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Abstract. We provide examples of the product of two localization operators.
As a special case, we study the composition of Gabor multipliers. The re-
sults highlight the instability of this product and underline the necessity of
expressing it in terms of asymptotic expansions.

We study the problem of calculating or estimating the product of two local-
ization operators. The motivation comes either from signal analysis or pseudodiffe-
rential operator theory. On the one hand, in signal analysis the problem of finding
a filter that has the same effect as two filters arranged in series amounts to the
computation of the product of two localization operators, see [8, 9] and references
therein.

On the other side, composition of pseudodifferential operators by means of
symbolic calculus gives rise to asymptotic expansions, mainly employed in PDEs
(see e.g., [14, 16]). Outcomes are regularity properties of partial differential oper-
ators and the construction of an approximate inverse (so-called parametrix).

Since localization operators are a sub-class of pseudodifferential operators,
looking for asymptotic expansions of the localization operator product appears
to be natural as well. Applications can be found in the framework of PDEs and
Quantum Mechanics [1, 6, 7, 15].

In this paper, we survey the known approaches to this problem and provide
concrete examples of the composition of localization operators. Indeed, very few
cases allow the product to be written as a localization operator as well, conse-
quently the class of localization operators is not closed under composition. Thus
the product is unstable with respect to composition. This instability highlights the
importance of a symbolic calculus for localization operators [6].

We present localization operators using language and tools from time-frequency
analysis. First, the definition of the short-time Fourier transform is required.

Given a function f on Rd and a point (x, ω) of the phase space R2d, the
operators of translation and modulation are defined to be

(1) Txf(t) = f(t− x) and Mωf(t) = e2πiωtf(t) .
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We often combine translations and modulations into time-frequency shift (phase-
space shifts in physical terminology). Set z = (x, ω) ∈ R2d, then the general
time-frequency shift is defined by

(2) π(z) = MωTx.

Associated to time-frequency shifts is an important time-frequency representation,
the short-time Fourier transform (STFT), also well-known as coherent state trans-
form, Gabor transform and windowed Fourier transform. The STFT of a function
or distribution f with respect to a fixed non-zero window function g is given by

(3) Vgf(x, ω) =
∫

Rd

f(t) g(t− x) e−2πiωt dt = 〈f,MωTxg〉 = 〈f, π(z)g〉 ,

whenever the integral or the brackets 〈·, ·〉 (expressing a sesquilinear form) are
well-defined. The short-time Fourier transform can be defined on many pairs of
distribution spaces and test functions. For instance, Vgf maps L2(Rd) × L2(Rd)
into L2(R2d) and S(Rd)× S(Rd) into S(R2d). Furthermore, Vgf can be extended
to a map from S ′(Rd) × S ′(Rd) into S ′(R2d) [12, p. 41]. The short-time Fourier
transform is the appropriate tool for defining localization operators, as we shall
see presently.

Let a be a symbol on the time-frequency plane R2d and choose two windows
ϕ1, ϕ2 on Rd, then the localization operator Aϕ1,ϕ2

a is defined as

(4) Aϕ1,ϕ2
a f(t) =

∫
R2d

a(x, ω)Vϕ1f(x, ω)MωTxϕ2(t) dxdω .

Taking the inner product with a test function g, the definition of Aϕ1,ϕ2
a can be

written in a weak sense, namely,

(5) 〈Aϕ1,ϕ2
a f, g〉 = 〈aVϕ1f, Vϕ2g〉 = 〈a, Vϕ1f Vϕ2g〉.

If a ∈ S ′(R2d) and ϕ1, ϕ2 ∈ S(Rd), then (5) is a well-defined continuous
operator from S(Rd) to S ′(Rd). If ϕ1(t) = ϕ2(t) = 2d/4e−πt

2
, then Aa = Aϕ1,ϕ2

a

is well-known as (anti-)Wick operator and the mapping a→ Aϕ1,ϕ2
a is interpreted

as a quantization rule [2, 8, 15, 16, 19].
Both the exact and the asymptotic product of localization operators rely upon

the connection with the Weyl calculus. Namely, a localization operator Aϕ1,ϕ2
a

can be represented as a Weyl transform. Here we need to refer to another time-
frequency representation, the cross-Wigner distribution W (g, f) of the functions
g, f defined below (18).
The Weyl transform Lσ of σ ∈ S ′(R2d) is then defined by

(6) 〈Lσf, g〉 = 〈σ,W (g, f)〉, f, g ∈ S(Rd).

Every continuous operator from S(Rd) to S ′(Rd) can be represented as a Weyl
transform, and a calculation in [3, 11, 16] reveals that

(7) Aϕ1,ϕ2
a = La∗W (ϕ2,ϕ1),
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so, the (Weyl) symbol of Aϕ1,ϕ2
a is given by

(8) σ = a ∗W (ϕ2, ϕ1) .

The composition of the Weyl operators Lσ and Lτ , with symbols σ and τ
belonging to suitable function spaces, can be expressed in the Weyl form [11, Chap.
2.3]

(9) LσLτ = Lσ]τ ,

where σ]τ , the twisted multiplication of the symbols σ and τ , is given by

(10) σ]τ(ζ) = 22d

∫∫
R2d

σ(z)τ(w)e4πi[ζ−w,ζ−z] dzdw

and the brackets [·, ·] express the symplectic form on R2d

[(z1, z2), (ζ1, ζ2)] = z1ζ2 − z2ζ1, z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d.

