Wiener's Lemma: Theme and Variations

Karlheinz Gröchenig

European Center of Time-Frequency Analysis Faculty of Mathematics University of Vienna

http://homepage.univie.ac.at/karlheinz.groechenig/

Inzell, September 2007

Outline

- Wiener's Lemma Classical
 - Absolutely convergent Fourier series
 - Wiener's Lemma
 - Proof of Wiener's Lemma
 - Inverse-Closedness
 - Convolution Operators
- Variations
 - Weighted Versions
 - Matrix Algebras
 - Time-Varying Systems and Wireless Communications
 - Absolutely Convergent Series of Time-Frequency Shifts
 - Convolution operators on groups
 - Summary

Time-Varying Systems

Quotient Rule

 $C^k(\mathbb{T})$ k-times differentiable functions with period 1.

Product rule (fg)' = f'g + fg' implies that $C^k(\mathbb{T})$ is an algebra.

Quotient rule $(1/f)' = -f'/f^2$ implies that 1/f is k-times differentiable, whenever $f(t) \neq 0$.

Lemma

If $f \in C^k(\mathbb{T})$ and $f(t) \neq 0$ for all $t \in \mathbb{T} \simeq [0,1)$, then $1/f \in C^k(\mathbb{T})$.

Absolutely Convergent Fourier Series

f possesses an absolutely convergent Fourier series, $f \in \mathcal{A}(\mathbb{T})$, if $f(t) = \sum_{k \in \mathbb{Z}} a_k e^{2\pi i k t}$ with coefficients in $\mathbf{a} \in \ell^1(\mathbb{Z})$.

Norm:
$$||f||_{\mathcal{A}} = ||\mathbf{a}||_1 = \sum_{k \in \mathbb{Z}} |a_k|$$

Lemma

A is a Banach algebra under pointwise multiplication.

Proof

$$f(t) g(t) = \left(\sum_{k \in \mathbb{Z}} a_k e^{2\pi i k t}\right) \left(\sum_{l \in \mathbb{Z}} b_l e^{2\pi i l t}\right)$$

$$= \sum_{k,l \in \mathbb{Z}} a_k b_l e^{2\pi i (k+l)t}$$

$$= \sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} a_k b_{n-k}\right) e^{2\pi i n t}$$

$$(\mathbf{a} * \mathbf{b})(n)$$

$$\|fg\|_{\mathcal{A}} = \|\mathbf{a} * \mathbf{b}\|_{1} \le \|\mathbf{a}\|_{1} \|\mathbf{b}\|_{1} = \|f\|_{\mathcal{A}} \|g\|_{\mathcal{A}}$$

Wiener's Lemma

Problem: if $f \in \mathcal{A}(\mathbb{T})$ and $f(t) \neq 0, \forall t$, what can we say about 1/f?

Theorem (Classical Formulation)

If $f \in \mathcal{A}(\mathbb{T})$ and $f(t) \neq 0$ for all $t \in \mathbb{T}$, then also $1/f \in \mathcal{A}(\mathbb{T})$, i.e., $1/f(t) = \sum_{k \in \mathbb{Z}} b_k e^{2\pi i k t}$ with $\mathbf{b} \in \ell^1(\mathbb{Z})$.

Many proofs:

- Wiener 1932 (localization)
- Gelfand theory of commutative Banach algebras
- Levy, Zygmund
- Hulanicki 1970
- Newman 1975

Proof of Wiener's Lemma

Following Newman and Hulanicki.

Step 1. Reduction to special case. Since $\frac{1}{f} = \frac{\overline{f}}{|f|^2}$, it suffices to assume that f is non-negative.

W.l.o.g. $0 \le f(t) \le 1$.

Assumption $f(t) \neq 0, \forall t$ implies that $\inf_t |f(t)| = \delta > 0$.

Step 2. Analyze invertibility in $C(\mathbb{T})$ by geometric series. Let h=1-f, then

$$0 \le h(t) = 1 - f(t) \le 1 - \delta$$
.

and the geometric series $\sum_{n=0}^{\infty} h(t)^n$ converges in $C(\mathbb{T})$ to the limit

$$\sum_{n=0}^{\infty} h(t)^n = \frac{1}{1 - h(t)} = \frac{1}{f(t)} \in C(\mathbb{T}).$$

Goal: show that $\sum h^n$ converges in A.

Step 3. Approximate h by trigonometric polynomial. Given $\epsilon > 0$, choose a trigonometric polynomial $p(t) = \sum_{|k| < N} a_k e^{2\pi i k t}$, such that

$$\|h-p\|_{\mathcal{A}}=\sum_{|k|>N}|a_k|<\epsilon$$

Set r = h - p, then h = p + r and $||r||_{\mathcal{A}} < \epsilon$.

Choice of ϵ : we will need $1 - \delta + 2\epsilon < 1$.

Step 4. Elementary estimates.

If q is trigonometric polynomial of degree N, then

$$\|q\|_{\mathcal{A}} = \sum_{|k| < N} |b_k| \le \|b\|_2 (2N+1)^{1/2} = \|q\|_2 (2N+1)^{1/2}.$$

• If p is trigonometric polynomial of degree N, then p^k is trigonometric polynomial of degree kN.

