction provides an abundance of tight Gabor frames

for L2(Rd).
Case II: G = G0, where G0 contains the compact-open subgroup K. Let D1 be

a set of coset representatives of G0/K and D2 be a set of coset representatives of

Ĝ0/K⊥. Then D = D1 ×D2 is a quasi-lattice in G × Ĝ, and the family {MδTdχK :
(d, δ) ∈ D} is an orthonormal basis for L2(G0). To verify this claim, we note that

{δ : δ ∈ K̂} is an orthonormal basis for L2(K), because K is compact. Since

K̂ ' Ĝ0/K⊥ ' D2, the set {MδχK : δ ∈ D2} is an orthonormal basis for L2(K) ⊆
L2(G0). Furthermore, since the translates Td1χK, Td2χK have disjoint support for

d1, d2 ∈ D1 ' Ĝ0/K, d1 6= d2 and since

L2(G0) = ⊕d∈D1L
2(dK),

{MωTdχK}(d,δ)∈D is an orthonormal basis for L2(G0).
Furthermore, χK ∈ M1

v (G0) by Proposition 6.4.5 in [16] or as a consequence
of (12).

Case III: G ' Rd × G0 is an arbitrary LCA group. Let Λ = αZ2d × D,
α < 1 be a quasi-lattice in G×Ĝ, let {MµTmγ

◦ : (m,µ) ∈ αZ2d} be a tight frame for
L2(Rd), and {MδTdχK : (d, δ) ∈ D} be the orthonormal basis for L2(G0). Then the
set {M(ω,δ)T(u,d)(γ

◦ ⊗ χK)} is a tight frame for L2(G), because the tensor product
of (tight) frames is again a (tight) frame. Finally, the window g = γ◦ ⊗ χK is in
M1

v (G), which is shown as in (12).

A Banach Algebra of Matrices. The following matrix algebra is a natural
generalization of Wiener’s algebra and will play a central role in our investigations.

Definition 2.8 ([15, 1, 2]) Let D be a countable discrete abelian subgroup, and
let v be an admissible weight on D. The nonstationary Wiener algebra Cv = Cv(D)
consists of all matrices A = [Ai,j]i,j∈D×D on the index set D, for which

‖A‖Cv(D) :=
∑
j∈D

sup
i∈D
|Ai,i−j| v(j) (21)

is finite.

It is easy to verify that∑
j∈D

sup
i
|Ai,i−j|v(j) = inf

a∈`1v(D)
{‖a‖`1v : |Ai,j| ≤ a(i− j), i, j ∈ D}. (22)

The unweighted version of the following result was mentioned already in the intro-
duction of this paper.

Theorem 2.9 Let A = [Ai,j]i,j∈D be a matrix in Cv where v is an admissible weight.
If A is invertible on `2(D), then A−1 ∈ Cv.
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This theorem was obtained by Gohberg et al. [15] and independently by Sjöstrand [37]
for the case v = 1. The weighted case as well as quantitative versions were derived
by Baskakov [1, 2].

We need the following generalization of this theorem. We recall that a matrix
A possesses a pseudoinverse, if there exists a subspace M ⊆ `2(D), such that the
restriction of A to M is invertible and ker(A) = M⊥. The trivial extension of this
inverse on M to all of `2(D) is called the pseudoinverse and denoted by A+.

Corollary 2.10 ([11]) Let A = [Ai,j]i,j∈D be a matrix in Cv where v is an admis-
sible weight. If A has a pseudoinverse A+, then A+ ∈ Cv.

3 Pseudodifferential Operators on Locally Com-

pact Abelian Groups

We turn to the investigation of pseudodifferential operators on LCA groups. The
abstract formalism was developed in [9]. With proper notation, most formulas are
almost identical to those for pseudodifferential operators on Rd.

Definition 3.1 Let σ be a function or distribution in M∞(G × Ĝ). The pseudod-
ifferential operator with Kohn-Nirenberg symbol σ is the operator Kσ given by

(Kσf)(x) =

∫
bG
σ(x, ξ)f̂(ξ)〈ξ, x〉dξ. (23)

If F is some function space, we write Kσ ∈ Op(F ) whenever σ ∈ F .

Alternatively we can write Kσ as a superposition of time-frequency shifts [9, 10, 17]:

Kσf(x) =

∫
bG×G

σ̂(ω, u)MωT−uf(x)dωdu . (24)

If σ̂ ∈ L1(Ĝ × G), f ∈ L1(G), and f̂ ∈ L1(Ĝ), this follows from the computation

Kσf(x) =

∫
bG
σ(x, ξ)f̂(ξ)〈ξ, x〉dξ =

∫
G×bG

σ(x, ξ)f(y)〈ξ, y − x〉dydξ

=

∫
bG×G

σ̂(ω, y − x)f(y)〈ω, x〉dωdy =

∫
bG×G

σ̂(ω, u)f(x+ u)〈ω, x〉dωdu

=

∫
bG×G

σ̂(ω, u)MωT−uf(x)dωdu. (25)

11



Expression (24) is called the spreading representation of Kσ and σ̂ is the spreading
function. For more general symbol classes the validity of the spreading represen-
tation follows by a routine density argument [9, 18]. Expression (24) represents
pseudodifferential operators as linear combination of time-frequency shift opera-
tors, which suggests that methods from time-frequency analysis are a natural tool
for the study of pseudodifferential operators.

We have the following formal symbol calculus for Kohn-Nirenberg pseudodif-
ferential operators.