Thus, the composition of Weyl operators, whenever possible, defines a bilinear
form (the twisted multiplication) on the corresponding symbols.

The product of localization operators will be studied along the following steps
in Sections 3–5:
(i) Rewrite the two localization operators in terms of Weyl transforms (7);
(ii) Use the product formula for Weyl symbols (9), (10) to compute the Weyl
symbol of their product;
(iii) Express, whenever possible, the resulting operator as a localization operator.
In view of (8) this amounts to a deconvolution problem.

Notation. We define t2 = t · t, for t ∈ Rd, and xy = x · y is the scalar product
on Rd. The Schwartz class is denoted by S(Rd), the space of tempered distributions
by S ′(Rd). We use the brackets 〈f, g〉 to denote the extension to S ′(Rd) × S(Rd)
of the inner product 〈f, g〉 =

∫
f(t)g(t)dt on L2(Rd). The Fourier transform is

normalized to be f̂(ω) = Ff(ω) =
∫
f(t)e−2πitωdt. Given a continuous positive

function (so-called weight function) m and 1 ≤ p ≤ ∞, we define as Lpm(Rd) the
space of all (Lebesgue) measurable functions on Rd such that the norm ‖f‖Lp

m
:=(∫

Rd |f(x)|pm(x)p dx
)1/p is finite (obvious changes for p = ∞). For 1 ≤ p, q ≤ ∞,

the mixed-norm space Lp,q(R2d) is the Banach space of all (Lebesgue) measurable
functions on R2d satisfying

‖F‖Lp,q :=

(∫
Rd

(∫
Rd

|F (x, ω)|p dx
)1/p

dω

)1/q

,

again with obvious modifications whether p = ∞ or q = ∞.
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Throughout the paper, we shall use the notation A <∼ B to indicate A ≤ cB
for a suitable constant c > 0, whereas A � B if A ≤ cB and B ≤ kA, for suitable
c, k > 0.

1. Product Formulae

In this section we briefly review two approaches to handle the product of localiza-
tion operators.

1.1. Exact Product

We reformulate the result of [8, 9] according to the notation of [11, 12].
We consider the window functions ϕ1(t) = ϕ2(t) = ϕ(t) = 2d/4e−πt

2
, t ∈ Rd.

In this case, the Wigner distribution of the Gaussian ϕ is a Gaussian as well.
Precisely, we have

(11) W (ϕ,ϕ)(z) = 2de−2πz2 , z ∈ R2d.

If we compute the Weyl symbol σ of the operator Aϕ,ϕa we obtain σ(ζ) = 2d(a ∗
e−2πz2)(ζ), z, ζ ∈ R2d. In order to express the product in the form of a localization
operator, we rewrite the factors in a Weyl form, as detailed in the end of the
previous section. Secondly, we come back to localization operators by means of
relation (8). Given the Weyl symbols σ, τ ∈ S(R2d), we are interested in the
Fourier transform of the twisted multiplication σ]τ , that is

F(σ]τ)(ζ) = σ̂\τ̂(ζ),

where the twisted convolution \ is given by

(12) σ̂\τ̂(ζ) =
∫∫

R2d

σ̂(z)τ̂(ζ − z)eπi[z,ζ] dz.

For any f, g ∈ S(R2d), we define the \[ product by

(13) f\[g(ζ) =
∫∫

R2d

f(z)g(z − ζ)eπ(zζ+i[z,ζ]) e−πz
2
dz,

then the product of localization operators is given by the following formula.

Theorem 1.1. Let a, b ∈ S(R2d). If there exists a symbol c ∈ S ′(R2d) so that

(14) ĉ = 2−2dâ\[b̂,

then we have

Aϕ,ϕa Aϕ,ϕb = Aϕ,ϕc .
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The proof is a straightforward consequence of relations (8) and (12). Indeed,
one rewrites Aϕ,ϕa Aϕ,ϕb in Weyl form and uses relation (12) for the product. The
result is the Weyl operator Lµ, where the Fourier transform of µ is given by

µ̂(ζ) = [F(a ∗W (ϕ,ϕ))\F(b ∗W (ϕ,ϕ))](ζ)

= 2−2d

∫∫
R2d

â(z)b̂(z − ζ)e−(π/2)z2e−(π/2)(ζ−z)2eπi[z,ζ] dz

= 2−2de−(π/2)ζ2
∫∫

R2d

â(z)b̂(z − ζ)eπ(zζ+i[z,ζ]) e−πz
2
dz.

Hence, we have

µ̂(ζ) = ĉ(ζ)(e−(π/2)ζ2) = F(c ∗W (ϕ,ϕ))(ζ),

where ĉ is given by relation (14).
The stability of the product when localization symbols live in the linear space

spanned by the Gaussian functions is proven in [9, Thm. 2.1]. Here we reformulate
the result using our terminology and we shall prove it using the Weyl connection
and the twisted multiplication, instead of the \[ one (Section 5).

Theorem 1.2. Let ϕi(t) = ϕ(t) = 2d/4e−πt
2
, i = 1, . . . , 4, t ∈ Rd. Consider the

symbols

(15) a(z) =
m∑
k=1

Cke
−2πdkz

2
, b(z) =

l∑
j=1

C ′je
−2πd′jz

2
, z ∈ R2d,

where C1, . . . , Cm;C ′1, . . . , C
′
l are complex numbers while d1, . . . , dm; d′1, . . . , d

′
m are

positive real numbers. Then Aϕ,ϕa Aϕ,ϕb = Aϕ,ϕc , with

c(z) =
m∑
k=1

l∑
j=1

CkC
′
je
−2πrk,jz

2
, z ∈ R2d,

with rk,j = dk + d′j + 2dkd′j.