Step 5. Estimate A-norm of h^n .

$$h^n = \sum_{k=0}^n \binom{n}{k} p^k r^{n-k}$$

So

$$||h^n||_{\mathcal{A}} \leq ||r^n||_{\mathcal{A}} + \sum_{k=1}^n \binom{n}{k} ||p^k r^{n-k}||_{\mathcal{A}}$$
$$\leq \epsilon^n + \sum_{k=1}^n \binom{n}{k} ||p^k||_{\mathcal{A}} ||r^{n-k}||_{\mathcal{A}}$$

Now by Step 4,

$$\|p^k\|_{\mathcal{A}} \leq \|p^k\|_2 (2Nk+1)^{1/2} \leq \|p^k\|_{\infty} \frac{\|p\|_2}{\|p\|_{\infty}} (2Nk+1)^{1/2}.$$

Step 6. Complete estimate for A-norm of h^n .

$$\begin{split} \|h^{n}\|_{\mathcal{A}} & \leq & C(2Nn+1)^{1/2} \sum_{k=0}^{n} \binom{n}{k} \epsilon^{n-k} \|p\|_{\infty}^{k} \\ & = & C(2Nn+1)^{1/2} \Big(\|p\|_{\infty} + \epsilon \Big)^{n} \\ & \leq & C(2Nn+1)^{1/2} \Big(\|h-r\|_{\infty} + \epsilon \Big)^{n} \\ & \leq & C(2Nn+1)^{1/2} \Big(\|h\|_{\infty} + 2\epsilon \Big)^{n} \\ & \leq & C(2Nn+1)^{1/2} \Big(\underbrace{1-\delta+2\epsilon}_{<1} \Big)^{n} \\ & \leq & C(2Nn+1)^{1/2} \Big(\underbrace{1-\delta+2\epsilon}_{<1} \Big)^{n} \end{split}$$

Step 7. Convergence of geometric series in A-norm.

$$\sum_{n=0}^{\infty}\|h^n\|_{\mathcal{A}}\leq \sum_{n=0}^{\infty}(2Nn+1)^{1/2}\left(1-\delta+2\epsilon\right)^n<\infty.$$

Conclusion: $1/f = \sum_{n=0}^{\infty} h^n \in A$.

REMARK: We have proved that

$$\lim_{n\to\infty}\|h^n\|_{\infty}^{1/n}=\lim_{n\to\infty}\|h^n\|_{\mathcal{A}}^{1/n}$$

(see below)

Wiener Pairs

Naimark's insight: Wiener's Lemma is a result about the relation between **two** Banach algebras, namely $\mathcal{A}(\mathbb{T})$ and $\mathcal{C}(\mathbb{T})$.

Condition " $f(t) \neq 0, \forall t$ " means that f is invertible in $C(\mathbb{T})$.

Definition

Let $A \subseteq B$ be two (involutive) Banach algebras with common identity. Then A is called *inverse-closed* in B, if

$$a \in \mathcal{A} \text{ and } a^{-1} \in \mathcal{B} \implies a^{-1} \in \mathcal{A}.$$

- Wiener's Lemma \Leftrightarrow $\mathcal{A}(\mathbb{T})$ is inverse-closed in $C(\mathbb{T})$.
- in the large algebra there are more invertible elements and it may be easier to verify invertibility

Babylonian Confusion

- A inverse-closed in B
- (A, B) is a *Wiener pair* (Naimark)
- A is a spectral subalgebra of B (Palmer)
- A is a *local subalgebra* of B (K-theory)
- A is a full subalgebra of B
- A is invariant under holomorphic calculus in B (Connes)
- Spectral invariance, spectral permanence (Arveson)

Spectral Invariance

Spectrum in Banach algebra A (with unit e)

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : a - \lambda e \text{ is not invertible in } \mathcal{A}\}$$

Spectral radius

$$r_{\mathcal{A}}(a) = \max\{|\lambda| : \lambda \in \sigma_{\mathcal{A}}(a)\} = \lim_{n \to \infty} \|a^n\|_{\mathcal{A}}^{1/n}$$

Lemma

 $A \subseteq B$ with common unit e. TFAE:

- (i) A is inverse-closed in B.
- (ii) $\sigma_{\mathcal{A}}(\mathbf{a}) = \sigma_{\mathcal{B}}(\mathbf{a})$ for all $\mathbf{a} \in \mathcal{A}$.
- (iii) $r_A(a) = r_B(a)$ for all $a = a^* \in A$.

Wiener's Lemma states that $\sigma_{\mathcal{A}(\mathbb{T})}(f) = \sigma_{\mathcal{C}(\mathbb{T})}(f) = f(\mathbb{T})$.

Proof

(i)
$$\Rightarrow$$
 (ii) If $\lambda \notin \sigma_{\mathcal{A}}(a)$, then $(a - \lambda e)^{-1} \in \mathcal{A} \subseteq \mathcal{B}$, so $\lambda \notin \sigma_{\mathcal{B}}(a)$.

$$\sigma_{\mathcal{B}}(\mathbf{a}) \subseteq \sigma_{\mathcal{A}}(\mathbf{a})$$

If $a \in \mathcal{A}$ and $\lambda \notin \sigma_{\mathcal{B}}(a)$, then $(a - \lambda e)^{-1} \in \mathcal{B}$. By inverse-closedness, $(a - \lambda e)^{-1} \in \mathcal{A}$, and so

$$\sigma_{\mathcal{A}}(\mathbf{a}) \subseteq \sigma_{\mathcal{B}}(\mathbf{a})$$

- (ii) \Rightarrow (i) $a \in \mathcal{A}, a^{-1} \in \mathcal{B}$ means $0 \notin \sigma_{\mathcal{B}}(a)$, so $0 \notin \sigma_{\mathcal{A}}(a)$.
- (ii) ⇒ (iii) clear

Hulanicki's Lemma

(iii) ⇒ (ii) is known as Hulanicki's Lemma.