Lemma 3.2 If σ̂, τ̂ ∈ L1(Ĝ × G), then

KσKτ = KF−1(σ̂ \ τ̂), (26)

where the twisted convolution \ of σ̂, τ̂ is defined by

σ̂ \ τ̂(ξ, u) =

∫
bG×G

σ̂(ζ, y)τ̂(ξ − ζ, u− y)〈ξ − ζ, y〉dζdy. (27)

Proof: Our hypothesis guarantees that the integrals below converges absolutely
and thus Fubini’s theorem permits to change the order of integration.

KσKτf =

∫
bG×G

σ̂(ζ, y)MζT−ydζdy

∫
bG×G

τ̂(ξ, u)MξT−ufdξdu

=

∫
bG×G

∫
bG×G

σ̂(ζ, y)τ̂(ξ, u) 〈ξ, y〉Mζ+ξT−(y+u)fdξdudζdy

=

∫
bG×G

( ∫
bG×G

σ̂(ζ, y)τ̂(ξ − ζ, u− y)〈ξ − ζ, y〉dζdy
)
MξT−ufdξdu

=

∫
bG×G

(σ̂ \ τ̂)(ξ, u)MξT−ufdξdu = KF−1(σ̂ \ τ̂)f.

Definition 3.3 Let v be an admissible weight on Ĝ × G. The weighted Sjöstrand
class Op(M∞,1

v (G×Ĝ)) is the class of pseudodifferential operators Kσ whose symbol

σ ∈M∞(G × Ĝ) satisfies

‖σ‖M∞,1
v

=

∫
bG×G

sup
x∈G×bG|VΨσ(x,ω)| v(ω)dω <∞ (28)

with Ψ ∈ SC(G × Ĝ) \ {0}.

12



Note that the weight in (28) depends only on ω, so consistency with (13) would

require the clumsier notation M∞,1
1⊗v (G × Ĝ).

Let {MµTmg}(m,µ)∈Λ be a Gabor system for L2(G) with respect to a quasi-lattice

Λ ⊆ G × Ĝ. Using the notation of time-frequency shift operators π(x) = MξTx, we
can write this system as {π(m)g}m∈Λ. For a given pseudodifferential operator Kσ

we define the matrix M(σ) by

[M(σ)]m,n = 〈Kσπ(n)g, π(m)g〉, m,n ∈ Λ. (29)

Since M(σ) depends also on g and Λ, it would be more accurate to use the notation
M(σ, g,Λ). However, whenever there is no danger of confusion, we will simply write
M(σ).

Assume Kσ is bounded on L2(G) and that {π(m)g}m∈Λ is a tight frame for
L2(G) with (lower and upper) frame bound equal to 1. In this case C∗C = I,
where Cg and C∗

g are defined as in (17) and (18). We can represent f ∈ L2(G) as
f =

∑
n∈λ〈f, π(n)g〉π(n)g. For m ∈ Λ we compute

Cg(Kσf)(m) = 〈Kσf, π(m)g〉

=
∑
n∈Λ

〈f, π(n)g〉〈Kσπ(n)g, π(m)g〉 = (M(σ)Cgf)(m). (30)

Since C∗C = I, equation (30) can be expressed equivalently as

Kσf = C∗
gM(σ)Cgf. (31)

The following lemma specifies the kernel and the range of M(σ) and is taken
from [19, Lemma 3.4] (the proof carries over almost verbatim to our setting by

replacing the Weyl symbol by the Kohn-Nirenberg symbol and R2d by G × Ĝ).

Lemma 3.4 Let {MµTmg}(m,µ)∈Λ be a Gabor frame for L2(G). If Kσ is bounded
on L2(G) then M(σ) is bounded on `2(Λ) and maps ran(Cg) into ran(Cg) with
ran(Cg)

⊥ = ker(C∗
g ) ⊆ ker(M(σ)).

4 Almost Diagonalization

We characterize the Sjöstrand class by its almost diagonalization with respect to
Gabor frames. The corresponding results on Rd were obtained in [19] and in a
slightly different version that is more suitable to applications in [39].

Definition 4.1 The (cross) Rihaczek distribution of f, g ∈ L2(G) is defined as

R(f, g)(x, ξ) = f(x)ĝ(ξ) 〈ξ, x〉. (32)
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The next lemma states two important properties of the Rihaczek distribution
and clarifies its appearance in the analysis of the Kohn-Nirenberg pseudodifferential
operators. Now define

J (x, ξ) = (−ξ, x) (x, ξ) ∈ G × Ĝ , (33)

then J is an isomorphism from G × Ĝ onto Ĝ × G, and J preserves the Haar
measure.

Lemma 4.2 Let f, g ∈ SC(G). Then:
(i)

R(π(x)g, π(y)f) = 〈η, x− y〉MJ (y−x)T(x,η)R(g, f), (34)

(ii)

〈Kσπ(x)f, π(y)f〉 = 〈η, x− y〉VR(g,f)σ
(
(x, η),J (y − x)

)
. (35)

(iii) If f, g ∈M1
v (G) for an admissible weight v on G × Ĝ, then

R(g, f) ∈M1
1⊗v◦J−1(G × Ĝ).

Proof: (i) follows from the calculation

R(π(x)g, π(y)f)(t, τ) = π(x)g(t) (π(y)f )̂ (τ) 〈τ, t〉

= MξTxg(t)TηM−yf̂(τ) 〈τ, t〉

= 〈ξ, t〉g(t− x)〈τ − η, y〉f̂(τ − η)

·〈η, t〉〈τ, x〉〈η, x〉〈τ − η, t− x〉
= 〈η, x− y〉M(ξ−η,y−x)T(x,η)R(g, f)(t, τ) .