1.2. Asymptotic Product

Asymptotic expansions realize the composition of two localization operators as
a sum of localization operators plus a controllable remainder. Versions of such a
symbolic calculus are developed in [1, 7, 15, 6]. Most of them, as we observed
in the introduction, were mainly motivated by PDEs and energy estimates, and
therefore used smooth symbols that are defined by differentiability properties,
such as Hörmander or Shubin classes. For applications in quantum mechanics
and signal analysis, alternative notions of smoothness — “smoothness in phase-
space” or quantitative measures of “time-frequency concentration” — have turned
out to be useful. This point of view is pursued in [6], and we shall present the
corresponding results.
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The starting point is the following composition formula for two localization
operators derived in [7]:

(16) Aϕ1,ϕ2
a Aϕ3,ϕ4

b =
N−1∑
|α|=0

(−1)|α|

α!
AΦα,ϕ2
a∂αb + EN .

The essence of this formula is that the product of two localization operators
can be written as a sum of localization operators, with new windows Φα suitably
defined, and a remainder term EN , which is “small”.

In the spirit of the classical symbolic calculus, this formula was derived in
[7, Thm. 1.1] for smooth symbols belonging to some Shubin class Sm(R2d) and for
windows in the Schwartz class S(Rd).

In [6] the validity of (16) is established on the modulation spaces. The innov-
ative features of this extension are highlighted below (we do not give here detailed
statements and proofs).

(i) Rough symbols. While in (16) the symbol b must be N -times differentiable,
the symbol a only needs to be locally bounded. The classical results in symbolic
calculus require both symbols to be smooth.

(ii) Growth conditions on symbols. The symbolic calculus in (16) can handle
symbols with ultra-rapid growth (as long as it is compensated by a decay of b or
vice versa). For instance, a may grow subexponentially as a(z) ∼ eα|z|

β

for α > 0
and 0 < β < 1. This goes far beyond the usual polynomial growth and decay
conditions.

(iii) General window classes. A precise description of the admissible windows
ϕj in (16) is provided. Usually only the Gaussian e−πt

2
or Schwartz functions are

considered as windows.
(iv) Size of the remainder term. Norm estimates for the size of the remainder

term EN are derived. They depend explicitly on the symbols a, b and the windows
ϕj .

(v) The Fredholm Property of Localization Operators. By choosing N = 1,
ϕ1 = ϕ2 = ϕ with ‖ϕ‖ = 1, a(z) 6= 0, and b = 1/a, the composition formula (16)
yields the following important special case:

(17) Aϕ,ϕa Aϕ,ϕ1/a = Aϕ,ϕ1 +R = I +R .

If the symbol a belongs to L∞m (R2d) and |a| � 1/m, and the first partial derivative
satisfies (∂ja)m ∈ L∞ and vanishes at infinity for j = 1, . . . , 2d, then R is shown
to be a compact operator. Besides, Aϕ,ϕa is proven to be a Fredholm operator be-
tween suitable modulation spaces. This result works even for ultra-rapidly growing
symbols such as a(z) = eα|z|

β

for α > 0 and 0 < β < 1.
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2. Concepts of Time-Frequency Analysis

We first present the tools and properties from time-frequency analysis that we
shall use in the following sections.

2.1. The (Cross)-Wigner Distribution and the Weyl Calculus

The cross-Wigner distribution W (f, g) of f, g ∈ L2(Rd) is defined to be

(18) W (f, g)(x, ω) =
∫
f(x+

t

2
)g(x− t

2
)e−2πiωt dt.

The quadratic expression Wf = W (f, f) is usually called the Wigner distribution
of f .

The Wigner distribution W (f, g) is defined on many pairs of Banach or topo-
logical vector spaces. For instance, they both map L2(Rd)× L2(Rd) into L2(R2d)
and S(Rd)×S(Rd) into S(R2d). Furthermore, they can be extended to a map from
S ′(Rd)× S ′(Rd) into S ′(R2d).

We first report a crucial property of the (cross-)Wigner distribution (for
proofs, see [12, Ch. 4] and [11]).

Lemma 2.1. For λ = (u, η), µ = (v, γ) ∈ R2d and z = (x, ω) ∈ R2d we have

W (π(λ)f, π(µ)g)(x, ω) = eπi(u+v)(η−γ)e2πix(η−γ)e−2πiω(u−v)

×W (f, g)(z − λ+ µ

2
).(19)

In particular, if λ = µ, relation (19) becomes

(20) W (π(λ)f, π(λ)g)(z) = W (f, g)(z − λ).

Since the (cross-)Wigner distribution of Schwartz functions f, g ∈ S(Rd) is
a Schwartz function on R2d, its partial derivatives are well-defined and may be
expressed explicitly as linear combinations of (cross-)Wigner distributions of the
functions tγ1∂δ1f and tγ2∂δ2g.

Lemma 2.2. Let (x, ω) ∈ R2d, f, g ∈ S(Rd), α = (α1, α2), β = (β1, β2) ∈ Zd+ ×Zd+,
then
(21)

∂α1
x ∂α2

ω W (f, g)(x, ω)=(−2πi)|α2|
∑
β≤α

(
α

β

)
(−1)|β2|W (tα2−β2∂α1−β1f, tβ2∂β1g)(x, ω).