Idea: Identity $r_A(a) = r_B(a)$ implies that power series have same radius of convergence in A and in B.

Consider geometric series $c = \sum_{k=0}^{\infty} (e-a)^k$. Converges in \mathcal{B} , if and only if $r_{\mathcal{B}}(e-a) < 1$

Converges in A, if and only if $r_B(e-a) < 1$ if and only if $r_A(e-a) < 1$

In case of convergence $c = a^{-1}$.

If $r_{\mathcal{B}}(e-a) = r_{\mathcal{B}}(e-a) < 1$, then convergence in both \mathcal{B} and \mathcal{A} and assumption $a^{-1} \in \mathcal{B}$ implies that also $a^{-1} \in \mathcal{A}$.

General case can be reduced to this case by looking at $b = a^*a/(2\|a^*a\|_{\mathcal{B}})$ instead of a.

Functional Calculus

Riesz functional calculus (holomorphic functional calculus) f analytic on open neighborhood O of $\sigma_{\mathcal{B}}(a)$ and $\gamma \subseteq O$ is contour of $\sigma_{\mathcal{B}}(a)$. Define

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} f(z) (ze - a)^{-1} dz$$

Corollary

If A is inverse-closed in B, then the Riesz functional calculi for A and B coincide.

- square roots, powers, pseudoinverse
- Theorem of Wiener-Levy

Time-Invariant Systems and Convolution Operators

$$(\mathbf{a} * \mathbf{b})(k) = \sum_{I \in \mathbb{Z}} a(I)b(k-I) \qquad k \in \mathbb{Z}$$

Convolution operator $C_{\mathbf{a}}\mathbf{b} = \mathbf{a} * \mathbf{b}$

• Commutes with translations $(T_m \mathbf{c})(k) = c(k-m)$:

$$C_{\mathbf{a}}T_{m}=T_{m}C_{\mathbf{a}}$$

• If $\mathbf{a} \in \ell^1(\mathbb{Z})$, then $C_{\mathbf{a}}$ is bounded on ℓ^p for $1 \le p \le \infty$.

 $\sigma_{\ell^p}(C_a)$... spectrum of C_a as an operator acting on $\ell^p(\mathbb{Z})$.

Wiener's Lemma for Convolution Operators I

Theorem

If $\mathbf{a} \in \ell^1(\mathbb{Z})$ and $C_\mathbf{a}$ is invertible on $\ell^2(\mathbb{Z})$, then $C_\mathbf{a}^{-1} = C_\mathbf{b}$ for some $\mathbf{b} \in \ell^1(\mathbb{Z})$.

Proof.

- Fourier series $\widehat{\mathbf{a}}(t) = \sum_{k \in \mathbb{Z}} a_k e^{2\pi i k t}$ for $\mathbf{a} \in \ell^2(\mathbb{Z})$ or $\ell^1(\mathbb{Z})$.
- $(C_a \mathbf{b})^{\hat{}} = (\mathbf{a} * \mathbf{b})^{\hat{}} = \widehat{\mathbf{a}} \widehat{\mathbf{b}}$
- $C_{\mathbf{a}}$ corresponds to multiplication operator and is invertible if and only if $\inf_t \widehat{\mathbf{a}}(t) > 0$
- Let **b** be the sequence with Fourier series $\hat{\mathbf{b}} = 1/\hat{\mathbf{a}}$. By Wiener's Lemma $\mathbf{b} \in \ell^1(\mathbb{Z})$.
- Since $\mathbf{a} * \mathbf{b} = \mathbf{b} * \mathbf{a} = \delta$, we have $C_{\mathbf{b}} = C_{\mathbf{a}}^{-1} = \mathrm{Id}$.

Wiener's Lemma for Convolution Operators II

Corollary

Assume that $\mathbf{a} \in \ell^1(\mathbb{Z})$. TFAE:

- (i) $C_{\mathbf{a}}$ is invertible on $\ell^2(\mathbb{Z})$.
- (ii) C_a is invertible on $\ell^p(\mathbb{Z})$ for some $p \in [1, \infty]$.
- (iii) $C_{\mathbf{a}}$ is invertible on $\ell^p(\mathbb{Z})$ for all $p \in [1, \infty]$.

Corollary

If $\mathbf{a} \in \ell^1(\mathbb{Z})$, then

$$\sigma_{\ell^p}(C_{\mathbf{a}}) = \sigma_{\ell^2}(C_{\mathbf{a}}) = \widehat{\mathbf{a}}(\mathbb{T}) \qquad \forall p \in [1, \infty].$$

Spectrum of convolution operator does NOT depend on the space ℓ^p

Symbolic Calculus

- parametrization of class of operators by "symbols"
- distinguished classes of "nice" symbols

Symbolic Calculus: Symbol class is closed under inversion (and functional calculus). If an operator is parametrized by a "nice" symbol and invertible on Hilbert space, then its inverse is again parametrized by "nice" symbol.

Wiener's Lemma is the prototype of a symbolic calculus

- class of convolution operators C_a
- \clubsuit "nice" symbols $\mathbf{a} \in \ell^1$

The inverse of convolution operator $C_{\mathbf{a}}$ is again a convolution operator $C_{\mathbf{a}}^{-1} = C_{\mathbf{b}}$. If $\mathbf{a} \in \ell^1$, then also $\mathbf{b} \in \ell^1$.