Using the definition for J , we have obtained (34)
(ii) We first calculate the action of Kσ for functions f, g ∈ SC(G) in terms of

the Rihaczek distribution:

〈Kσf, g〉 =

∫
G

∫
bG
σ(x, ξ)f̂(ξ)〈ξ, x〉 g(x) dξdx

= 〈σ,R(g, f)〉. (36)

Using (36) and (34) we compute

〈Kσπ(y)f, π(x)g〉 = 〈σ,R(π(x)g, π(y)f))〉
= 〈η, x− y〉 〈σ,MJ (y−x)T(x,η)R(g, f)〉
= 〈η, x− y〉VR(g,f)σ((x, η),J (y − x)) . (37)

which is (35).
(iii) is proved similar to Lemma 5.1(ii) and therefore omitted.
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Now we state the key theorem about almost diagonalization of pseudodifferen-
tial operators Kσ for symbols in the generalized Sjöstrand class M∞,1

v◦J−1(G × Ĝ).
First we formulate a version for LCA groups that contain a lattice Λ and a corre-
sponding Gabor frame.

Theorem 4.3 Let g ∈M1
v (G) for some admissible weight v on G × Ĝ, Λ ⊆ G × Ĝ

be a lattice, and assume that {π(m)g}m∈Λ is a tight Gabor frame for L2(G). Then

for σ ∈M∞(G × Ĝ) the following properties are equivalent.

(i) σ ∈M∞,1
v◦J−1(G × Ĝ).

(ii) There exists a function H ∈ L1
v(G × Ĝ) such that

|〈Kσπ(z)g, π(y)g〉| ≤ H(y − z), for all y, z ∈ G × Ĝ. (38)

(iii) There exists a sequence h ∈ `1v(Λ) such that

|〈Kσπ(n)g, π(m)g〉| ≤ h(m− n), for all m,n ∈ Λ. (39)

Proof:
(i) ⇒ (ii). Let σ ∈ M∞,1

v◦J−1(G × Ĝ). Denote x = (x, ξ) and y = (y, η), and set

Ψ = R(g, g), which is in M1
1⊗v◦J−1(G×Ĝ) by Lemma 4.2(iii). We use Lemma 4.2(ii)

to compute

|〈Kσπ(x)g, π(y)g〉| = |VΨσ
(
(x, η),J (y − x)

)
| ≤ sup

z∈G×bG|VΨσ(z,J (y − x))|. (40)

Now set H(x) := sup
z∈G×bG|VΨσ(z,J x)|. Then

∫
G×bG H(x)v(x) dx =

∫
G×bG sup

z∈G×bG|VΨσ(z,J x)|v(J −1J x) dx

=

∫
bG×G sup

z∈G×bG|VΨσ(z,ω)| v(J −1ω) dω = ‖σ‖M∞,1

v◦J−1
.

(ii) ⇒ (i). For the converse, we note that if (z,ω) =
(
(x, η),J (y−x)

)
for z = (z, ζ)

and ω = (ω, u), then y = (u+ z, ζ) and x = (z, ω + ζ). Thus

|VR(g,g)σ(z,ω)| = |〈Kσπ(z, ω + ζ)g, π(u+ z, ζ)g〉| .

If (ii) holds, then
sup

z∈G×bG |VΦσ(z,ω)| ≤ H(J −1ω) ,
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and thus

‖σ‖M∞,1

v◦J−1
=

∫
bG×G sup

z∈G×bG |VΦσ(z,ω)| v(J −1ω) dω

≤
∫

bG×G H(J −1ω)v(J −1ω) dω = ‖H‖L1
v(G×bG) .

(i) ⇒ (iii): Let U be a fundamental domain of Λ ⊆ G × Ĝ. Set h(m) :=

supu∈U supz∈G×bG |VΨσ(z,J (m+u)|. Since σ ∈M∞,1
v◦J−1(G×Ĝ) and Φ ∈M1

1⊗v◦J−1(G×
Ĝ), Theorem 2.5 and Corollary 2.6 apply and warrant that h ∈ `1v(Λ).

Next we use Lemma 4.2(ii) and argue as in (40) to obtain

|〈Kσπ(n)g, π(m)g〉| ≤ sup
z∈G×bG|VΨσ(z,J (m− n))| = h(m− n) (41)

for m,n ∈ Λ. Thus (iii) is proved.

(iii) ⇒ (ii): Since {π(m)g}m∈Λ is a tight frame for L2(G × Ĝ) we can express an
arbitrary time-frequency shift π(u)g as

π(u)g =
∑
m∈Λ

〈π(u)g, π(m)g〉π(m)g. (42)

By assumption g ∈M1
v and therefore Theorem 2.5 implies that Vgg ∈ W (C, `1v)(G×

Ĝ). This means that for every relatively compact fundamental domain U of Λ and

α(n) = sup
u∈U

|Vgg(n− u)| = sup
u∈U

|〈π(u)g, π(n)g〉|, n ∈ Λ, (43)

the sequence α = {α(n)}n∈Λ belongs to `1v(Λ).