Proof. Using the product formula for derivatives, the first partial derivative with
respect to the time variable xj , with j = 1, . . . , d, is given by

∂xj
W (f, g)(x, ω) = W (∂tjf, g)(x, ω) +W (f, ∂tjg)(x, ω),

and, by induction or by Leibniz’ formula, we obtain

(22) ∂αxW (f, g)(x, ω) =
∑
β1≤α1

(
α1

β1

)
W (∂α1−β1f, ∂β1g)(x, ω).
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The first partial derivative with respect to the frequency variable ωj , with
j = 1, . . . , d, is

(23) ∂ωj
W (f, g)(x, ω) =

∫
Rd

(−2πitj)e−2πitωf

(
x+

t

2

)
g

(
x− t

2

)
dt.

The cross-Wigner distributions of the functions tjf, g and f, tjg, respectively, are
given by

W (tjf, g)(x, ω) = xjW (f, g)(x, ω) +
1
2

∫
Rd

tje
−2πitωf

(
x+

t

2

)
g

(
x− t

2

)
dt ,

W (f, tjg)(x, ω) = xjW (f, g)(x, ω)− 1
2

∫
Rd

tje
−2πitωf

(
x+

t

2

)
g

(
x− t

2

)
dt.

Subtracting the latter from the former and using (23) we obtain

∂ωj
W (f, g)(x, ω) = (−2πi)[W (tjf, g)(x, ω)−W (f, tjg)(x, ω)].

As for the time case, the induction process yields

(24) ∂α2
ω W (f, g)(x, ω) = (−2πi)|α2|

∑
β2≤α2

(
α2

β2

)
(−1)β2W (tα2−β2f, tβ2g)(x, ω).

By combining (22) and (24) we obtain (21).

2.2. Modulation Spaces

The modulation space norm measures the joint time-frequency distribution of a
f ∈ S ′. For their basic properties we refer, for instance, to [12, Ch. 11-13] and
the original literature quoted there. The introduction of the general theory of
modulation spaces is beyond our scope, therefore we shall limit ourselves to draw
on their unweighted version.

Given a non-zero window g ∈ S(Rd), and 1 ≤ p, q ≤ ∞, the modulation
space Mp,q(Rd) consists of all tempered distributions f ∈ S ′(Rd) such that Vgf ∈
Lp,q(R2d) (mixed-norm spaces). The norm on Mp,q is

‖f‖Mp,q = ‖Vgf‖Lp,q =

(∫
Rd

(∫
Rd

|Vgf(x, ω)|p dx
)q/p

dω

)1/q

.

If p = q, we write Mp instead of Mp,p.
Modulation spaces Mp,q are Banach spaces whose definition is independent

of the choice of the window g. Moreover, if g ∈ M1 \ {0}, then ‖Vgf‖Lp,q is an
equivalent norm for Mp,q(Rd) (see [12, Thm. 11.3.7]).

We recall thatM2(Rd) = L2(Rd) and, among the weighted modulation spaces
one can encounter Sobolev spaces and Shubin-Sobolev spaces. Furthermore, the
space of tempered distribution S ′ is recovered as unions of suitable weighted mod-
ulation spaces.



On the Product of Localization Operators 9

2.3. Convolution Relations and Wigner Estimate

In view of the relation between the multiplier a and the Weyl symbol (8), we shall
use convolution relations between modulation spaces and some properties of the
Wigner distribution.

Convolution relations for modulation spaces, studied in [5, 18], yield the
following unweighted version.

Proposition 2.3. Let 1 ≤ p, q, r, s, t ≤ ∞. If
1
p

+
1
q
− 1 =

1
r
, and

1
t

+
1
t′

= 1 ,

then

(25) Mp,st(Rd) ∗Mq,st′(Rd) ↪→Mr,s(Rd)

with norm inequality ‖f ∗ h‖Mr,s <∼ ‖f‖Mp,st‖h‖Mq,st′ .

The modulation space norm of a cross-Wigner distribution may be controlled
by the window norms, as expressed below (see [5]).

Proposition 2.4. If ϕ1, ϕ2 ∈M1(Rd) we have W (ϕ2, ϕ1) ∈M1(R2d), with

(26) ‖W (ϕ2, ϕ1)‖M1 <∼ ‖ϕ1‖M1‖ϕ2‖M1 .

The modulation space M∞,1 is the so-called Sjöstrand class and deserves
quite an attention when studying Weyl operators. In particular, Sjöstrand in [17]
proved that, if the Weyl symbol σ belongs to M∞,1, the corresponding Weyl op-
erator Lσ is bounded on L2(Rd). Besides, if σ, τ ∈ M∞,1, and Lµ = LσLτ , then
µ ∈M∞,1; thus M∞,1 is a Banach algebra of pseudodifferential operators. In [13]
the previous result is recaptured by using time-frequency analysis techniques. In
particular, the Banach algebra property follows from the continuity of the twisted
multiplication (see [13, Thm. 4.2]):

Theorem 2.5. The modulation space M∞,1 is a Banach ∗-algebra with respect to
twisted multiplication ] and the involution σ → σ̄. In particular, the M∞,1-norm
with respect to a window Wigner distribution W (ϕ,ϕ), with ϕ ∈ S, is given by

(27) ‖σ]τ‖M∞,1 ≤ Cϕ‖σ‖M∞,1‖τ‖M∞,1 , ∀σ, τ ∈M∞,1.

The continuity of the twisted multiplication on M∞,1 ×M∞,1 will be em-
ployed when composing Gabor multipliers (Section 4).