Outlook for Tomorrow

- Absolutely convergent Fourier series on compact abelian groups. Replace torus \mathbb{T} by arbitrary compact abelian group K.
- \bullet Convolution operators on locally compact groups: Replace $\mathbb Z$ by lc group G
- weighted versions: $\ell^1 \longrightarrow \ell_v^1$.
- · matrix algebras and off-diagonal decay
- time-varying systems, pseudodifferential operators
- rotation algebra, non-commutative tori

End of First Lecture

Wiener Pairs

Definition

Let $A \subseteq B$ be two (involutive) Banach algebras with common identity. Then A is called *inverse-closed* in B, if

$$a \in \mathcal{A}$$
 and $a^{-1} \in \mathcal{B} \implies a^{-1} \in \mathcal{A}$.

Main questions:

- 1. How to determine when A is inverse-closed in B.
- Answer (in principle): check identity of spectral radii $r_A(a) = r_B(a)$ for all $a \in A$.
- 2. How to construct inverse-closed subalgebras (in a systematic fashion)?

Answer: ??

Variations

- Absolutely convergent Fourier series on compact abelian groups. Replace torus \mathbb{T} by arbitrary compact abelian group K.
- \bullet Convolution operators on locally compact groups: Replace $\mathbb Z$ by lc group G
- weighted versions: $\ell^1 \longrightarrow \ell_v^1$.
- · matrix algebras and off-diagonal decay
- time-varying systems, pseudodifferential operators
- rotation algebra, non-commutative tori

Weights and Weighted ℓ^1

Weights quantify decay conditions

- submultiplicativity $v(k+I) \le v(k)v(I)$ for $k, I \in \mathbb{Z}^d$
- symmetry v(-k) = v(k)

Weighted
$$\ell_v^1$$
: $\|\mathbf{a}\|_{\ell_v^1} = \sum_{k \in \mathbb{Z}^d} |a_k| v(k)$

Weighted absolutely convergent Fourier series: $f \in \mathcal{A}_{\nu}(\mathbb{T}^d)$, if $f(t) = \sum_{k \in \mathbb{Z}^d} a_k e^{2\pi i k \cdot t}$ with norm

$$\|f\|_{\mathcal{A}_{\boldsymbol{\mathcal{V}}}} = \|\mathbf{a}\|_{\ell^1_{\boldsymbol{\mathcal{V}}}}$$

Lemma

If v is submultiplicative, then A_v is a Banach algebra with respect to pointwise convolution.

Examples

• Typical submultiplicative weight on \mathbb{Z}^d or \mathbb{R}^d :

$$v(k) = e^{a|k|^b} (1 + |k|)^s$$

for a, b, s > 0

Proof of Lemma.

$$\begin{array}{lll} \|fg\|_{\mathcal{A}} &= \|\mathbf{a} * \mathbf{b}\|_{1} \leq \|\mathbf{a}\|_{1} \, \|\mathbf{b}\|_{1} &= \|f\|_{\mathcal{A}} \, \|g\|_{\mathcal{A}} \, \|fg\|_{\mathcal{A}_{\boldsymbol{v}}} = \|\mathbf{a} * \mathbf{b}\|_{\ell_{\boldsymbol{v}}^{1}} \leq \|\mathbf{a}\|_{\ell_{\boldsymbol{v}}^{1}} \|\mathbf{b}\|_{\ell_{\boldsymbol{v}}^{1}} = \|f\|_{\mathcal{A}_{\boldsymbol{v}}} \, \|g\|_{\mathcal{A}_{\boldsymbol{v}}} \end{array}$$

Wiener's Lemma — Weighted Version

Theorem

TFAE:

- (i) Wiener's Lemma holds for A_{V} , i.e. if $f \in A_{V}$ and $f(t) \neq 0$ for all t, then $1/f \in \mathcal{A}_{\nu}$.
- (ii) v satisfies the GRS-condition (Gelfand-Raikov-Shilov)

$$\lim_{n \to \infty} v(n\mathbf{k})^{1/n} = 1 \qquad \forall \mathbf{k} \in \mathbb{Z}^d.$$

• The weight $v(k) = e^{a|k|^b} (1 + |k|)^s$ satisfies GRS, if and only if 0 < b < 1.

Counter-Example

Proof $(ii) \Rightarrow (i)$.

If *v* violates GRS, then there is $\mathbf{k} \in \mathbb{Z}^d$ and a > 0 such that

$$v(n\mathbf{k}) \ge e^{an}$$
 for $n \ge n_0$.

(A non-GRS weight grows exponentially on a subgroup)

Fix $\delta \in (0, a]$ and set

$$f(t) = 1 - e^{-\delta} e^{2\pi i \mathbf{k} \cdot t} \in \mathcal{A}_{V}(\mathbb{T}^{d})$$

Then $f(t) \neq 0$ for all $t \in \mathbb{T}^d$ and

$$1/f(t) = (1 - e^{-\delta}e^{2\pi i \mathbf{k} \cdot t})^{-1} = \sum_{n=0}^{\infty} e^{-\delta n}e^{2\pi i n \mathbf{k} t},$$

but

$$\|f\|_{\mathcal{A}_{v}}=\sum_{k=0}^{\infty}e^{-\delta n}v(n\mathbf{k})\geq\sum_{k=n_{0}}^{\infty}e^{-\delta n}e^{an}=\infty$$

Proof $(i) \Rightarrow (ii)$. (in dimension d = 1) Use

$$||q||_{\mathcal{A}_{\nu}} = \sum_{|k| \leq N} |b_{k}| v(k)$$

$$\leq ||b||_{2} (2N+1)^{1/2} \max_{|k| \leq N} v(k)$$

$$= ||q||_{2} (2N+1)^{1/2} \max_{|k| \leq N} v(k).$$

and adjust proof for unweighted case.