Given y, z ∈ G × Ĝ we can write them uniquely as y = n + u, z = n′ + u′ for
n,n′ ∈ Λ and u,u′ ∈ U . Inserting the expansion (42) and the definition of α in
the matrix entries we obtain

|〈Kσπ(n′ + u′)g, π(n + u)g〉| = |〈Kσπ(n′)π(u′)g, π(n)π(u)g〉|

≤
∑

m,m′∈Λ

|〈Kσπ(n′ + m′)g, π(n + m)g〉||〈π(u′)g, π(m′)g〉||〈π(u)g, π(m)g〉|

≤
∑

m,m′∈Λ

h(n + m− n′ −m′)α(m′)α(m)

= (h ∗ α ∗ α̃)(n− n′)

with α̃(n) = α(−n). Since h ∈ `1v(Λ) by hypothesis (iii) and α ∈ `1v(Λ) by con-
struction, we also have h ∗ α ∗ α̃ ∈ `1v(Λ).

Now set

H(z) =
∑
n∈Λ

(h ∗ α ∗ α̃)(n)χU−U(z− v) z ∈ G × Ĝ .
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Since ‖TnχU−U‖L1
v
≤ v(n)‖χU−U‖L1

v
, we obtain that

‖H‖L1
v
≤

∑
n∈Λ

(h ∗ α ∗ α̃)(n)v(n)‖χU−U‖L1
v

= c‖h ∗ α ∗ α̃‖`1v <∞.

For y, z ∈ G × Ĝ write y = n + u and z = n′ + u′ as before, then we have
y − z ∈ n − n′ + U − U and (h ∗ α ∗ α̃)(n − n′) ≤ H(y − z). Combining these
observations we have shown that

|〈Kσπ(z)g, π(y)g〉| ≤ (h ∗ α ∗ α̃)(n− n′) ≤ H(y − z) ,

and this is (ii).

Remark: We have proved a bit more. The equivalence (i) ⇔ (ii) requires only
that g ∈M1

v without any restriction; the implication (ii) ⇒ (iii) holds for arbitrary
Gabor systems with g ∈ M1

v . Only the implication (iii) ⇒ (ii) requires that the
Gabor system is a frame for L2(G).

Since the almost diagonalization of implication (i)⇒ (iii) is important in several
applications (e.g., cf. [39]), we state it explicitly.

Corollary 4.4 If σ ∈ M∞,1
v◦J−1(G × Ĝ), g ∈ M1

v (G) and Λ ⊆ G × Ĝ a lattice in

G × Ĝ, then there exists a sequence h ∈ `1v(Λ) such that

|〈Kσπ(m)g, π(n)g〉| ≤ h(m− n), for all m,n ∈ Λ .

Next we formulate a similar result on almost diagonalization for arbitrary LCA
groups, even when they do not contain a lattice. Once more, we take recourse to
structure theory. Recall that G × Ĝ ' R2d × G0 × Ĝ0 with G0 × Ĝ0 containing the
compact-open subgroup K × K⊥, and let x → ẋ be the canonical projection from
G×Ĝ onto G×Ĝ/({0}×K×K⊥) ' R2d×G0/K×Ĝ0/K⊥. Now let Λ = AZ2d×D1×D2

be a quasi-lattice in G × Ĝ, where D1 is a set of representatives of G0/K and

D2 a set of representatives of Ĝ0/K⊥. Then by definition the projection of Λ in

G × Ĝ/({0} × K × K⊥) is exactly Λ̇ = AZ2d × G0/K × Ĝ0/K⊥. Thus D := Λ̇ is
a discrete abelian group. This is the correct index set for the formulation of the
almost diagonalization in general LCA groups.

Finally, if v is a submultiplicative weight on G × Ĝ, then the weight ṽ(ẋ) =

supu∈{0}×K×K⊥ v(x+u) is submultiplicative on the quotient G×Ĝ/({0}×K×K⊥),
and ṽ satisfies the GRS-condition if and only if v does.

Theorem 4.5 Let g ∈M1
v (G) for some admissible weight v on G × Ĝ, Λ ⊆ G × Ĝ

be a quasi-lattice, and assume that {π(m)g}m∈Λ is a tight Gabor frame for L2(G).

Then for σ ∈M∞(G × Ĝ) the following properties are equivalent.

(i) σ ∈M∞,1
v◦J−1(G × Ĝ).
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(ii) There exists a function H ∈ L1
v(G × Ĝ) such that

|〈Kσπ(z)g, π(y)g〉| ≤ H(y − z), for all y, z ∈ G × Ĝ. (44)

(iii) There exists a sequence h0 ∈ `1v(D) such that

|〈Kσπ(n)g, π(m)g〉| ≤ h0(ṁ− ṅ), for all m,n ∈ Λ. (45)

Proof: The equivalence (i) ⇔ (ii) does not make reference to any Gabor frame,
and we have proved it already in Theorem 4.3.
(i) ⇒ (iii): Let U = A[0, 1)2d×K×K⊥ be a fundamental domain of Λ ⊆ Ĝ×G. Set

h(m) := supu∈U supz∈bG×G |VΨσ(z,J (m+u))| for m ∈ Λ. Since σ ∈M∞,1
v◦J−1(G×Ĝ)

and Φ ∈M1
1⊗v◦J−1(G×Ĝ), Corollary 2.6 implies that h ∈ `1v(Λ). Since {0}×K×K⊥

is a subgroup of G × Ĝ, we find that h(m + u) = h(m) for all u ∈ {0} × K × K⊥.
Consequently we may define a function h0 on D = Λ̇ unambiguously by h0(ṁ) =
h(m) for ṁ ∈ D. Since h ∈ `1v(Λ), we have h0 ∈ `1ṽ(D).