3. Examples of Well-Localized Products

We shall provide few examples of products of localization operators. To this aim,
we first need some results on Weyl operators.

Every rank one linear operator acting on L2(Rd) can be interpreted as Weyl
operator. The characterization of its Weyl symbol is given in [12, Lemma 14.6.3]:
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Lemma 3.1. Given h, k ∈ L2(Rd) and set σ = W (h, k). Then Lσ is the rank one
operator

(28) Lσf = 〈f, k〉h, f ∈ L2(Rd).

If we express the product of two rank one operators as a Weyl transform,
we obtain immediately a formula for the twisted multiplication of cross-Wigner
distributions.

Lemma 3.2. Given ϕ1, ϕ2, ψ1, ψ2 ∈ L2(Rd) we have

(29) W (ϕ1, ϕ2)]W (ψ1, ψ2) = 〈ψ1, ϕ2〉W (ϕ1, ψ2)

Proof. Instead of the explicit formula (10), we use Lemma 3.1 and compute the
product of the rank one operators LW (ϕ1,ϕ2)LW (ψ1,ψ2). Let f be in L2(Rd), then

LW (ϕ1,ϕ2)LW (ψ1,ψ2)f = 〈LW (ψ1,ψ2)f, ϕ2〉ϕ1

= 〈〈f, ψ2〉ψ1, ϕ2〉ϕ1

= 〈ψ1, ϕ2〉〈f, ψ2〉ϕ1

= L〈ψ1,ϕ2〉W (ϕ1,ψ2)f.

Hence, the Weyl operator LW (ϕ1,ϕ2)]W (ψ1,ψ2) = LW (ϕ1,ϕ2)LW (ψ1,ψ2) possesses the
Weyl symbol claimed in (29).

With these tools, we can now compute the product of two localization oper-
ators whose symbols have minimal support.

Proposition 3.3. Let 1 ≤ j ≤ d, and consider the distributions with support at the
origin a = ∂xj

δ, b = δ. For every ϕk ∈ S(Rd), k = 1, . . . , 4, we have

(30) Aϕ1,ϕ2
∂xj

δ A
ϕ3,ϕ4
δ = A

ϕ3,∂jϕ2

〈ϕ4,ϕ1〉δ +Aϕ3,ϕ2
〈ϕ4,∂jϕ1〉δ.

Proof. Rewriting the composition of two localization operators as a Weyl trans-
form (7), we reduce ourselves to compute the twisted multiplication of the cor-
responding Weyl symbols. Using Lemma 3.1 and (29), the desired result follows.
Namely,

[(∂xj
δ) ∗W (ϕ2, ϕ1)] ] [δ ∗W (ϕ4, ϕ3)]

= [δ ∗ ∂xj
W (ϕ2, ϕ1)] ]W (ϕ4, ϕ3)

= [W (∂jϕ2, ϕ1) +W (ϕ2, ∂jϕ1)] ]W (ϕ4, ϕ3)
= W (∂jϕ2, ϕ1) ]W (ϕ4, ϕ3) +W (ϕ2, ∂jϕ1) ]W (ϕ4, ϕ3)
= 〈ϕ4, ϕ1〉W (∂jϕ2, ϕ3) + 〈ϕ4, ∂jϕ1〉W (ϕ2, ϕ3),
= δ ∗ [〈ϕ4, ϕ1〉W (∂jϕ2, ϕ3)] + δ ∗ [〈ϕ4, ∂jϕ1〉W (ϕ2, ϕ3)].

The product above is no longer a single localization operator, in this sense the
composition is unstable. However, the product in (30) is still a sum of two local-
ization operators, and both have symbols localized at the origin If we choose the
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window with the optimal time-frequency localization, i.e., the normalized Gaussian
ϕ(t) = 2d/4e−πt

2
and set ϕ1 = ϕ4 = ϕ, then formula (30) reduces to

(31) Aϕ,ϕ2
∂xj

δA
ϕ3,ϕ
δ = A

ϕ3,∂jϕ2
δ , ∀ϕ2, ϕ3 ∈ S

because 〈ϕ4, ∂jϕ1〉 = 0 and 〈ϕ,ϕ〉 = 1.
Next, choosing the partial derivatives ∂ωj

δ, j = 1, . . . , d, as symbols, we
obtain a similar formula.

Proposition 3.4. Let 1 ≤ j ≤ d, and consider the distributions with support at the
origin a = ∂ωj

δ, b = δ. For every ϕk ∈ S(Rd), k = 1, . . . , 4, we have

(32) Aϕ1,ϕ2
∂ωj

δ A
ϕ3,ϕ4
δ = A

ϕ3,tjϕ2

〈ϕ4,ϕ1〉δ +Aϕ3,ϕ2
〈ϕ4,tjϕ1〉δ.

The proof is similar to the one of Proposition 3.3. Again, if ϕ1 = ϕ4 = ϕ =
2d/4e−πt

2
, then product is is stable, and

Aϕ,ϕ2
∂ωj

δA
ϕ3,ϕ
δ = A

ϕ3,tjϕ2
δ , ∀ϕ2, ϕ3 ∈ S.

If we increase the order of the derivative of the symbol, the product of two local-
ization operators is never a single localization operator, and the stability of the
product is definitely lost, as is shown the the following observation. Nevertheless,
the supports of the symbols are all localized at the origin.