Convolution Operators on Groups

Postponed till later.

Time-Varying Channels (Discrete)

Time-invariant system corresponds to convolution operator

$$(C_{\mathbf{a}}\mathbf{c})(k) = \sum_{k \in \mathbb{Z}} a(k-l)c(l)$$

Corresponding matrix is $m_{kl} = a(k - l)$ is constant along diagonals (Toeplitz matrices).

Slowly time-varying systems — non-stationary matrices — small variation along diagonals.

Matrix norm

$$||M||_{\mathcal{C}_{\mathbf{v}}} = \sum_{I \in \mathbb{Z}} \sup_{k \in \mathbb{Z}} |m_{k,k-I}|_{\mathbf{v}(I)}$$

Convolution Dominated Operators

$$d(I) = \sup_{k \in \mathbb{Z}} |m_{k,k-I}|$$

is supremum on ℓ -th diagonal D(I) and

$$m_{kl} \leq d(k-l)$$

$$|(M\mathbf{c})(k)| = |\sum_{I \in \mathbb{Z}} m_{kI} c_I| \leq \sum_{I \in \mathbb{Z}} \frac{d(k-I)|c_I|}{|c_I|}$$

Action of *M* is dominated (pointwise) by convolution with **d**

The Nonstationary Version of Wiener's Lemma

Theorem (Gohberg et al., Baskakov, Kurbatov, Sjöstrand)

If $M \in \mathcal{C}_1$ and M is invertible on $\ell^2(\mathbb{Z})$, then $M^{-1} \in \mathcal{C}_1$

Theorem (Baskakov)

Assume that v satisfies the GRS condition. If $M \in C_v$ and M is invertible on $\ell^2(\mathbb{Z})$, then $M^{-1} \in C_v$.

 C_{v} is inverse-closed in $\mathcal{B}(\ell^{2})$.

Spectral invariance

Corollary

Assume that v satisfies the GRS condition and $M \in C_v$. Then

$$\sigma_{\ell_m^p}(M) = \sigma_{\ell^2}(M)$$

whenever $m(k + l) \le Cv(k)m(l)$ (m is v-moderate).

Spectrum of M is independent of domain space.

Proof Idea

De Leeuw, Gohberg, Baskakov Define *modulation* M_t by $(M_t\mathbf{c})(k) = e^{2\pi i k t} c(k)$ for $k \in \mathbb{Z}$. Given matrix A, consider matrix-valued function

$$\mathbf{f}(t) = M_t A M_{-t}$$

• **f**(*t*) is periodic with period 1.

Lemma (Fourier coefficients of f)

The n-th Fourier coefficient is the n-th side-diagonal of A.

Lemma (Fourier coefficients of f)

The n-th Fourier coefficient is the n-th side-diagonal of A.

Proof.
$$\left(M_tAM_{-t}\mathbf{c}\right)(k) = e^{2\pi i k t} \sum_{l \in \mathbb{Z}} a_{kl} e^{-2\pi i l t} c_l$$

$$\widehat{\mathbf{f}}(n)_{kl} = \int_0^1 \mathbf{f}(t)_{kl} e^{-2\pi i n t} dt$$

$$= \int_0^1 a_{kl} e^{2\pi i (k-l)t} e^{-2\pi i n t} dt$$

$$= a_{kl} \delta_{k-l-n} = a_{k,k-n} \delta_{k-l-n}$$
So $\widehat{\mathbf{f}}(n) = D(n)$ and
$$\mathbf{f}(t) \asymp \sum_{n \in \mathbb{Z}} D(n) e^{2\pi i n t}$$

Operator-Valued Fourier Series

Recall that $||A||_{\mathcal{C}} = \sum_{n \in \mathbb{Z}} \sup_{k \in \mathbb{Z}} |m_{k,k-n}| = \sum_{k \in \mathbb{Z}} ||D(n)||_{op}$, so **f** possesses an operator-valued absolutely convergent Fourier series.

We need Wiener's Lemma for operator-valued Fourier series (done by Bochner-Phillips 1946).

Off-Diagonal Decay of Matrices

Other conditions:

$$||M||_{\mathcal{A}_{v}} = \sup_{k,l \in \mathbb{Z}} |m_{kl}| v(k-l)$$
$$||M||_{\mathcal{A}_{v}^{1}} = \sup_{l \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |m_{kl}| v(k-l) \qquad \forall M = M^{*}$$

Theorem (GL'06)

- (a) If $v^{-1} \in \ell^1(\mathbb{Z})$, $v^{-1} * v^{-1} \leq Cv^{-1}$, and v satisfies the GRS condition, then \mathcal{A}_v is inverse-closed in $\mathcal{B}(\ell^2)$.
- (b) Assume that v is submultiplicative, $v(k) \ge (1 + |k|)^{\delta}$ for some $\delta > 0$, and satisfies the GRS condition. Then \mathcal{A}_{v}^{1} is inverse-closed in $\mathcal{B}(\ell^{2})$.