Now we argue as above and we use Lemma 4.2(ii) and (40) to obtain

|〈Kσπ(n)g, π(m)g〉| ≤ sup
z∈G×bG|VΨσ(z,J (m− n))| ≤ h(m− n) = h0(ṁ− ṅ) (46)

for m,n ∈ Λ. Thus (iii) is proved.
(iii) ⇒ (ii): As in the proof of Theorem 4.3 we express an arbitrary time-frequency
shift π(u)g as

π(u)g =
∑
m∈Λ

〈π(u)g, π(m)g〉π(m)g (47)

with respect to a tight Gabor frame {π(m)g}m∈Λ. The assumption g ∈ M1
v and

Theorem 2.5 imply that Vgg ∈ W (C, `1v)(G × Ĝ). This means that for the funda-
mental domain U = A[0, 1)2d ×K ×K⊥ of Λ, the sequence with entries

α(n) = sup
u∈U

|Vgg(n− u)| = sup
u∈U

|〈π(u)g, π(n)g〉|, n ∈ Λ, (48)

belongs to `1v(Λ). As above we note that α(n + u) = α(n) for n ∈ Λ and u ∈
{0} × K ×K⊥. Thus α can be identified with a sequence α0(ṅ) = α(n) on D, and
α0 ∈ `1ṽ(D).

Now we follow the proof of Theorem 4.3. We write y, z ∈ G×Ĝ in a unique form
as y = n + u, z = n′ + u′ for n,n′ ∈ Λ and u,u′ ∈ U . Inserting the expansion (47)
and the definition of α0 in the matrix entries we obtain

|〈Kσπ(n′ + u′)g, π(n + u)g〉| = |〈Kσπ(n′)π(u′)g, π(n)π(u)g〉|

≤
∑

m,m′∈Λ

|〈Kσπ(n′ + m′)g, π(n + m)g〉||〈π(u′)g, π(m′)g〉||〈π(u)g, π(m)g〉|

≤
∑

m,m′∈Λ

h0(ṅ + ṁ− ṅ′ − ṁ′)α0(ṁ′)α0(ṁ)

=(h0 ∗ α0 ∗ α̃0)(ṅ− ṅ′)
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with α̃0(n) = α0(−ṅ). Here it is crucial that D = Λ̇ is a group. Since h0 ∈ `1ṽ(D)
by hypothesis (iii) and α0 ∈ `1ṽ(D) by construction, the sequence h0 ∗α0 ∗ α̃0 is also
in `1ṽ(D).

Now set
H(z) =

∑
n∈Λ

(h0 ∗ α0 ∗ α̃0)(ṅ)χU−U(z− n).

Since ‖TnχU−U‖L1
v
≤ v(n)‖χU−U‖L1

v
and ṽ(ṅ) ≤ Cv(n), we obtain that

‖H‖L1
v
≤

∑
n∈Λ

(h0 ∗ α0 ∗ α̃0)(ṅ)v(n)‖χU−U‖L1
v

= c‖h0 ∗ α0 ∗ α̃0‖`1ṽ <∞.

Arguing as before, we show that

|〈Kσπ(z)g, π(y)g〉| ≤ (h0 ∗ α0 ∗ α̃0)(ṅ− ṅ′) ≤ H(y − z) ,

and this is (ii).

Remark: Despite the resemblance of the proofs, Theorem 4.3 is not a special
case of Theorem 4.5 because in the former case we consider an arbitrary lattice in
G×Ĝ, if it exists, whereas in the latter case we consider a very special quasi-lattice
that respects the factorization of G × Ĝ as R2d × G0 × Ĝ0.

5 Sjöstrand’s Results on Locally Compact Abelian

Groups

The characterization of almost diagonalization through time-frequency properties
of the symbol leads to the generalization of Sjöstrand’s results to LCA groups.
Note that in no place do we resort to typical arguments from pseudodifferential
operator calculus.

Boundedness on L2(G): First we prove that any pseudodifferential operator Kσ

with a symbol in the generalized Sjöstrand class is bounded on all modulation
spaces with appropriate weight. As a preparation we need a lemma on the proper-
ties of the Rihaczek distribution R(f, g)(x, ξ) = f(x)ĝ(ξ) 〈ξ, x〉 that generalizes [18]
to LCA groups and weighted modulation spaces.

Lemma 5.1 (i) Let ϕ, ψ, f, g ∈ L2(G) and set Φ = R(ϕ, ψ) ∈ L2(G × Ĝ). Then,

with x = (x, ξ) ∈ G × Ĝ, ω = (ω, u) ∈ Ĝ × G, we have

VΦ

(
R(g, f)

)
(x,ω) = 〈ξ, u〉Vψg(x, ξ + ω)Vψf(x+ u, ξ) . (49)

(ii) If f ∈Mp,q
m (G) and g ∈Mp′,q′

1/m (G),then R(g, f) ∈M1,∞
1/v◦J−1(G × Ĝ) and

‖R(g, f)‖M1,∞
1/v◦J−1

≤ C‖f‖Mp,q
m
‖g‖

Mp′,q′
1/m

. (50)
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Proof: The proof is similar to [18]. We write the time-frequency shifts of the
Rihaczek distribution explicitly as

MωTxR(ϕ, ψ)(t, τ) = 〈ω, t〉〈τ, u〉ϕ(t− x) ψ̂(τ − ξ) 〈τ − ξ, t− x〉 .