Proposition 3.5. Let α = (α1, α2), β = (β1, β2) ∈ Zd+ × Zd+, ϕi ∈ S(Rd), i =
1, . . . , 4. Then the product of localization operators whose symbols are derivatives
of the delta distribution is given by

(33) Aϕ1,ϕ2

(∂
α1
x ∂

α2
ω δ)

Aϕ3,ϕ4

(∂
β1
x ∂

β2
ω δ)

= (−2πi)|α2+β2|
∑
γ ≤ α
ν ≤ β

A
(tν2∂ν1ϕ3),(t

α2−ν2∂α1−ν1ϕ2)
cα,β,γ,νδ

,

where cα,β,γ,ν =
(
α

γ

)(
b

ν

)
(−1)|γ2+ν2|〈tβ2−ν2∂β1−ν1ϕ4, t

γ2∂γ1ϕ1〉.

Again, the proof relies on the same tools as for Proposition 3.3 and therefore
we shall omit it. If the derivative order is greater than one, we highlight that neither
the Gaussian choice for the windows could help us to have a single localization
operator in the right-hand side. In fact, the brackets 〈tβ2−ν2∂β1−ν1ϕ, tγ2∂γ1ϕ〉 do
not vanish if |β − ν + γ| ∈ 2N.

4. Product of Gabor Multipliers

In this section we shall study the product of Gabor multipliers, for a survey on
the topic we refer to [10]. Consider a time-frequency lattice Λ in R2d, for instance,
Λ = αZd × βZd, α, β ∈ R and set a = (aλ)λ∈Λ; moreover, choose two non-zero
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window functions ϕ1, ϕ2 ∈ L2(Rd). Then, a Gabor multiplier Ga associated to the
triple (ϕ1, ϕ2,Λ) and with symbol a is given by

(34) Gaf =
∑
λ∈Λ

aλ〈f, π(λ)ϕ1〉π(λ)ϕ2, f ∈ L2(Rd).

The domain of a Gabor multiplier can even be a subspace of tempered distribution
rather than simply a space of functions. The distribution/function space of f in
(34) depends on the decay and smoothness properties of the pair (ϕ1, ϕ2) of dual
windows and on the decay of the symbol a.

Gabor multipliers are special cases of localization operators, as we shall see
presently.

Lemma 4.1. Let Λ be a lattice in R2d, (aλ)λ∈Λ ∈ `∞(Λ), ϕ1, ϕ2 ∈ M1(Rd). Con-
sider the mapping i : `∞(Λ) → M∞(R2d) defined by i(a) =

∑
λ∈Λ aλδλ, then we

obtain

(35) Ga = Aϕ1,ϕ2
i(a) .

Proof. An easy computation shows that i(a) ∈ M∞(R2d). More precisely, choose
a window g ∈ S(Rd) with compact support such that, for some constants A,B > 0
we have A ≤

∑
µ∈Λ⊥ |ĝ(ξ − µ)|2 ≤ B < ∞ for all ξ ∈ Rd (as usual Λ⊥ de-

notes the dual lattice of Λ). A result in approximation theory then implies that
supx∈Rd |

∑
λ∈Λ aλg(x− λ)| � ‖a‖∞. Using this obversation, we obtain

‖i(a)‖M∞ = sup
x,ξ∈Rd

|〈
∑
λ∈Λ

aλδλ,MξTxg〉|

= sup
x,ξ∈Rd

|
∑
λ∈Λ

aλe
−2πiλξg(x− λ)|

� sup
λ∈Λ

|aλ| = ‖a‖∞ .

Consequently,

(36) ‖
∑
λ∈Λ

aλδδ‖M∞ � ‖a‖∞ ∀a ∈ `∞(Λ) .

By assumption ϕ1, ϕ2 ∈ M1(Rd), we then appeal to [5, Theorem 3.2] to
deduce the boundedness of the localization operator Aϕ1,ϕ2

i(a) on L2(Rd). Using the
weak definition (5), we observe that, for every f, g ∈ S(Rd),

〈Aϕ1,ϕ2
i(a) f, g〉 = 〈i(a), Vϕ1f Vϕ2g〉

=
∑
λ∈Λ

aλ〈δλ, Vϕ1f Vϕ2g〉

=
∑
λ∈Λ

aλVϕ1f(λ)Vϕ2g(λ)

=
∑
λ∈Λ

aλ〈f, π(λ)ϕ1〉〈π(λ)ϕ2, g〉.
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That is, the localization operator Aϕ1,ϕ2
i(a) coincides with the Gabor multiplier∑

λ∈Λ aλ〈·, π(λ)ϕ1〉π(λ)ϕ2.

Finally, we note that for f, g ∈ L2(Rd) we have (〈f, π(λ)ϕ1〉) ∈ `2(Λ) with
a norm estimate ‖〈f, π(λ)ϕ1〉λ∈Λ‖2 <∼ ‖f‖2, and likewise (〈π(λ)ϕ2, g〉) ∈ `2(Λ),
thus (〈f, π(λ)ϕ1〉〈π(λ)ϕ2, g〉) ∈ `1(Λ) and the `1-norm is bounded by ‖f‖2 ‖g‖2.
Consequently, the series defining 〈Aϕ1,ϕ2

i(a) f, g〉 converges absolutely. This implies
that the partial sums SN =

∑
λ∈Λ:|λ|≤N aλ〈·, π(λ)ϕ1〉π(λ)ϕ2 converge in the strong

operator topology to Aϕ1,ϕ2
i(a) .