Many open problems! Systematic constructions by A. Klotz, 2008

Time-Varying Systems

Time-Varying Channels — Continuous Case

Received signal \tilde{f} is a superposition of time lags

$$\tilde{f}(t) = \int_{\mathbb{R}^d} V(u) \dots f(t+u) du$$

Received signal \tilde{f} is a superposition of frequency shifts

$$\tilde{f}(t) = \int_{\mathbb{R}^d} W(\eta) \dots e^{2\pi i \eta t} f(t) d\eta$$

Thus received signal $\tilde{f} = K_{\sigma} f$ is a superposition of time-frequency shifts:

$$K_{\sigma}f(t) = \int_{\mathbb{D}^{2d}}\widehat{\sigma}(\eta,u)\underbrace{e^{2\pi i\eta\cdot t}f(t+u)} dud\eta$$

Modelling

Standard assumption of engineers: $\sigma \in L^2$ and $\hat{\sigma}$ has compact support.

Problem: Does not include distortion free channel and time-invariant channel.

So supp $\hat{\sigma}$ is compact, but $\hat{\sigma}$ is "nice" distribution. Then σ is bounded and an entire function.

Symbol Classes

Sjöstrand class $M^{\infty,1}(\mathbb{R}^{2d})$:

$$\|\sigma\|_{M^{\infty,1}} = \int_{\mathbb{R}^{2d}} \sup_{z \in \mathbb{R}^{2d}} |(\sigma \cdot T_z \Phi)^{\hat{}}(\zeta)| d\zeta < \infty$$

$$\Rightarrow (\sigma \cdot T_z \Phi)^{\hat{}} \in L_v^1.$$

Locally σ is a Fourier transform of an L^1 -function!

Weighted Sjöstrand class $M_{\mathbf{v}}^{\infty,1}(\mathbb{R}^{2d})$.

$$\|\sigma\|_{M_{\mathbf{v}}^{\infty,1}} = \int_{\mathbb{R}^{2d}} \sup_{\mathbf{z} \in \mathbb{R}^{2d}} |(\sigma \cdot T_{\mathbf{z}}\Phi)^{\widehat{}}(\zeta)| \, \mathbf{v}(\zeta) \, d\zeta < \infty$$

Algebra Property of Sjöstrand Class

Proposition

If v is submultiplicative and $\sigma, \tau \in M_v^{\infty,1}$, then $K_\sigma K_\tau = K_{\sigma \circ \tau}$ with $\sigma \circ \tau \in M_v^{\infty,1}$. Thus $M_v^{\infty,1}$ is a Banach *-algebra with respect to \circ .

Transmission of Information by OFDM

Transmission of "digital word" $(c_k), c_k \in \mathbb{C}$ via pulse g Transmitted signal is

$$f(t) = \sum_{k=0}^{\infty} c_k g(t-k)$$

with Fourier transform

$$\hat{f}(\omega) = \sum_{k=0}^{\infty} c_k e^{-2\pi i k \omega} \hat{g}(\omega)$$

ess.supp
$$\hat{f} = \text{ess.supp } \hat{g}$$
.

Multiplexing

Transmission of several "words" (←⇒ simultaneous transmission of a symbol group) by distribution to different frequency bands with modulation

Partial signal for ℓ -th word $\mathbf{c}^{(\ell)} = (c_{kl})_{\mathbf{r} \in \mathbb{Z}}$

$$f_{\ell} = \sum_{k} c_{kl} T_{k} g$$

Total signal is a Gabor series (Gabor series) $f = \sum_{k,l} c_{kl} M_{\theta l} T_k g$

$$f = \sum_{k,l} \frac{c_{kl}}{c_{kl}} M_{\theta l} T_k g$$

If $M_{\theta}T_{k}g$ orthogonal, then OFDM (orthogonal frequency division multiplexing)

Decoding and the Channel Matrix

Received signal is

$$\widetilde{f} = \mathcal{K}_{\sigma} \Big(\sum_{k',l'} c_{k'l'} M_{\theta l'} T_{k'} g \Big)$$

Standard procedure: take correlations

$$\langle \widetilde{f}, \textit{M}_{\theta \textit{I}} \textit{T}_{\textit{k}} \textit{g} \rangle = \sum_{\textit{k'},\textit{l'}} c_{\textit{k'}\textit{l'}} \, \langle \textit{K}_{\sigma} \textit{M}_{\theta \textit{l'}} \textit{T}_{\textit{k'}} \textit{g}, \textit{M}_{\theta \textit{I}} \textit{T}_{\textit{k}} \textit{g} \rangle$$

Solve the system of equations

$$y = Ac$$

where $A_{kl,k'l'} = \langle K_{\sigma}(M_{\theta l'} T_{k'} g), M_{\theta l} T_{k} g \rangle$ is the channel matrix.

Almost Diagonalization of Time-Varying Channels

Standard assumption in wireless communications: A is diagonal. !!

Theorem

(A) If $g \in M_v^1$ and $\sigma \in M_v^{\infty,1}$, then there is $h \in \ell_v^1(\mathbb{Z}^{2d})$, such that

$$|\langle K_{\sigma}(M_{\theta l'}T_{k'}g), M_{\theta l}T_{k}g\rangle| \leq h(k-k',l-l') \tag{1}$$

(B) If $\{M_{\theta l}T_kg\}$ is a frame for $L^2(\mathbb{R}^d)$, then almost diagonalization (1) implies that $\sigma \in M_v^{\infty,1}$.