Consequently, after a substitution,

VΦR(g, f)(x,ω) = 〈R(g, f),MωTxR(ϕ, ψ)〉

=

∫∫
G×bG g(t)f̂(τ) 〈τ, t〉ϕ(t− x) ψ̂(τ − ξ) 〈τ − ξ, t− x〉 〈ω, t〉〈τ, u〉 dtdτ

= 〈ξ, x〉
∫
G
g(t)ϕ(t− x) 〈ξ + ω, t〉 dt ·

∫
bG f̂(τ) ψ̂(τ − ξ) 〈τ,−x− u〉 dτ

= 〈ξ, x〉Vϕg(x, ξ + ω)Vψ̂f̂(ξ,−x− u)

= 〈ξ, u〉Vϕg(x, ξ + ω)Vψf(x+ u, ξ) .

In the last transformation we have used the fundamental formula (7). Since both

R(g, f) and R(ϕ, ψ) are in L2(G × Ĝ), the integral defining VΦR(g, f) is absolutely

convergent on G × Ĝ, and so the application of Fubini’s theorem is justified.
(b) is a consequence of (a). For simplicity we use the window Φ = R(ϕ, ϕ) and

use the fact that different windows in M1
v (G) yield equivalent norms on Mp,q

m (G)
(Lemma 2.3). Consequently,

‖R(g, f)‖M1,∞
1/v◦J−1

= sup
ω∈bG×G

1

v(J −1ω)

∫
G×bG |VΦ(R(g, f)(x,ω)| dx

= sup
(ω,u)∈bG×G

1

v(u,−ω)

∫∫
G×bG |Vϕf(x+ u, ξ)| |Vϕg(x, ξ + ω)| dxdξ = (∗)

Since m(x, ξ + ω) ≤ Cv(−u, ω)m(x + u, ξ) by (11) and since v is even, we can
continue the estimate by

(∗) ≤ C sup
(ω,u)∈bG×G

∫∫
G×bG |Vϕf(x+ u, ξ)|m(x+ u, ξ) |Vϕg(x, ξ + ω)| 1

m(x, ξ + ω)
dxdξ

≤ C sup
(ω,u)∈bG×G ‖Vϕf m‖Lp,q ‖Vϕg m−1‖Lp′,q′

= C‖f‖Mp,q
m
‖g‖

Mp′,q′
1/m

,

where in the last step we have applied Hölder’s inequality.

We are now ready to prove that operators in the Sjöstrand class are bounded
on modulation spaces.

Theorem 5.2 Let v be an admissible weight on G × Ĝ. If σ ∈ M∞,1
v◦J−1(G × Ĝ),

then Kσ is bounded on all modulation spaces Mp,q
m (G) for 1 ≤ p, q ≤ ∞ and every

v-moderate weight m. In particular, Kσ is bounded on L2(G).
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Proof: We apply the duality (14) and Lemma 5.1(ii) to obtain

|〈Kσf, g〉| = |〈σ,R(g, f)〉|
≤ C ‖σ‖M∞,1

v◦J−1
‖R(g, f)‖M1,∞

1/v◦J−1

≤ C ′ ‖σ‖M∞,1

v◦J−1
‖f‖Mp,q

m
‖g‖

Mp′,q′
1/m

.

Since this inequality holds for all g ∈Mp′,q′

1/m (G) = (Mp,q
m (G))∗, we have shown that

‖Kσf‖Mp,q
m
≤ C ‖σ‖M∞,1

v◦J−1
‖f‖Mp,q

m
.

If (p, q) = (1,∞) or (p, q) = (∞, 1), we observe that these spaces are also dual
spaces of a modulation space [3], thus we have proved the boundedness of Kσ for
all parameters p, q ∈ [1,∞]. For p = q = 2 and m ≡ 1, we obtain the boundedness
on M2,2(G) = L2(G).

The Banach Algebra Property. Whereas the boundedness property uses typi-
cal arguments from time-frequency analysis, the Banach algebra property lies much
deeper and requires the characterization of the generalized Sjöstrand class via al-
most diagonalization.

Recall that Cv(D) is the Banach algebra of all matrices on the index set D that
are dominated by convolution operators in `1v(D).

Theorem 5.3 The space A = Op(M∞,1
v◦J−1(G × Ĝ)) is a Banach algebra with re-

spect to the composition of operators and with the norm ‖Kσ‖A := ‖M(σ)‖Cv �
‖σ‖M∞,1

v◦J−1
.

Proof: Let {MµTmg}(m,µ)∈Λ be a tight Gabor frame with g ∈M1
v (G) with respect

to a quasi-lattice Λ ⊆ G × Ĝ. Recall that the projection of Λ into a quotient of
G × Ĝ results in the discrete abelian group D. We may assume without loss of
generality that g is normalized such that its (lower and upper) frame bound is 1.
Using Lemma 3.2 we compute

M(F−1(σ̂ \ τ̂))Cgf = Cg(KF−1(σ̂ \ τ̂)f) = Cg(KσKτf)

= M(σ)Cg(Kτf) = M(σ)M(τ)Cgf. (51)

This means that M(F−1(σ̂ \ τ̂)) and M(σ)M(τ) coincide on ran(Cg). Since Kσ, Kτ ,
andKF−1(σ̂ \ τ̂) are all bounded on L2(G), it follows from Lemma 3.4 that ker(M(F−1(σ̂ \ τ̂))) =
ker(M(σ)M(τ)). Hence

M(F−1(σ̂ \ τ̂)) = M(σ)M(τ) (52)

on `2(Λ).
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Now let σ, τ ∈ M∞,1
v◦J−1(G × Ĝ). Then, by Theorem 4.5 M(σ) ∈ Cv(D) and

M(τ) ∈ Cv(D). Since Cv(D) is a Banach algebra, the product M(σ)M(τ) is also in
Cv(D), and furthermore

‖KF−1(σ̂ \ τ̂)‖A = ‖M(F−1(σ̂ \ τ̂))‖Cv ≤ ‖M(σ)‖Cv‖M(τ)‖Cv = ‖Kσ‖A‖Kτ‖A .