Since Gabor multipliers are a special case of localization operators, we may
compute their product via Weyl calculus. We shall see that the result is a Gabor
multiplier plus a remainder term. The remainder operator is no more expressible in
terms of Gabor multipliers but it can be recaptured as series of suitable localization
operators.

Proposition 4.2. Let Λ be a time-frequency lattice in R2d. Consider ϕi ∈ M1,
i = 1, . . . , 4, two sequences a,b ∈ `∞(Λ) and the Gabor multipliers Ga and Gb

associated to the triple (ϕ1, ϕ2,Λ) and (ϕ3, ϕ4,Λ). Set c = (aλbλ)λ, and let Gc be
the Gabor multiplier associated to the triple (ϕ3, ϕ2,Λ). Then,

(37) GaGb = 〈ϕ4, ϕ1〉Gc +
∑

λ, µ ∈ Λ
λ 6= µ

A
π(µ)ϕ3,π(λ)ϕ2

〈π(µ)ϕ4,π(λ)ϕ1〉a(λ)b(µ)δ.

Proof. In virtue of (35), we rewrite the Gabor multipliers Ga, Gb as localization
operators and then use the Weyl connection as in the preceding proofs. Precisely,
if we name σ and τ the Weyl symbols of Ga and Gb, respectively, their expression
is given by

σ =

(∑
λ∈Λ

aλδλ

)
∗W (ϕ2, ϕ1), τ =

(∑
λ∈Λ

bλδλ

)
∗W (ϕ4, ϕ3).

Next, we need to compute σ ] τ . In this framework, Proposition 2.4 guarantees
W (ϕ2, ϕ1),W (ϕ4, ϕ3) ∈M1(R2d), whereas Proposition 2.3 provides the continuity
of the convolution acting from M∞×M1 into M∞,1. Getting the preceding results
all together, we observe that the Weyl symbols σ and τ belong to M∞,1(R2d).
Thus, the corresponding operators Lσ and Lτ are bounded operators on L2(Rd)
and the same for their product Lσ ] τ , with σ ] τ ∈M∞,1. In the following, we shall
calculate σ ] τ explicitly, using the boundedness properties of the convolution and
twisted multiplication listed above. Relation (20) will be repeatedly used in the
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sequel.

σ ] τ =

[(∑
λ∈Λ

aλδλ

)
∗W (ϕ2, ϕ1)

]
]

∑
µ∈Λ

bµδµ

 ∗W (ϕ4, ϕ3)


=

[∑
λ∈Λ

(aλδλ ∗W (ϕ2, ϕ1))

]
]

∑
µ∈Λ

(bµδµ ∗W (ϕ4, ϕ3))


=

[∑
λ∈Λ

aλW (π(λ)ϕ2, π(λ)ϕ1)

]
]

[∑
λ∈Λ

bµW (π(µ)ϕ4, π(µ)ϕ3)

]
=

∑
λ,µ∈Λ

aλbµ[W (π(λ)ϕ2, π(λ)ϕ1) ]W (π(µ)ϕ4, π(µ)ϕ3)]

= 〈ϕ4, ϕ1〉
∑
λ∈Λ

aλbλW (π(λ)ϕ2, π(λ)ϕ3) +

+
∑

λ, µ ∈ Λ, λ 6= µ

aλbµ〈π(µ)ϕ4, π(λ)ϕ1〉W (π(λ)ϕ2, π(µ)ϕ3).

= 〈ϕ4, ϕ1〉
∑
λ∈Λ

(aλbλ) δλ ∗W (ϕ2, ϕ3) +

+
∑

λ, µ ∈ Λ, λ 6= µ

aλbµ 〈π(µ)ϕ4, π(λ)ϕ1〉W (π(λ)ϕ2, π(µ)ϕ3).

We notice that the convergence of the series in the line above is assumed to be in
the M∞,1-norm. Passing to the corresponding Weyl operator we obtain the desired
result.

In the above argument we have assumed that all series converge in norm,
in particular that

∑
λ aλδλ converges in the M∞-norm. According to (36) this is

the case if and only if a ∈ c0(Λ), i.e., if lim|λ|→∞ |aλ| = 0. For arbitrary bounded
sequences we now give an alternative argument.

Second proof of Proposition 4.2. Assume first that a and b have finite support,
so that there are no issues about the convergence of the series involved. Then we
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calculate directly that

GaGbf =
∑
λ∈Λ

∑
µ∈Λ

aλbµ〈f, π(µ)ϕ3〉〈π(µ)ϕ4, π(λ)ϕ1〉π(λ)ϕ2

=
∑
µ=λ

+
∑
µ6=λ

. . .

=
∑
λ∈Λ

aλbλ〈ϕ4, ϕ1〉〈f, π(λ)ϕ3〉π(λ)ϕ2 +

+
∑

λ,µ∈Λ,µ6=λ

aλbµ〈f, π(µ)ϕ3〉〈π(µ)ϕ4, π(λ)ϕ1〉π(λ)ϕ2

= 〈ϕ4, ϕ1〉Gc +
∑

λ,µ∈Λ,λ6=µ

A
π(µ)ϕ3,π(λ)ϕ2

〈π(µ)ϕ4,π(λ)ϕ1〉a(λ)b(µ)δ.

If a,b ∈ `∞(λ), we consider the partial sumsGaM
f =

∑
λ∈Λ,|λ|≤M aλ〈f, π(λ)ϕ1〉π(λ)ϕ2

andGbN
f =

∑
µ∈Λ,|≤N bµ〈f, π(µ)ϕ1〉π(µ)ϕ2. SinceGaM

andGbN
f converge strongly

to Ga and Gb, the above argument carries over to general bounded sequences a
and b.