Short version:

Theorem

 $\sigma \in M_{\nu}^{\infty,1}$ if and only if channel matrix $A \in \mathcal{C}_{\nu}$.

$M_V^{\infty,1}$ is Inverse-Closed

Theorem (Sjöstrand)

If $\sigma \in M^{\infty,1}(\mathbb{R}^{2d})$ and K_{σ} is invertible on $L^2(\mathbb{R}^d)$, then $K_{\sigma}^{-1} = K_{\tau}$ for some $\tau \in M^{\infty,1}$.

Theorem (KG)

Assume that v is submultiplicative and

$$\lim_{n\to\infty} v(nz)^{1/n} = 1, \quad \forall z \in \mathbb{R}^{2d}.$$

If $\sigma \in M_{\nu}^{\infty,1}(\mathbb{R}^{2d})$ and K_{σ} is invertible on $L^{2}(\mathbb{R}^{d})$, then $K_{\sigma}^{-1} = K_{\tau}$ for some $\tau \in M_{\nu}^{\infty,1}$.

Intuition

Ingredients of Proof. Based on Wiener's Lemma for the matrix algebra C_V and several identities of time-frequency analysis.

Composition of pseudodifferential operators \simeq matrix multiplication

 \Rightarrow algebra property
Inversion of pseudodifferential operators \simeq matrix inversion \Rightarrow If matrix algebra is inverse-closed, then algebra of pseudodifferential operators is inverse-closed.

Hörmander's Class

Hörmander class: $\sigma \in S_{0,0}^0$ if and only if $\partial^{\alpha} \sigma \in L^{\infty}(\mathbb{R}^{2d})$, $\forall \alpha \geq 0$.

Observation: If $v_s(\zeta) = (1 + |\zeta|)^s$, then

$$S_{0,0}^0 = \bigcap_{s\geq 0} M_{v_s}^{\infty,1}$$

Corollary (Beals '75)

If $\sigma \in S_{0,0}^0$ and K_{σ} is invertible on $L^2(\mathbb{R}^d)$, then $K_{\sigma}^{-1} = K_{\tau}$ for some $\tau \in S_{0,0}^0$.

Rotation Algebra

Time-frequency shifts

$$T_x f(t) = f(t-x)$$
 and $M_{\omega} f(t) = e^{2\pi i \omega \cdot t} f(t)$ $x, \omega, t \in \mathbb{R}^d$.

Commutation Relation (CCR)

$$T_X M_\omega = \mathrm{e}^{-2\pi \mathrm{i} \mathbf{x} \cdot \omega} M_\omega T_X$$

The rotation algebra (non-commutative torus) $C^*(\theta)$, $0 \le \theta < 1$, is the C^* -Algebra generated by T_k and $M_{\theta I}$, $k, I \in \mathbb{Z}^d$, i.e.,

 $A \in \mathcal{B}(L^2)$ belongs to $C^*(\theta)$, if it can be approximated by finite series of time-frequency shifts $\sum_{|k|,|l| < N} c_{kl} M_{\theta l} T_k$

Interesting Subalgebras

Absolutely convergent series of time-frequency shifts

$$\mathcal{A}_{\boldsymbol{\mathcal{V}}}(\theta) = \{T \in \mathcal{B}(L^2(\mathbb{R}^d)) : T = \sum_{k,l \in \mathbb{Z}^d} a_{kl} T_k M_{\theta l}, \ \boldsymbol{a} \in \ell^1_{\boldsymbol{\mathcal{V}}}(\mathbb{Z}^{2d}) \}$$

Norm
$$\|A\|_{\mathcal{A}_{v}} = \|\mathbf{a}\|_{1,v} = \sum_{k,l \in \mathbb{Z}^{d}} |a_{kl}| \ v(k,\theta l)$$

Smooth non-commutative torus

$$\mathcal{A}_{\infty}(\theta) = \{T \in \mathcal{B}(L^2(\mathbb{R}^d)) : T = \sum_{k,l \in \mathbb{Z}^d} a_{kl} T_k M_{\theta l} \ |a_{kl}| = \mathcal{O}((|k| + |l|)^{-N})\}$$

Wieners Lemma for the Rotation Algebra

Analogy: absolutely convergent Fourier series — absolutely convergent series of time-frequency shifts

Theorem

Assume that

- $A \in \mathcal{A}_{V}(\theta)$ and
- A is invertible on $L^2(\mathbb{R}^d)$, then $A^{-1} \in \mathcal{A}_V(\theta)$.

Recall: If $f \in C^{\infty}(\mathbb{T})$ and $f(t) \neq 0, \forall t$, then $1/f \in C^{\infty}(\mathbb{T})$.

Corollary (Janssen '95, Connes '80, Rieffel '88)

If
$$A \in \mathcal{A}_{\infty}(\theta)$$
 and is invertible on $L^2(\mathbb{R}^d)$

$$(|a_{kl}| = \mathcal{O}((1 + |k| + |l|)^{-N}) \forall N \ge 0)$$
, then $A^{-1} \in \mathcal{A}_{\infty}(\theta)$, i.e.

 $A^{-1} = \sum_{k l \in \mathbb{Z}^d} b_{kl} T_k M_{\theta l}$ with rapidly decaying **b**.