By Theorem 4.5 we conclude that F−1(σ̂ \ τ̂)) ∈ M∞,1
v◦J−1 and that KσKτ ∈ A =

Op(M∞,1
v◦J−1(G × Ĝ)).

The Wiener Property: We now state the main result of this paper, the Wiener
property of the generalized Sjöstrand class. This is the deepest theorem of this
paper and requires the combination of all methods developed so far, namely the
almost diagonalization, the Wiener property of the matrix algebra Cv, and the
existence and properties of tight Gabor frames.

Theorem 5.4 Let v be an admissible weight. If σ ∈ M∞,1
v◦J−1(G × Ĝ) and if Kσ is

invertible on L2(G), then (Kσ)
−1 = Kτ for some τ ∈M∞,1

v◦J−1(G × Ĝ).

Proof: As in the proof of Theorem 5.3 we use a tight Gabor frame {MµTmg}(m,µ)∈Λ

with g ∈ M1
v and with (lower and upper) frame bounds equal to 1. Let τ be the

unique distribution such that (Kσ)
−1 = Kτ . By Lemma 3.4 we have that the ma-

trix M(τ, g,Λ) = M(τ) is bounded on `2(Λ) and maps ran(Cg) into ran(Cg) with
ker(C∗

g ) ⊆ ker(M(τ)).
We show that M(τ) is the pseudoinverse of M(σ). Let c = Cgf ∈ ran(Cg), then

M(τ)M(σ)Cgf = M(τ)Cg(Kσf) = Cg(KτKσf) = Cgf, (53)

where we have used (31) and the property that {MµTmg}(m,µ)∈Λ is a tight frame.
Relation (53) says that M(τ)M(σ) = I on ran(Cg). Furthermore, ker(M(σ)),
ker(M(τ)) ⊇ ran(Cg)

⊥, thus we conclude that M(τ) is the pseudoinverse of M(σ).

By Theorem 4.5 the property σ ∈ M∞,1
v◦J−1(G × Ĝ) implies that M(σ) ∈ Cv(D).

Applying Corollary 2.10 to M(σ), we deduce that M(τ) = M(σ)+ ∈ Cv(D). Using

Theorem 4.5 once more, we have shown that Kτ ∈M∞,1
v◦J−1(G × Ĝ).

Spectral invariance on modulation spaces: According to Theorem 5.4 the
inverse K−1

σ has again a symbol in M∞,1
v◦J−1(G × Ĝ). Consequently, by Theorem 5.2

K−1
σ acts boundedly on a large class of modulation spaces depending only on the

class of the weight v.

Corollary 5.5 Let v be an admissible weight. If σ ∈M∞,1
v◦J−1(G × Ĝ) and if Kσ is

invertible on L2(G), then Kσ is invertible simultaneously on all modulation spaces
Mp,q

m (G) for 1 ≤ p, q ≤ ∞ and v-moderate weight m.
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6 Special Groups

6.1 Sjöstrand’s Class

Clearly, when we choose G = Rd (whence Ĝ = R̂d = Rd) in the derivations
of the previous sections, then we recover Sjöstrand’s results [36, 37]. The addi-
tional insight gained from our approach is the identification of the cornerstones of
Sjöstrand’s result, namely modulation spaces and the corresponding time-frequency
techniques, the striking appearance of certain matrix algebras and their spectral
invariance, and the almost diagonalization by Gabor frames.

6.2 Discrete Pseudodifferential Operators

Let us consider the case G = Z, Ĝ = T. Thus Kσ, now acting on `2(Z), becomes
a discrete pseudodifferential operator. We refer to [29] for a detailed review of
discrete pseudodifferential operators. Of course, the action of Kσ can be described
simply by a matrix. The next lemma elucidates the relation between the symbol
class M∞,1

v◦J−1(Z×T), the “discrete Sjöstrand class”, and the corresponding class of
matrices. A similar calculation was made in [13].

Lemma 6.1 Let Kσ be a pseudodifferential operator defined on `2(Z) and let v be
a weight function on Z. Then the matrix corresponding to Kσ is in Cv(Z) if and
only if T2σ ∈M∞,1

(v⊗1)◦J−1(Z× T), where T2σ(x, ξ) := σ(x,−ξ).

In this special case Theorem 5.4 coincides with Theorem 2.9 of Gohberg et al.
and Baskakov. However, our proof of Theorem 5.4 does not give a new proof of
Theorem 2.9, because we have used the Gohberg-Baskakov result in the proof of
the general theorem.