5. Gaussian Functions as Symbols

In this section we prove Theorem 1.2. Instead of using the product formula (12),
as done in [9], we use the techniques of the preceding two sections. The result is
a mere consequence of the Gaussian nice behavior under convolution and twisted
products.

Lemma 5.1. Let a, b > 0, then
(i) Gaussian convolution:

(38) [e−πat
2
∗ e−πbt

2
](x) = (a+ b)−d/2e−π

ab
a+b x

2
, t, x ∈ Rd.

(ii) Gaussian twisted multiplication:

(39) [e−2πaz2 ] e−2πbz2 ](ζ) = (1 + ab)−de−2π a+b
1+ab ζ

2
, z, ζ ∈ R2d.

Proof. (i) The semigroup property of Gaussians is well known, see for instance [11],
and follows by an easy calculation
(ii) We use the definition of ] in (10) and make a direct computation using Gaussian
integrals. All integrals converge absolutely and exchanging the order of integration
is justified by Fubini’s Theorem.

[e−2πaz2 ] e−2πbz2 ](ζ) = 22d

∫∫
R2d

e−2πaz2e−2πbw2
e4πi[ζ−w,ζ−z] dzdw

= 22d

∫
R2d

(∫
R2d

e−2πaz2e−4πi[ζ−w,z] dz

)
e−2πbw2

e−4πi[w,ζ]dw.
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To begin with, we compute the interior integral with respect to the variable z.
Namely, if z = (z1, z2), w = (w1, w2), ζ = (ζ1, ζ2) ∈ R2d,∫

R2d

e−2πaz2e−4πi[ζ−w,z] dz =
(∫

Rd

e−2πaz21e−2πi(−2(ζ2−w2)z1) dz1

)
·
(∫

Rd

e−2πaz22e−2πi(2(ζ1−w1)z2) dz2

)
= (2a)−de−

2π
a (ζ−w)2 .

Then, we have

[e−2πaz2 ] e−2πbz2 ](ζ) =
(

2
a

)d ∫
R2d

e−
2π
a (ζ−w)2e−2πbw2

e−4πi[w,ζ] dw

=
(

2
a

)d
e−

2π
a ζ

2
∫

R2d

e−2π 1+ab
a w2

e
4πi
a ζwe−4πi[w,ζ]dw

=
(

2
a

)d
e−

2π
a (1− 1

1+ab )ζ2
∫

R2d

e
−2π

�
( 1+ab

a )1/2
w− ζ

(a(1+ab))1/2

�2

· e−4πi[w,ζ] dw.

Splitting up the variables again, the twisted multiplication reduces to

[e−2πaz2 ] e−2πbz2 ](ζ)=
(

2
a

)d
e−

2π
a (1− 1

1+ab )ζ2
∫

Rd

T ζ1
(a(1+ab))1/2

e−2π
(1+ab)

a w2
1

· e−2πi(2ζ2)w1dw1

∫
Rd

T ζ2
(a(1+ab))1/2

e−2π
(1+ab)

a w2
2e−2πi(−2ζ1)w2dw2

=
(

2
a

)d
e−

2π
a (1− 1

1+ab )ζ2
∫

Rd

e−2π
(1+ab)

a w2
1e−2πi(2ζ2)w1 dw1

·
∫

Rd

e−2π
(1+ab)

a w2
2e−2πi(−2ζ1)w2 dw2

= (1 + ab)−de−2π a+b
1+ab ζ

2
,

as desired.

Corollary 5.2. Let ϕ(t) = 2d/4e−πt
2

anc c > 0. Then,

(40) (e−2πcz2 ∗ W (ϕ,ϕ))(ζ) = (c+ 1)−d e−2π c
c+1 ζ

2
, z, ζ ∈ R2d.

Proof. It is a straightforward consequence of the relations (11) and (38).

Now we have all we need to prove the main result of this section.
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Proof of Theorem 1.2. We use relation (7) and the bilinearity of both the convo-
lution and twisted multiplication. This yields

[a ∗W (ϕ,ϕ)] ] [b ∗W (ϕ,ϕ)](ζ) =
m∑
k=1

l∑
j=1

CkC
′
jpk,j(ζ),

with pk,j(ζ) := [e−2πdkz
2∗W (ϕ,ϕ)] ] [e−2πd′jz

2
∗W (ϕ,ϕ)](ζ). The convolution prod-

ucts are achieved by (40) and the outcomes are

pk,j(ζ) = (dk + 1)−d(d′j + 1)−d(e−2π
dk

dk+1 z
2

] e
−2π

d′j
d′

j
+1
z2

)(ζ).

Finally, we compute the twisted multiplication using (39) and we get

pk,j(ζ) = (dk + 1)−d(d′j + 1)−d(e−2π
dk

dk+1 z
2

] e
−2π

d′j
d′

j
+1
z2

)(ζ)

= (dk + d′j + 2dkd′j + 1)−d e
−2π

dk+d′j+2dkd′j
dk+d′

j
+2dkd′

j
+1

ζ2

= [e−2π(dk+d′j+2dkd
′
j)z

2
∗W (ϕ,ϕ)](ζ),

where in the last equality we used relation (40) backwards.
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[5] E. Cordero and K. Gröchenig. Time-frequency analysis of Localization operators. J.
Funct. Anal., 205(1):107–131, 2003.
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