Twisted Convolution

(a
$$abla_{\theta} \mathbf{b})(k, l) = \sum_{k', l' \in \mathbb{Z}^d} a_{k'l'} b_{k-k', l-l'} e^{-2\pi i \theta k' \cdot (l-l')}$$
1. $abla \in \mathbb{Z}$, a $abla_{\theta} \mathbf{c} = \mathbf{a} * \mathbf{c}$
2. $abla \notin \mathbb{Z} \implies
abla_{\theta} \text{ non-commutative.}$
(Twisted) convolution operator $abla_{\mathbf{b}} \mathbf{c} = \mathbf{b} \,
abla_{\theta} \mathbf{c}$

Theorem (Wiener's lemma)

Assume that

- $\mathbf{a} \in \ell^1(\mathbb{Z}^{2d})$ and
- $T_{\mathbf{a}}$ is invertible on $\ell^2(\mathbb{Z}^{2d})$,

then **a** is invertible on $(\ell^1(\mathbb{Z}^{2d}), \, \natural_{\theta})$ and $T_{\mathbf{a}}^{-1} = T_{\mathbf{b}}$ for some $\mathbf{b} \in \ell^1(\mathbb{Z}^{2d})$.

Convolution Operators on Locally Compact Groups I

 $G \dots$ locally compact group with Haar measure dx

convolution:
$$(f * g)(x) = \int_G f(y)g(y^{-1}x) dy$$

convolution operator C_f : $C_f h = f * h$

If $f \in L^1(G)$, then C_f is bounded on $L^p(G)$.

$$\sigma_{L_p}(C_f) = \{\lambda \in \mathbb{C} : C_f - \lambda I \text{ not invertible on } L^p\}$$

Barnes' Lemma

Lemma

Spectral invariance $\sigma_{L^p}(C_f) = \sigma_{L^2}(C_f)$ for $1 \le p \le \infty$ holds, if and only if G is amenable and symmetric.

- Amenability: existence of (translation) invariant mean on $L^{\infty}(G)$
- Symmetry: spectrum of positive elements is positive

$$\sigma_{L^1}(f^**f)\subseteq [0,\infty) \quad \forall f\in L^1(G)$$

• Symmetry of $\mathcal{A} \Leftrightarrow \mathcal{A}$ is inverse-closed in its enveloping C^* -algebra.

Convolution Operators on Locally Compact Groups II

Polynomial growth: G has polynomial growth, if for some neighborhood $U = U^{-1}$ of identity $|U^n| \le Cn^d$

Example:
$$G = \mathbb{R}^d$$
, $U = [-1, 1]^d$, $U^n = [-n, n]^d$, $|U^n| = (2n)^d$.

Theorem (Losert '01)

Every compactly generated group of polynomial growth is symmetric.

Corollary

Wiener's Lemma holds in all groups of polynomial growth, i.e., $\sigma_{IP}(C_f) = \sigma_{I2}(C_f)$ for all $f \in L^1(G)$ and all $1 \le p \le \infty$.

Weights on Groups

- submultiplicativity $v(xy) \le v(x)v(y)$ for $x, y \in G$
- symmetry $v(x^{-1}) = v(x)$
- weighted L¹ with norm

$$||f||_{L^1_v} = \int_G |f(x)| v(x) dx$$

Then L^1_V is involutive Banach algebra contained in $L^1(G)$.

Weighted Versions

Theorem (FGLLM)

Assume that G is compactly generated and possesses polynomial growth. TFAE:

- (i) $L_v^1(G)$ is symmetric.
- Spectrum of positive operators is positive.
- (ii) Spectral invariance

$$\sigma_{L^1_{\nu}}(C_f) = \sigma_{L^2}(C_f) \qquad \forall f \in L^1_{\nu}(G)$$

(iii) The weight v satisfies the GRS condition (Gelfand, Raikov, Shilov)

$$\lim_{n\to\infty} v(x^n)^{1/n} = 1 \qquad \forall x \in G$$

More Applications in Mathematics

- Theory of localized frames: what can be said about the dual frame
- (Non-uniform) Sampling in shift-invariant spaces, local reconstructions
- Collaboration with F. Hlawatsch, G. Matz, G. Tauböck from TU Vienna on almost diagonalization of channel matrix and improved equalization

References

- Wiener's Lemma:
- Banach algebra books by Rickart and Bonsall-Duncan
- Weights: Naimark "Normed Rings"
 Gelfand-Raikov-Shilov
 K. Gröchenig "Weight functions in time-frequency analysis" (Comm. Fields Institute)
- Matrix algebras:

Jaffard, 1990 Baskakov 1990, Gohberg, Kashoeck, Woerdeman (1990) Gröchenig, Leinert, TAMS 2006

 Rotation algebra: Rieffel, Bull. Can. Math. Soc. 1988
 Gröchenig, Leinert, "Wiener's Lemma for twisted convolution and Gabor frames", JAMS 2004

References Continued

- Pseudodifferential operators:
- Sjöstrand, 1994, 1995 Gröchenig, J. Anal. Math. 2006, Rev. Math. Iberoam. 2006
- Mobile communication:
 Strohmer, JFAA 1999, ACHA 2006
- Convolution Operators:

work of Leptin, Poguntke, Hulanicki from 1965-1980 Fendler, Gröchenig, Leinert, Ludwig, Molitor-Braun "Symmetry of weigthed L^1 -algebras of groups of polynomial growth", Math. Z. 2003, Bull. LMS 2005.

http://homepage.univie.ac.at/karlheinz.groechenig/

Summary

Thank you!