Proof: We begin by calculating ‖T2σ‖M∞,1

v◦J−1 (Z×T). We first compute VΨσ for an

appropriate window Ψ in M1
v⊗1(Z × T). We choose Ψ = δ ⊗ 1. Since Ψ is the

characteristic function of the compact-open subgroup {0} × T in Z× T, its STFT
VΨΨ is integrable with respect to every submultiplicative weight v by (12), and
thus Ψ ∈M1

v⊗1(Z× T) for every submultiplicative v on Z.
Let x = (x, ξ) ∈ Z× T,ω = (ω, u) ∈ T× Z. We compute

VΨT2σ(x,ω) =
∑
z∈Z

∫
T

T2σ(z, ζ)MωTxΨ(z, ζ) dζ

=
∑
z∈Z

∫
T

σ(z,−ζ)δ(z − x)1(ζ − ξ)e−2πiζue−2πizω dζ

= e−2πixω

∫
T

σ(x,−ζ)e−2πiζu dζ

= e−2πixωF−1
2 σ(x, u).
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Consequently, since (v ⊗ 1)(J −1(ω, u)) = (v ⊗ 1)(u,−ω) = v(u), we obtain

‖T2σ‖M∞,1

(v⊗1)◦J−1
=

∑
u∈Z

∫
T

sup
x
|VΨT2σ(x,ω)| (v ⊗ 1)(J −1)(ω, u)) dω

=
∑
u∈Z

∫
T

sup
x,ξ
|e−2πixωF−1

2 σ(x, u)| v(u) dω

=
∑
u∈Z

sup
x∈Z

|F−1
2 σ(x, u)| v(u). (54)

Next we compute Kσf(x).

Kσf(x) =

∫
T

σ(x, ξ)f̂(ξ)e2πixξ dξ

=
∑
u∈Z

( ∫
T

σ(x, ξ)e−2πi(u−x)ξdξ
)
f(u)

=
∑
u∈Z

F2σ(x, u− x)f(u)

=
∑
u∈Z

F−1
2 σ(x, x− u)f(u)

= Af . (55)

This means that the matrix A corresponding to Kσ has the entries

Ax,u := F−1
2 σ(x, x− u), x, u ∈ Z. (56)

Comparing (54), (55) and (56), we find that the assumption T2σ ∈M∞,1
(v⊗1)◦J−1(Z×

T) yields ∑
u∈Z

sup
x∈Z

|F2T2σ(x, u)|v(u) <∞⇐⇒
∑
u∈Z

sup
x∈Z

|Ax,x−u|v(u) <∞ .

Comparing with Definition 2.8, we have shown that the matrix A corresponding to
Kσ is in Cv(Z).

6.3 Periodic Pseudodifferential Operators

We consider periodic pseudodifferential operators, cf. e.g. [25, 34]. In this case

G = T, Ĝ = Z and thus the symbol is defined on T×Z. Analogous to the previous
section we will first analyze M∞,1

(1⊗v)◦J−1(T× Z).

We first compute VΨσ for the window Ψ = 1⊗ δ. As before Ψ ∈ M1
1⊗v(T× Z)

for any submultiplicative weight on Z.

24



Let x = (x, ξ) ∈ T× Z,ω = (ω, u) ∈ Z× T. We compute

VΨσ(x,ω) =

∫
T

∑
ζ∈Z

σ(z, ζ)MωTxΨ(z, ζ) dz (57)

=

∫
T

∑
ζ∈Z

σ(z, ζ)1(z − x) δ(ζ − ξ) e−2πizωe−2πiζu dz (58)

= e−2πiξu

∫
T

σ(z, ξ)e−2πizω dz (59)

= e−2πiξuF1σ(ω, ξ). (60)

Consequently, since (1⊗ v)(J −1(ω, u)) = (1⊗ v)(u,−ω) = v(−ω) = v(ω), we have

‖σ‖M∞,1

(1⊗v)◦J−1
=

∫
T

∑
ω∈Z

sup
x
|VΨσ(x,ω)|(1⊗ v)(J −1(ω)) du (61)

=
∑
ω∈Z

sup
ξ∈Z
|F1σ(ω, ξ)|v(ω). (62)

Next we compute the Fourier transform of Kσf .

(FKσf)(ξ) = F
( ∑
ω∈Z

σ(x, ω)f̂(ω)e2πixω
)
(ξ)

=

∫
T

∑
ω∈Z

σ(x, ω)f̂(ω)e2πix(ω−ξ)dx

=
∑
ω∈Z

F1σ(ξ − ω, ω)f̂(ω) . (63)

Let A be the matrix with entries Aξ,ω = F1σ(ξ − ω, ω), ξ, ω ∈ Z. Then

Af̂ = FKσF−1f̂ ,

in other words, A describes the action of Kσ on the Fourier coefficients f̂ of f .
Using (62) and (63) we see that

‖A‖Cv =
∑
ω∈Z

sup
ξ∈Z

|Aξ,ξ−ω|v(ω)

=
∑
ω∈Z

sup
ξ∈Z

|F1σ(ω, ξ − ω)| v(ω)

=
∑
ω∈Z

sup
ξ∈Z

|F1σ(ω, ξ)| v(ω)

= ‖σ‖M∞,1

(1⊗v)◦J−1
.

So we have shown that FKσF−1 ∈ Cv(Z) if and only if σ ∈M∞,1
(1⊗v)◦J−1(T× Z).
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[11] M. Fornasier and K. Gröchenig. Intrinsic localization of frames. Constr. Ap-
prox., 22:395 – 415, 2005.

[12] J. J. F. Fournier and J. Stewart. Amalgams of Lp and lq. Bull. Amer. Math.
Soc. (N.S.), 13(1):1–21, 1985.

[13] E. Galperin. Uncertainty principles as embeddings of modulation spaces. PhD
thesis, Univ. of Connecticut, 2000.

26



[14] I. Gelfand, D. Raikov, and G. Shilov. Commutative normed rings. Chelsea
Publishing Co., New York, 1964. Translated from the Russian.

[15] I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for
positive and strictly contractive extension problems: an alternative version
and new applications. Integral Equations Operator Theory, 12(3):343–382,
1989.
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[37] J. Sjöstrand. Wiener type algebras of pseudodifferential operators. In
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